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1. Digital Logic Circuits 
 

Many scientific, industrial and commercial advances have been made possible by the advent of computers.  
Digital Logic Circuits form the basis of any digital (computer) system. In this topic, we will study the essential 
features of digital logic circuits, which are at the heart of digital computers. Digital Logic circuits may be sub-
divided into Combinational Logic Circuits and Sequential Logic Circuits. In EG1108, our focus will be on 
Combinational Logic Circuits. These circuits can be easily analyzed/designed using Boolean Algebra, which is 
the mathematics associated with binary systems. We will see how Combinational Logic Circuits can be designed 
and used for interesting practical problems. Circuit minization techniques such as Karnaugh maps for 
simplification of combinatorial logic circuits will also be covered.  

 
 
 
The main learning objectives for this topic are listed below. 
 
Learning Objectives: 
 

• Understand basic terminology, types of logic gates (AND, OR, NOT, NAND, NOR, XOR) 
• Understand the basic operations used in computers and other digital systems 
• Basic rules of Boolean algebra, De Morgan’s laws 
• Universality of NAND and NOR gates 
• Karnaugh maps for circuit minimization 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recommended text for this section of the course: 

 

(i) Allan R. Hambley, Electrical Engineering Principles and Applications, Chapter 7 (7.1, 7.3, 7.4, 7.5) 

(ii) Giorgio Rizzoni, Principles and Applications of Electrical Engineering, Chapter 12 (12.1, 12.3, 12.4). 
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1.1. Analog and Digital Signals 
 
The circuits we have considered so far process analog signals, in which the signal vs(t) varies continuously with 
respect to time, as shown below. Notice that the amplitude can take on any value. With the advent of digital 
computers, another type of signal, 'digital' signal, is popular. In using digital signals, we sample the analog signals at 
various instants and convert the continuous analog signal into a set of discrete numbers. This is done by a so called 
'Analog to Digital Converter (ADC)' Circuit. The digital signals can only take on values within a finite set of 
numbers. For example an analog voltage signal may vary continuously within 0 and 50 V. However, a digital meter 
may display only voltage values in steps of 1V. 
 
Most commonly used digital signals are 'binary' in nature. That is, they can take on one of two values (0 and 1). The 
numbers 0 and 1 are represented typically by two voltages in a circuit. For example, 0 can be represented by 0 volt 
and 1 by 5 volts. An example of a binary signal is shown in the figure on the right. 
 
 

 
 
Advantages of digital systems: 
 
Digital systems are extensively used for most practical applications in our modern world. They have the advantages 
of greater flexibility in computation, ease of designing using simple, reusable building blocks, greater precision and 
miniaturization. 
 
The physical world, however, is analog, and hence almost all digital systems need analog-to-digital conversion 
before being processed by a digital system, the output of which undergoes digital-to-analog conversion to convert it 
back to analog  form (which is what we use and understand).   

 
 

Fig. 1 
 
 
We will now look at some important building blocks that form the basis of all digital systems. 
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1.2  Boolean Algebra and Logic Gates 
 
Boolean algebra (due to George Boole) is the mathematics of digital logic and is useful in dealing with binary 
system of numbers. Boolean algebra is used in the analysis and synthesis of logical expressions.  
 
Logical expressions are constructed using logical-variables and -operators. The value of any logical expression boils 
down to any one of the two logical constants listed below: 

- True 
- False 

 
In Boolean algebra, a variable x may take any one of the two possible values 1 and 0. 
x = 1 and x = 0 
which may represent respectively 

- Truth or Falsehood of a statement 
- On or Off states of a switch 
- High (5V) or low (0V) of a voltage level 

 

 
 

 
Fig. 2 

 
Electrical circuits designed to represent logical expressions are popularly known as logic circuits. Such circuits are 
extensively used in industrial processes,  household appliances, computers, communication devices, traffic signals 
and microprocessors to make important logical decisions. Logic circuits are usually represented by logic operations 
involving boolean variables.  
 
There are three  basic logic operations as listed below: 

- OR operation 
- AND operation 
- NOT operation 

 
We will illustrate these basic logical operations in the following sections using boolean variables A and B. A logic 
gate is an electronic circuit/device which makes the logical decisions based on these operations. Logic gates have 
one or more inputs and only one output. The output is active only for certain input combinations. Logic gates are the 
building blocks of any digital circuit. Logic gates are also called switches. With the advent of integrated circuits, 
switches have been replaced by TTL (Transistor Transistor Logic) circuits and CMOS circuits.  
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AND Operation: 
 
AND operation is represented by C = A • B 
 
Its associated TRUTH TABLE is shown below. A truth table gives the value of output variable (here C) for all 
combinations of input variable values (here A and B). Thus in an AND operation, the output will be 1 (True) only if 
all of the inputs are 1 (True).  

    
Fig. 3 

 
The following relationships can be easily derived from this circuit: 
 

A.A  = A 
1.A = A 
0.A = 0 
A.Ā = 0 
A.B = B.A 
A.(B.C) = (A.B).C = A.B.C 

 
Note: The • sign can be omitted when indicating an AND operation. Thus, C=A•B and C=AB mean the same 
operation. 
 
OR Operation: 
 
OR operation is represented by C = A + B 
 
Here A, B & C are logical (Boolean) variables and the + sign represents the logical addition, called an 'OR' 
operation. The symbol for the operation (called an OR gate) is shown in Fig. 4. Its associated TRUTH TABLE is 
shown below. Thus in an OR operation, the output will be 1 (True) if either of the inputs is 1 (True). If both inputs 
are 0 (False), only then the output will be 0 (False). Notice that though the symbol + is used, the logical addition 
described above does not follow the rules of normal arithmetic addition. 

   
Fig. 4 

 
The following relationships can be easily derived from this circuit: 

 
A+Ā = 1 
A+A = A 
0+A  = A 
1+A = 1 
(A+B)+C=A+(B+C)=A+B+C  
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Electronic Circuit implementation: 
 
The following figure shows how an OR gate can be implemented using diodes and a resistor. In general, however, 
OR and other gates are implemented using electronic circuits based on active transistor (MOSFET or BJT) devices. 
The focus in our EG1108 module will not be on such circuit implementation of logic gates. 
 

 
 
 
NOT Operation: 
 
NOT operation is represented by 
 

 AC   
 

The NOT gate has only one input which is then inverted by the gate. Here, A  is the 'complement' of A. The symbol 
and truth table for the operation are shown below: 
 

    
Fig. 5 

Multivariable Logic Gates: 

Many logic gates can be implemented with more than two inputs, and for reasons of space in circuits, usually 
multiple input, complex gates are made. You will encounter such gates in real world. The truth tables of 3-input 
AND and OR gates are shown below.  

In general, AND function on n  variables is “1” if and only if ALL its arguments are “1”. OR function on n variables 
is “1” if and only if at least one of its arguments is “1”. 

Truth table for 3-input AND gate 

Input   Output 

A B C A.B.C 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 
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Truth table for 3-input OR gate is shown below: 

Input   Output 
A B C A+B+C 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 
 
NAND Gate: 
 
We could combine AND and NOT operations together to form a NAND gate. Thus the logical expression for a 

NAND gate is BAC   
 
The symbol and truth table are given in the following figure. The NAND gate symbol is given by an AND gate 
symbol with a circle at the output to indicate the inverting operation. 
 

 
Fig. 6 
 

 
 
 
NOR Gate: 
 
Similarly, OR and NOT gates could be combined to form a NOR gate. 
 

 
Fig. 7 
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1.3  Elements of Boolean Algebra 
 
A symbolic binary logic expression consists of binary variables and the operators AND, OR and NOT (e.g. 

CBA  ). The possible values for any Boolean expression can be tabulated in a truth table.  
 
Boolean algebra expressions can be implemented by interconnection of AND gates, OR gates, and inverters. 

 
Fig. 8 

 
As can be seen, the number of simple gates needed to implement an expression is equal to the number of operations 
in the Boolean expression. We could use the rules of Boolean Algebra or Karnaugh Maps to simplify a given 
Boolean expression. This would allow the given expression to be implemented using less number of gates. 
 
 
Basic Laws of Boolean Algebra 
 
Some of the basic rules of Boolean algebra that may be used to simplify the Boolean expressions are shown below. 
These rules may be proved using the truth tables. Essentially, we consider all combinations of inputs and show that 
in all cases the LHS expression and RHS expression lead to the same result. Such a method of proving logical 
equations is known as proof by perfect induction. 
 

 

 
 
 
 
 
 
 
 
 
 

CBA A 
 
B 
 
C 
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Example 1:   

Show by perfect induction that BABAA  . [See rule 18 above]. 
 
Solution: Let us create the following table and show the LHS = RHS for all the values of A and B. 
 

 
 
 
De Morgan's Laws: 
 
These laws are very useful in simplifying Boolean expressions. According to De Morgan's theorem: 
 

 
 
Notice that the De Morgan's Laws give the link between the OR operation and the AND operation. Application of 
De Morgan's theorem makes it easy to design logic circuits using NAND and NOR logic gates which we will soon 
see.  
 

 
 
Because of the above relationships, any logical function can be implemented by using only 1)AND and NOT gates 
or 2)OR and NOT gates. 
 
Thus an OR gate can be implemented with AND and NOT gates as shown below. 

 
Fig. 9 

                                  
 
De Morgan's Laws are valid for more than two variables also. For example, 
 

CBACBAandCBACBA   

 
 
 
 
 

A

B

A+B 
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1.4   Universality of NAND and NOR Gates 
 
Universality of NAND Gates 
 
NAND gates can be used to implement the functions of both a NOT gate and an AND gate. 
 

 
 

Fig. 10 
 
Thus, any given logic function can be implemented by using NAND gates alone. For this reason, NAND gate is said 
to be logically complete.  
 

Example 2: Implement DCBAZ   using only NAND gates. 
 
Solution:  

DCBA

DCBA

DCBAZ







   

 
Circuit implementation using NAND gates: 
 

 
 
  Fig. 11 
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Universality of NOR Gates 
 
Likewise, it can be shown that any logic function can be implemented using NOR gates alone. This is so because 
NOR gates can be used to implement the functions of both a NOT gate and an OR gate. 
 

 
 

Fig. 12 
 
 
A NOR gate is functionally complete because AND, OR, and NOT gates can be implemented using NOR gates 
alone. 
 

Example 3: Implement DCBAZ   using only NOR gates. 
 
Solution:  
Circuit implementation using NOR gates: 
 

 
Fig. 13 
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1.5  Exclusive OR Operation: 
 
In logic circuits, exclusive OR operation is represented as shown below. 

BAC   

   
Fig. 14 

 
Its associated TRUTH TABLE: 
 

 
 
 
Example 4:  Figure below shows a logical circuit that may be used to achieve exclusive OR operation. Determine 
the output C. 

 
   Fig. 15 
 

Solution: The output of the OR gate is A + B while that of NAND gate is BA  .  

Hence, the output C is given by )()( BABAC  . 

 
 
Example 5: Simplify the expression for C and draw an equivalent logical circuit for exclusive OR operation. 
Solution: 

 
 

 
  Fig. 16 
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1.6  Designing Logic Circuits 
 
In designing digital circuits, the designer often begins with a truth table describing what the circuit should do. The 
design task is to determine what type of circuit will perform the function described in the truth table. Although, it 
may not always be obvious what kind of logic circuit would satisfy the truth table, two simple methods for designing 
such a circuit are found in standard form of Boolean expression called the Sum-Of-Products (or SOP) form and 
Product-Of-Sums (or POS) forms.  
 
Based on the description of the problem, natural language is first translated into a truth table and Boolean 
expressions are found methodically using one of these two methods. The Boolean expression is then simplified 
using rules of Boolean algebra or Karnaugh Maps (which we will study later), so that it can be implemented using 
minimum number of logic gates for practical implementation. 

Sum-of-Products Implementation 

As you might suspect, a Sum-Of-Products Boolean expression is literally a set of Boolean terms added (summed) 
together, each term being a multiplicative (product) combination of Boolean variables.  

sum-of-products-expression  = term + term ... + term 

Product terms that include all of the input variables (or their inverses) are called minterms. In a sum-of-products 
expression, we form a product of all the input variables (or their inverses) for each row of the truth table for which 
the result is logic 1. The output is the logical “sum” of these minterms 
 
Sum-Of-Products expressions are easy to generate from truth tables as shown in the example below, by determining 
which rows of the table have an output of 1, writing one product term for each row, and finally summing all the 
product terms. This creates a Boolean expression representing the truth table as a whole. 
 
Sum-Of-Products expressions lend themselves well to implementation as a set of AND gates (products) feeding into 
a single OR gate (sum). 
 
 
Example 6:  Obtain W from the truth table in the Sum Of Products (SOP) form. Draw the logical circuit to 
implement it. 
 

 
 
Using this method, the resulting Boolean expression and its circuit implementation are shown below. 
 

CBACBACBACBACBAW   
 
Note that each product term in the Boolean expression includes all of the input variables (or their inverses). 
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  Fig. 17 
 
 
Example 7: Simplify the logical expression W obtained in example 5 and show its implementation. 
 
Solution: The Boolean expression can be simplified as follows. 

CBBACB

CABCBCAABCB

CBACBBA

CBACBACBACBACBAW









)()(
 

 
Implementation of W after simplification: 
 

 
 
 

Fig. 18 
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Product-of-Sums Implementation 
 
An alternative to generating a Sum-Of-Products expression to account for all the "high" (1) output conditions in the 
truth table is to generate a Product-Of-Sums, or POS, expression, to account for all the "low" (0) output conditions 
instead. POS Boolean expressions can be generated from truth tables quite easily, by determining which rows of the 
table have an output of 0, writing one sum term for each row, and finally multiplying all the sum terms. This creates 
a Boolean expression representing the truth table as a whole.  
 
These “sum” terms that include all of the input variables (or their inverses) are called maxterms. For POS 
implementation, the output variable is the logical product of maxterms.   
 
Product-Of-Sums expressions lend themselves well to implementation as a set of OR gates (sums) feeding into a 
single AND gate (product).  
 
 
Example 8: Find Z in terms of A, B and C in product-of-sum (POS) form from the following truth table. 
 

 
 
To begin, we identify which rows in the last truth table column have "low" (0) outputs, and write a Boolean sum 
term that would equal 0 for that row's input conditions. For instance, in the fifth row of the truth table, where A=1, 
B=0, and C=0, the sum term would be (Ā + B + C), since that term would have a value of 0 if and only if Ā =0, 
B=0, and C=0. Similarly, maxterms for the 6th and 7th row can be found. The completed Product-Of-Sums 
expression, of course, is the multiplicative combination of these three sum terms. 

)()()( CBACBACBAZ   

Whereas a Sum-Of-Products expression could be implemented in the form of a set of AND gates with their outputs 
connecting to a single OR gate, a Product-Of-Sums expression can be implemented as a set of OR gates feeding into 
a single AND gate. 
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Karnaugh Maps 
 
From the previous examples we can see that rules of Boolean algebra can be applied in order to simplify 
expressions. Apart from being laborious (and requiring us to remember all the laws) this method can lead to 
solutions which, though they appear minimal, are not. The Karnaugh map provides a simple and straight-forward 
method of minimising boolean expressions. With the Karnaugh map Boolean expressions having up to four and 
even six variables can be simplified easily. The simplified logical expression is then used so that minimum hardware 
is employed in the implementation of logical circuits. 
 
A Karnaugh map provides a pictorial method of grouping together expressions with common factors and therefore 
eliminating unwanted variables. The values inside the squares are copied from the output column of the truth table, 
therefore there is one square in the map for every row in the truth table. Around the edge of the Karnaugh map are 
the values of the two input variable. A is along the top and B is down the left hand side. The diagram below explains 
this.  
 
Boolean Expressions in Two Variables: 

Consider the following truth table. 

 
 

The logical expression X is given by BABAX   
 
The Karnaugh map of the above truth table is shown in the following figure. The values inside the squares are 
copied from the output column of the truth table, therefore there is one square in the map for every row in the truth 
table. Around the edge of the Karnaugh map are the values of the two input variable A and B and their inverses.  
 
In other words, we may say that Karnaugh map is a graphical representation of the truth table.  
 

 
 

Consider the logical expression BABAY   
 
Its Karnaugh map is shown below. The two adjacent squares may be combined together as shown by the loop.  
 

 
 
Referring to the map above, the two adjacent 1's are grouped together. Through inspection it can be seen that 
variable A has its true and false form within the group. This eliminates variable A leaving only variable B which 
only has its true form. The minimised answer therefore is Y = B. 
 
It simply means that we are combining the two terms of the above expression Y as shown below: 
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BAABY  )(  

 
Therefore, as the variable A changes from its normal form to its inverse form (Ā) when we move from one square to 
the adjacent one, the simplified expression of Y will be independent of A. 
 

Taking another example, the expression BABABAZ    is simplified as follows.  
 

 
 
First, combining the two adjacent squares in row 1, we get B. Next, combining the two adjacent squares in column 1, 
we get A. Hence, we get Z as shown below: 
 

Z = B + A 
 
Therefore we can easily conclude that, combining two adjacent squares in Karnaugh map eliminates one variable 
from the resulting Boolean expression of the corresponding squares. 
 
 
Boolean Expressions in Three Variables: 
 
Consider the following truth table. 
 

 
 
The corresponding Boolean expression using SOP is:  
 

CBACBACBACBAX   
 
Figure below shows the Karnaugh map of the above truth table. The expression X may be simplified by combining 
two adjacent squares as shown. 
 

 
 

The simplified expression of X is: CBBAX   
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Now, consider another expression Y given below: 
 

CBACBACBACBAY   
 
The Karnaugh map of Y is shown below. In this case, we are able to combine four adjacent squares. Note that 
 

 
 

Y can also be obtained as: 
CCACA

BBCABBCAY



 )()(
 

 
Consider another example: 

 

CBACBACBACBAZ   
 
The corresponding Karnaugh map is shown below: 
 

 
 
In this case also, we are able to combine 4 adjacent squares. Note that  

- Combining the two adjacent squares in columns 2 and 3 of row 1, the variable A gets eliminated, and we 

are left with CBZ 1  

- Combining the two adjacent squares in columns 2 and 3 of row 2, the variable A gets eliminated and we are 

left with CBZ 2  

 

Combining these two expressions, BCBCBZ   
 
Finally, let us consider another expression W below: 
 

CBACBACBACBAW   
 
The Karnaugh map of W is shown below. Note that the resulting expression should be independent of A and C. So, 
W is simplified as:  W = B 
 

 
 
Therefore, we can conclude that combining four adjacent squares in Karnaugh map eliminates two variables 
from the resulting Boolean expression of the corresponding squares. 
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Boolean Expressions in Four Variables 
 
Knowing how to generate Gray code should allow us to build larger maps. Actually, all we need to do is look at the 
left to right sequence across the top of the 3-variable map, follow a similar sequence for the other two variables and 
write it down on the left side of the 4-variable map. 
 
Karnaugh map of four variables A, B, C and D is shown in the following figure. As we have shown in the previous 
examples, we may easily prove that: 
 
Combining eight adjacent squares in Karnaugh map eliminates three variables from the resulting Boolean 
expression of the corresponding squares. 
 

 
 
 
Example 9: Simplify the Boolean expression: 
 

DCBADCBADCBADCBAX   
 
Karnaugh map of X is shown in Figure 12.24. As we could combine 4 adjacent squares as shown below, the 
simplified expression should be independent of two variables. Adjacent squares in a row suggest that the resultant 
expression should be independent of B. Similarly, adjacent squares in a column suggest that it should also be 

independent of C. Hence, the simplified expression of X is given by: DAX   
 

 
 
 
 
Example 10:  Simplify the following Boolean expression using Karnaugh map. 
 

DCBADCBADCBADCBA

DCBADCBADCBADCBADCBAY




 

 
Solution: Karnaugh map of Y is shown below. There are four loops enclosing 4-adjacent squares. First, consider the 
loop 1. The resulting expression for these squares should be independent of C and D. Next, consider loop 2. The 
resulting expression of these squares should be independent of B and D. Thirdly, consider loop 3. The resulting 
expression of these squares should be independent of B and C. Finally, consider loop 4. 
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The resulting expression of these squares should be independent of A and B. Hence, we get  

DCDACABAY   
 

 
 
Reductions could be done with Boolean algebra. However, the Karnaugh map is faster and easier, especially if there 
are many logic reductions to do. 
 
 
 
Karnaugh maps: Complete Simplification Process 
 

1. Draw out the pattern of output 1’s and 0’s in a matrix of input values 
2. Construct the K map and place 1s and 0s in the squares according to the truth table. 
3. Group the isolated 1s which are not adjacent to any other 1s. (single loops) 
4. Group any pair which contains a 1 adjacent to only one other 1. (double loops) 
5. Group any quad that contains one or more 1s that have not already been grouped, making sure to use the 

minimum number of groups. 
6. Group any pairs necessary to include any 1s that have not yet been grouped, making sure to use the 

minimum number of groups. 
7. Form the OR sum of all the terms generated by each group. 

 
Compared to the algebraic method, the K-map process is a more orderly process requiring fewer steps and always 
producing a minimum expression. It must be noted that the minimum expression is generally NOT unique. 
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