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Electrical Engineering

Well known electrical engineering companies:

» Singapore Telecom (largest in Singapore)
 Creative Technology (largest manufacturer of PC sound boards)

» Disk Drive Companies (largest producer of PC hard disk Drives)

“Yan can Cook”:

e Ingredients + Recipe + (Funny Talk) = Good Food

Electrical Systems:

« Components + Method + (Funny Talk) = Good Electrical System

EG1103 Module;

» To introduce basic electrical components & analysis methods.
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Reference Textbooks

- D. E. Johnson, J. R. Johnson and J. L. Hilburn, Electric
Circuits Analysis, 2nd Ed., Prentice Hall, 1992.

» S. A. Boctor, Electric Circuits Analysis, 2nd Ed., Prentice
Hall, 1992.
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Lectures

Lectures will follow closely (but not 100%) the materials in

the textbook.

However, certain parts of the textbook will not be covered

and examined and this will be made known during the

classes.
Attendance iIs essential.

ASK any question at any time during the lecture.
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Tutorials
The tutorials will start on Week 4 of the semester. (Week 1 corresponds
to the Orientation Week.)

Although you should make an effort to attempt each question before the

tutorial, it is NOT necessary to finish all the questions.

Some of the questions are straightforward, but quite a few are difficult

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Examination

The examination paper is 2-hour in duration.

You will be provided with a list of important results. This list is given

under “Summary of Important Results” in the Appendix of the textbook.

To prepare for the examination, you may wish to attempt some of the
guestions in examinations held in previous years. These papers are
actually the Additional Problems in the Appendix of the textbook (no

solutions to these problems will be given out to the class).

However, note that the topics covered may be slightly different and
some of the questions may not be relevant. Use your own judgement to

determine the questions you should attempit.
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Mid-term Test

There will be an one-hour (actually 50 minutes) test. It will be given
some time around mid-term (most likely after the recess week). The
test will consists 15% of your final grade, i.e., your final grade in this

course will be computed as follows:

Your Final Grade = 15% of Your Mid-term Test Marks (max. = 100)

+ 85% of Your Examination Marks (max = 100)
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Outline of the Course

1. DC Circuit Analysis

Sl Units. Voltage, current, power and energy. Voltage and current
sources. Resistive circuits. Kirchhoff's voltage and current laws. Nodal
and mesh analysis. Ideal and practical sources. Maximum power
transfer. Thevenin’s and Norton’s equivalent circuits. Superposition.

Dependent sources. Introduction to non-linear circuit analysis.

2. AC Circuits

Root mean square value. Freqguency and phase. Phasor. Capacitor and
Inductor. Impedance. Power. Power factor. Power factor improvement.
Frequency response. Tune circuit. Resonance, bandwidth and Q factor.

Periodic signals. Fourier series.
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Outline of the Course (Cont.)

3. Transient

First order RL and RC circuits. Steady state and transient responses.

Time constant. Voltage and current continuity. Second order circuit.
4. Magnetic Circuit

Magnetic flux and mmf. Ampere’s law. Force between surfaces.

Transformers.

5. Electrical Measurement

Current and voltage measurement. Common instruments. Oscilloscope.
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Web-based Virtual Labs

are now on-line

Developed by: CC Ko and Ben M. Chen

* Have you ever missed your experiments?
Do you have problems with your lab schedule?

Do you have problems in getting results for your report?

Visit newly developed web-based virtual labs available from

5:00pm to 8:00am at http://vlab.ee.nus.edu.sg/vlab/
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Chapter 1. SI Units
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1.1 Important Quantities and Base Sl Units

Length metre m
Mass, m kilogram kg
Time, 1 second S
Electric current, | ampere A
Thermodynamic temperature | kelvin K
Plane angle radian rad
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Chapter 2. DC Circuit Analysis

Copyrighted by Ben M. Chen



2.1 Voltage Source

Two common dc (direct current) voltage sources are:
Dry battery (AA, D, C, etc.)
Lead acid battery in car
Regardless of the load connected and the current drawn, the above sources

have the characteristic that the supply voltage will not change very much.

The definition for an ideal voltage source is thus one whose output voltage

does not depend on what has been connected to it. The circuit symbol is

']
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Basically, the arrow and the value signifies that the top terminal has a
potential of v with respect to the bottom terminal regardless of what has

been connected and the current being drawn.

Note that the current being drawn is not defined but depends on the load
connected. For example, a battery will give no current if nothing is
connected to it, but may be supplying a lot of current if a powerful motor
IS connected across its terminals. However, in both cases, the terminal

voltages will be roughly the same.
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Using the above and other common circuit symbol, the following are

identical:

SO w0 w0

Note that on its own, the arrow does not correspond to the positive
terminal. Instead, the positive terminal depends on both the arrow and

the sign of the voltage which may be negative.
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2.2 Current Source

In the same way that the output voltage of an ideal voltage source does
not depend on the load and the current drawn, the current delivers by an
ideal current source does not depend on what has been connected and

the voltage across its terminals. Its circuit symbol is

10,

Note that ideal voltage and current sources are idealisations and do not
exist in practice. Many practical electrical sources, however, behave like

ideal voltage and current sources.
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2.3 Power and Energy

Consider the following device,

Power Consumed 0D = Vi
by Device

In 1 second, there are i charges passing through the device. Their electric
potential will decrease by v and their electric potential energy will decrease

by iv. This energy will have been absorbed or consumed by the device.

The power or the rate of energy consumed by the device isthus p=1v.
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Note that p = v i gives the power consumed by the device if the voltage
and current arrows are opposite to one another. The following

examples illustrate this point:

2 A

B Power consumed/

absorbed by source

15V Energy absorbed _
TCD n100 hr ~ co0Whr
= 0.3kW hr

= 0.3 unit in PUB bill

= 3W

2 A ~2A
— - —< -

21O = w0

Power supplied _ 3W Power absorbed
by source by source —3W
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2.4 Resistor

The symbol for an ideal resistor is

T s

Provided that the voltage and current arrows are in opposite directions,

the voltage-current relationship follows Ohm's law:
v=IR
The power consumed Is

p=vi=i*R=—"
Common practical resistors are made of carbon film, wires, etc.
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2.5 Relative Power

Powers, voltages and currents are often measured in relative terms
with respect to certain convenient reference values. Thus, taking

Pret = 1mwW

as the reference (note that reference could be any value), the power
p= 2W

will have a relative value of
P 2W  2W

= = = 2000
P ref 1mW 10 3W

The log of this relative power or power ratio is usually taken and given

a dimensionless unit of bel. The power p =2 W s equivalent to

Iog(ppj =10g(2000 = log(1000) + log(2) = 3.3 bel
ref

Copyrighted by Ben M. Chen



24

As bel is a large unit, the finer sub-unit, decibel or dB (one-tenth of a

Bel), is more commonly used. In dB, p =2W is the same as

10 log| —P— |=10log (2000 }=33dB
Pref
As an example:
Reference | Actual power | Relative Power
Pref P p/pref 1O|Og(p/ pref)
1mw 1mwW 1 0dB
1mw 2mwW 2 3dB
1mw 10mw 10 10dB
1mwW 20mW 20=10x2 | 13dB=10dB+3dB
1mwW 100mwW 100 20dB
1mwW 200mW 200=100x2 | 23dB=20dB+3dB
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Although dB measures relative power, it can also be used to measure

relative voltage or current which are indirectly related to power.

For instance, taking Vo = 0.1V

as the reference voltage (again reference voltage could be any value),

the power consumed by applying v, to a resistor R will be

2
_ V ref
Pref = R
Similarly, the voltage
v=1V
Vv 2
will lead to a power consumption of P =—
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or in dB;

2
10|o{p}18—10|o{" dB=20lo deB— 20|og{1jd5= 20dB
pref Vref Vref O' 1

This is often used as a measure of the relative voltage V/ Vief -

Key point: When you convert relative power to dB, you multiply its log

value by 10. You should multiply its log value by 20 if you are converting

relative voltage or current.
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As an example:

Reference | Actual voltage | Relative Voltage

Vref v V/Vref 2OIOQ(V/Vref )
0.1V 0.1V 1 0dB

0.1V 0.1V2 V 2 3dB

0.1V 0.2V 2=1/2x~2 6dB=3dB+3dB
0.1V 0.1V10 V V10 10dB

0.1V 0.1J20V J20=+410 x+2 | 13dB=10dB+3dB
0.1V AV, 10=+10 x+/10 | 20dB=10dB+10dB

The measure of relative current is the same as that of relative voltage and

can be done in dB as well.
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The advantage of measuring relative power, voltage and current in

dB can be seen from considering the following voltage amplifier:

Amplifier

Vv Voltage 2V
gain

2=6dB

The voltage gain of the amplifier is given in terms of the output voltage

relative to the input voltage or, more conveniently, in dB:

g=%=2:20Iog(2)dB:6dB
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If we cascade 3 such amplifiers with different voltage gains together:

Amplifier

Voltage
gain
2=6dB

1

|

Amplifier
Voltage
gain
1.4=3dB

2.8V/I\

the overall voltage gain will be

Qo = 2%1.4x10=28

However, in dB, it is simply:

Amplifier
Voltage
gain
10=20dB

T 28v

Jiotay = 06dB +3dB + 20dB = 29dB

Under dB which is log based, multiplication's become additions.

29
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Frequently Asked Questions

Q: Does the arrow associated with a voltage source always point at the

+ (high potential) terminal?

A: No. The arrow itself is meaningless. As re-iterated in the class, any
voltage or current is actually characterized by two things: its direction
and its value. The arrow of the voltage symbol for a voltage source could
point at the - terminal (in this case, the value of the voltage will be

negative) or at the + terminal (in this case, its value will be positive).

Q: What is the current of a voltage source?

A: The current of a voltage source is depended on the other part of circuit

connected to it.
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Frequently Asked Questions

Q: Does a volt source always supply power to other components in a circuit?

A: NO. A voltage source might be consuming power if it is connected to a
circuit which has other more powerful sources. Thus, it is a bad idea to pre-
determine whether a source is consuming power or supplying power. The
best way to determine it is to follow the definition in our text and computer
the power. If the value turns out to be positive, then the source will be
consuming power. Otherwise, it is supplying power to the other part of the

circuit.

Q: Is the current of a voltage source always flowing from + to - terminals?

A: NO. The current of a voltage source is not necessarily flowing from the

positive terminal to the negative terminal.

Copyrighted by Ben M. Chen
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Frequently Asked Questions

Q: What is the voltage cross over a current source?

A: It depends on the circuit connected to it.

Q: Is the reference power (or voltage, or current) in the definition of the

relative power (or voltage, or current) unique?

A: No. The reference power (voltage or current) can be any value.
Remember that whenever you deal with the relative power (voltage or
current), you should keep in your mind that there are a reference power
(voltage or current) and an actual power (voltage or current) associated

with it.
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2.6 Kirchhoff's Current Law (KCL)

As demonstrated by the following examples, this states that the
algebraic sum of the currents entering/leaving a node/closed surface
Is O or equivalently to say that the total currents flowing into a node is

equal to the total currents flowing out from the node.

Iy +1, +13+1,4 +15=0 for both cases.

Since current is equal to the rate of flow of charges, KCL actually

corresponds to the conservation of charges.
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2.7 Kirchhoff's Voltage Law (KVL)

As illustrated below, this states that the algebraic sum of the voltage

drops around any close loop in a circuit is O.

V2
%
1
e

\' ./

“T l%

/._|: ] .\ (note that all voltages are in the
V4

< same direction)
5

V1 +Vo+V3+V, +Ve =0

Since a charge q will have its electric potential changed by qv,, qv,,
qvs, qv, , QVs as it passes through each of the components, the total
energy change in one full loopisq (v, +v, + v + v, + v. ). Thus, from

the conservation of energy: Vq,+V,+Va+V,+Vs=0
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2.8 Series Circuit

Consider 2 resistors connected in series:

r- > -
| |
Gt e By KVL: -v+v,+Vv,=0
I -~ -
| /\A /\A IEI

R, R,
V]_:i Rl V2:| R2 V:V1+V2

the voltage-current relationshipis V=1 (R + Ry)

. V..
Now consider °

i :
4/\/\/—6 the voltage-current relationshipis V=1 (R1 + Rz)
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Since the voltage/current relationships are the same for both circuits,
they are equivalent from an electrical point of view. In general, for n

resistors R, ..., R, connected in series, the equivalent resistance R is

R=R;+--+R,

Clearly, the resistance's of resistors connected in series add (Prove

It).
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2.9 Parallel Circuit

Consider 2 resistors connected in parallel:

— Y
—MNM—< TR 11
| L=t =v| =+
R, | 1" 72
. o—<— Rl R2
i, i v
AN =
R, Rz

Clearly, the parallel circuit is equivalent to a resistor R with voltage/current

relationship

I=—  with =5+
R
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In general, for n resistors Ry, ..., R,, connected in parallel, the equivalent

resistance R is given by

Note that 1/R iIs often called the conductance of the resistor R. Thus,

the conductances of resistors connected in parallel add.
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2.10 Voltage Division

Consider 2 resistors connected In series:

Y -

Rl + R2 1t Rz
10
R2 /I\VZ V2 :iR2: R2
R{+R5
The total resistance of the circuit is R; + R, Thus,
vi_ Ry
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2.11 Current Division

Consider 2 resistors connected in parallel:

1
= Lo R o R
> ’ R 1 1 R+R,
I - Vi +
Y Iy 2 R, R,
VT() RS R, & 1
v R, [ R, ]
l,= = |7 1 | = |
s R, N R+R,
Rl RZ
o 1 1 X 1 Thus,
The total conductance of the circuit is R R R

while the equivalent resistance is v=1R =
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2.12 Ladder Circuit

Consider the following ladder circuit:

4 2

. — W —m——"W,

S,

The equivalent resistance can be

determined as follows:
4

5 3][2

41

5 4+(3]|2)

§ 5]] [4+(3]/2)]

The network is equivalent to a

resistor with resistance

1 1
R:5||[4+(3”2)]:1 1 :1 1
5" 443(|2) 5 1
+
4+1 1
7+7
3 2
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2.13 Branch Current Analysis

Consider the problem of determining the equivalent resistance of the following

bridge circuit:

Since the components are not connected in straightforward series or parallel
manner, it is not possible to use the series or parallel connection rules to
simplify the circuit. However, the voltage-current relationship can be

determined and this will enables the equivalent resistance to be calculated.

One method to determine the voltage-current relationship is to use the branch

current method.
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Vv . :
— = Equivalent Resistance
I

KVL: v=2i +4(i, +1,) =6l +4i,
KVL: 4(i—1)+3i, =2
KVL: 4(,+1,)+3i, =2(1—1i,—1,)

43

1. Assign branch currents (with
any directions you prefer so
that currents in other branches

can be found)

2. Find all other branch currents
(with any directions you prefer)
(Use KCL to find them)

3. Write down branch voltages

4. Identify independent loops

Eliminate i, and i,

A i 17.
i=— |
12
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Branch Current Analysis: Example Two

4 21,

— ._ 1. Assign branch currents
2 4 i, .
- — M{. — /V\/ (so that currents in other
’'h - \ | N\ branches can be found).
Yl 2 - Il 4 1 2
| |
2A( T i o 3 1V
() 2 n‘é . 301—'2)E§' (DT
|
'\ ,I \_ _/l 2. Find all other branch
o————— = —

currents (KCL)

3. Write down voltages across components 4. \dentify independent loops

KVL: 2—1, =4i, +3(, —1,) (ex. 2A branch)

KVL: 1+ 2i, =3(i, —i,)
This implies: i b

e e S I A M I P Y
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2.14 Mesh (Loop Current) Analysis

1. Assign fictitious loop currents.

2. Find branch currents (KCL)

3. Write down branch voltages

4. Identify independent loops

5. Simplify the equations

KVL: v =2i_ +4i, obtained, we get

KVL: 4(i, —i) - 3(i, —i. )+ 2i, = 0

KvL:  2(i, —i) +4i, +3(i, —1,) =0

Copyrighted by Ben M. Chen
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2.15 Nodal Analysis

VaVe 1-V, 2. Find branch voltages (KVL)
4 2
2 A B
— NN |
“V, =V, Vy 1-V, 3. Determine
Va Va 4 Vb 3 2 b h
2A<‘> R 2 Q) TlV ranch currents
'l_ 4. Apply KCL to Nodes A & B
1. Assign nodal voltage w.r.t. the reference node Node A:
5 -1V, [8] _ Ha-Vo=8 2:\/“va—vb
3 —13||V,| |6 d,-13V, =6 4
Node B:
— zg :2_7 Va_Vb+1_Vb:Vb
31 b 31 4 2 3

46
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2.16 Practical Voltage Source

An ideal voltage source is one whose
terminal voltage does not change
with the current drawn. However, the
terminal voltages of practical sources
usually decrease slightly as the

currents drawn are increased.

A commonly used model for a

practical voltage source is:

To represent it as a series of an ideal
voltage source & an internal

resistance.

V.. =V+IR_

,,,,,,,,,,,,,,,,,

[i]
*~——>
1
Té Rload
°
Practical voltage source
|11
[i]
_/\/\/ Py >
Rin

0] & P

Model for voltage source
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Rln
—W———
Rin
V, =5 Short circuit
- Rload:O
-—
When R, = or when the source is open circuited so that i =0 :
1=0
—/\/\/ S

VocT C) V=V /I\ O%elndcgit“t
Oa
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Graphically:

N Slope = Ri,

0

Good practical voltage source should therefore have small internal
resistance, so that its output voltage will not deviate very much from the

open circuit voltage, under any operating condition.

The internal resistance of an ideal voltage source is therefore zero so that V

does not change with | .
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To determine the two parametersV,. andR,, that characterize, say, a
battery, we can measure the output voltage when the battery is open-

circuited (nothing connected except the voltmeter). This will give Vo .

Next, we can connect a load resistor and vary the load resistor such

that the voltage across it is VO% . The load resistor is then equal to R, :

Yoo
2
<— i
O >
R.

In

Vv
VOC/I\ V:% /I\ Rload :Rin
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2.17 Maximum Power Transfer

Consider the following circuit:

10

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Model for voltage source
The current in the load resistor is

V

0oC

| =
R, +R

load

51

R load

The power absorbed by the

load resistor Is

poa :izRoa =
o o (Rin+RIoad )2

This is always positive. However, if

Rload =O or I:Qload = 0, I:)Ioad — O
pIoad
N\
0 RIoad
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Differentiating:

dpload =V2 1 2RIoad =V2 Rin_Rload
dRload (R +Rload) (R +R ) " (R +R )3

load in load

The load resistor will be absorbing the maximum power or the source will be
transferring the maximum power if the load and source internal resistances

are matched, i.e., R._=R,..,. The maximum power transferred is given by

2
v R V
load _ ocC
— pmax load

R Rload ) B 4—F\)ln

pload :i i RIoad _(

When the load absorbs the maximum

power from the source, the overall

power efficiency of 50%, which is too

52

1 N .
0 Z  low for a usual electric system.

Rin Rload
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Why is the electric power transferred from power stations to local stations

resistance in wire

R

W

In high voltages?

B 300 KW
P = 300 KW i = A

Power loss in the transmission line;

5 _i2p _ (B00KW)'R,

loss W 2

vV

The higher voltage v is transmitted, the less power is lost in the wire.
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2.18 Practical Current Source

An ideal current source is one which delivers a constant current regardless
of its terminal voltage. However, the current delivered by a practical
current source usually changes slightly depending on the load and the

terminal voltage.

A commonly used model for a current source is:

[i]
® ® >
iSC T R. R : - Vv .
In | load — |SC = — + 1
Rin
® ®

Model for current source
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When R = 0 or when the source is short-circuited sothat v = 0

load

SC

i ~ Short circuit
sc Rin v=_0 Rload:()

Graphically: Good practical current source should therefore

\"
A have large internal resistance so that the current
Slope =Rin  delivered does not deviate very much from the

short circuit current under any operating

condition.

-V

The internal resistance of an ideal current source is

AN
vV

SC

therefore infinity so that 1 does not change with v.

55 Copyrighted by Ben M.



2.19 Thevenin's Equivalent Circuit

Complicated circuit Key points:

with linear elements 1. The black box

h - Voe = V + iRin
such as resistors, (l.e., the part of the

8l voltage/current sources

circuit) to be

simplified must be

linear.

— AN\ ° ,1 2. The black box

im0 must have two

VOC é v VOC: V+IRII’] .
| terminals

connected to the

rest of the circuit.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Thevenin's equivalent circuit
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Thevenin’s Equivalent Circuit (An Example)

—— 6=3i . A4i

—— M ———— e —— |

| ! |

; 5

1 I Tm
]G o

| ' /

D e el e————=—=-= === 4

1+6-31) =41+ = T1T=V+7I

Applying KVL:

The circuit is equivalent to: 7 | |
*
Voc:7 Rln :7 — TC) TV

Copyrighted by Ben M. Chen
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Alternatively, note that from the Thevenin's

equivalent circuit:

6 0
—————————————————————————— | —> < 0
— V < /V\/ >—
| 3 4
0 o =
Dpen circuit voltage= Vo, |
¢ )

; AN———AN '
Resistance seen with 3 3 4
source replace by= R;,
internal resistance \ \ -
Ny \J s
®
¢ 9
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2.20 Norton's Equivalent Circuit
It is simple to see

that iIf we let

V°"T<> éT Voo = V + IR, Voo = isc Rin

then the

Y[=]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Thevenin's equivalent circuit relationships of
|||if Voc:i R; |||if Voc:|scRin

SC”'In

voltage/current for

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

both Thevenin’'s

Y [—]

and Norton’s

1 I = R_ + 1
i (1 R " equivalent circuits
* " i iscRin =Vv+ IRin
1 are exactly the

sSame.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

so Norton's equivalent circuit Copyrighted by Ben M. Chen
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From the Norton's equivalent circuit, the two parameters i, and R,

can be obtained from:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

=l
O L Sy
Ig CD é Rin V= OT Short circuit current =1l
@ ®
Open Circuit °

Resistance seen with
source replace by = R,
internal resistance
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Example: Reconsider the circuit = The Norton's equivalent

AN _— NN/ . circuit is therefore:

SR L

—> 2_ig <— Ise O o
N——=< M —>
3 4
1O : o
And the Thevenin's equivalent
o circuit is:
1+6-3i = 4ig; or e =1 A N o
N - 9 AN\, ——
s 4 O
A \ //7 \\ J—
. v Rin=7
1 1 @

61 L 4  J Copyrighted by Ben M. Chen



62

Summary on how to find an equivalent circuit:

Step 1. Identify the circuit or a portion of a complicated circuit that is to be
simplified. Be clear in your mind on which two terminals are to be

connected to the other network.

Step 2. Short-circuit all the independent voltage sources and open-circuit
all independent current sources in the circuit that you are going to simplify.
Then, find the equivalent resistance w.r.t. the two terminals identified in

Step 1.

Step 3. Find the open circuit voltage at the output terminals (for Thevenin’s
equivalent circuit) or the short circuit current at the output terminals (for

Norton’s equivalent circuit).

Step 4. Draw the equivalent circuit (either the Thevenin’s or Norton’s one).
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More Example For Equivalent Circuits:
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2.21 Superposition

Consider finding . in the circuit:

AN AN ——>

3 4

By using the principle of super-
position, this can be done by finding
the components of I due to the 2
Independent sources on their own
(with the other sources replaced by

their internal resistances):

- .
f Open circuit
L
2417 24/7
—>  2(47) <
’W < >
3 4
T
2
\ e
Short circuit
L

lis. =2(3/7)+ (17) =1

Copyrighted by Ben M. Chen



65

Linear Systems and Superposition

in,
in,

16

27

16

27

Linear System

Linear System

Linear System

Linear System

Out=61in,+71n,

6 (16) = 96

7 (27) = 189

96 + 189 = 285

(the definition of the

linear system)

Note that:

Linear system: linear
relationship between

Inputs and outputs

Superposition:
Applicable only to

linear systems
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2.22 Dependent Source

Consider the following system:

D Amplifi
Player mplitier
This may be represented by
A 4%
300 2
10 deOlm =]
@
CD Player Amplifier Loudspeaker
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Note that the source in the Amplifier block is a dependent source. Its
value depends on V, , the voltage across the inputs of the amplifier. Using

KCL and KVL, the voltage v can be easily found:

3300 11

— AN AN—
300 2
)

_ 20 _ 10
1T Vd:i_?T 3k Tzvd_H 2 Tv_ll

However, if we use the principle of superposition treating the dependent

source as an independent source (which is wrong !), the value of v will be O:
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3300 0
— NV — N—>
300 2
|
1T<> d:%_(l)T 3k \/\T@ 2 To

Yo

Y o

AN
300 2

OT/\/\ vd:oT 3k Tzvd:o 2 To

Dependent sources, which depend on other voltages/currents in the circuit

and are therefore not independent excitations, cannot be removed when
the principle of superposition is used. They should be treated like other

passive components such as resistors in circuit analysis.
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— N U S
02
National University
of Singapore

Topics Skipped
e Nonlinear Circuit

e Delta Circuit

e Star Circuit

e All these topics are not examinable in test and examination.
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— N US
National University
of Singapare

Reading Assignment

o Appendix C.1. Matrix Algebra

o Appendix C.2. Complex Number

* Appendix C.3. Linear Differential Equation
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Chapter 3. AC Circuit Analysis
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Appendix Materials: Operations of Complex Numbers

Coordinates: Cartesian Coordinate and Polar Coordinate

| — (5
12 1 j5 =13 e®% = 127 + 52 ¢ 2
_— % N
real part imaginary part magnitude argument
Euler's Formula: | € = cos(d) + j sin()

Additions: It is easy to do additions (subtractions) in Cartesian coordinate.

(a@a+ jb)+ v+ jw)=((@+vVv)+ j(b+ w)

Multiplication's: It is easy to do multiplication's (divisions) in Polar coordinate.

jo
rel? L uet = (ruel@ | | = Leio)
ue'” u
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3.1 AC Sources

Voltages and currents in DC circuit are constants and do not change with
time. In AC (alternating current) circuits, voltages and currents change with

time in a sinusoidal manner. The most common ac voltage source is the

¢ = phase = 0.4rad
230[2
f =frequency =50Hz

w=27f =angular frequency=100~r=314rad/s

mains: 1

27[(50)

T= 1 period SER 0.02s
f 50

v(t) = v/2r cos(2ft+0) = \/2r cos(awt+0) = \/2r cos(mw)
T J2r=peak value=230~/2=324V

= 230+/2 cos(100t+0.4)
r=rms (root mean square) value=230V
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How to find the phase for a sinusoidal function?

NN
/UUUUU\t

v(t) = r+2 cos(w|t + a
® (@] D V(t) = rv/2 cos(wt)
= r+/2 cos(wt + wa)
0.4

-7 <60 <& for previous example.
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==l O

Euler's Formula: e’ = cos(w) + JS|n=a))

3.2 Phasor

A sinusoidal voltage/current is represented using complex number format:
v(t) = /2r cos(wt+0) = ~/2r Rele ) | = Re|(re ? /2 1t )

The advantage of this can be seen if, say, we have to add 2 sinusoidal

voltages given by:

=342 cos(a)t + ) v, (t) =52 cos(a)t - Zj

v, (t)=3v2 cos a)t+ Re[{Se Z] eJ‘”t } v, (1542 COS(COZ)_REK%]ZJ( J2eit )}

e
vy () +v, (t)= RelISe 6456 ’4](f ewt)] Re|(6.47¢71°%)(\2e 1) | = 6.47/2 cos(wt-0.32)
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Note that the complex time factor ./2¢!“t appears in all the expressions.

If we represent v;(t) and v»(t) by the complex numbers or phasors:

T

V)= 3¢ 6 representing v, (t)=3v2 cos(a)t + %)

V,=5e 4 representing v, (t)="5v2 cos(wt - Zj

then the phasor representation for vy (t) + Vv, (t) will be

-]

V, +V, =3'6 + B¢ 4 =6.47¢ 193 representing V;(t)+ v, (t)=6.47+/2 cos(at — 0.32)

3’6 450 ¢ = 3(COS(%J + jsin(%)] + 5(003(— %} + jsin(— %D =6.14— j2.03=6.47e /0%

Euler's Formula:  e!? =cos(w) + jsin(w)
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By using phasors, a time-varying ac voltage
v(t) = /2r cos(wt+0) = Re|(re ) (v2e 1)
becomes a simple complex time-invariant number/voltage \/ =reld = r@

r =|V|=magnitude/modulus of V =r.m.s. value of v(t)
0 = Arg|V | = phase of V

Graphically, on a phasor diagram:

Imag
0\ \V/ Using phasors, all time-varying ac quantities
, become complex dc quantities and all dc circuit
analysis techniques can be employed for ac
4 - circuit with virtually no modification.
0 Re/al

Complex Plane
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Example:

5,/2cos@t—0.2) CD é 6 C)T 3,/2c0s(wt+0.1)

/

78

Lelo

O

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Thevenin's equivalent circuit
for current soure and 6 Q resistor
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gt

= 2.64-j0.63=2.71e 710

~ 30e102 _3 101
- 10

—" W —>—" W —

6 4

wlO Qe

30e—j0.2 L 3ej0.1
10
= 3[cos(-0.2) + jsin(-0.2)] — 0.3 [cos 0.1 + j sin 0.1]
_ (2.940 — j0.596) — (0.299 + j0.030) = 2.641 — j0.626

—0.626

_ oot + osete’ ™ (2] _ g oz

— i(t) = 2.71J2 cos(wt — 0.23)
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3.3 Root Mean Square (rms) Value

For the ac voltage

v(t) = ~/2rcos(24ft + 0) = ~/2r cos[z?ﬂt + 6’)

|
cos(2x)=2cos?(x -1

v

vea(t)=2r° cosz(zTﬂt + 0) = rz{l + cos(d'_:t + 29)}

v(t)

—oT
2

NN (F
v

v2(1)

NN

The average or mean of the square value is

1 period Ilperiod

1 2 1 2igte 10 r? 1+cos(4—ﬂt+2¢9j dt = 2 7 r2dt = r2
v(t)dt_Tov(t)dt_TI0 { T TIO

The square root of this or the rms value of v (t) isrms value of /2rcos(at + 0)=r

Side Note: rms value can be defined for any periodical signal.
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3.4 Power

Consider the ac device:

i(t) =r./2cos(wt +0) \i/

v(t):rvﬁcos(wt+9V)T ‘ Device

Using 2cos(x, )cos(x, J=cos(x,—X, Hcos(x,+X,,) the instantaneous power

consumed is
p(t)=i(t)v(t) = 2rr, cos(wt + 6, )cos(at + 6, ) =r.r, [cos(8, — 6, )+ cos(2at + 6, +6, )]
The average power consumed is

1
1 period

Pay fiperiog P()E = r{ri Iy {cos(é’i -0,)+ cos[él?ﬂt +6.+0, ﬂ dt =rr, cos(6. - 6,)
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| | 5 In phasor notation:

? - _rell oy eib
JEY U Ve Vi
N /N /7 riy2 ] * _in
(N ([ =, e

VA :rvriej(gi—ev)

AVAVATAVE=—

Z

t VI*:rVrIeJ(ev_Hl)

D, = I, cos(6, —6) =r,r cos(6, —0,) = Re[rvriej(ev“gi)J: Re[v*l ]: Re[VI *]
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Note that the formula pasze[l ”\/] IS based on rms voltages and currents.
Also, this is valid for dc circuits, which is a special case of ac circuits with

f=0and V and | having real values.
27e71023

Example: Consider the ac circuit, ANA > AN

| 230073 age oz 30e_j0'2T <> <> Tse -
4+6

3e!%source:: Re[(2.7e‘j°'23)*(3ej°'1)}:Re[8.1e10'33]:8.1005(0.33):7.66 ~

30e~12source : Re[— (2767102 (30102 )} - ~81c0s(0.03) = —80.96

6Qresistor: Re (2.7e‘jo'23)*<6><2.7e‘j°'23) = 6(2.7) =43.74

4Qresistor: Re (2.7e‘jo'23)*(4><2.7e‘j°'23) = 4(2.7) =29.16 J
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3.5 Power Factor Ignoring the phase difference between

V and I, the voltage-current rating or
Consider the ac device:
|

| =1, elo \f Apparent power=voltage - current rating=V | I =r, VA
V = rvejev/]\ ‘ Device

|
The ratio of the these powers is the power factor of the device:

apparent power consumed is

However, the actual power consumed is

Actual power= Reh/ ]:r 1, cos(6,-6, )W

Power factor = _~ctualpower = cos(6.-6,)

Apparent power

This has a maximum value of 1 when Unity power factor <1 and V in phase <6.=6,

The power factor is said to be leading or lagging if

Leading power factor< | leadsV inphase<6>6,

! Lagging power factor<| lagsV in phase<¢é <6,
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Consider the following ac system: I, = 23? fr = 2300 =
/

\ ]

AC —>1 01¢@Q —1 230V, 2300 VA

Generator Electrical Electrical Machine
Cables
0.1 10ei9: Unknowns
NN\ > i
<

————————————————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,

AC Electrical Electrical
Generator Cables Machine
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The power consumed by the machine and power loss at different power factors are:

Voltage-
current
rating

2300 VA

2300 VA

2300 VA

Voltage
across
machine

230 V

230 V

230 V

Current

10 A

10 A

10 A

Power
factor

0.11 leading

0.11 lagging

'9i o Qv

cos *(0.11) = 1.4rad

— cos1(0.11) = —1.46rad

Power
consumed

by machine

(2300)(0.11) = 232 W

(2300)(1) = 2300W

(2300)(0.11) = 232W

Power loss
in cables

(0.1)10Y = 10W

(0.1)10) = 10W

(0.1)10) = 10W

86
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3.6 Capacitor

A capacitor consists of parallel metal plates for storing electric charges.

Conducting plate
with area A

| Insulator
I with a dielectric
d constant ¢

+

(permittivity)

The capacitance of the capacitor isgivenby Cc = ¢ EA F or Farad

Area of metal plates required

to produce a 1F capacitorin A — <4 _ _1F x0000Im ., . (km)?

& 885 x 102 F/m

the free space ifd =0.1 mm is
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The circuit symbol for an ideal

capacitor is:
|

i(t)Y
v(t)T: C

Provided that the voltage and current

arrows are in opposite directions, the

voltage-current relationship is:

o\ dv(t)
|(t)—C?

88

For dc circuits:

dv(t)

v(t) = constant = T 0

and the capacitor is equivalent to

an open circuit:
I I
i(t)=0 1(1)=0

v(t) = constantT T

_”

C

This is why we don’t consider the

capacitor in DC circuits.
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Consider the change in voltage,
current and power supplied to the

capacitor as indicated below:
v(t)
N

~V

(1)
A

Cv;

~V

p(t) = v(t)i(t) =Instantaneous power consumed
N\

Cv, 2

Area = Energy stored =

~V

89

Cvf

N

2

In general, the total energy stor\“""
the electric field established by the
charges on the capacitor plates at

time is

Proof.

e(t) = jp(x)dx_ jv(x)l(x)dx

v(x)

_j v(x)C ——d
=C I v(x)dv(x) :EVZ(X)‘;
— %[v2 (t) —v* (—OO)]

_CCM i vy =0.
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Now consider the operation of a capacitor in an ac circuit:
I
Li(t) _cdv®) _ —aCr,~2sin(wt +6,)
dt
v(t) =r,~/2cos(at+6,)

T = @Cr,~/2 cos(at + 6, + %)
|

In phasor format: |

| = a)Crvejgvej{:ja)Crvewv:ja)CV |
‘ Vv 1 ‘ .
VTTC = [ Tjoc VTTW

With phasor representation, the capacitor behaves as if it is a resistor

with a "complex resistance" or an impedance of

Zc = —»  p, =Re|lI'V]=Re[I"1Z.]= Rel:_lz}

Jo C

0

An ideal capacitor is a non-dissipative but energy-storing device.
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Since the phase of | relative to V that of Is

Arg[1 FArgv ]:Arg[\ﬁ: Arg{ }Arg[ja) o = Tok

S
ZC

the ac current i(t) of the capacitor leads the voltage v(t) by 90°.

—sin(ot)

TV ([
VINUNY

—sin(a)t—%) = cos(a)t):sin(a)ugj cos(wt)

' t
sin(wt) -
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Example: Consider the following ac circuit:

||
II . 1 6:_MO
319 uF j2m(50) (319)10

230 V
50 Hz T() 30Q2 I I

230e/% = 230 TC) 30

In phasor notation (taking the source

to have a reference phase of 0):

~j10 23_0 _73010%
II 30-]J10

"
éBO

—> e

92 Copyrighted by Ben M. Chen



93

Total circuit impedance

Z =(30-j10)Q

Total circuit reactance

X =Im[Z]=1Im[30-j10]=-10Q

Total circuit resistance

R =Re[Z]=Re[30-j10]=30Q

Current (rms) ‘ | ‘27.3A
Current (peak) \/E‘ | ‘ = 7,3\/272 10A
Source V-1 phase relationship | | leadsby 0.32rad

Power factor of entire circuit

c0s(0.32) = 0.95 leading

Power supplied by source

Re|(230)"(7.3¢1%2)] = (230)(7.3)c05(0.32) = 1.6 KW

Power consumed by resistor

Re (7.3ej°'32)*(30><7.3ejo'32)} = (7.330=1.6 KW
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Impedance, Resistance, Reactance, .
\ Relations?

Admittance, Conduktance, and $Asceptance

!
Impedance: Z =R+ JX
. 1 1 R— X
Admittance: Y =—= — = : -
Z R+jX (R+jX)R=jX)
e R . =X

TRZix? R+ X2 'RT+ X7

_G+jB\

Conductance Susceptance
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3.7 Inductor

An inductor consists of a coil of wires
for establishing a magnetic field. The

circuit symbol for an ideal inductor is:
|

(1)

v(t)T L

|
Provided that the voltage and current

arrows are in opposite directions, the

voltage-current relationship is:

u(t) = I_di(t)

dt

95

For dc circuits:

di(t) 0

i(t)=constant = —-~
dt

and the inductor is equivalent to a

short circuit;

| |
I (t) = constant

v(t):OT L

That is why there is nothing
Interesting about the inductor in DC

circuits.
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Consider the change in voltage,
current and power supplied to the

Inductor as indicated below:

i(t)
N\

)
0 1 t
v(t)

A

Li,

0 1 T

P(t) = v(t)i(t) =Instantaneous power consumed
N

Li. 2
f Area = Energy stored =

~V

96

Li,2
2

In general, the total energy stored
In the magnetic field established
by the current i(t) in the inductor

at time tis given by

e(t) = I p(x)dx = IV(X) (x)dx

= j I(x)L———=d I(X)
=L jl(x)dl(x)_—lz(x)‘

S ORGSO
_Li%()

o if i(—0) =0,
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Now consider the operation of an inductor in an ac circulit:

I
i (1) i(t) = /2 cos(wt +6,)

V(t)T L v(t) = Ld;(tt) = —oLr/2sin(wt +6,)

— wLrv2cos(at + 6 +7)
| | 2

In phasor:

| |
(0 | =reld I

V(t)/]\ L jo L TV > Z,

V =wlrel%el™? = jolLre!® = (jolL)I

Z, is the impedance of the inductor. The ave. power absorbed by the inductor:

0o = Re[1'V ERe[1°Z, 1]= Re[joLl "1 |= Re |joL| 1 f|=0
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Since the phase of | relative to that of V is

Arg[1]- Arglv ] - Arg[\ﬂ - Arg{zﬂ - Arg{ﬁ} ~—90°

the ac current i(t) lags the voltage v(t) by 90°.

As an example, consider the following series ac circuit:

v
319 uF 30

230V
210

We can use the phasor representation to convert this ac circuit to a ‘DC’

circuit with complex voltage and resistance.
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B j2n(50)(31.9)10° = j10

Summary of the circuit:

Total circuit
impedance

Z=3-j10+j10=20

230

3-j10 +j10

3 i

Total circuit reactance

X=Im[Z]=1m[3]=0Q

Total circuit resistance

R=Re[Z]|=R¢[3]=30Q

Current (rms)

1 |=77A

Current (peak)

V2| 1]=77/2=108A

Source voltage-current .

phase relationship 0 (In phase)
Power factor of entire

circuit cos(0)=1

Power supplied by
source

Re|(77)"(230)|=18kw

Power consumed by
resistor

Re|(77) (3% 77)|=18kW
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Note that the rms voltages across the inductor and capacitor are larger
than the source voltage. This is possible in ac circuits because the
reactances of capacitors and inductors, and so the voltages developed

across them, may cancel out one another:

Voltage Voltage Voltage
\“73?;82 across across ‘across
capacitor resistor inductor
230 -j770 230 j770

In dc circuits, it is not possible for a passive resistor (with positive
resistance) to cancel out the effect of another passive resistor (with

positive resistance).
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3.8 Power Factor Improvement

Consider the following system: Due to the small power

factor, the machine

lo
N
=z

50 Hz cannot be connected to
230V
Mains T V =230 2.3 kW standard 13A outlets even

0.4 lagging power factor

though it consumes only

Electrical Machine 2 3 kW of power
The current I, can be found as follows:
: o~
200W g yty= B0 g Can we improve It*
(230V)(1,A) (230)(0.4)

cos{Arg|l,]-Arg|V |}=0.4
Argllo]-Arg[v]<0

}:> Arg[l,]=—cos(0.4)=—1.16 —>|l = e iArgllo]_opa—il.16
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EG1103 Mid-term Test

* When? The time of your tutorial class in the
week right after the recess week.

* Where? In your tutorial classroom.

* Why? To collect some marks for your final
grade for EG1103.

* What? Two questions cover materials up to
DC circuit analysis.
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the power factor:

I o5 -il.16
N ® ~
~ > _ 230
Zold = o5 o116
_ 1 —_— _
Mains /]\V: 230 ZC - JZTC(SO)C — C =9.2%e J1.16
Original
. Machine

New Electrical Machine

| =;/ +25e 1118 = j230002C+10-j23 = 10+ j(230007C—23)
C

Thus, if we choose 23000~C =23 = C=0.32mF then |=10A and

Power factor of new machine = cos[Arg(l)-Arg(V )] =1

By changing the power factor, the improved machine can now be connected to

standard 13A outlets. The price to pay is the use of an additional capacitor.

103
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To reduce cost, we may wish to use a capacitor which is as small as possible.

To find the smallest capacitor that will satisfy the 13A requirement:

1]° =10% + (72200C-23'=13 => 13°=10°+(72200C-23)’

\
0=10° -13% +(72200C - 23)° = (72200C - 23)’- 8.3
\
0 = (72200C —23-8.3)(72200C — 23+8.3)
\

C=02mF or 044mF

There are 2 possible values for C, one giving a lagging overall power factor,

the other giving a leading overall power factor. To save cost, C should be

C=0.2mF 7
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Chapter 4. Frequency Response
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4.1 RC Circuit

Consider the series RC circuit:

14

4%
2Q
v(t) = 1 Vo (1) =
a/2cos(2nft + 0) T 160 mF __T by/2cos(2nft + ¢)
»
t“‘v ...
Input: V =1(2+Z.) gs | Output: V. = 17,
2 »
V:aeigT ::TchbeW
_ 1 _ 1
e = [onf(160)10° | i
1
i _ s Frequency
H(f) K :be_e Deiwo)_ Lo . “  Response
V ael? a 24Zc o, 1 1+j2f P
i |




— N US
—~ (0
National University
of Singapore

The magnitude of H (f) is The phase of H(f) is
V
Vel Mol b Arg[H(1)]- Arg| \ | = Arglv ]~ Argl
\H(f)\—v—m—g v

1
=¢—0=Ar
- L L / quLjZf}
1+(2f Y  \1+4f°

=—Arg[l+j2f]=—tan*(2f)

and is called the magnitude response. and is called the phase response.

The physical significance of these responses is that H (f)
gives the ratio of output to input phasors, |H ( f)| gives the
ratio of output to input magnitudes, and Arg[H ( f)] gives the

output to input phase difference at a frequency f.
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ot v(t) = 3v2 cod27(5)t+7] v(t) = rsin[27z(4)t] = rco{27z(4)t—721
V =3¢/ ro
V=72
¢
Frequency f =5 — 4
p HE)= H)-
g ) 1+j10 ) 1+j8
g ()= - H) =
| HOI= L He)- L
e e Arg[H(5)]= —tan™(10) Arg[H(4)] = —tan™(8)
r . 1
V- (1) =—==sIn2z(4 t—tan (8
=22 coslartsi7-tartao) | <7 Vs rfeh- ()
Output ¢ \/El r {2 () t (8)£j|
=——CO —tan”
_ 3 j[?—tan’l(lo)] \/675 i 2
VC_—me
J[—tan 8)—7[/2]

«/130
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Due to the presence of components such as capacitors and inductors
with frequency-dependent impedances, H ( f) is usually frequency-
dependent and the characteristics of the circuit is often studied by

finding how H ( f) changes as f is varied. Numerically, for the series

RC circuit:

1 1
f H(f) = ArglH(f)]= - tan(2f)
0 1=20log(1)=0dB 0rad =0’
1 1 1 7
0.5 === 20Iog(—j =-3B | —tan*(2x0.5)=—"rad = — 45"
J1+4(057 V2 V2 £
—> 0 —0=-0dB —tan‘l(oo):—grad:—%0
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Input

i

I
ﬂ\/ Output
| b/ |
\

Low | High i
P T [/\

o |
| [, vi

Low Frequency |

110



At small f, the output approximates the input. However, at high f, the output
will become attenuated. Thus, the circuit has a low pass characteristic (low

frequency input will be passed, high frequency input will be rejected).

The frequency at which [H ( f)| falls to —3 dB of its maximum value is called

the cutoff frequency. For the above example, the cutoff frequency is 0.5 Hz.

To see why the circuit has a low pass characteristic, note that at low f, C has
large impedance (approximates an open circuit) when compare with R (2 in

the above example). Thus, V. will be approximately equal to V :

R

/V\_

V
1 _ N Y —
Low f T<> Zcoc? = oo (open circuit) TT Ve =V
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However, at high f, C has small impedance (approximates a short circuit)

when compare with R. Thus, V. will be small:

High f

R

I

/V\

Z.c % = 0 (short circuit)

N

Ve ~ 0 (small)

Key Notes: The capacitor is acting like a short circuit at

high frequencies and an open circuit at low frequencies. It is

totally open for a dc circuit.
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An Electric Joke

Q: Why does a capacitor block DC but allow AC to pass

through?
A: You see, a capacitor is like this | | , OK. DC
Comes straight, like this ———, and the capacitor stops

it. But AC, goes up, down, up and down and jumps

right over the capacitor!
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4.2 RL Circuit

Consider the series RL circuit:

AN
V(D) >4 T v.(©
sir:cuzlcz)id TC) HeomH B sir]:ul_slf)id
R b
Input: V=I (5+2,) L1 | Output: V =1 Z,

Z, =j2nf(160)10° = jf

T 54 Z, T 5y if <«— Frequency Response
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The magnitude response is The phase response is

- jf
2 2 Arg[H(f)]=Arg J}
L 5
5+ f 25+ f = Argl jf |- Arg[5+jf |
:”—tanl(fj
2 5

Numerically:
; H(T) F ArglH (1)]=7 —tan” {
25+ f 2 5
0 0 =20log(0)=—o0 dB grad:900
5 255;2 = \15 = Olog(%) =3B %— ta ‘T—j ~” rad = 45°
—> —1=0dB %—tan‘l(oo):Orad:OO
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Rad - Sine Input with f=1Hz; Graan - Oufput

=
tn

Magnituda
-]

-0 5

Tme in Saconds

Rad - Sina Inputwith f=12Hz; Grean - Qutput

L
LH)

Magnitude
-]

-0 5

) ; ; = ; ;
0 0oz 004 006 0.0a 0.1 01z
Tme in Saconds

] o= | ]

.14 D16 018 0.2
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Physically, at small f, L has small impedance (approximates a short circuit)

when compare with R (5 in the above example). Thus, V_ will be small:
R

/V\

V \\\
Low f TC) Z T~ 0 (short circuit)| | T V| ~ 0 (small)

However, at high f, L has large impedance (approximates an open

circuit) when compare with R. Thus, V_ will approximates V:
R

/\/\

V "\\j
High T TC) Z, o« f =0 (open circuit) 0\ T V. =V

Due to these characteristics, the circuit is highpass in nature.
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4.3 Series Tune Circuit a'a AN
L=064H p=00670
Ve (1)

v(t)
f Hz TC) C=14F ::T f Hz
sinusoid sinusoid

4 >
The total impedance is '
7 =R+Z,+Z, : L
Input | | Output

- =4 j4f+_— Z, =)2nf(0.64) = j4f 2

30 i9f "M AN

9 it 1 j v 5
- 4 —

30 J( of f\lflz/I\CD e = Tataa) - oF ::TVC
— 2 <
- -

1 1 1 1

Resonance Frequency =P | To = J@Yo) =5 fo = NN = C

_ Reactance (?f inductor at f, _ 2/3 _10 & 0= 27f,L
Resistance 2/30

Q factor =p Q
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The frequency response is

1
Ve Z jof 1
H(f)="%="C= =
D=y=7 2 Ljaf4 L 1-36f%+j06f
30 jof
The magnitude response is
H(f)= 12 == L x> —bx+c
Ja3et2f06F) (3612f(72-0.67)f 241 2 (bj (b)z
. = X" =2 = |[X+| =

\/ (362f-2(361 2{1 - 0722] i [1— 05T+1- [1— 07'22}2
) 0.6° 12 0.6° 0.6° :(X__j2+c_(9j2
Jo o o n %8 —

72 72 72

Since f only appears in the [¢]? term in the denominator and [¢]> >= 0, |H ()|

Lwill increase if [+]2 becomes smaller, and vice versa.
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The maximum value for |H ( f)| corresponds to the situation of [¢]? or at

frequency f=f,., given by:

0.6°
:1——%
: 7

Atf=f

L < fo~f
peak"’6 peak =~ '0

[*]? and the maximum value for [H ()| is

1

2
, 08

R

=10 < ‘H(fpeak}

e

72

|H(fpeak)| ~Q =10

-~V

The series tuned circuit has a

bandpass characteristic. Low- and

high-frequency inputs will get

attenuated, while inputs close to the

resonant frequency will get amplified

by a factor of approximately Q.
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The cutoff frequencies, at which |H ( f)| decrease by a factor of 0.7071 N v

or by 3 dB from its peak value [H (f,)| , can be shown to be given by

fooa fo(]__ 1) foper ~ f0(1+ 1] Very roughly, the
2Q ,{ 2Q L .
/ circuit will pass inputs
IH()| with frequency
|H(fpeak)| ~Q =10 between flower and fupper'
The bandwidth of the
|H(fpeak)| z\/% =7.07
V2 circuit is

NfO

1:bandwidth = 1:upper - 1:Iower

and the fractional
bandwidth is

fbandwidth ~ 1

fo Q
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The larger the Q factor, the sharper the magnitude response, the bigger

the amplification, and the narrower the fractional bandwidth:

IH(F)|
N\
Large Q

Small Q

—V

In practice, a series tune circuit usually consists of a practical inductor or
coil connected in series with a practical capacitor. Since a practical
capacitor usually behaves quite closely to an ideal one but a coil will

have winding resistance, such a circuit can be represented by:
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The main features are:

Equivalent circuit for coil or practical inductor

,,,,,,,,,,,,,,,,,,,,,,,,,,,

T
s
(L
_/
O
| |
| |
s
O<

Frequency response

H(f)

: 1
Circuit impedance Z=R+])27fL + -
)274C

Resonance frequenc f, = L

AHensy ° " 224LC

q factor Q= 2oL
R
1 1

T1-47%f2LC +j2ACR (sz j
1- +
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For the usual situation when Q is large:

Magnitude response

Bandpass with |H(f ) decreasing as f—0 and f— o

Response peak

H(f) peaks at f = fop = fo with [H(fpea |~ Q

‘H(fpeak] - Q

Bandwidth

Cutoff frequencies H(f)= 2 at
1 1
f = flower’ 1:upper ~ fo(l_ﬁj’ f0(1+5j
fo

~/
"~y

1:bandwidth = fupper_flower 0

Fractional bandwidth

1:bandwidth ~ i

fo Q
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The Q factor is an important parameter of the circuit.

_ 2A4f,L _Inductor reactance at f,
R Circuit resistance

Q

However, since R is usually the winding resistance of the practical coil

making up the tune circuit:

_ Reactance of practical coil at f,
Resistance of practical coil

Q

As a good practical coil should have low winding resistance and high
Inductance, the Q factor is often taken to be a characteristic of the practical

Inductor or coil. The higher the Q factor, the higher the quality of the coil.
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Due to its bandpass characteristic, tune circuits are used in radio and /&=
TV tuners for selecting the frequency channel of interest:

Channel 5 Channel 8

~—_ ( iiiiiiiiiiiiiiiiiiiiiiii
1A :
S ‘ Amplifier
Practical inductor or coill _,Z V and
C - ¢ Other
Circuits
To tune in to channel 5, C has to M
be adjusted to a value of C; so A\
that the circuit resonates at a
frequency given by
E> |
B 1 3 :
5= 5 i ; >
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To tune in to channel 8, C has to be adjusted to a value of Cg4 so that

the circuit resonates at a frequency given by

fo o

- 27.JLC,
and has a magnitude response of:

IH()|
N

—V
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Additional Notes on Frequency Response

Freguency response is defined as the ratio of the phasor of the output
to the phasor of the input. Note that both the input and output could be

voltage and/or current. Thus, frequency response could have

V (output) V (output) | (output) | (output)
| (input) V (input) | (input) V (input)
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Chapter 5. Periodic Signals
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5.1 Superposition

In analyzing ac circuits, we have assumed that the voltages and currents

are sinusoids and have the same frequency f. When this is not the case

but the circuit is linear (consisting of resistors, inductors and capacitors),

the principle of superposition may be used. Consider the following system:

i (t)

N\

5\f2cos 4t-0.2) (

)

+—>

0.0025 F

(

D]

/

3,/2cos (40t +0.1)

The current i(t) can be found by summing the contributions due to the two

sources on their own (with the other sources replaced by their internal

resistances).

131
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5./2cos (4t— 0.2)

5€_j0.2

~ 100 j

i,(t) | |
11
0.0025F
T
@
= 1 j—
N 72 (0.0025)
| |
6
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|1_6—100j 20.3e113 II
B
—100 ]

i,(t) = 0.34/2cos (4t +1.3) | |

>
| |

5./ 2 cos (4t— 0.2) CD 6

0.0025F
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National University
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z(t)

l 0. 0025 F
T 3./2cos (40t + 0.1)

~~

1 _ ;
720 000y -

I
l g ‘ ‘
CoT 6 #T 3e )01
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~~~

= _ 026 ell1

2= 6 _10]

l ||
e —10)
T 6 C)T 3e 101

i,(t)=—-0.26+/2cos (40t +1.1) ]

——> I I
i 0.0025 F
T § 6 C)T 3\ 2cos(40t+ 0.1)
T o
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Lastly, the actual current when both sources are present:

1(t) = i,(t) +1i,(1)
= O.3f2cos(4t+l.3)
— 0.26+/2c0s (40t +1.1)

N
P

0.0025 F

5./2cos(4t—0.2) CD 6 <>T 3,/2cos (40t +0.1)
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5.2 Circuit Analysis using Fourier Series

Using superposition, the voltages and currents in circuits with sinusoidal

signals at different frequencies can be found.

Circuits with non-sinusoidal but periodic signals can also be analyzed by

first representing these signals as sums of sinusoids or Fourier series.

The following example shows how a periodic square signal can be

represented as a sum of sinusoidal components of different frequencies:
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|Origina| periodic square waveform: v(t)|

n Any periodic signal can be

represented as an infinite

— - sum of sine signals.
|

[Fundamental component:sin(2rt)|

b v(t) = sin(2at) + sin(67t) .\ sin(10zt) .\

3 5
Same freq. j U K

as the orginal.

Fundamental + third harmonic
sin(2nt) + SL%M)

Third harmonic: s_in(%m)

MM
........ SPPRARS
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N\

® sin(2mwt)

2 Q

v(t)TC) — Sin(w)/\([) Ebv(t)TC) 160 mF ::TVC(O
l

3

AN
2Q

s(t)
I A f Hz TC) 160 mF __Tsc(t)
3 20 Sinusoid

" sin(2nt)

. N
Fourier | sin(6nt) v
representation | 3 160 mE ——Tvc ®

for | 1
v(t) L N /v\

- sin@ont) 2

5
1

S TC) ::Tsc
f Hz 1
j2rf (0.16) ~ T
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The frequency response:

1
Se | 1
H(f)="C = -
(f) S o, 1 Lyjof
Jf

From superposition, if the input is the periodic square signal

)+ sin(67t) .\ sin(107t) o

v(t)=sin(2at ; :

then the output will be

Ve (t) = 0.44sin(27t-1.1) + 0.05sin(672t-1.4) + ---

_sin [2(1)t—tan (2 x1)] , sin 2(3)t—tan (2 x 3)| s
(A2 x 1Y (3)(1+(2 % 3)?

© - . -1
S sm[2n7zt tan (2n)]

=135 n1+(2nYy

140

Side Notes:

Superposition for
infinite series will

not be examined.

Topic on Fourier

Representation of
periodic signal is

skipped and

hence ...
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Chapter 6. Transient Circuit Analysis
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C.3 Linear Differential Equation

General solution:

nth order linear d”x(t) d“‘lx(t)

differential equation g +ta, 4 T +a,x(t)=u(t)

General solution x(t)=x, (thx, (t)

Steady state response X, (t)J=particular integral obtained from assuming
with no arbitrary constant solution to have the same form as u(t)

Transient response with x, (t}=general solution of homogeneous equation
n arbitrary constants n n-1

d"x, (t d"'x, (t

T“ = )y ovagx, 010
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General solution of homogeneous equation:

nth order linear d"x (t) d"1x (t)
homogeneous equation —dttn ta, dtn—tl -+ %, (t)=0
Roots of polynomial Roots :z,,--,z,
from homogeneous - n n-1

. ivenby(z-z,)--- (z—z z"+a,_,z2" "+ -+a
equation g Y( 1) ( n): n-1 0
General solution X, (t):k1e21t+- -tk e’
(distinct roots)
General solution X, ()= ko trkt? Jet ok, +kt e +k et +k, et
(non-distinct roots) if roots are 13,13, 13, 22, 22, 31, 41
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Particular integral:

X (t)

Any specific solution (with no arbitrary constant)
of

d'x(t), XY, L)

dt” "t gttt

Method to determine

X (t)

Trial and error approach: assume x_(t) to have

the same form as u(t) and substitute into
differential equation

Example to find x(t) for

—d);it)+2 x(t )=

Try a solution of he™

d’é—?) + 2x(t) = e*=3he* +2he* =¥ =h=0.2

x,(t)=0.2e*

Standard trial solutions

u(t) trial solution for x_(t)
e” he

t ht
te (h,+h,t)e

a cos(w t)+b sin(w t) h, cos(@ t)+h, sin(w t)
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6.1 Steady State and Transient Analyses

So far, we have discussed the DC and AC circuit analyses. DC analysis can be
regarded as a special case of AC analysis when the signals have frequency f = 0.
Using Fourier series, the situation of having periodic signals can be handled using
AC analysis and superposition. These analyses are often called steady state

analyses, as the signals are assumed to exist at all time.

In order for the results obtained from these analyses to be valid, it is necessary for
the circuit to have been working for a considerable period of time. This will ensure
that all the transients caused by, say, the switching on of the sources have died

out, the circuit is working in the steady state, and all the voltages and currents are

as if they exist from all time.

However, when the circuit is first switched on, the circuit will not be in the steady
state and it will be necessary to go back to first principle to determine the

behavior of the system.
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6.2 RL Circuit and Governing Differential Equation

Consider determining i(t) in the following series RL circuit:

’§——’V‘ i (1)
t=0 50

3vT<> 7H Tv(t)

where the switch is open for t <0 and is closed for t > O.

Since i(t) and v(t) will not be equal to constants or sinusoids for all time,
these cannot be represented as constants or phasors. Instead, the

basic general voltage-current relationships for the resistor and inductor
have to be used:
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National University
of Singapare

51 (D)
%
—W\ i (1) Fort<O
t=0 5
3 T ! T 5i (t
O s
o 1(t)=0
5
3T<> 7 Tv(t)_Ydo:g[t)
5i(t) =0
~ %
/_'( i(1) =0
voltage cross c

over the switch 3T<> D T (t)_7d'_(t)_o
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0] 51 (t)
< <—
, AN

5

i (1)

7 Tvm_7 ﬁﬂ

Applying KVL:

di(t
—i)+5() 3, t>0

dt
and i(t) can be found from determining the
general solution to this first order linear
differential equation (d.e.) which governs

the behavior of the circuit for t > 0.

148

Mathematically, the above d.e. is often

d('j_(t)+5() u(t), t20

where the r.h.s. is U(t)=3, t>0

and corresponds to the dc source or

excitation in this example.
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6.3 Steady State Response

Since the r.h.s. of the governing d.e.
7d:j—(:)+5i(t):u(t):3, £>0

Let us try a steady state solution of
i (t)=k, t>0

which has the same form as u(t), as a
possible solution.

29is() 5 (1)=3
dt
= 7(0)+5(k)=3
= k=§
5

149

7 dig, (t)+5iss (t):7i(§) + 5(§) =3, =0
dt 5 0

and is a solution of the governing d.e.

In mathematics, the above solution is
called the particular integral or solution
and is found from letting the answer to
have the same form as u(t). The word
"particular" is used as the solution is only

one possible function that satisfy the d.e.
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In circuit analysis, the derivation of i(t) by letting the answer to have )
the same form as u(t) can be shown to give the steady state response

of the circuit as t —» .
Using KVL, the steady state

t >

AN | response Is

> . 3=0+5k +0 =5k

10 I
3
= k==
~ 5
. 3
5i(t) =5k :H(t):g’ oo
AN i(t) = k This is the same as i(t).

5

3T<> 7 Tv(t)_ do:it) 0
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6.4 Transient Response

To determine i(t) for all t, it is necessary to find the complete solution of
the governing d.e.

1, si0)-u(t)=3, 120

From mathematics, the complete solution can be obtained from summing
a particular solution, say, ix(t), with i,(t): i(t)=i.(t)+i,(t), t=0

where i.(t) is the general solution of the homogeneous equation

5
di(t . ) >t
7$+5|(t)=0, t>0 = i, (t)=ke" =ke 7,t>0
7 diy, (t)+5itr t) where k, is a constant (unknown now).
dt dltcrlt(t) replacedby z 5
2t
; _ 7
=721 +57°=77+5 w(t)=ke 70, t—o
- Z, = _g Thus, it is called transient response.
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6.5 Complete Response

To see that summing i (t) and i (t) gives the general solution of the governing d.e.

7d'—(t)+5i(t)=3, t>0
dt
note that

iss(t)zg, t>0 satisfies 7%(§)+5(—)=3, t>0

s L 5 5
i (t) = ke 7' t>0 satisfies YS[kle 7t}+5(kle 7tj:0, £>0
t
o 5 5
() +ig(t)=2+ke 7, t=0 satisfies 7.9 3ike 7 |45 Ske 7 |=3
5 dt| 5 5
—»

3)
>t
i(t)=i(t)+ itr(t)=§+k1e 7, t>0] isthe general solution of the d.e.
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e ———
I (1)
0 - . ¢ Steady State
t<0 t>0 Response
Switch
close

<= Transient Response

determined later

iss(t) + itr(t)

4= Complete Response
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Note that the time It takes for the transient or zero-input

response 1,(t) to decay to 1/e of its initial value is
Time taken for i.,(t) to decay to 1/e of initial value = ;
and is called the time constant of the response or system.

We can take the transient response to have died out after a

few time constants.

154 Copyrighted by Ben M. Chen



6.6 Current Continuity for

Inductor

To determine the constant K; in

the transient response of the RL
circuit, the concept of current
continuity for an inductor has

to be used.

Consider the following example:

i (1)

v(t)T L

1
\l

155

—~ Y

di (t
VL(t) - 7 st( )
0
7

~ VY

i (t) v (t) =Instantaneous power supplied

N

—~ Y
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Due to the step change or discontinuity in 1, (t) att = 2,

and the power supplied to the inductor att = 2 will go

to infinity. Since It Is Impossible for any system to

deliver an infinite amount of power at any time, it is

Impossible for i (t) to change in the manner shown.

In general, the current through an inductor must be
a continuous function of time and cannot change in a

step manner.
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Now back to our RL Circuit:

1O

157

0

160)

7H TV(t)

/V\
5Q

5
3 ' r T
5
O _
i(t)=0,t<0| Switch 1(t) = i (1) + i, (1)
close - %Jr kle‘%t, >0

Using current continuity for an
iInductor at t = O:

it

3
=—4+k =0 => Kk, =-
5 1 1

S

0)

0, t<0
I(t)= 3
ERGR ERE A,

3
5 /
O,,
i(t)=0,t<0 ‘ 1(t) = i.(t) + 1,(t
() Switch (t) :;S()s _tré(t)
close :g_ge 7120
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t<0

6.7 RC Circuit 5 500
AN A/
Consider finding v(t) in the following (1) = 7d(\j/_§t)
RC circuit: 3 TC) C)l 2
f= 0 v(t)T__ 7
AN NN
50 500 Q

3V TC) C)l oy Taking the switch to be in this
TF—— T v(t)

position starting from t = —oo, the

voltages and currents will have

settled down to constant values

where the switch is in the for practically all t < 0.

position shown fort <0 and is

i(t)=7 dv(t) _ _d (constant)

In the other position for t > 0. Y
dt dt

=0, t<0
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t<0
: 500 5i (1) = 35 YW
B at
AN —A\N— - 500
T i(t)fgdf,—?) YN
SleRTALEti\E
ol 1O " Ol
v(t)T:: 7
_— .
5 5001 (D) =0 Applying KVL:
A — AR

500
()= 0 35dv—(t)+v(t):u(t):3, t>0

10 gt Ly Ol 7

which has a solution

V(t) = Vs (t) + Vi (t)’ t>0
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(1) Steady State Response
u(t)=3, t>0
v
Vs (t) =
v
t

35% rv (t)=3

kK, t>0

—0+k=3=k=3

v

(2) Transient Response
35%@) +v (t)=0, t>0
dt
+Vy (1)

L dvgt(t) replaced by z

=357' +7° =352 +1
1

21:—£

Q

t

= v, (t)=ke* =ke ¥, t>0

t<0

) <4 Complete Response
1>
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6.8 Voltage Continuity for Capacitor

To determine k, in the transient response of the RC circuit, the concept

of voltage continuity for a capacitor has to be used.

Similar to current continuity for an inductor, the voltage v(t) across a

capacitor C must be continuous and cannot change in a step manner.

Thus, for the RC circuit we consider, the complete solution was derived as:

-2 t<0 |2 t<0
v(t):{ | !
Vss(t)+vtr (t)’ t20 3+kse % t>0
Att=0, (
-2, t<0
v(0)=3+k =—2 = k=—5 = V(t)=+ ot
3-5e *, t>0
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6.9 Transient with Sinusoidal Source

Consider the RL circuit with the dc source changed to a sinusoidal one:

Bﬁcos (wt+0.1) T <>

73

For t < 0 when the switch is open:

t<0

_.*’/

Sﬁcos(a)HO.l) TC)

162
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For t > 0 when the switch is closed:

[[=0 5 (t)
%

NN~ 7 i

5

3\f2003(a)t+0.1)T<> 7 BT7ddl_Et)

The governing d.e. is

q i(t) Looking for general solution
+5i(t)=u(t), t>0 >

Tat (1) =i (t) + i (t), 20

with
u(t) = 3v2 cos(wt+0.1) = Re[3v2e 1 0V | = Re|(3e 1t |28t )|, t=0
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Since u(t) is sinusoidal in nature, a trial solution for the steady state

response or particular integral i (t) may be

i, (t) = rv2 cos(wt + 0) = Re|(re /) (v2et)|, t=0

B

= 7Re|[re)? ) jo)(v2e ' )|+ 5Re|(re ? v 2e ! )

= Re|(re!? ) j7 + 5)v2e 1" )

= Re :(Sejo'l)(«@ej”t)]z u(t)

This Is Method One: = | (jo7+5)rel?=3¢1%1
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Method Two: t=0 5i(t)

%
W\ i (1)
5
3./2cos (wt+0.1) TC 7 Tv(t) _ 7 ddigt)

3ej0'1T< j o7 T j 071

(jw7+5) = (jw7+5)rei? =301
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(1) Steady State Response (2) Transient Response

: j0 _ 2,01 i _
(jw7+5)re)” =3¢ 1% 5, )0, t20
> 3ej0.1
= rel’ =" o
5wl I,(t) will have the same form as the dc
. source case:
el 5
> = i 07| 2,52, 2 : 7
5+jol \[5%47%w i,(t)=ke 7, t>0
0 = Arg[ejo'l: ~Arg[5+jo7] ﬁ
a7
=0.1-tan™ ?wj Complete Response
i, (t) = rv/2 cos(wt+0) = 32 cos[a)t+0 1- tanl(noﬂ, t>0
/25 + 490)° 5
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Complete Response
i(t) = iss (t) + itr (t)’ t>0

3)

—t

= 32 cos[a)t+0.1—tan1(7wﬂ+kle T, t>20
\/25+490° 5

To determine k,, the continuity of i(t), the current through the inductor, can be used.

i(t)=0, t<0 =» i(0)=i,(0)+i,(0)= \/25359@2 cos[o.l—tanlt%oﬂ + K,

=» k =- 32 cos[o.l—tan‘lc—wﬂ —>
\25+490)° 5

0, t<0

oy _34
I(t) = 32 cos[a)t +0.1- tan1(7—wﬂ — cos[o.l—tanl(k()ﬂe T h 120
\/25+490° 5 >
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An FAQ: Can we apply KVL to the rms values of voltages in AC circuits?

Answer: No. In an AC circuit, KVVL is valid for the phasors of the voltages
In a closed-loop, i.e., the sum of the phasors of voltages in a closed-loop is
equal to O provided that they are all assigned to the same direction. KVL
cannot be applied to the magnitudes or rms values of the voltages alone.
For example, a closed-loop circuit containing a series of an AC source, a
resistor and a capacitor could have the following situation: The source has
a voltage with a rms value of 20V, while the resistor and the capacitor have
their voltages with the rms values of 9V and 15V, respectively. All in all, if

you want to apply KVL in AC circuits, apply it to the phasors of its voltages.

By the way, KVL is valid as well when the voltages are specified as functions

of time. This is true for any type of circuits.
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6.10 Second Order RLC Circuit

Consider determining v(t) in the following series RLC circuit:

t=0

NN LN

30 5H A 500 Q

O ekl Ol

Both switches are in the position shown for t < 0 & are in the other positions for t > 0.

i(t)=0
Fort<O _/. /v\ > m . /W

3 5 500

1O Lt O
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Taking the switches to be in the positions shown starting from t = — oo, the
voltages and currents will have settled down to constant values for

practically all t < 0 and the important voltages and currents are given by:

0
—

e AN f!\ . AN
3

500

7dv(t):0

10 Lt O

Mathematically:

v(t)=2, t<0 & i(t)=0, t<O
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0 r 2v(t) | J2 e
Fort>0 21—+ B5—/—— 2
dt dt? <4 VL(t):LdI:Ld(CdV(t)j:LCd Vgt)
s - dt  dt dt dt
AN AR \ — AN
3 5 N\ 500

51O Lo OF

Applying KVL: 2
V() L 1 MO | )= u) =11, 20

35—
dt dt

Due to the presence of 2 energy storage elements, the governing d.e. is a

second order one and the general solution is

V(t) = Vs (t) + Vi (t)’ t=>0
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(1) Steady State Response
u(t)=11, t>0 =» v (t)=k, t=0 =»

2
35%336)+21dvé—3t(t)+v83(t):0+0+k:11 — | v (t)=11, t>0

(2) Transient Response

2
35%”2@ : Zldvért(t) fv(1)=0, t20 —
2
35dv—tf2(t) PO v, () — 35724217447 = 352421211
dt dt dv, (t)

—" 2 replaced by z
dt P y

~214/21%-4(35)1) —21+17

—P 7,7, = = = —0.54,-0.06
b 2(35) 2(35)

v, (t) = ke + ke =ke ™"+ ke 0% t>0| <=
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Complete Solution (Response) To be determined

V(t):{z, t<0 :{2, /\ t<0

Vi (1) +v, (t), t>0  |11+ke ™™ +k,e™®, t>0

— (1) - 7dv(t) {0, t<0

dt  |7(-0.54k,e " —0.06 k,e >™"), t>0

To determine k,; and k,, voltage continuity for the capacitor and current

continuity for the inductor have to be used.

The voltage across the capacitor att = O:

v(0)=11+k, +k, =2 = Kki+k,=-9 A 9
k=94
The current passing through the inductor at t = O: >

. k :_By
1(0) =-0.54k, —0.06k, =0 = 0.54k, +0.06k, =0 - | ™2 8
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General RLC Circuit: 'RCdV_tr(t_) I,_C_d “Vie (1)

L dt L dt?

é %
fort>0 AN o
R L i(t):C#

|0 e L fam

By KVL.: LC = Y/

2
LC dv, (1) +rc e (t) +V,, (1)

> = LCz°+RCz'+1=0
dt dt dv, (t)

—1 2 replaced by z
di P y

> —RC ++/(RC)*-4LC
frf2 = \/ZLC |



— N US
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National University
of Singapore

Recall that for RLC circuit, the Q factor is defined as

2L 224 1 L _4LC
Q= R R 2zJLC RWJLC RC
Thus,
—RCJ_rRC\/l—4 LC
. _—RC +/(RC)*-4LC _ (RC)* _—R+Ry1-4Q7
b 2LC 2LC 2L

~ tworeal roots if 1-4Q2>00rQ?<1/4orQ<1/2

< two complex conjugate roots if 1-4Q2<0or Q > 1/2

-~ two identical roots if 1-4Q2=00r Q = 1/2
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6.11 Overdamped Response

Reconsider the previous RLC example, i.e.,
t>0

dvy (1) d 2V (1)
Zl—dt 35—OI £2

500

1[0 Ltem Ol

d2v, (t) .. dv,(t) _JLC 435
35 2= +V()=0, 120 —» Q=" =" =02817< 1
2
'z, 21+ 21°-4(35)(1) _ -21+17 _ 054 - 0.06

2(35) ~ 2(35)
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V,, (t) _ klezlt n kzezzt _ kle—0.54'[ n kze—0.0Gt’

- Due to its exponentially decaying

nature, the response i,(t) and the RLC

circuit are said to be overdamped.

Typically, when an external input is

suddenly applied to an overdamped

. system, the system will take a long time
1+ K

to move in an exponentially decaying

manner to the steady state position.

The response is slow and sluggish, and

the Q factor is small.

-~V
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6.12 Underdamped Response

dVie ()] o d Ve ()
0.21—— qt 35 qt2
%
DY
0.03 \

1O T/ Ol

t=0

J5 dv, (t) dv,, (t)
_ ~28>1 35— tr\VJ L .21 —tr t)=0, t>0
Q 0.03/7 >A dt> dt Ve (1)

~0.21+/0.212-4(35)(1) —0.21+/~139.96
2(35) - 2(35)

2y, 2, = =—0.003 £ j0.17
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V,, (t) _ klezlt + kzezzt: kle(—o.003+ joa7)t kze(—o.oos— j0.17)t
—>  V(0) =kt k, =2
i, (£) = 7k; (~0.003+ j0.17)e 70003+ 1011t | 7k (~0.003 - j0.17)e( 0003~ i0.47)t

=—00¢S+ 1T To(K — ) =0
=—00ST(K' +K°) + 1T Ta(K' —K°)
1"(0) = \K'(=0°003+ 10°T\) + \K> (07003 — 10'T\)

—P K' — k> =-10"0323
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v, (t)= ke +k,e%2'= kle(‘o'003+ 017t kze(—0-003— joanyt &=
_ 0003t (klejo.m N kze—jo.m)
= g9k [cos(0.17t) + jsin(0.17t)] + k,[cos(0.17t) — jsin(0.17t)]}

=29 (k, +k,)c0s(0.17t) + j(k,—k,)sin(0.17t)]

= e 2%%2¢05(0.17t) + 0.0353sin(0.17t)], t>0

= g 000t o2 4 0.0353{ . cos(0.17t) + 0.0353 sin(0.17t)}

J22 +0.03532 J22 +0.03532

= 2670%%|cos1° c0s(0.17t) + sin1°sin(0.17t)|, >0

— 2 V003t cos(O.l?t —1°), t>0
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—0.003t

Since this is an exponentially decaying

sinusoid, the response v, (t) and the RLC

circuit are said to be underdamped.

181

26 2% >0
2./
ﬁ Frequency = 0.17
1Ny
? >
Vi (1) =2 e “%%'cos(0.17t = 1), t>0

When an external input is applied to anmﬁw
underdamped system, the system will
oscillate. The oscillation will decay expon-
entially but it may take some time for the

system to reach its steady state position.

Underdamped systems have large Q
factors and are used in systems such as
tune circuit. However, they will be not be
suitable in situations such as car
suspensions or instruments with moving

pointers.

It will take too long for the pointer to
oscillate and settle down to its final position
if the damping system for the pointer is

highly underdamped in nature.
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6.13 Critically Damped Response

t=>0
10 S a5 el
Q- -1 E
20747 2 MN—IN—— — N —
@ 500
\/7 thr(t) V

10 YLy, O

d v, (t) v, (t) 7,2, = —
35—t+«/140$+vtr(t):0, t>0 N T

Vtr(t): (kl t kzt) (k + K t)e R Vi (0) =k; =

i (0) d 7= k, Kkt ) 7= 2
2= kK, + kt)e =k, — — e 0=k, =——
7 d'[(l 2) g 2 \/% \/% g 2 \/ﬁ
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40

30

—_ e e e e = e = = e = = e = = = = = = e = = = = = = = = =]

20
Time (seconds)

10

o T — T’ -

-~ -
10)oeden Jo abejjoAn
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Example: The switch in the circuit shown in the following

circuit is closed at time t = 0. Obtain the current i,(t) for t > 0.

A 102 B C
—— M
% 50

t>0

1oovT O g 0.01 H 50

vy I

- E D
After the switch is closed, the current passing through the source

or the 10Q2 resistor is i, + I,. Applying the KVL to the loops,
ABEFA and ABCDEFA, respectively, we obtain
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10(i, +1i, )+ 5i, + 0. 01‘;;—'t 100

10(i, +i,)+5i, =100 = i, =(100-10i,)/15

}

di
ot +833i, = 3333

—>  i(0)=3333/833=4.0A —> i (t)=ae " +4.0

i,0)=0 =—> a=-40 — il(t):4_0(1_e—833t)

}

i,(t)=4.0+2.67e*
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7.1 Magnetic Field and Material

In electrostatic, an electric field is formed by static charges. It is described in

terms of the electric field intensity. The permittivity is a measure of how easy

it is for the field to be established in a medium given the same charges.

Similarly, a magnetic field is formed by moving charges or electric currents.

It is described In terms of the magnetic flux density B, which has a unit of

tesla(T) = (N/A)m. The permeability n is a measure of how easy it is for a

magnetic field to be formed in a material. The higher the p, the greater the

B for the same currents.

In free space, pis uy=4r x10" H/m. The relative permeability p, IS

Hy :ﬁ
Ho

Most "non-magnetic" materials such as air and wood have
i~ 1. However, "magnetic materials" such as iron and steel

may have p, =~ 1000.
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7.2 Magnetic Flux ---- Consider the following magnetic system:

V-

Magnetic material
Permeability u

N turns

|
)
>

N turns

Cross sectional area A
/

I
. — Average length

'\
e [Total flux @]

e

o )
e N
q_
< )
. _/
The distribution of flux density B or field lines will be
Field lines
form closed paths
\

"z \Fjr > L )
o 1
— SlEoe
| VY
K
L | \ —

N S~ e

- ﬁ:’/é .y

188

If uis large, almost
the entire magnetic
field will be
concentrated inside
the material and
there will be no flux

leakage.

Since the field lines form
closed paths and there
IS no leakage, the total
flux @ passing through
any cross section of the

material is the same.
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Assuming the flux to be uniformly distributed so that the flux density B have

the same value over the entire cross sectional area A:

Same flux densityB = %

189

Total flux @

]
/

/'

i

—

| ___— Cross sectional area A

with units tesla (T)

_ weber (Wb)
m2
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7.3 Ampere's Law

The values of ® or B can be calculated using A

mpere's law:

Line integral of E along any closed path = current enclosed by path

Cross sectional area A
/

Path length
/ g

H
Permeability u

s )
N ¢ N\
> | //—
N turns A

\ J
-~ J

B
Line integral of — along dotted path = Bl =( |
H U

= Current enclosed by dotted path Ni

190

— @
ﬂAj

~ [l

Copyrighted by Ben M. Chen




— N US
—~ (0
National University
of Singapore

Note that the ratio H = B/u Is called the magnetic field
Intensity and Ampere's law is usually stated in terms of
H. Stating the law in terms of H has the advantage that
the effects of magnetic materials, which influence p, is
not in the main equation. In a certain sense,
characterizes the magnetic field due to only current
distributions. By multiplying H with u to end up with the
most important flux density B, the effect of the medium is

taken into consideration.

i > woBoo_ta_m)
LA u A uA |
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If?’ Saturated
~
o~ H
Saturated 0 B
. — 7

H= (ITI) I, which Is propotional to the current 1.
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Assuming no flux
leakage and
uniform flux
distribution, the
field lines, total
flux and flux

densities are;:

|

Cﬁgﬁ

i Y

S AR \

N turns i } i ‘
- vy
1| — |
\\%4;%
<

Total flux @
Area A,
Flux densityB, =

@
A

Total flux @
Area A,
Flux densityB; =

[ - T//\/ Average length |,
] Area A,
N turns //
) | Permeability s
. y 3 ”
103 Average length |, Area A, Permeability 14

Ampere’s Law:

B
Line integral of P

along any closed

path = current

enclosed by path
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4 Average length |, Area A,

( Permeability p, Flux density B,

|
~
>

|,B |
Line integral = £ 2=_¢
My Py

N turns ()

Ni:( ! + l j(D
A A

Average length |, Area A, Same total flux @

Permeability p, Flux density B, m
|,B |
Line integral = —— = ——® .
pa A = Current enclosed by path = Ni
Line integral of B along entire path = Bl + By, =( h + 2 jCD
17, oy A R
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Note that the above process of calculation magnetic flux is the same

as the calculation of current in the following electric circuit:

| |
32— 1 ) 2
ﬁi A }% LA,

S AN—— AN —
<« <

DI, )
1O

From KVL, the same equation can be obtained:

: I I
NI=(I)9%1—|—CD§R2=( L+ ¢ jcp
b A
This is not surprising because the two basic laws in electric circuits are

equivalent to the two basic laws in magnetic circuits and the following

guantities are equivalent:
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Electric circuits Magnetic circuits

KCL.: Flux lines form closed path:
total current entering a closed total flux entering a closed surface
surface equals total current equals total flux leaving the surface

leaving the surface

KVL: Ampere's law:
sum of voltages along a closed integral or sum of B/x ("magnetic
path equals zero voltage drops") along a closed path

equals currents enclosed ("magnetic
voltage sources")

Voltage Ni (magnetomotive force or mmf)
Current @ (flux)

. I
Resistance 9=—2— (reluctance)

A
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Thus, provided there is no flux leakage and uniform distribution of flux across

any cross section, the parallel magnetic circuit with reluctances as indicated:

b i
i 4 I )
- 4 ) ( )
equivalent one to the other ,  1ums o l(pl % \quz "
,,,,,,,,,, . J J
) %
\_ 1 J
MN—
%,
& D\ ’ D,V
9 You can use the DC

T 9%$ It g circuit techniques to
Ni

solve this problem.
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7.5 Inductance --- Consider the magnetic circuit:

Permeability u

1(t) - “
3 Area A
N turns 3 //
Average length |
\ Y, :// g g

Assuming no flux leakage and uniform flux distribution, the reluctance and

the flux linking or enclosed by the winding is

ER:L and D(t) = mmf _ Ni(t)
LA reluctance R
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TANUS
N
From Faraday's law of induction, a voltage will be induced in the winding

If the flux linking the winding changes as a function of time. This induced

voltage, called the back emf (electromotive force) will attempt to oppose

the change and is given by

Flux linking winding
Ni(t)
D(t) = —=~
dd(t) N2di(t) 95’ . .
v(t)=N = |
dt R dt NG

An equivalent inductor:

ig) /

v(t)u%T =N o

The inductance

N turns

Copyrighted by Ben M. Chen
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The following summarize the main features of an ideal magnetic

system with no flux leakage:

200

Number of turns N
Current at time t i(t)
Reluctance R
MMF at time t Ni ()
Flux at time t CD(t)zN'—(t)
R
Back emf at time t v(t)= N d:;t(t)
N2
Inductance L=—
R
Energy stored in olt) = Li?(t) _[Ni()] _ ®o*(t)
magnetic field at 2 2R 2

time t
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7.6 Force --- Consider the magnetic relay:

Air gap permeability .
ke oem With no flux
— leakage and
4 2 Cmi/\ / \\ Movable armature : ’
> A — N held stationary | uniform flux
by spring 4 distribution
300 turns Permeability 7cm | 4 i :
( 4000 4 L/ (even in air
q / \< 4 gaps)
/ v
\ J
I< 8cm >l
| | _g. 3 ,10_10375
Reluctance of entire magnetic material T0tal reluctance =% = 810 1y 1t
_ 2(7cm+8-0.1cm) 0.298m 298
40004, (2cm?)  40001,(2x10“m?) ~ 8y, Flux
Reluctance of two air gaps - mmf 300(5)
~20Im) 01 10 R 10.375/ 1

= 5 5\~ 1c -
Hol2em?) poiem) st ~145(47 x107 )= 0.182x10 Wb
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Due to the much smaller permeability, the reluctance of the air gaps is much

larger than that of the entire magnetic material. The inductance and energy
stored in the system are

(no.of turns)® (300

Inductance; L =
‘R 10.375/ o

=10.9mH

RD? _10.375(0.182x10 |

=0.137J
2 2 1y

Energy stored in magnetic field =

To determine the force of attraction f on the armature, suppose the
armature moves in the direction of f by ol so that the total reluctance

changes by 6R. Also, suppose the current is changed by di but the flux is
not changed:
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\ —>( €<— (0.1 ¢cm - ol
<
(//4%9> BRI
ffffff — \
- L ~
- W), | //
300 turns ‘ ‘ i Force f €& \ \ ‘
— s
| \k — | |
e < ey
L S //j

As there is no change in flux
linkage (which will be the case if
the magnetic system is close to
saturation), there is no back emf
and there is no energy supplied

by the electrical system. Then

203

From energy conservation:

£ (51)=—

Work done by armature = f (dl)

Same flux @ as before

Increase in energy stored in magnetic field

_(B+oR)D* RO SR’

2

For our example

59%:2{

0.1cm-ol

2

592c1>zjf @2)59%

1o(2em?)  po(2em?)

2 ) ol

__10%s1

Hy

2

ol

02 \sR 10°02  10%(0.182x10°f
- 2 1 - 2(47z><10_7)

=132N
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7.7 Mutual Inductor

The two dots are
associated with the
directions of the
windings. The fields
produced by the two
windings will be
constructive If the
currents going into
the dots have the

same sign.

4 )

Reluctance #
i) @

Vl(t)/l\ Ny

® ()

/

NlNZ_\/le.NZZ
"R RN

204

Primary
winding \

Secondary
) winding

\_ _J
<: Flux o(t)

Total mmf = Nyi; (t) + N, (t)

)= totalmmf _ Ny (t)+ Nyi, (t)
R R

dd(t) (N2 diy(t) (N,N,\di,(t)
(t)=N; :( ) ___________ Lo .( j

R dt

Total flux = d(t

v (t):‘@a*cp(t-):(NlNZ)dil(t){Ngjdiz(t)

R dt R ) dt

— N US
—~ (0
National University
of Singapore

N, T Vo (1)

Copyrighted by Ben M. Chen



Inductance of primary winding on its own =L, = ——

2
. . N
Inductance of secondary winding on its own =L, = ‘.R—z

— )=y, B0, R di(t) , din)

dt dt dt dt
dig(t) . di,(t) dig(t) . di,(t)
Vo(t)=./LL, <L+, 2L =ML |, 2
2(0)=/Luk dt  ° dt dt ° dt
where M = /L, is called the mutual inductance between the two
windings. Graphically, i () KE/'\ ()
vi(t) =L,y d(ijlt(t) + I\/I—d(ijzt(t) /]\ L1 L, T Vo(t) =M d(ijlt(t) + L, d(ith(t)
LN NS e i
1= La= = =L, L, for no flux leakage and perfect coupling
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In an ac environment when the currents i,(t) and i,(t) are given by:

i,(t) =|1,V2 cos[wt + Arg(l, )] = Re[ll(ﬁej“”)] i, (t)= Rellz(«@ej“’t)]

- - jot jort
v, (t) = Lidlé—,ft)"‘ M dlé—t(t): le Re[llt(jfe )J+ \ 0 Re[lz(gtﬁe )

=L, Re[ja)ll(ﬁej“’t )]+ M Re[ja)lz(ﬁej“’t )]

= Re|(joLl, + joMIL)V2e1)] —p V, = jo L], + joMl,

v,(t)=Re|(joMl, + joL,1,)V2et) = V, = joMI, + joL,l,

VleC()L]_Il"‘jC()MlzT Ll I—2 /]\VZZjC()Mll‘l‘jC{)LzIZ
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_NUS
7.8 Transformer %) s

Now consider connecting a mutual inductor to a load with impedance Z,

2 M
CNE M
1= > <
R o o
Vl:ja)Llll—i_ja)MIZT L]_ I—2 /I\VZZjCOM|1+jCOL2|2 ZL lZLIZ
2
N2

=" M =./LL,

V, MI+L1, LLlI+Ll,
vV, LILi+Ml, LI+ JLLl,

f(flﬁﬂlz) — h__ JwL +Z, _ja)L2

= —joMl =(joL,+Z)I,

1|1+\/72|2) 2
2
le??; Ei =n, turnratio ﬂ

if |JobL,|>>Z,
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Voltages and currents of the primary
and secondary windings of the ideal

transformer with | JoL, |>>Z,

1

. n
> >—
/I\ nV,

Equivalent Load: A load connected

to the secondary of a transformer
can be replaced by an equivalent

load directly connected to the primary

208

Vi_Z,

I, n?
Z,
n2
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Annex G.7. A Past Year Exam Paper

Appendix C.4 will be attached to this year’s paper!
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Q.1 (a) Using nodal analysis, derive (but DO NOT simplify or solve) the

equations for determining the nodal voltages in the circuit of Fig. 1(a).

42 W,
8 10 V2 40 y
W y W N——1 3
1
8‘@ % P
Fig. 1(a)

Numbering the nodes in the circuit by 1, 2 and 3 from left to right, and

applying KCL.:

o84 VoV, Mm% =10y, 0 oY g VeV, 5 VTV 10

8 10 10 20 10 40 40 10 °
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(b) Using mesh analysis, derive (but DO NOT solve) the matrix
equation for determining the loop currents in the circuit of Fig. 1(b).

Note that the circuit has a dependent source.

"
40 i) 1= [ ¢ [ ©-

Fig. 1(b)
Relating loop to branch currents and applying KVL.:

15=v=12(i, —i,) 1 0 o -1l To-

~12 27 -6||i,| |0
0 0 0 |li]| |15

. 12 -12 0 ||| |15
|3:V B - T -7
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6(i, —is)+9i, +12(i, —i,) =0
= —12i, +27i,~6i, =0

O B O B
I




ational University
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(c) Determine the Thevenin or Norton Replacing all independent sources

equivalent circuits as seen from with their internal resistances, the

terminals A and B of the network of resistance across A and B is
Fig. 1(c). What is the maximum power R=20|20=10

that can be obtained from these two Using superposition, the open

i 2
terminals: circuit voltage across A and B is
AN, . 20+ 20 20+ 20
| =310
A 10

1on C) 25 CD % 20 B AN ° A
L 2010

Fig. 1(c) e B

The maximum power p ——3102
g 4(10
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Q.2 (a) A5 kW electric motor is operating at a lagging power factor of 0.5.

If the input voltage is
v(t)=500sin(et +10°)
determine the apparent power, and find the phasor and sinusoidal

expression for the input current.

Letting V and | to be the voltage and current phasors, the apparent power is

%:mooom:w:w I

where V = 5;'Oej(loo—%o) _ 5;'Oe—j80° and 1= 10’3(‘)0 = 10%%%\/5 =204/2

2 2

arg(l)—arg(V )= —cos™(0.5)
i(t) = 20v/2+/2 cos(wt —80° — cos* 0.5)

=40 cos(a)t ~80° —cos™ 0.5) <« | =2042¢ j(-80°—cos*0.5)

213 Copyrighted by Ben M. Chen



(b) In the circuit of Fig. 2(b), the
current i(t) is the excitation and the
voltage v(t) is the response.
Determine the frequency response
of the circuit. Derive (but DO NOT
solve) an equation for finding the
"resonant" frequency at which the
frequency response becomes

purely real.

1
g

ity (1 1 == |v(t
o (1) 9! T()

214 Fig. 2(b)

Using phasor analysis

The phase response is

gl (1] tan % | -an o 22

l1-w

The resonant frequency is therefore given by

2

tan (10w ) = tan‘l( 0.1o j

l1-w
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(c) A series RLC resonant circuit is to be designed for use in a communicgﬁw
receiver. Based on measurements using an oscilloscope, the coll that is
available is found to have an inductance of 25.3mH and a resistance of 2 Q.
Determine the value of the capacitor that will give a resonant frequency of

1 kHz. If a Q factor of 100 is required, will the coil be good enough?

2 2
1 1 1
*2rmLC (Zﬂ\/t f, ] [2N 25.3><1031000j

oL 271000(25.3110°°
R 2

Q =795

Since this is less than 100, the coll is not good enough.
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Q.3 (a) In the circuit of Fig. 3(a), the switch has been in the position shown
for a long time and is thrown to the other position for time t > 0. Determine
the values of i(t), v.(t), vg(t), v (1), and di(t)/dt just after the switch has been
moved to the final position? Ve (t) v (t)

s  —>
wﬂh

R L \3

Taking all the voltages i (1) \

and currents to be Vc(t)T —— ¢ C)T . C)T )

constants fort < 0;

N

i(t)szvst(t)zo Fig. 3(a)
Applying continuity for i(t) and v.(t):
Ve (t)=Ri(t)=0
i) i(0)=0 v,(0)=Ri(0)=0 v.(0)=1
I
v (t)=L—==0 Ve (0)+v,(0)+v, (0)=2 = v, (0)=1

)0y =12 v 0)=1 )= %0 _ )] _vw©)_1
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(b) For vg(t) = cos(t+1), derive
(but DO NOT solve) the
differential equation from which
I(t) can be found in the circuit of
Fig. 3(b). Is this differential
equation sufficient for i(t) to be

determined?

N

R 1(t) \

Fig. 3(b)

L)=c el _c ) _o

dt

i (t)=i.(t)+i(t)=C

V4 (t)=Ri,(t)= RCL

Applying KVL.:
Vs (t) = va (t)+v, (t)

).
= RCL%S[L Ri(t)

This 1s not sufficient for

— N US
—~ (0
National University
of Singapore

di(t)

dt’

dt

dZi(t)

dt?

dZi(t)

it + Ri(t)

L

+i(t)

+ LL(t) = cos(t +1)
dt

I(t) to be determined.
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(c) The differential equation characterizing the current i(t) in a certain RCL

circuit is d zi(t) 1 di(t) i(t)
>+ + =

dt CR dt CL
Determine the condition for R, L and C such that the circuit is critically

Jt

damped.

The characteristic equation for the transient response is

V4

2+Z+l:O _ii\/212_4
CR CL , __CR VC’R® CL
1,2 2

Thus, the circuit will be critically damped if

1 _ 4
C’R* CL
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Q.4 (a) Determine the mean and rms values of the voltage waveform in
Fig. 4(a). If this waveform is applied to a 20 Q resistor, what is the power

absorbed by the resistor?

Volt
A

40

0 2 4 6 8 10 second

Fig. 4(a)
3
One period of the waveform is 2 400 2
A R EU:
20t, 0<t<?2 ms 4 43
v(t)={
0, 2<t<4
52 800 Ve _ 800 40
c Vo =.|— = = =
[} 20tat ZO(ZJ ™=\ "3 20 3(20) 3
v =L = =10

: 4 4
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(b) In the circuit of Fig. 4(b), a transformer is used to couple a loudspeaker

to a amplifier. The loudspeaker is represented by an impedance of value

Z,= 6 +] 2, while the amplifier is represented by a Thevenin equivalent circuit
consisting of a voltage source in series with an impedance of Z,=3 + ] a.
Determine the voltage across the loudspeaker. Hence, find the value of a
such that this voltage is maximized. Will maximum power be delivered to the

loudspeaker under this condition?

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

Amplifier Loudspeaker
Fig. 4(b)

220 Copyrighted by Ben M. Chen



If V Is the voltage across the loudspeaker, the currents in the primary & secondary

windings are Vv N\
I2 — Z_ Il = 2 I 5 =
L ZL

: : V

The primary voltage is V, = E

2NZ
Applying KVL to the primary circuit: 10=1,Z,+V, = S
L
2Zs 1 3+aj | 18+ j(4a+2)
1+4 :
Z 2 6+2]

For the magnitude of this to be maximized, the denominator has to be minimized:

maX|:

Maximum power will be delivered since power is proportional to |V |>

20(6+2j) || . _
18+j(4a+2)}_mmﬂl8+1(4a+2)] — a:—Z:_E

_|__

Copyrighted by Ben M. Chen
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Method 2: The given circuit is equivalent to the following one,

3+ja

1OT C) Vi ‘ : +4j :

Then, we have

V. - 10 3,1 1o§3+1)
. 3 .1Y[\2 "2) 9+j(ra+1)
B+ja)+| -+ j=
2 2
— Vload :V2:nV1: 20(3+J)
9+ j(2a+1)

The rest follows ......
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