Q.3 (a) Which one of the following truth tables is incorrect in accordance with the standard format given in the EG1108 lecture? Reconstruct the incorrect truth table in the standard format.

A	В	С	Z					А	В	С	
0	0	0	0					0	0	0	
0	0	1	1					0	0	1	
0	1	0	1					0	1	0	
0	1	1	1	А	В	Z		0	1	1	
1	0	0	0	0	0	0		1	0	1	
1	0	1	1	0	1	1		1	1	0	
1	1	0	0	1	0	1		1	0	0	
1	1	1	1	1	1	1		1	1	1	
	(i)			(ii)		-		(i	ii)	

(5 marks)

Write your answer to Q.3(a) in the space below.

Solution: (iii) is incorrect. The correct form is

Z	С	В	А
0	0	0	0
1	1	0	0
1	0	1	0
1	1	1	0
0	0	0	1
0	1	0	1
1	0	1	1
1	1	1	1

(b) Which one of the following Karnaugh maps is incorrect? Reconstruct the incorrect Karnaugh map in the standard format.

	$A \cdot B$	$A \cdot \overline{B}$	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	1	$A \cdot \overline{B}$	$\overline{A} \cdot \overline{B}$	$\overline{\mathbf{A}} \cdot \mathbf{B}$
$C \cdot \overline{D}$	0	0	0	0	C · D	0	0	0
$\overline{C} \cdot \overline{D}$	0	0	1	0	$C \cdot \overline{D}$	0	0	1
$\mathbf{C} \cdot \mathbf{D}$	0	0	0	0	$\overline{C} \cdot \overline{D}$	0	0	0
$\overline{C} \cdot D$	0	0	0	0	$\overline{C} \cdot D$	0	0	0
					,			

(i)

(ii)

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	A · B	$A \cdot \overline{B}$		
$C \cdot \overline{D}$	0	0	0	0		
$\overline{C} \cdot \overline{D}$	0	0	1	0		
$\overline{C} \cdot D$	0	0	0	0		
C · D	0	0	0	0		
	(iii)					

(5 marks)

 $\mathbf{A} \cdot \mathbf{B}$

0

0

0

0

Write your answer to Q.3(b) in the space below.

Solution: (i) is incorrect. The correct form is

	$A \cdot B$	$A \cdot \overline{B}$	$\overline{A} \cdot \overline{B}$	$\overline{\mathbf{A}} \cdot \mathbf{B}$
$\overline{C} \cdot \overline{D}$	0	0	1	0
$C \cdot \overline{D}$	0	0	0	0
$\mathbf{C} \cdot \mathbf{D}$	0	0	0	0
$\overline{C} \cdot D$	0	0	0	0

(c) Simplify the following logical expression using only the 18 basic rules of Boolean algebra:

$$F = A \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{D} + B \cdot \overline{C}$$

(5 marks)

Write your answer to Q.3(c) in the space below.

Solution:

$$F = A \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{D} + B \cdot \overline{C}$$

$$= (A \cdot C + \overline{A}) \cdot B \cdot \overline{D} + (A \cdot \overline{B} + \overline{A} + B) \cdot \overline{C}$$

$$= (C + \overline{A}) \cdot B \cdot \overline{D} + (\overline{B} + \overline{A} + B) \cdot \overline{C}$$

$$= \overline{A} \cdot B \cdot \overline{D} + C \cdot B \cdot \overline{D} + \overline{C}$$

$$= \overline{A} \cdot B \cdot \overline{D} + B \cdot \overline{D} + \overline{C}$$

$$= (\overline{A} + 1) \cdot B \cdot \overline{D} + \overline{C}$$

$$= B \cdot \overline{D} + \overline{C}$$

(d) Simplify the following logical expression in the SOP form using the Karnaugh map simplification technique:

$$F = A \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{D} + B \cdot \overline{C}$$

(5 marks)

Write your answer to Q.3(d) in the space below.

Solution:

	$A \cdot B$	$A \cdot \overline{B}$	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$
C · D	1.1	0	0	0
$C \cdot \overline{D}$	1.1.1	0	0	1.1
$\overline{C} \cdot \overline{D}$	1.1.1	1	1	1.1
$\overline{C} \cdot D$	1.1	1	1	1

 $F = \overline{C} + A \cdot B + B \cdot \overline{D}$

(e) Realize a two-input NAND gate using only NOR gates.

(5 marks)

Write your answer to Q.3(e) in the space below.

Solution: Exclusive NOR gate can be expressed as

$$X = \overline{A \cdot B} = \overline{\overline{\overline{A} + \overline{B}}}$$

Q.4 (a) Consider an ideal transformer circuit shown in Figure Q4 (a) below. The transformer turns ratio is 2:1. The input to the circuit is the voltage source, $v_s(t)$, as given in the circuit.

Figure Q4 (a)

i) Determine the output voltage, $v_0(t)$, across the capacitor.

(5 marks)

ii) Determine the average power consumed by the capacitor and the transformer.

(5 marks)

Solution: i)

$$Z_{L,equiv} = \frac{0.5 - j}{0.5^2} = 2 - j4 \qquad I_1 = \frac{V_s}{4 - j4} = \frac{2}{\sqrt{2}} \cdot \frac{1}{4\sqrt{2} \angle -45^\circ} = \frac{1}{4} \angle 45^\circ$$

$$I_{2} = \frac{I_{2}}{0.5} = \frac{1}{2} \angle 45^{\circ} \implies V_{0} = -j \cdot I_{2} = \frac{1}{2} \angle -45^{\circ} \implies v_{0}(t) = \frac{\sqrt{2}}{2} \cos(0.5t - 45^{\circ})$$

ii) Both the capacitor and the transformer do not consume any power.

- Q.4 (b) A DC power supply consists of a transformer feeding a full-wave bridge rectifier with a capacitor filter. It supplies a DC current of 1 A at 5 V DC to a computer. The AC input source to the transformer is 230 V (rms) at 50 Hz. The filter capacitor has a capacitance of 0.05 F.
 - (i) Draw the circuit diagram of the supply arrangement.

(5 marks)

(ii) Determine a suitable winding ratio for the transformer.

(5 marks)

(iii) Determine the magnitude of the peak-to-peak ripple in the output voltage.

(5 marks)

Solution: i)

ii) The required turn ratio of the transformer:

$$\frac{1}{n} = \frac{230\sqrt{2}}{5} = 65 \qquad \Rightarrow \qquad 1: n = 65: 1 = 1: 0.0154$$

iii) The magnitude of the peak-to-peak ripple in the output voltage:

$$V_{p-p} = \frac{I_L T}{2R_L C} = \frac{I_L}{2f C} = \frac{1}{2 \times 50 \times 0.05} = 0.2 \text{ V}$$