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Course Outlines

1. Complex Analysis

Analytic functions and Cauchy-Riemann equations; complex integration,
Cauchy principal value; elementary complex valued functions; exponential
functions, Euler’s formula, trigonometric and hyperbolic functions,
logarithm and general powers; power series, Taylor series and convergence

tests.

2. Differential Equations

Classification of differential equations; 1st order ordinary differential; 2nd

order differential equations; partial differential equations.
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General Announcements

. Assessment Scheme

 Homework Assignments, Quizzes, etc. 25%
* Mid-term Exam (common) 25%
* Final Exam (common) 50%

. The mid-term exam would include questions on Complex Analysis and

perhaps some part of ordinary differential equations (ODEs), e.g., 1st order
ODE.

. The mid-term exam would be arranged on 24 October 2019 (Thursday)

during the tutorial session.

Both the mid-term and final exam are closed-book. One double-sided A4

handwritten cheat sheet and calculators are allowed.

Students are not allowed to switch classes.
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General Announcements

6. Tutorial classes start in Week 2

Tutorial classes will be conducted by the following tutors this semester...

33271
38056
34231
34229
34223
34237

34237

Tutorial Sessions
Ext. .
in Charge

Weeks 2 & 3
Weeks 4 & 5
Weeks 6 & 7
Weeks 8 & 9
Weeks 10 & 11
Weeks 12 & 13
Coordination of
exams &
assignments...

Tutorial sessions will be held in YIA LT3, Thursday, 10:30-12:15pm...
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Complex Analysis
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Euler's formula

Im ‘

; e'’=cos ¢ +isin g

sin @

@
0|cos ¢ 1 ;;

Leonhard Euler

e =CcosT +18Inx (1707-1783)

Swiss Mathematician

1T
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Complex Analysis - 1...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series and Taylor Series
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Complex Numbers

A complex number is defined (in the Cartesian form) as

zZ=Xx+1y

where
i =~—1 or i’ =-1

x is called the Real part and y the Imaginary part of z, written

x = Re z, y=Imz
both being a real number. For example,
z=—4+2i, z=-3-5i, z=5-8i

all are complex numbers. Occasionally, we might treat a complex number as an

ordered pair (x, y) of real numbers x and y, written

z=(x,y)
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Since a complex number has two parts, we can depict it on a 2D-plane, which

is called a complex plane.

Im 4
Z=X+1y
d
5 > Re
X
-y Z = x — 1y is called the conjugate of z

Additions: It is easy to do additions (subtractions) in Cartesian coordinate, i.e.,

(a+ib)+(v+iw)=(a+Vv)+i(b+w)
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Multiplication:

Z122 = (371 + yl’l:)(xg -+ y22) = 2122 + $1y27: + nyli + y1y2i2
— (1311’2 - ’ylyz) + (:clyz -+ :cgyl)z'.

Division: The Quotient z = 2 (22 # 0)

zy 21+ Y1t
Z9 ro + ‘ygi
r1 + Y11 T2 — Y21
To + Yot Ty — Yol
T172 + Y192 NV =XV, .
2 2 + 2 , !
T3 + Y3 X, + ¥,
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Example (1a)

241 241 3+ 41

3_4; 3—4i3+ 4
2+ 114
DT

which result can be checked by showing that 3 — 4i times 2+11"

gives 2 + 1.

e The real part and the imaginary part are = and 5%

= respectlvely.

@ Also, the modulus of this complex number is

2+i| |2+11:

3—4i| | 25
V224112
a 25

Sl-
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@ The complex conjugate of z = = + y: is defined as

It can be shown that

and

Geometrically, z is the reflection of z along the real axis.
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zZ=x— yu.

21+ 22 =21+ 22, 2129 = 2129,

|z|2 = 2Z.

(1.8)
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@ We have the triangle inequality

|z1 +z2| < |z1| + |z2|,

and the reverse triangle inequality

2 —22‘2‘ 2|z, ‘

Proof... ‘21‘:‘(21 —22)+22 < z, — 2z, +‘22‘ = |z,—Z2, > Zl‘—‘Zz
‘zz‘z‘(zz—zl)+zl SZz—Zl-I—‘ZI‘ = |z,—2z, 222‘—‘21
‘21_22‘2“21‘_‘22‘ ‘:“Zz‘_‘zl‘ ‘
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Polar Representation of Complex Numbers
There is another way (polar representation) to represent a complex scalar
z=re
Using the Euler’s formula
e’ =cos@+isin®
we obtain (Polar to Cartesian representations)
z=re’ =r(cos@+isin@)=(rcos@)+(rsin@)i=x+yi

Conversely,

Im(z) o z=x+Yyi
2 2 2 .
| ro = |Z| =Xty _ Cartesian to
r= 2| | | y Polar
: y=r-sind tan & = - __ Representation
| .
5 . i0
™ = H:tan_IXJ X+ yi=re
x=r-cosf Re(z) X
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® Note that r is the absolute value or modulus of z, i.e.,

r=|z| = 22 + y2.

(1.11)

The angle 6, called the argument of z, is denoted by # = arg(z), which can

be determined from the formula

6 = arg(z) = tan~1! (¥

2)

(1.12)

for z # 0; for z = 0 the angle 6 is undefined.

Im(z) A

r=|z|

s — — e— — —

>
* Re(z)
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All angles
(arguments) are
measured in
radians and
positive in
counter-clockwise
sense.
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@ Given any point z # 0, the angle 6 can be determined only to within an
arbitrary integer multiple of 2. Now, it is sometimes convenient to choose a
particular value of §. The value of @ satisfying —n < # < =« is called the
principal argument of z, denoted by 6, = Arg(z). Then, we have

0 = arg(z) = Arg(z) + 2km = O + 2kn

fork=0,+£1,+£2,..., asis evidentin Fig. 1.2.

0 = arg(z) = tan™1 (¥)

For example,

T
0 = tan™! (%) = tan"1(1) » 0 = 7 + 2km, ...
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@ EXxplicit expression of Arg(z): depends on the location of z = x + 2y.

x>0

F

x <0
y>0

Arg z = arctan(y/x)

<0
y<0

Argz = w+ arctan(y/z) || Argz = —m + arctan(y/x)

and, otherwise, Arg z =< undefined, ifx=0andy=0

ENGG 2420 - Complex Analysis ~ Page 18

7. ifx=0andy>0 -

\ -7, ifx=0andy<0 ----»

NP,
N | NN
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@ The polar form of complex numbers is especially convenient for their
multiplication and division. For example, let z; = 1€t and z, = roei?2.

Then SN
7 = s = (Tlewl)(r2ew2) — T1T2(€i(91+92) /ﬁ rei@
or ]
z1z2|=|r1r2[cos(b1 + 62) +i(sin(01 + 62))] | =1 -7,

and ;

z1 rie?1 _ "1 (6,-62)

7 roei®2 1y .
or 21 T s

= —[cos(f1 — 62) + i(sin(f1 — 62))].
zZ2 2

@ Question: |z122| =7 arg(z1z2) =7

Euler’s formula | e = cosf + isiné, [— ‘e"g‘ — |COS¢9+isin <9| —Jcos? @ +sin? 0 =1
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@ In particular, the integer power of z can be computed easily by
z" =(re“9) =" =p" (cosn9+isinn6’) (1.13)
where n is any integer. This is known as the de Moivre’s formula.

@ The de Moivre’s formula (1.13) gives a way to compute the fractional power
1 " 8
z= . We call z= the n-th root of z, then

% %ei(00t2kn’) (114)

Zn =T

fork=0,1,...,n — 1. Note that 2= is a multi-valued function.

z = re'?. Euler’s formula | e

= cosfl + isinf,
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Example (1b)

e evaluate the values of (1 + )3.

r=+124+12=+/2 i
— = » 14+1=1+2e"%
0.—tan™" 1= 7
A
principal ) L i(8g42kw)
argument Zn —rne n
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Geometrical description of these three roots

- . | T i

Ama - _

fi= Qéﬁﬁ,fz = Q%E_*i_ and f3 = 76, 12

¥
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Complex Analysis - 2...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series and Taylor Series
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Revisit: Real functions of a real variable
y=f(x)

which is a mapping from a set of real scalar x to another set of real
scalar y.

Examples:
\ y=x2, _1gxgz\ y=co0s2.5x, —2<x<3
5 . . : . 2
4t 157
1
3
0.5
2 1 0
-0.5
1
-1
0
157+
1 -2
2 1 0 1 2 3 -2 1 0 1 2 3
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g,

Basics: Complex functions of a complex variable...

@ Functions of one complex variable z are mapping from a complex plane to a
complex plane. For convenience we label the former as the z-plane and the
later as the w-plane.

@ Functions of one complex variable are usually denoted by

w = f(z) = f(z + yi). (2.1)

Im [Z] Im[w]

@
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The complex function

w = f(z) = f(x + yi) (2.1)

can be expressed as follows...

f(2z) = u(z,y) +iv(z,y), (2.2)

a function of one complex variable z can be regarded as a function of
two real variables x and y.

u(xz,y) real partof f

v(z,y) imaginary part of f.
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@ As usual, we define the set on which f is defined as the domain of f and the
set of all values of f(z) (z is in the domain of f) as the range of f.

@

domain
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Example (2a)

@ Consider the complex function w = f(z) = 22 defined on the first quadrant of
the z-plane: 0 < z < 00,0 < y < oo. Then

f(z) = f(z + yi) = (z + 3i)* = (2% — ¥°) + 2zyi.
Thus, u(z,y) = 22 — y? and v(z,y) = 2zy.

@ Now, —0o < u(z,y) < coand 0 < v(z,y) < co. Therefore, the range of f is
the entire upper half plane, i.e., Im(z) > 0.

z-plane w-plane

range

domain

Fig. 2.1. Mapping defined by w = f(z) = 2>
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Example: z% (cont.)

In polar coordinate: W= f(z)=R e =z% = (r ei¢)2 =r* e
For example, the set of the region 1 < <3/2, ©/6 < ¢ < 1/3 under the

mapping W =z? is 1<R<L9/4, n/3<0<L2n/3

4 domain range
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-

elementary functions.

» The first function is exponential of z

N e Y,
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Exponential Functions

@
32 .33
Ez=1+z+ﬁ+§+”'- (2-3}

Writing z = = + y2 and using Euler’s formula

— eTe'Y

Vv

e*(cosy +isiny).

17

Euler’s formula | e = cosf + isiné,
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@ Note that

e¥| = | cosy + isiny| = \/c:osz'y+sin2y =1 forally

E> le*| = |e*(cosy + isiny)| = |e®|| cosy + isiny| = |e®| for all z.

Therefore, e* # 0 in the entire z-plane (entire: see section 3).
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@ From the Euler’s formula | e?? = cos@ + isin#,
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@ Periodicity of e* with period 2z,

Ez+2ﬂ'1

e e

271

'1:E

=
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Example: €% (cont.) [w =" =™ =¢'e” = Re” }

For w = ¢", consider the images of: y v

1. Straightlines x = x, = const / o
X u
and y =y, = const X, \/

FromR=e¢", 0=y ,h wesee

that x = x,, is mapped onto the

circle |w|=¢"™ and y =, y v
Yo

is mapped onto the ray

\J/O y

arg(w) = ¥, '
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Example: €% (cont.) [ R=e", 0=y }

2. Rectangle D={z=x+iy|la<x<bh, c<y<d}:

From 1, we can conclude that any rectangle with side parallel to the
coordinate axes is mapped onto a region bounded by portions of rays and

circles. Therefore the range of D is

D' ={ w=Rei9‘e“SRSeb,c£9Sd }
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Example: €% (cont.)

3. The fundamental region —Tt < y < T:

The fundamental region is mapped onto the entire w-plane, excluding the

origin. The strip 0 < y < 7t is mapped onto the upper half-plane

y Vv

More generally, every horizontal strip ¢ < y < ¢+ 27 is mapped onto the

full w-plane excluding the origin.
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Trigonometric and Hyperbolic Functions

@ Changing @ to y and —y in Euler’s formula (1.9), then we get

eV =cosy+isiny, e Y =cosy—isiny.

@ Note: Euler’s formula is valid in complex.

Solving (2.5) for cos y and sin y, we obtain

eV +e W ety — e~
cosy = 5 , siny = o
Eiz 1+ E—iz
Cos z = 5 .
» Ei: . E—iz
Sin z = , :
21
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@ As in calculus, we define

Sin z COS Z
tan z = y COtz=— -
COS Z S1n z
| |
SeC z = y CSCZ=—
COS Z Sin z
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o define the hyperbolic cosine and hyperbolic sine functions

e*+e *
cosh z = 5 ,
. . (2.7)
. e’ —e
sinh z =
2 ez’z _I_E—iz
cos z = 5 ,
Eiz _ E——iz
Sin z = *
21

Their derivatives are

(coshz) =sinhz, (sinhz)’ = cosh z.
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@ The other hyperbolic functions are defined

sinh z cosh z
tanh z = , cothz=— .
cosh z sinh z
and
1 1
sechz = csch z =

cosh z’ sinh z
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@ Complex trigonometric and hyperbolic functions are related:
the connections between trigonometric and hyperbolic functions are

cos(iz) = coshz, sin(iz) = isinhz,

cosh(iz) = cosz, sinh(iz) =isinz.

N e’ +e?
CcOs z = 5 ; cosh z = 5 )
EE..E.-" _ E—tz i Ez S E—z
sinz — : ‘ sinh z =
21 2

ENGG 2420 - Complex Analysis ~ Page 42 Ben M. Chen, CUHK MAE



@ Based on definitions of €%, cos z, sin z, cosh z and sinh z
most familiar formulas for real exnonentials, trigonometric and
hyperbolic functions still apply.

Example

1, . : 1 . :
z+ cos’z —_(e“z — e—w)? + — (e + e—zz)Z
4 4
1, o |
— Z(_esz R e—2zz + 6222 4+ 24 e—sz)
= 1.

2

sin
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Logarithmic Functions

@ define logarithmic function In z (sometimes also by log z).

for z # 0, express z in polar form and write

Inz = In(re??) = Inr + In(e*)
= Inr + 26, (r =12 > 0,0 = argz)

or

Inz =Inr+i(6p + 2kn)

for@ =argz =0p + 2km,—m < 0y <m, k=0,£1,1+2,....
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@ Since the argument of z is determined only up to integer multiples of 27, the
complex natural logarithm In z(z # 0) is infinitely many-valued.

0 =argz =0y + 2km, < Oy <mk=0,+1,£2,....

» Inz = Inr 410,

Example Inl=0+2k7ni=0,%x27i, +47i, -
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@ The value of In z corresponding to the principal value Argz is denoted by Lnz
(Ln with capital L) and is called the Principal value of In z(z # 0).

Lnz = In |z| + iArgz

(2.9)

@ The uniqueness of Argz for given z(# 0) implies that Lnz is single-valued.
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@ Since the other values of argz differ by integer multiples of 27, the other
values of Inz are given by

Inz = Lnz + 2k (B=l,E2,...]),

@ Note: All have the same real part, and imaginary parts differ by integer
multiples of 2.

@ If z is positive real, then Argz = 0, and Lnz becomes identical with the real
natural logarithm ; If z is negative real, then Argz = 7 and

Lnz = In|z| + i, (z negative real)
Examples Lo(-1) =In|-1|+ 7zi = 7i
Lo(i)=Inli|+=i="i
2 2
T T

Ln(—i):ln\—i\—ai:—ai
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Example (2b)
@ Since 1 4+i=+2eT,

m(1+z)_%+z(’;+2kw), k=0,+1,42,....

Ln(1+i)= ln[+—z

Just for fun... Compute

i'= (ei%) _ e 2 =0 72 2 0.207879576350762 - -

Ln(i')=Ine 7 =—§
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General Powers of z

@ Suppose z and c are both complex numbers, we have

clnz

@ Since In z is infinitely many-valued, z¢ will be multivalued, and
¢ — gelInr+i(o+2km)]  fork =0,41,42,.. ..
c-power of z

The particular value (k = 0)

2C — Ean z

Is called the principal value of z¢.
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@ c-power of z as

o — ge| Inri(Bo+2km)|

In particular, when c is real, then

,C — (_reiﬂ)c — pcei(fo+2km)c (2.11)

Example (2c)
o Since Ini =In1+ (% + 2km) = i(Z + 2km),

it = etlnt = g=(§+2k7) k=0,+1,+2,....

Inz =Inr+i(6y + 2kn) L€ — pelnz
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Complex Analysis - 3...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula
6 Complex Series, Power Series and Taylor Series
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Revisit: The derivative of a real function

y=Jfx)

is a measure of the rate at which the value y of the function changes

with respect to the change of x.

Example: Consider the function

y _,
(a straight line) plotted in the A (2,10) #
figure on the right. The derivative
of the function (or the rate of Ay=y>—m
changes) of the function is its slope. A0
(z1, y1) ol—

Note that the derivative cannot be Az=12—m1

defined on a single point. We need

an interval of x, i.e., Ax, to define a \ >

. X
derivative.
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Similarly, we need a 2D region in a complex function domain to define a
complex derivative as a complex function is actually a mapping from a 2D

plane to another 2D plane.

Terminologies

@ heighborhood of a point zp with radius r

N(zo;7) ={z € C: |z — 2| < r}.

Vs
N(zgr)

Fig. 1.4. Neighborhood of a point zy with radius r.
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@ A set S is called connected if every point in .S can be joined by an unbroken
line entirely within S

A A

v

@ A point zp is called a boundary point of S if every neighborhood of zg
contains a point in .S and a point not in S. The set of all boundary points of S
is called the boundary of S.
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@ A point zg is called an interior point of .S if there exists a neighborhood
N (zp; €) of zg lying entirely within S. The set of all interior points of S is called
the interior of S.

R
IS

0

v

@ A connected set is called a region.

@ S is called an open region or a domain if it contains none of its boundary
points. S is called a closed region if it contains all of its boundary points.

ENGG 2420 - Complex Analysis ~ Page 55 Ben M. Chen, CUHK MAE



@ A simple closed path is a closed path that does not intersect or touch itself
as shownin Fig. 1.5

Simple Simple Not simple Not simple

Fig. 1.5. Closed paths
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@ A simply connected domain D in the complex plane is a domain such that
every simple closed path in D encloses only points of D). A domain that is not

simply connected is called multiply connected

P i 8

- ‘ '- - -y
a N -~ 2 - '0 -~ - -~
’ s - N £ 3 s B
7 - 1 2 l,’ ‘ ’ ) ’ S
I I ‘. I - f Y U4 by - Y
i \ L s \ 4 -—— \ i 7 1 3
- i/ i 1 - \ \ b /] 1
% aecis. @8 OSSN @G G ) )
' ) Gl ¥ W L Gheol” )
. 4 \ I : et ) \ ’ [y
T y 2 \_ Ll . ’ “\ oot /
b o ~ S \\. I' » Nes o
- — Same" g "----—"
Simply Simply Doubly Triply
connected connected connected connected

Fig. 1.6. Simply and multiply connected domains
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Example (1c)
@ Considertheset S’ ={z€C: |z — (1+1)| <1}.

X

- T Fig. 1.7. The sketch of S’.

(a) S’ is connected, and also simply connected.

(b) The boundary of S’ is |z — (1 + z)| = 1. The interior of S is |z — (1 + 7)| < 1.
(c) The union of boundary of S’ and interior of S’ is S”.

(d) The intersection of boundary of S’ and interior of S’ is &, i.e., the empty set.
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Limit and Continuity

@ Let zp be an interior point in the domain of f(z). We say that the limit of f(z),
as z approaches a point zg, is [, i.e.,

lim f(z) =1, (3.1)

Z—rzo

if for each € > 0 there exists a é > 0 such that

|f(z) — 1| < e whenever 0 < |z — 2| < 4.

y v
- -
e -
’ R ~—— | e Ts n
/ p 1< N
I 5 2 \' 5 T~ \
/ = \
‘\/o AR ' 0
4 7 1 & fliz)
N ’, I/l !
- \ [}
\ /
\ /
X \ 7
~ F 4 u
~ ’

Fig. 3.1. Limit.
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® f(z) is continuous at z = zj if

lim f(z) = f(z0). (3.2)

Z—rZ0

T

@ In many cases, we can manipulate complex limits like real limits.

example,

lim(z2 4 iz) = 2 + 4% = —2.
Z—r1
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Complex Differentiation and Analytic Functions

@ Let zy be an interior point in the domain of f(z). We define the derivative of
fatz=zpas

! . A T
f(z0) = lim flzo + ;; f(zﬂ), (3.3)
provided that the limit exists.
(3.3) can be rewritten as
f(z0) = lim L (2) — f(z0) (3.4)
z—rzp Z— 20

If f'(z0) exists, we say that f is differentiable at z = z.
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@ Note: By the definition of limit, f(z) is defined in a neighborhood of z
and z in (3.4) may approach zy from any direction in the complex plane.
Hence, differentiability at zp means that, along whatever path z
approaches zp, the quotient in (3.4) always approaches a certain value and
all these values are equal.

z—zo  Z — 2
¥ v
-l"-"-lh_
f’ ZD"'}T —————————— _,-r'.'.-_-""..“
f ¢ k hh'"“*w’: x\
i o T h
r et %\
AR , A
. ’ & N T
™y ,.l’ l '
e T !
\ i)
\ i
x x 7
“n 4 u
"\_‘_-__i-‘_f’
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Example (3a)

@ The function f(z) = 22 is differentiable for all z and has the derivative
f'(z) = 2z because

1N e (D22 —22 22422024 (DAz)? - 22
A A

= lim (22 4+ Az) =2z
Az—0
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Analytic Functions

@ A complex function f(z) is analytic at z = z if there exists a neighborhood
N (z0; €) of zp such that f is differentiable at every point in N(zo;¢€). If it is not
analytic at zo, it is singular there.

}!

@ Itis called an analytic function at a domain D C C if it is analytic at every
point in D. Functions that are analytic everywhere in the z-plane are called
entire functions.

Im[z] Im[w]

@
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Singularities

Points where a function is not analytic are called singular points or

singularities or poles sometimes.

Example:

f(2)= 1 is analytic everywhere
z

N

in D except z =0, which is thus
the singular point or pole of the

function.

Note that a function is either analytic or singular at any given point...
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Rules of Complex Differentiation

@ The familiar rules of real differentiation carry over to the complex case.
example,

the product rule  [£()g(2)]' = f(2)9(2) + £(2)9(2)

and the chain rule d

—1(9(2)) = f'(9(2))9'(2).

the complex differentiability of f at a point z = zp implies the continuity
of f at that point.
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@ useful results of complex differentiation:

(z") =nz""1, (ef) =€, (sinz) =cosz,

(cosz)' = —sinz, (sinhz)' =coshz, (coshz) =sinhz

@ Remark: Exponential, trigonometric and hyperbolic functions are entire
functions, while z~1 is analytic on C\{0}.
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Cauchy-Riemann Equations

@ A necessary condition for the differentiability of a complex function
f(z) = u(x,y) + iv(zx, y) is to satisfy the relation

du  Ov
or Oy’
3.5
ou_ oo (3.5)
oy~ Oz
Or simply written as
Uz = Vy, Uy = —Vs. (3.6)

They are known as the Cauchy-Riemann equations (C-R equations).

Augustin-Louis Cauchy
(1789-1857)
French Mathematician

Bernhard Riemann
(1826-1866)
German Mathematician
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Theorem (3.1 Cauchy-Riemann Equations)

Let f(z) = u(z,y) + iv(z,y) be defined and continuous in some neighborhood of
a point z = x + iy and differentiable at z itself. Then, at that point, the first-order

partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations
(3.6).

Hence, if f(z) is analytic in a domain D, those partial derivatives exist and satisfy
(3.6) at all points of D.

e If f is differentiable, then f’ is given by any of these four equivalent
expressions:

=g + vy = vy — tuy = ug — tuy = vy + 10;. (3.7)

@ Remark: The four equivalent expressions are obtained by simply applying
the Cauchy-Riemann equations (3.6).
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Proof (optional)...

In spite of these similarities, there is a fundamental difference between
differentiation for functions of real variables and differentiation for
functions of a complex variable. Let z = (x, y) and suppose that 7 1s

real. Then
f . Xt h: = ol af
Fie)=tim TETRAN TG gy p o)
1= 0 h dx
But if & = ¢k 1s purely imaginary, then
flo,y+h)—flx,y) _ 1 0of .
= lim : BELC. N L 4 R A
F'e) = lim - 5y )=~

Thus, the existence of a complex derivative forces the function to
satisfy the partial differential equation

S@=1f= i
Writing f(z) = u(z) + w(z), where u and v are real-valued functions of
a complex variable, and equating the real parts and imaginary parts of
Uy tiv, = fy = —1fy, = vy — 1y,

we obtain the Cauchy-Riemann differential equations
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Example (3b)
f(2)=z=x—iy=u+iv

ou

ou ov _
Ox

1,
Oy

_1,

= f(2) is not analytic anywhere

ou oOv ou ov
—=— and
ox Oy oy ox
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Theorem (3.2 Cauchy-Riemann Equations)
If two real-valued continuous functions u(z,y) and v(z,y) of two real variables x

is analytic in D.

Example (3c)
Is f(2) = u(z,y) + iv(z,y) = €*(cosy + isiny) analytic?

Solution:
we have u = e® cosy, v = €” sin y and by differentiation
Uy = €7 COSY, Uy =€ Ccosy, Uy= —e siny, vy =e siny

The Cauchy-Riemann equations are satisfied and conclude that f(z) is analytic
for all z.

ou _ov ou ov
ox Oy oy ox
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Example:

f(2)=z"=x"—y* +i2xy=u+iv

and the partial derivatives are continuous V z.

Consequently, f(z) 1s analytic V z.

ou ov ou oV
— = and
ox Oy oy ox
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Example:

Z x ° y .
Z)= = — 1 =U-+1v
f( ) ‘Z‘z x2+y2 x2_|_y

Ou_ y'-x* _ov  ou_ 2xp _ v
ox (x*+yH)* oy oy (*+yH)r ox

= f(z) 1s analytic everywhere, except where x>+ y2 =3
1.e. at the origin.
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Example:

f(2)=x"y* +i2x*y* =u+iv

au:2xy2 , av:4x2y , =2x2y , —=4xy

Ox oy Y X

o M mm s mm s mm s mm s Em s ot o s o s s e = s = s = s = s = s = = = = s e e e ey

The Cauchy-Riemann equations
only hold forx =0and/or y = 0.

Since the function is not

analytic in a neighbourhood of

)

. 7
T

x=0ory=0,f(z)is not analytic

_______________________________________________

anywhere.

@ A complex function f(z) is analytic at z = z if there exists a neighborhood
N (zo;€) of zg such that f is differentiable at every point in N(zp;€). Ifitis not
analytic at zp, it is singular there.

% \
i £ |
Z ]
1“_//"00 ;
’

» s

- -
-

x
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Observations

1. The sum or product of analytic functions is analytic.
2. All polynomials are analytic.

3. Arational function (the quotient of two polynomials) is analytic,

except at zeroes of the denominator.
4. An analytic function of an analytic function is analytic.

5. Functions e®, sinz, cosz, sinhz, coshz are analytic everywhere.
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Theorem (3.3 Laplace’s Equations)

If f(z) = u(z,y) + iv(x, y) is analytic in a domain D, then both v and v satisfy
Laplace’s equations

Iy — —

V20 = Vzz +vyy =0 B:10)

in D and have continuous second partial derivatives in D.
@ Remark: The above theorem follows from Cauchy-Riemann equations (3.6):

Uzz + Uyy = (Uz)z + (Uy)y = (Vy)z + (—vz)y =0,

Vrz + Vyy = (Vz)z + (Vy)y = (—uy)z + (uz)y =0,
assuming that « and v are C?.
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Harmonic Functions

A function / (x, y) is harmonic if it is a twice continuously differentiable

that satisfies Laplace’s equation: 2, + 2, = 0.

Note thatif f(z) =u (x, y) + i v (x, y) is analytic, then the harmonic

function u and v are a related pair.

We refer to them as conjugate harmonic functions...

4 N
2
Viu=u,+ U, = 0 Pierre-Simon Laplace
(1749-1827)
Viv=v_+v =0 ci
V=V, 1V, = French Mathematician
\_ )
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Homework Assignment No: 1

Due Date: 6:00pm, 3 October 2019
Please place your assignment to Assignment Box 3 outside PC Lab (ERB 218)
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Complex Analysis - 4...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem
5 Cauchy Integral Formula

6 Complex Series, Power Series and Taylor Series
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Revisit: Real Integration...

Sum becomes Integral

In limit as

,«rﬂ'ﬂ/ N e =~
T N — oo /
T[S Aeoax f\> jf(x)dx

llllllll

/A.x+l - X X

m m

X 0 X

N

Area = J f(x)dx = lim Z f(x)Ax

Ax—() 4
i=]
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Line Integral in the Complex Plane

@ Complex definite integrals are called (complex) line integrals. They are
written

I=/Cf(z)dz (4.1)

Here the integrand f(z) is integrated over a given curve C' in the complex z-
plane, called the path of integration.

Y
L.

n-1
=B

<1

z=A
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@ Such a curve C can be represented by a parametric representation

z(t) = z(t) + iy(¢t) (4.2)
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Special Curve: Circle

e C(Circle
The parametric description Im
for a circle centred at 7.
complex point a and with a a
radius ris \\/ Re

[Z(t) =a+re’, te[0,2n] J
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Special Curve: Straight Line

e Straight Line

The parametric description
of a straight line segment

with starting point a and

Im

endpoint b is

{ z@)=(b—a)t+a, te[0,1] }
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@ We assume C to be a smooth curve, i.e., C has a continuous and nonzero

derivative

A(t) = % = a(t) + ig(t)

at each point.

@ Geometrically, this means that C' has a continuously turning tangent

everywhere.
z(t + At) — z(¢)

i(t) = lim

At—0 At
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@ Recall a curve C is simple if it does not intersect itself and it is called a
closed path if A = B in Fig.4.1. In such case,

I= | f(z)dz » I=£‘f(z)dz.

Y 4
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Definition of Complex Line Integral

@ Consider a smooth curve C' in the complex plane given by
z2(t) =z(t) +iy(t), a<t<b
Subdivide the interval a <t < b by points
a=tg, t1, to, ..., tn_1, tn =20

@ Suppose that C has initial point and end points at z = A and z = B,
respectively, the Corresponding to points on C' will be,

A=2q. 315 29, s054 In—1; En =B 2 = 2li)
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1 v,,/
@ Form the sum 1

n

S = f(Cm)(zm — Zm-1) (4.3)
m=1
where (,,, iIs some point between the arc from z,,—1 t0 z,,. The choice of the
zm 'S and (,,,'s defines a partition of C', and we call the largest
|Azm| = |2m — zm—1| the norm of the partition.

Z Cm

@ The partition is chosen such that the norm of the n-th partition tends to zero
as n — oo. lf the corresponding sequence of the sums 5, .5,, ... converges
to a limit, we call that limit the complex integral [ f(z) dz and say that the
integral exists, i.e.,

ff(z)dz = lim S, (4.4)
C

n—oo
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Properties of Complex Integrals

As for real integrals, the following rules apply:

L [[f(2)+g@)dz=[f(2)dz+ | g(2)dz
C C

C

2. j k f(z)dz=k j f(z)dz, k complex
C C
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Properties of Complex Integrals

3. [f@dz=[ f(ydz+ [ f(2)dz i 4 [f(zydz=-] f(2)dz
C G G, C c*
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Estimation of a Complex Integral

« Let f(z) be continuous on C:t—>z(t), te[a,B]. If | £(z)|< M on C, then

<ML

j f(2)dz
C

where L is the length of the curve C, i.e.

B B 2 2
= froan=1( &) (2] a

(0
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Estimation of Complex Integral — An Illustration

Graphically, take real integration as an example,

v
=~

L=b—-a

b
jf (t)dt| = shaded area with red lines < M - L
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Estimation of Complex Integral — An Illustrative example

t circle

i

for example, we take /(z) = z* and C to be a un

)

For complex cases

\
i

N

W

.o;
i
.‘H.v-»“

il
0

_”
[l

0
.

il

il

-

[ [ f(z)dz‘ <ML

Ben M. Chen, CUHK MAE
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Evaluation Method: Indefinite Integration and Substitution
of Limits

@ An indefinite integral is a function whose derivative equals a given analytic
function in a region.

Theorem (4.1 Indefinite Integration of Analytical Functions)

Let f(z) be analytic in a simply connected domian D. Then there exists an
indefinite integral of f(z) in the domain D, that is, an analytic function F'(z) such

that F'(z) = f(z) in D, and for all paths in D joining two points zy and z, in D we
have

f U H2)dz=F(z) - Flzo)  [F'(2) = £(2)] (4.5)

(Note that we can write zop and z; instead of C, since we get the same value for all
those C from zg and z.)
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Example (4a)

o 1 334 1 2
2 Z 31+ -\ 3 = e
/; z dz—3z 0 3(1+z) =-3+3¢

A 4

ENGG 2420 - Complex Analysis ~ Page 96 Ben M. Chen, CUHK MAE



Evaluation Method: Use of a Representation of a Path

Theorem (4.2 Integration by the Use of the Path)

Let C be a piecewise smooth path, represented by z = z(t), wheret € [a,b]. Let
f(z) be a continuous function on C. Then

b
] )i = / £(=(0)'(¢) dt. (4.6)
C a

According to Theorem 4.2, the integral depends on the
path/contour chosen. This is generally true for non-analytic
functions.
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v#
Example (4b) @i

@ Show that by integrating % counterclockwise around the unit circle (the circle
of radius 1 and center 0)

dz
CZ

= 271 (4.7)

@ (a). Represent the unit circle C by
z(t) = cost+isint =e* 0< t<27

so that counterclockwise integration corresponds to an increase of ¢t € [0 27|
@ (b). Differentiation gives z(t) = ie't.
® (c). By substitution, f(z(t)) = 7 = e ™.
@ (d). From Eq.(4.6), we obtain

d 27 y 27
f z / i et dt — z/ dt = 2m1.
0

(Check this result by using z(t) = cost + isint)
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@ Note: Simple connectedness is essential in Theorem 4.1.

@ Eq.(4.5) in Theorem 4.1 gives 0O for any closed path because then z; = zp, SO
that F(Zl) — F(Zo) =)

o Now, % is not analytic at z = 0. But any simply connected domain containing
the unit circle must contain z = 0, so that Theorem 4.1 does not apply.

e Itis not enough that 1 is analytic in an annulus, say, 3 < |z| < 3, because an
annulus is not simply connected!
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Example (4c)
@ Suppose we want to evaluate the complex integral

/ |z|? dz,
C

where C'is a straight line fromz =0toz =1+ .
@ Parametrize C as z(t) =t + ti,t € [0, 1], then 2/(t) = 1 + <. Hence, by
property (4.6),

Im 1
. ]|z|2dz=/ it + £i[2(1 + 4) dt
C 0
1
; :/ (2t%)(1 + @) dt

Re 0

2t3 |1

= (14i)=—

(1+7) 3 lt=0

[Z(t):(b—a)tﬂz, te[O,l]} %(1 i)
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Example (4d)
@ Evaluate

Izﬁ(z—a)"dz,

where a is a given complex number, n is any integer and C'is a circle of
radius R, centered at a and oriented in an anticlockwise direction as follows.

yA Im

\\/ Re

Lz(t) =a+re'’, te[0,2n] J
Fig. 4.3. The closed contour C'.
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@ Parametrize C as ' ==
z=a+ Re*®, 0<¢<2r.

Then, by property (4.6),
2™

I= [ (Re*®)"(Rie*®)do
0

27
?:Rn-l-l f ei(n-l-l)qb do
0

n+1
R™T ci(nt+1)é “x

n+1

=0,
$=0

provided that n # —1.

2m 2n
@ lfn=—1 then] = iR° f e dp = i / dé = 2mi. Hence,
0 0

ng ) 2m, ifn=-1,
I‘}i(z_“) dz_{o, ifn # —1.
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Different Paths different Values %

@ In general, a complex line integral depends not only on the end points of the
path but also on the path itself.

Example (4e)

@ Integrate f(z) = Re(z) = z from 0 to 1 + 27 (a) along C*; (b) along C
consisting of C'; and Cs.

@ (a). C* canberepresented by z(t) =t +2it 0< t<1.

dzgt) =142i and f[z(t)]=z(t)=t on C~.
. : N PR
I* = Rezdz = [ t(1+2i)dt =—-(1+ 2i) = = + .
C- 0 2 2
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@ (b).
Ci:z(t)=t, z(t)=1, f(z(t)==z(t)=t 0< t<L1

C,: z(t)=2it+1, z()=2i, f(z()=x(@)=1 0=<r<l

1 1 | .
[=j Rezdzzj Rezdz + Rezdzzj tdt+j 2idt = —+ 21
C C, C, 0 0 2

@ Note that this result differs from the result in (a).

Im _\-'
b 2 Oz=1+2i
/!l
a C*y
Re // AC.Z
e
z(t)=(b—a)t+a, te€[0,1] 1 x

Path Dependent
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Complex Integration: Path dependent

.

We want to compute the integral ]

. 7 dz where C is the

m /ine between 2y =1 and 2o = i 7
2(t) =1+t(i—1),t€|0,1] “Ne
1 S
Then Lfdz = fo (1+t(—i—1))(i —1)dt
—(i—l)(t—ﬁ(i+1))|1—(z’—l)l_i—z’
N 2 0o 2
y

m arc of unit circle between 2z, and 2z, =1

2(t) =€, t € [0,m/2] ng
> T

/2 . .
Then Jc 7dz = fo 4 e et dt
w/2

= N /2
0 l/

=1t

NoOTE: The result of the integration is path-dependent.
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We want to compute the integral fc =z dz where C is the

m /ine between z1 =1 and zo = i

z(t)=1+t(i—1), te[0,1]

z
QY

1 i ’
Then jc 2dz = jo (1+t(i—1))(—1)dt
2 1 144
= (- 1)(t+56-D)| =G-D—F=-1
m arc of unit circle between z1 and zo = 1 -
z(t) =e*, t e [0,7/2 2NE
( [0, 7/2] m i
/2 . =
Then dez = [ ettie™ dt
) 11—/2 T S .
:e2zt/2| _e lzcosrc sin 1t 1:_1
0 2 2

NoTEe: The result of the integration is the same for the two contours. Is it

that the integral is path-independent and if so, why?
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4 )

Jﬂ = dz  Ppath Independent

\_ J
why?
N )
[ ~zd2>  Path Dependent
e )

z is analytic while Z is not!
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Path Independence Theorem

Theorem (Path Independence)

If f(z) is_analytic in a simply connected domain D, then [, f(z) dz is independent
of path in D. That is, given any initial point P in D and for any final point Q in D,

the value of | cf (z) dz is the same for every piecewise smooth path C, lying
entirely within D, from P to Q.
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Cauchy’s Integral Theorem

Theorem (4.3 Cauchy’s Integral Theorem)

If f(z) is analytic in a simply connected domain D, then

% f(z)dz=0 (4.9)
C

for every simple closed path C in D.

- -~
-

Fig. 4.4. Cauchy’s integral theorem.

/ Y H2)de=F(z)) - F(zo)  [F'(2) = £(2) (4.5)
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Example (49)
@ Entire functions

fezdzzo, fcoszdzzO, fz"dzzo, (n=0,1,...)
C C C

for any closed path, since these functions are entire (analytic for all z).
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Example (4h)

@ Consider

7— dz B dz
 Joz22-52+6  Jo(z—2)(z—3)’

where C is the unit circle |z| = 1 oriented in an anticlockwise direction.

@ Now, the integrand f(z) = (z_z)l(z_3) is analytic everywhere except at z = 2
and z = 3. Since the curve C does not enclose these two points, I = 0 by
Cauchy’s theorem (4.9).

N K
I

N
N>
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Applications of Cauchy’s Theorem

Applications: ,

1. If f(z) is analytic in a simply connected
domain D, then the integral of f(z) is

independent of path in D.

j f(2)dz + j f(2)dz=0 .,
C, C,
= [ f@dz=-] f(2)dz= | f(2)dz
C C, C,
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Applications (cont.)

2. Consider a doubly connected domain D. If
the function f(z) is analytic in D, then the
integral of f(z) is the same around any

closed path that encircles the opening.

jf(z)dz+jf(z)dz=o
C, C

= [ f@dz=—| f(2)dz= [ f(2)dz
C C, c,

Note that as such we can choose C, to be a circle...
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Applications (cont.)

3. The integral along a closed path C, of the function f(z) which is
analytic in the multiply connected domain D, is given by the sum of
the integrals around paths which encircle all openings within the

region bounded by C,, e.g.

f(z2)d f(z2)d f(z)dz=0
é’; y4 Z+Csz z Z‘|‘C-!;k zZ)yaz ) O
Thus j f(2)dz = — j f(2)dz— j f(2)dz @ @
= j f(z)dz+ j f(z)dz

Note that as such we can choose both C, and C; to be a circle...
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Complex Analysis - 5...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series and Taylor Series
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Recap...

Cauchy’s Integral Theorem

Theorem (4.3 Cauchy’s Integral Theorem)

If f(z) is analytic in a simply connected domain D, then

f f(z)dz=0 (4.9)
C

for every simple closed path C in D.

———
-
-

Fig. 4.4. Cauchy’s integral theorem.
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Cauchy Integral Formula
Theorem (5.1 Cauchy Integral Formula)

Let f(z) be analytic in a simply connected domain D. Then for any point zy in D
and any simple closed path C' in D that encloses zy (Fig.5.1)

f [ffz)}dz — 9 f(z0). (5.1)
C| < 20

Fig. 5.1. Cauchy’s integral formula.
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Proof of Cauchy Integral Formula (optional)...

Consider a circle z = z, + Re", t [0, 2n] with centre Zy - Then

CJ5f<z) o jf(ZoJrRe )lReﬁdt:in(zﬁReﬂ)dt
0

t
z ZO

Since f'(z) is continuous and the integral will have the same value for all

values of R, it follows that

27
YA qif(z) dz = lim ijf(zo+Re”)dt
0

C z ZO R—0

L) nrey
0

=if(z) | dt
> 0
S =2mi f(z,)
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Example (5a)

@ Evaluate

I:jé(z—g)(zﬂ)dz’

where C'is a counterclockwise circle of radius 3, centered at the origin.

Fig. 5.3. The contour C'.
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ﬂﬁ@

Example (5a)
@ Evaluate

I:ﬁé(z—g)(zﬂ) =

where C'is a counterclockwise circle of radius 3, centered at the origin.

any
N

@ Let f(2) = 1 and zp = 2, then f(z) is analytic inside C. Hence, by the
Cauchy integral formula (5.1),

f(2)

CZ—ZO

€

2 2
dz = 2mi f(z9) = 2mt (E) _

I =
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@ The Cauchy integral formula enables us to evaluate any integral where the
integrand has a “first order singularity” at some point z = 2z within the
contour C'. If the singularity is second order or higher, then we have the
generalized Cauchy integral formula

f J2) g, = 20 ), 5.2)
C n:

(72— e

where n = 0,1, 2, ... if we have the same assumption as in Theorem 5.1.

ﬂdz = 2mi f(2p).

C < — R0
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From the generalized Cauchy integral formula...

j{ 1) gy = 2T (), (5.2)
c (

z — zg)"tH! n!

@ Remark: Observe that having assumed only that f(z) is analytic (once
differentiable), one finds with no further assumption that f(z) possesses
derivatives of all orders:

(m)(, :L!jg flz) o,
f ("’0) 2y C (:’5 . 30)n+1 o
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Derivatives of Analytic Functions
Theorem (5.2 Derivatives of Analytic Function)

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point zg
in D are given by the formulas

f'(z0) = = fo( f(z) dz.

27 z — 29)?
2! z
f”(ZO) — _f f( ) 2 dZ.
21t Jo (2 — 20)
/”’—. ,_: -------------- \\\
’I 2 M
| v L) \
\ % \
\ |
Rl |
\\\ C ’I
~ ’

"'—.—-"

ENGG 2420 - Complex Analysis ~ Page 123 Ben M. Chen, CUHK MAE



or in general

£ () = 2 f e 4. (5.3)

- 2mi Jo (2 — zp)ntHL

Here C' is any simple closed path in D that encloses zy and whose full interior
belongs to D; and we integrate counterclockwise around C'.

-
o ——
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Example (5a) =

@ Evaluate
ez
= —dz,

where C'is the unit circle |z| = 1 oriented in an anticlockwise direction.

ez
= ——d
Jé(z—O)?’ ©

for comparison with the generalized Cauchy integral formula (5.2). It can be
seenthatn = 2, 2o = 0, and f(z) = e* so (5.2) gives

omi ((d®
1= (dz2e)

@ Rewrite [ as follows

= 1.
z=0

ah
N
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SO~
-
—
o
S | S
=
+
=
i~
<
I
[ ]
=
Y
5
N
o




Example (5b)
@ Evaluate

B z+1 .
I_ﬁz(z—Q)(z—4)3d’

where C'is the circle |z — 3| = 2 oriented in an anticlockwise direction.

| O
@0

<j>q f(z)dz =<_f>C2 f(2)dz +4>C3 f(z)dz

w e
K
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g
K

@ The integrand has singularities at z = 0, 2 and 4, of which 2 and 4 fall within
the contour C'. If we deform C' into two closed contours C'; and Cs so that 2
lies only within C'y and 4 lies only within C5, then the generalized Cauchy
integral formula (5.2) gives

B z+1 dz z+1 dz

=27rz'[ z+1 ] +27rid2[z—l—1]
z(z —4)3 L 2! dz2 | 2(z — 2) o
3wt 23w N

T8 T

i

T 64

L 4
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Complex Analysis - 6...

1 Complex Numbers

2 Functions of One Complex Variable

3 Complex Differentiation

4 Complex Integration and Cauchy’s Theorem

5 Cauchy Integral Formula

6 Complex Series, Power Series and Taylor Series
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Sequences

@ A sequence is obtained by assigning to each positive integer n a number z,,
called a term of the sequence, and is written

Z21,292y..., OT {zl,zg,...} or {Zn}

@ A real sequence is one whose terms are real.

Examples...

and

2+, (2+i0)%, (2+i)°, ..., 2+, ...

ENGG 2420 - Complex Analysis ~ Page 129 Ben M. Chen, CUHK MAE



@ A convergent sequence z1, 29, ... is one that has a limit ¢, written

lim z, =c¢ orsimply z,— c.
n—oo

By definition of limit, this means that for every ¢ > 0 we can find an N such
that |z,, —c| <€ forall n > N. Geometrically, all term z,, with n > N lie in

the open disk of radius € and center ¢, and only finitely many terms do not lie
in that disk.

X

Fig. 6.1. Convergent complex sequence.

@ A divergent sequence is one that does not converge.
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Example (6a)
@ The sequence
" 1 2 1
=t}
Is convergent with limit O.
@ The sequence

{zn} = {1 +9)"}

is divergent.

Theorem (6.1 Sequences of the Real and the Imaginary Parts)

A sequence z1,z9,...,2%n, ... Of complex numbers z,, = x, + 1y, (Where
n=1,2,...) converges to c = a + ib if and only if the sequence of the real parts
x1, 9, ... converges to a and the sequence of the imaginary parts y1, ya, . . .
converges to b.
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Series

@ Given a sequence z1,29,...,%m. ..., W& may form the sequence of the sums

S1 =21, 8S2=21+R29, 83=21+29+ 23,.

and in general

Spn =21+20+ ...+ 2, (n

s, Is called the nth partial sum of the series

oo

sz=z1+z2+....

m=1

The z4, 2o, ... are called the terms of the series.
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@ A convergent series is one whose sequence of partial sums converges, i.e.,

o0
lim s, =s. Then we write s = E Zm =21+ 22+ ....
n—oo 1
m=

and call s the sum of the series. A series that is not convergent is called
divergent series.

Theorem (6.2 Real and the Imaginary Parts)

A series Z Zm = 21 + 29 + . ... With z,, = T, + 1y, converges and has the

=i
sum s = u + v ifand only if x1 + xo + . .. converges and has the sum u and

y1 + y2 + ... converges and has the sum v.
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Theorem (6.3 Divergence)

If a series z1 + z9 + . ... converges, then lim z,, = 0. Hence if this does not
m—00
hold, the series diverges.

@ For a simple test, the series zy + 29 +.... 4+ 2z, + ... converges only if
zn — 0 as n — oco. On the other hand, if a complex series does not
converge, it diverges.

Example (6b)

@ Determine the convergence or divergence of the series

i 3 +n)\%
4+n '

n=0

3 11 100
= (" ) — 1 as n — oo, the series diverges.
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Theorem (6.4 Cauchy’s Convergence Principle for Series)

A series zy + zo + . ... Is convergent if and only if for every given ¢ > 0 (no matter
how small) we can find an N (which depends on ¢, in general) such that

|2n+1 + Zng2 + ... + 2ngp| <€ foreveryn > Nandp=1,2,...
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@ Absolute Convergence: A series z1 + z9 + .... is called Absolute
Convergent if the series of the absolute values of the terms

00
3 el = Izl + lea] + -
m=1

IS convergent.

If z4 + 29 4 .... converges but |z1| + |22| + ... diverges, then the series
z1 + 29 + ....Is called Conditionally Convergent.

Example (6c) (A conditionally Convergent Series)

The series

1 1 1

l— =g _
2+3 4+ In2

converges,but only conditionally since the harmonic series diverges.
1 1 1

. . > 1 1
[N - — 1 ey - - — e
Harmonic series n; - tytztptEt
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Theorem (6.5 Comparison Test)

If a series z1 + z9 + . ... IS given and we can find a convergent series
by + ba + . ... which nonnegative real terms such that |z1| < by, |z9| < b, ...
then the given series converges, even absolutely.

@ A good comparison series is the geometric series, which behaves as follows.

Theorem (6.6 Geometric Series)
The geometric series

oo

qu=l+q—|—q2+...

m=0

converges with the sum Iqu if |g| < 1 and diverges if |q| > 1.
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Example (6d)
@ Determine the convergence or divergence of the series

Zﬁ—1+2+2|+3'+
n=0
@ Now, i - < for all n > 4, and Z 1 = 2 is a convergent
|~ nl 2 " — 2o — = 5 J
geometric series. By comparison test, the original serles converges.
, 1 1
n'=1-2-3-4.5---p>2-2.2.2.2...2=2" = —<—, n2=4
\o\/d \‘\/-/ n' 2n
24 16
The geometric series
qu=1+q+q2+...
m=0

converges with the sum = if [g| < 1 and diverges if |q| > 1.
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Theorem (6.7 Ratio Test)

If a series zy + 29+ .... Withz, # 0

every n greater than some N,

(n

1,2,...) has the property that for

Zn41

Zn

<g<l

(n > N)

(6.1)

(where q < 1 is fixed), this series converges absolutely. If for every n > N,

Zn+1
Zn

> 1

(n > N)

the series diverges.

(6.2)

Zn

@ The inequality Eq.(6.1) implies |z—’j—1| < 1, but this does not imply
convergence, as we see from the harmonic series, which satisfies
= 2o < 1 for all n but diverges.
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Theorem (6.8 Ratio Test)

Ifaserieszy +zo+....Withz, #0 (n=1,2,...) is such that
lim el

n— oo Zn

L > 1. No information is obtained if L = 1 or if the limit does not exist.

= L, then the series converges absolutely if L < 1 and diverges if

Example (6e)
@ Determine the convergence or divergence of the series

i (14 4)"
—
0 n!
@ Since
(149"t |4 ]
lim |22t = im [—PD | — im "I = V2 lim —0,
n—oo | 2. n— 00 (1+:') n—oo|n + 1 n—oo N+ 1

L = 0. By ratio test, the series converges.
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9
Power Series @L

@ Generally, the terms in a series may be some functions of z, then the series
becomes

3" fal2) = fol2) + fi(z) + -+
n=0

The set of all points in the z-plane for which the series converges is called the
region of convergence of the series.

o Ifwelet f,,(z) = a,(z — z9)™, where a,,’s and zo are some complex (or real)
constants in general, then the resulting series

oo

Zan(z—zo)” = ag + a1(z — 29) +(12(2:—Zo)2+°“ , (6.5)

n=0

is called a power series (about the point z = zp). a,,’s are called coefficients
of the power series (6.5).
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o
Convergence Behavior of Power Series %

@ Power series have variable terms (functions of z), but if we fix z, then all the
concepts for series with constant terms in the last section apply.

@ A series with variable terms will converge for some = and diverge for others.

@ For a power series, e.g., (6.5), it may converge in a disk with center zp or in

the whole z-plane or only at z.

Example (69)

The geometric series

oo

Zz"=1+z+z2+... / Sl \
n=0
: : : Z,, (n+1)!
converges absolutely if |z| < 1 and diverges if |z| > 1. lim |— = lim |——
n!
Example (6h) n
The power series _liml—*_|=0
s A z
e e e K j
= n! 2! 3!

is absolutely convergent for every z. (Check by using the ratio test)
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Theorem (6.11 Convergence of a Power Series)
(a) Every power series (6.5) converges at the center z.

(b) If (6.5) converges at a point z = z1 # zy, it converges absolutely for every z
closer to zg than z1, that is, |z — 29| < |21 — z0|.

(c) If (6.5) diverges at z = zo, it diverges for every z fartheraway from zy than zs.

5/

4 N\ -

s /,” \“‘\\Divergent
3 an(z —20)" = ap + ax(z — ) X

"0 | ()

J
+az(2 —20)* +--- (6.5) I
k / \\\\_- ’//// X

Fig. 6.2. Theorem 6.11.
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5
Radius of Convergence of a Power Series =

@ To determine the smallest circle with center zg that includes all the points at
which a given power series (6.5) converges.

@ Let R denote its radius, the circle,

|z — 20| =R

is called the circle of convergence and its radius R the radius of
convergence of (6.5).

-

Z an(z — 20)" = ap + a1(z — 2p)
n=0
+ag(z —29)% +--- (6.5)

N Y, :

Fig. 6.3. Circle of convergence
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@ Theorem 6.11 implies convergence everywhere within that circle, i.e., for all z
for which

|z — 20| < R (6.6)

@ Also, since R is as small as possible, the series diverges for all z for which

|z — 20| > R (6.7)

@ No general statements can be made about the convergence of a power
series (6.5) on the circle of convergence.

/ 5y

oC
Z an(z —20)" = ap + a1(z — 20)

n=0

Divergent

+ as(z — z0)2 + .- (6.5)

N Y, :
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Example (6i)
On the circle of convergence (radius R = 1 in all three series),

n = 1 ?
(a) D %5 converges everywhere since ) n—12 converges. [Zn—2 =%J
(b) > % converges at —1 but diverges at 1.
(c) > 2™ diverges everywhere.
| 1 1 1
R= —:+§—1+— =In2
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Determination of the Radius of Convergence from the
Coefficients

Notations R = o and R =0 :
(a) R = o if the series (6.5) converges for all z,

(b) R =0if (6.5) converges only at the center z = z.
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Theorem (6.12 Radius of Convergence R)

Suppose that the sequence |““+1| n=1,2,..., converges with limit L*. If

L* =0, then R = oo, that is, the power series (6 5) converges for all z. If
L* # 0 (hence L* > 0), then

(6.8)

An41

an

If

— 00, then, R = 0 (convergence only at the center z).

K 3/
Z an(z — 20)" = ap + a1(z — 2p)

n=0

Divergent

+ag(z — z9)% + - - (6.5)

N J x
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oo

Z a‘n(z — zo)n = ag + al(z — ZO) + ag(z — z0)2 4 ...

n=>0

By Theorem 6.8 (ratio test), the above series converges when

n+l
. Z . a Z— Z . a s
lim |+ = lim e O)n =lim|—. |z -z | =L |z — z,| <1
n— Zn n—0 an (Z_ZO) n—0 an
4 )
1 . | a
‘Z—ZO‘< —=]lim|—|=R
L S an+1
N\ J

Theorem (6.8 Ratio Test)

Ifaserieszy +zo+....Withz, #0 (n=1,2,...)is such that

. Zn+1
lim |22F

n— o0 zn

| = L, then the series converges absolutely if L < 1 and diverges if

L > 1. No information is obtained if L = 1 or if the limit does not exist.
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L

Example (6]) (Radius of Convergence) N
(2n)!
By Eq.(6.8), the radius of convergence of the power series Z ! n)) (z —38)™i
mn=0
= (@) .
T )
R = nlll;go (2n+2)!
(n+1)H)2 _
2
. (2n!) N ((n +' 12)!) . (2n)! .(n!)2(n+1)2
n—oo | (2n+2)! " (n!) e (2m))2n+1)2n+2)  (n!)?
(n+1)2
= lim
1
= Z Divergent

The series converges in the open disk

|2 —3i| < L of radius 1 {Rl

a

— = lim|—~

n—»0

a

A
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Functions Given by Power Series

@ To simplify the formulas, we take zo = 0, and write Eq. (6.5) as

Z a,z" (6.9)

@ If any given power series (6.9) has a nonzero radius of convergence R (thus
R > 0), its sum is a function of z, say f(z). Then we write

f(z):Zanz"=a0+a1z+a2z2+... (6.10)

n=>0

we say that f(z) is represented by the power series or that it is developed in
the power series.
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Uniqueness of a Power Series Representation

Theorem (6.13 Uniqueness of Power Series)

Let the power series ag + a1z + asz® + ... and by + biz + baz? + ... both be
convergent for |z| < R, where R is positive, and let them both have the same sum
for all these z, Then the series are identical, that is, ag = bg,a1 = by, as = ba, . . ..

Hence if a function f(z) can be represented by a power series with any center z,
this representation is unique.

e If a,,b, are coefficients of two power series and a,, = b,,, then it is sure that

i ™ = i b,2", (6.11)
n=0 n=0

i.e., the two power series are the same about the point z = 0. =

A function f(z) cannot be represented by two different power series with the
same center. Thatis, if f(z) can at all be developed in a power series with
center zg, the development is unique.
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Power Series Represent Analytic Functions

Theorem (6.15 Analytic Functions. Their Derivatives)

A power series with a nonzero radius of convergence R represents an analytic
function at every point interior to its circle of convergence.

The derivatives of this function are obtained by differentiating the original series )
term by term.

J

All the series thus obtained have the same radius of convergence as the origina?
series. Why?

»
Hence, by the first statement, each of them represents an analytic function.

> y
f(z)=Zanz"=ao+alz+a2z2+...

n=0

f,(Z):(ZanZnJ =0+aq, +azz+2a322 E
n=0

Divergent
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Why? We note that
f'(z)= (Z a,z j = i anz" =i a,  (m+1)z" =i a, (n+1)z"
n=0 m=0 n=0

an+1 (n + 1)
(1n+2(’1_+:2)

n+1
n—+?2

a,. a,

= lim

n—»o0

-lim

n—o0

= lim |2

n—»o0

= R=Ilim

n—»o0

a a

n+2 n+l

For a convergent series, we have...

f(z)zian(z—zo)” =4, +a(z-2,)+a,(z=2) + = | f(z)=q, |

f1(2)=a+2a,(z=2,)+3a,(z=2,) + = | [(z,)=4,]

f"(z)=2a,+3x2xa,(z—z)+ = [f"(z,)=2a,

= [a2 :M} ...... [an _ f(n)(ZO)J
2! n!
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Taylor Series

@ If a function f(z) is analytic at z = zq, then it admits derivatives of all orders
there by generalized Cauchy integral formula, i.e., f(™)(z) exist for any

integer n > 0. If we let a,, = Lf""’) in the power series (6.5), we have

n

o f(n)(,
foy =3 L0 gy (6.19)

n!
n=0

which is called the Taylor series of f(z) about the point z = z.

Colin Maclaurin
(1698-1746)
Scottish Mathematician

Brook Taylor
(1685-1731)
English Mathematician
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FO o) = g § L

-~ 2mi Jo (2 — zp)ntHL

@ or, by (5.3),

Lo L)

2w Jo (2% — zp)nHL

dz*. (6.14)

@ If we let zp = 0 in Taylor series (6.13), then the Taylor series about z = 0 is
called a Maclaurin series, i.e.,

> f£(n)
f(z):Zf ,(O)z". (6.15)
n=0

n.
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Example (6l)
@ Find the Maclaurin series of Ln(1 + z) and find its radius of convergence R.

@ Let f(z) = Ln(1 + z). Since f(")(z) = (_1)(1:;()?,_1)!,71, > 1, we have

_ ™) _ (=1

an , n=>1,
n! n
- An+1 . n
and ag = Ln(1) = 0. Now, L = lim = lim = 1. Thus
n—oo | QAp n—oo | + 1
Il = % = 1 and the Maclaurin series (6.15) is
Ln(1 + 2) = Eoo (=1l < z Z + Z 2] < 1
= n 2 3 ’ '

Let 1 = 1 1+1 1+ In2
et z= —— 4+ - ——4+—...=
59737} n

—
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Important Special Taylor Series

1 = 0
= Zn :1-'—2’ A —|—...
1—=z 7;) +
Ln(].—I—Z): (]_)n =2 — — 4 — —
— n 2 3
z __ - z" —1 22
€ —Zog =l4z4 5+
o0 2n+1 3 5
: n Z B 2 z
smzzz:o(_l) (2n+1)!_z_§+§_”.
oo 2n 2 4
n 2 B z z
coszzz_:o(—l) o)l _1—5_{_1_...
o 2n+1 3 5
. < z A
Smhz_nzzzo(2n+1)! _z+§+§+...
. »2n 22 L4
coshzzZ(Qn)! :1+§+E+---
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Homework Assignment No: 2

Due Date: 6:00pm, 21 October 2019
Please place your assignment to Assignment Box 3 outside PC Lab (ERB 218)
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Complex function of Complex function of a complex
Complex number a real variable variable
manl,pulathnS ~ define a curve on ~ define a complex mapping from
Euler’s formula a complex plane one complex plane to another

i stcf(Z) dz=0 |a J-f(z)dz _ j.f[Z(t)]Z’(t)dt ......... @ 4

Cauchy’s Integral Complex integral Complex
theorem ~ integration of a complex Differentiation
~ valid when f (z) is function (of a complex Cauchy-Riemann
analytic for every point variable) on a complex curve equations,
encircled by a closed ~ upper bound of a complex analytic functions,
curve C Integration singularities
SR > to be continued on the next page...
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Cauchy’s integral formula Another integral formula
~ Cis a closed curve encloses z, and f(z) ~n 20, Cis a closed curve encloses z,
is analytic for every point inside C and f(z) is analytic inside C

Zan(Z—ZO)" ......... Zzn:ZO+Zl—|—Zz+--- ........
n=0

n=0
Power series Complex series
~ Region of convergence, ratio test ~ Convergence, divergence, absolute
Taylor series convergence, ratio test
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Remarks for Complex Analysis...

In this part, we have learnt the most beautiful formula in math...

e ’T=-1

' Roger
Cotes
(1682-1716)

It has all the beautiful constants: ¢, i, ,1 and 0. We are ready to prove

T4

e

|6:36

by video...
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