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Electrical Engineering

Well known electrical engineering companies:

• Singapore Telecom (largest in Singapore)

• Creative Technology (largest manufacturer of PC sound boards)

• Disk Drive Companies (largest producer of PC hard disk Drives)

“Yan can Cook”:

• Ingredients + Recipe + (Funny Talk) = Good Food

Electrical Systems:

• Components + Method + (Funny Talk) = Good Electrical System

EG1103 Module:

• To introduce basic electrical components & analysis methods.
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Reference Textbooks

• D. E. Johnson, J. R. Johnson and J. L. Hilburn, Electric 

Circuits Analysis, 2nd Ed., Prentice Hall, 1992.

• S. A. Boctor, Electric Circuits Analysis, 2nd Ed., Prentice 

Hall, 1992.
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Lectures

Lectures will follow closely (but not 100%) the materials in 

the textbook.

However, certain parts of the textbook will not be covered 

and examined and this will be made known during the 

classes.

Attendance is essential.

ASK any question at any time during the lecture.
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Tutorials

The tutorials will start on Week 4 of the semester. (Week 1 corresponds 

to the Orientation Week.)

Although you should make an effort to attempt each question before the 

tutorial, it is NOT necessary to finish all the questions.

Some of the questions are straightforward, but quite a few are difficult 

and meant to serve as a platform for the introduction of new concepts.

ASK your tutor any question related to the tutorials and the course.
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Examination

The examination paper is 2-hour in duration.

You will be provided with a list of important results. This list is given 

under “Summary of Important Results” in the Appendix of the textbook.

To prepare for the examination, you may wish to attempt some of the 

questions in examinations held in previous years. These papers are 

actually the Additional Problems in the Appendix of the textbook (no 

solutions to these problems will be given out to the class).

However, note that the topics covered may be slightly different and 

some of the questions may not be relevant. Use your own judgement to 

determine the questions you should attempt.
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Mid-term Test

There will be an one-hour (actually 50 minutes) test. It will be given 

some time around mid-term (most likely after the recess week). The 

test will consists 15% of your final grade, i.e., your final grade in this 

course will be computed as follows:

Your Final Grade = 15% of Your Mid-term Test Marks (max. = 100)

+ 85% of Your Examination Marks (max = 100)
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Outline of the Course
1. DC Circuit Analysis

SI Units. Voltage, current, power and energy. Voltage and current 

sources. Resistive circuits. Kirchhoff's voltage and current laws. Nodal 

and mesh analysis. Ideal and practical sources. Maximum power 

transfer. Thevenin’s and Norton’s equivalent circuits. Superposition. 

Dependent sources. Introduction to non-linear circuit analysis.

2. AC Circuits

Root mean square value. Frequency and phase. Phasor. Capacitor and 

Inductor. Impedance. Power. Power factor. Power factor improvement. 

Frequency response. Tune circuit. Resonance, bandwidth and Q factor. 

Periodic signals. Fourier series.
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Outline of the Course (Cont.)

3. Transient

First order RL and RC circuits. Steady state and transient responses. 

Time constant. Voltage and current continuity. Second order circuit.

4. Magnetic Circuit

Magnetic flux and mmf. Ampere’s law. Force between surfaces. 

Transformers.

5. Electrical Measurement

Current and voltage measurement. Common instruments. Oscilloscope.
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Web-based Virtual Labs
are now on-line

Developed by: CC Ko and Ben M. Chen

• Have you ever missed your experiments?

• Do you have problems with your lab schedule?

• Do you have problems in getting results for your report?

Visit newly developed web-based virtual labs available from 

5:00pm to 8:00am at http://vlab.ee.nus.edu.sg/vlab/
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Chapter 1. SI Units
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1.1  Important Quantities and Base SI Units

Length m etre m
M ass, m kilogram kg
Tim e, t second s
Electric current,    i am pere A
Therm odynam ic tem perature kelvin K
Plane angle radian rad
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Chapter 2. DC Circuit Analysis

Copyrighted by Ben M. Chen15



2.1  Voltage Source

Two common dc (direct current) voltage sources are:

Dry battery (AA, D, C, etc.)

Lead acid battery in car

Regardless of the load connected and the current drawn, the above sources 

have the characteristic that the supply voltage will not change very much.

The definition for an ideal voltage source is thus one whose output voltage 

does not depend on what has been connected to it. The circuit symbol is

v
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Basically, the arrow and the value signifies that the top terminal has a 

potential of  v with respect to the bottom terminal regardless of what has 

been connected and the current being drawn.

Note that the current being drawn is not defined but depends on the load 

connected. For example, a battery will give no current if nothing is 

connected to it, but may be supplying a lot of current if a powerful motor 

is connected across its terminals. However, in both cases, the terminal 

voltages will be roughly the same.
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Using the above and other common circuit symbol, the following are 

identical:

1.5 V 1.5 V− 1.5 V

+

−

1.5 V
+

−

Note that on its own, the arrow does not correspond to the positive 

terminal. Instead, the positive terminal depends on both the arrow and 

the sign of the voltage which may be negative.
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2.2  Current Source

In the same way that the output voltage of an ideal voltage source does 

not depend on the load and the current drawn,  the current delivers by an 

ideal current source does not depend on what has been connected and 

the voltage across its terminals. Its circuit symbol is

i

Note that ideal voltage and current sources are idealisations and do not 

exist in practice. Many practical electrical sources, however, behave like 

ideal voltage and current sources.

Copyrighted by Ben M. Chen19



2.3  Power and Energy

Consider the following device,

v

i

Device
Power Consumed

by Device = vip

In 1 second, there are i charges passing through the device. Their electric 

potential will decrease by v and their electric potential energy will decrease 

by iv.  This energy will have been absorbed or consumed by the device.

The power or the rate of energy consumed by the device is thus  p = i v.
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Note that  p = v i gives the power consumed by the device if the voltage 

and current arrows are opposite to one another.  The following 

examples illustrate this point:

1.5 V

2 A

Energy absorbed = 300 W hr
= 0.3 kW hr

0.3 unit= in PUB bill

absorbed by source = 3 W
Power consumed/

in 100 hr

1.5 V

2 A

Power supplied = 3 W
by source

1.5 V

2 A−

by source = 3 W
Power absorbed

−
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2.4  Resistor

The symbol for an ideal resistor is

v

i

R

Provided that the voltage and current arrows are in opposite directions, 

the voltage-current relationship follows Ohm's law:

iRv =
The power consumed is

R
vRivip

2
2 ===

Common practical resistors are made of carbon film, wires, etc.
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2.5  Relative Power

Powers, voltages and currents are often measured in relative terms 

with respect to certain convenient reference values. Thus, taking

mW    1=refp

as the reference (note that reference could be any value), the power
W2=p

will have a relative value of

2000
W10

W2
mW1

W2
3- ===

refp
p

The log of this relative power or power ratio is usually taken and given 

a dimensionless unit of  bel.  The power  p = 2 W is equivalent to

( ) ( ) ( ) bel3.32log1000log2000loglog =+==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refp
p
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As bel is a large unit, the finer sub-unit, decibel or dB (one-tenth of a 

Bel), is more commonly used.  In dB, p = 2W is the same as

( ) dB332000log10log10 ==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refp
p

As an example:

Reference Actual power Relative Power

refp p refpp ( )refpplog10
1mW 1mW 1 dB0

1mW 2 mW 2 3dB

1mW 10mW 10 10dB

1mW 20mW 20 10 2= × 13 10 3dB dB dB= +

1mW 100mW 100 20dB

1mW 200mW 200 100 2= × 23 20 3dB dB dB= +
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Although dB measures relative power, it can also be used to measure 

relative voltage or current which are indirectly related to power.

For instance, taking V1.0=refv

as the reference voltage (again reference voltage could be any value), 

the power consumed by applying vref to a resistor R will be

R
v

p ref
ref

2

=

Similarly, the voltage

V1=v

will lead to a power consumption of R
vp

2
=
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The voltage v relative to       will then give rise to a relative power ofrefv

100
1.0

1 22

2

2

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

refrefref v
v

R
v

R
v

p
p

or in dB:

dB20dB
1.0

1log20dBlog20dBlog10dBlog10
2

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

refrefref v
v

v
v

p
p

This is often used as a measure of the relative voltage .refvv

Key point: When you convert relative power to dB, you multiply its log 

value by 10. You should multiply its log value by 20 if you are converting 

relative voltage or current.
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As an example:

Reference Actual voltage Relative Voltage

refv v refvv ( )refvvlog20
0 1. V 0 1. V 1 dB0
0 1. V 0 1 2. V 2 dB3
0 1. V 0 2. V 2 2 2= × dB3dB3dB6 +=

0 1. V 0 1 10. V 10 dB10
0 1. V 0 1 20. V 20 10 2= × dB3dB10dB13 +=

0 1. V 1V 10 10 10= × dB10dB10dB20 +=

The measure of relative current is the same as that of relative voltage and 

can be done in dB as well.
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The advantage of measuring relative power, voltage and current in 

dB can be seen from considering the following voltage amplifier:

Amplifier

v v2Voltage
gain

2 = 6 dB

The voltage gain of the amplifier is given in terms of the output voltage 

relative to the input voltage or, more conveniently, in dB:

( ) dB6dB2log2022
====

v
vg
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If we cascade 3 such amplifiers with different voltage gains together:

v v2 v28v2.8

Amplifier

Voltage
gain

2 = 6 dB

Amplifier

Voltage
gain

1.4 = 3 dB

Amplifier

Voltage
gain

10 = 20 dB

the overall voltage gain will be
28104.12 =××=totalg

However, in dB, it is simply:

dB29dB20dB3dB6 =++=totalg

Under dB which is log based, multiplication's become additions.
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Frequently Asked Questions

Q: Does the arrow associated with a voltage source always point at the 

+ (high potential) terminal?

A: No. The arrow itself is meaningless. As re-iterated in the class, any 

voltage or current is actually characterized by two things: its direction 

and its value. The arrow of the voltage symbol for a voltage source could 

point at the - terminal (in this case, the value of the voltage will be 

negative) or at the + terminal (in this case, its value will be positive).

Q: What is the current of a voltage source?

A: The current of a voltage source is depended on the other part of circuit 

connected to it.
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Q: Does a volt source always supply power to other components in a circuit?

A: NO. A voltage source might be consuming power if it is connected to a 

circuit which has other more powerful sources. Thus, it is a bad idea to pre-

determine whether a source is consuming power or supplying power. The 

best way to determine it is to follow the definition in our text and computer 

the power. If the value turns out to be positive, then the source will be 

consuming power. Otherwise, it is supplying power to the other part of the 

circuit.

Q: Is the current of a voltage source always flowing from + to - terminals?

A: NO. The current of a voltage source is not necessarily flowing from the 

positive terminal to the negative terminal.

Frequently Asked Questions
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Frequently Asked Questions

Q: What is the voltage cross over a current source?

A: It depends on the circuit connected to it.

Q: Is the reference power (or voltage, or current) in the definition of the 

relative power (or voltage, or current) unique?

A: No. The reference power  (voltage or current) can be any value. 

Remember that whenever you deal with the relative power (voltage or 

current), you should keep in your mind that there are a reference power

(voltage or current) and an actual power (voltage or current) associated 

with it.
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2.6  Kirchhoff's Current Law (KCL)

As demonstrated by the following examples, this states that the 

algebraic sum of the currents entering/leaving a node/closed surface 

is 0 or equivalently to say that the total currents flowing into a node is 

equal to the total currents flowing out from the node.

i i

i
ii

1

2
3

4

5 i i

i
ii

1

2
3

4

5

054321 =++++ iiiii for both cases.

Since current is equal to the rate of flow of charges, KCL actually 

corresponds to the conservation of charges.
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2.7  Kirchhoff's Voltage Law (KVL)

As illustrated below, this states that the algebraic sum of the voltage 

drops around any close loop in a circuit is 0.

v5

v 1

v4

v3

v2

054321 =++++ vvvvv

(note that all voltages are in the 
same direction)

Since a charge q will have its electric potential changed by qv1, qv2, 

qv3, qv4 , qv5 as it passes through each of the components, the total 

energy change in one full loop is q ( v1 + v2 + v3 + v4 + v5 ).  Thus, from 

the conservation of energy: 054321 =++++ vvvvv
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2.8  Series Circuit

Consider 2 resistors connected in series:

v

i

R

1

R

2v

21

v

11 Riv = 22 Riv = 21 vvv +=

the voltage-current relationship is ( )21 RRiv +=

By KVL:  - v + v1 + v2 = 0

Now consider

v

i

R1 R2+

the voltage-current relationship is ( )21 RRiv +=
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Since the voltage/current relationships are the same for both circuits, 

they are equivalent from an electrical point of view.  In general, for n

resistors R1, ..., Rn connected in series, the equivalent resistance R is

nRRR ++= L1

Clearly, the resistance's of resistors connected in series add (Prove 
it).
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2.9  Parallel Circuit

Consider 2 resistors connected in parallel:

v

R

R2

1

i

i

i

1

2

1
1 R

vi =

2
2 R

vi =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

21
21

11
RR

viii

Clearly, the parallel circuit is equivalent to a resistor R with voltage/current 

relationship

R
vi = with

21

111
RRR

+=
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In general, for n resistors R1, …, Rn, connected in parallel, the equivalent 

resistance R is given by

nRRR
111

1
++= L

Note that 1/R is often called the conductance of the resistor R.  Thus, 

the conductances of resistors connected in parallel add.
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2.10  Voltage Division

Consider 2 resistors connected in series:

v

i

R1

R2

v1

v2

21 RR
vi
+

= v
RR

RiRv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
21

1
11

v
RR

RiRv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
21

2
22

2

1

2

1
R
R

v
v

=

Thus,The total resistance of the circuit is R1 + R2.
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2.11  Current Division

Consider 2 resistors connected in parallel:

v

i

R1 R2

i 1
i2

The total conductance of the circuit is
21

111
RRR

+=

while the equivalent resistance is

21

11
RR

iRiv
+

==

i
RR

Ri

RR

R
R
vi ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
==

21

2

21

1

1
1 11

1

i
RR

Ri

RR

R
R
vi ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
==

21

1

21

2

2
2 11

1

Thus,

1

2

2

1

R
R

i
i

=
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2.12  Ladder Circuit

Consider the following ladder circuit:

2

3

4

5

The equivalent resistance can be

determined as follows:

3

4

5 ||||2

5 4+(3 ||||2)

||||5 [4+(3||||2)]

The network is equivalent to a 

resistor with resistance

( )[ ]
( )

2
1

3
1

14

1
5
1

1

234
1

5
1

12345

+
+

+
=

+
+

=+=

||

||||R
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2.13  Branch Current Analysis

Consider the problem of determining the equivalent resistance of the following 

bridge circuit:

4

2 4

2
3

Since the components are not connected in straightforward series or parallel

manner, it is not possible to use the series or parallel connection rules to 

simplify the circuit.  However, the voltage-current relationship can be 

determined and this will enables the equivalent resistance to be calculated.

One method to determine the voltage-current relationship is to use the branch 

current method.
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4

2 4

2
3

v

i

=
i
v

Equivalent Resistance

i1

i2

1. Assign branch currents (with 

any directions you prefer so 

that currents in other branches 

can be found)

1ii −

21 iii −− 21 ii +
2. Find all other branch currents 

(with any directions you prefer) 

(Use KCL to find them)

12 i

)(4 21 ii +)(2 21 iii −−

)(4 1ii −

3. Write down branch voltages

23 i

4. Identify independent loops

KVL: 21211 46)(42 iiiiiv +=++=

KVL: 121 23)(4 iiii =+−

)(23)(4 21221 iiiiii −−=++KVL:

Eliminate i1 and i2,

12
7

1
ii =

62
ii −= iv

6
17

=

Branch Current Analysis: Example One
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Branch Current Analysis: Example Two

2

3

4

12 A 1 V

1. Assign branch currents 

(so that currents in other 

branches can be found).

1i 2i

12 i− 21 ii −

2

2. Find all other branch 

currents (KCL)

12 i− )(3 21 ii −

14i 22i

3. Write down voltages across components

KVL: )(321 212 iii −=+

KVL: )(342 2111 iiii −+=−

This implies:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

⇒
=−
=−

2
1

38
53

238
153

2

1

21

21

i
i

ii
ii

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
⇒

−

2
7

31
1

2
1

38
53 1

2

1

i
i

4. Identify independent loops 

(ex. 2A branch)
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4

2 4

2
3

v

2.14 Mesh (Loop Current) Analysis

i

ai

bi

1. Assign fictitious loop currents.
i

ai

bi
ab ii −

iib −

iia −

2. Find branch currents (KCL)ai2

bi4
)(2 iib −

)(4 iia −

)(3 ab ii − 3. Write down branch voltages

4. Identify independent loops

KVL: ba iiv 42 +=

02)(3)(4 =+−−− aaba iiiiiKVL:

KVL: 0)(34)(2 =−++− abbb iiiii

5. Simplify the equations 

obtained, we get 

6
17

6
17

=⇒= eequivalencRiv
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2

3

4

12 A 1 V

2.15 Nodal Analysis

A B

aV bV

1. Assign nodal voltage w.r.t. the reference node

ba VV − bV−1 2. Find branch voltages (KVL)

3. Determine 

branch currents

2

4
ba VV −

2
1 bV−

aV 3
bV

4. Apply KCL to Nodes A & B

Node A:

4
2 ba

a
VVV −

+=

Node B:

32
1

4
bbba VVVV

=
−

+
−

⇐
−=−

=−
6133

85

ba

ba

VV
VV

⇐⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

6
8

133
15

b

a

V
V

⇒ 31
55

=aV
31
27

=bV
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2.16  Practical Voltage Source

An ideal voltage source is one whose 

terminal voltage does not change 

with the current drawn.  However, the 

terminal voltages of practical sources 

usually decrease slightly as the 

currents drawn are increased.

A commonly used model for a 

practical voltage source is:

To represent it as a series of an ideal 

voltage source & an internal 

resistance.

voc

R in

Model for voltage source

v

Practical voltage source

i

R load

R loadv

i

⇐+= inoc iRvv
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When               or when the source is short circuited so that          :0=loadR 0=v

voc

R in

v

i =
voc

R in

R load = 0= 0
Short circuit

When               or when the source is open circuited so that          :∞=loadR 0=i

voc

R in

i = 0

v = voc R load = ∞
Open circuit
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Graphically:

voc

v

i
0

=Slope R in

in

oc

R
v

Good practical voltage source should therefore have small internal 

resistance, so that its output voltage will not deviate very much from the

open circuit voltage, under any operating condition.

The internal resistance of an ideal voltage source is therefore zero so that       

does not change with     .

v
i
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To determine the two parameters      and      that characterize, say, a 

battery, we can measure the output voltage when the battery is open-

circuited (nothing connected except the voltmeter).  This will give      .

Next, we can connect a load resistor and vary the load resistor such 

that the voltage across it is          .  The load resistor is then equal to      :

ocv
inR

ocv

2
ocv

inR

voc

R in

R loadv

i

= R in=
voc

2

voc

2
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2.17  Maximum Power Transfer

Consider the following circuit:

voc

R in

Model for voltage source

R loadv

i

The current in the load resistor is

loadin

oc

RR
vi
+

=

This is always positive.  However, if 

The power absorbed by the 

load resistor is

( )2

2
2

loadin

loadoc
loadload RR

RvRip
+

==

0=loadR or .0, =∞= loadload PR

0 Rload

p
load
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Differentiating:

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

+
−

=⎥
⎦

⎤
⎢
⎣

⎡

+
−

+
= 3

2
32

2 21

loadin

loadin
oc

loadin

load

loadin
oc

load

load

RR
RRv

RR
R

RR
v

dR
dp

The load resistor will be absorbing the maximum power or the source will be 

transferring the maximum power if the load and source internal resistances 

are matched, i.e.,                    . The maximum power transferred is given byloadin RR =

in

oc

R
vp

4

2

loadmax =
( )

⇒
+

== 2

2
2

loadin

loadoc
loadload RR

RvRip

0 Rload

p
load

Rin

voc
Rin4

2 When the load absorbs the maximum 

power from the source, the overall 

power efficiency of 50%, which is too 

low for a usual electric system.
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Why is the electric power transferred from power stations to local stations 

in high voltages?

( )
2

2
2  KW300

v
RRiP w

wloss ==

Power

Station load

resistance in wire

wR

vi  KW300=KW300=P

v

Power loss in the transmission line: 

The higher voltage v is transmitted, the less power is lost in the wire.
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2.18  Practical Current Source

An ideal current source is one which delivers a constant current regardless 

of its terminal voltage.  However, the current delivered by a practical 

current source usually changes slightly depending on the load and the 

terminal voltage.

A commonly used model for a current source is:

isc R in

Model for current source

R loadv

i

i
R
vi

in
sc +=⇒
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When                  or when the source is short-circuited so that             :0=loadR 0=v

isc R in

i = isc

0

v = 0 R load = 0
Short circuit

Graphically:
v

i0

=Slope R in

isc

Good practical current source should therefore 

have large internal resistance so that the current 

delivered does not deviate very much from the 

short circuit current under any operating 

condition.

The internal resistance of an ideal current source is 

therefore infinity so that i does not change with v.
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2.19  Thevenin's Equivalent Circuit

v

i
Complicated circuit

with linear elements

such as resistors,

voltage/current sources

voc R inv i= +

voc R inv i= +voc

R in

v

i

Thevenin's equivalent circuit

Key points:

1. The black box

(i.e., the part of the 

circuit) to be 

simplified must be 

linear.

2. The black box 

must have two 

terminals

connected to the 

rest of the circuit.

Complicated circuit

with linear elements

such as resistors,

voltage/current sources
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Thevenin’s Equivalent Circuit (An Example)

4

21 v

i

3 i−2

i36 − i4

Applying KVL: ivvii 774)36(1 +=⇒+=−+

The circuit is equivalent to:

v

i

7

7

7 i

⇐== 77 inoc Rv
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Alternatively, note that from the Thevenin's 

equivalent circuit:

voc

Rin

Open circuit voltage voc=

Rin Resistance seen with
=source replace by

internal resistance
Rin

⇒

4

21

3

0
2

6
0

voc= 7

43

Rin= 77

7

Short Circuit
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2.20  Norton's Equivalent Circuit

R inv i= +

voc R inv i= +voc

R in

v

i

Thevenin's equivalent circuit

isc R in

Norton's equivalent circuit

iscR in

if voc iscR in= if voc iscR in=

v

i

R in

v i= +isc

It is simple to see 

that if we let 

inscoc Riv =

then the 

relationships of 

voltage/current for 

both Thevenin’s 

and Norton’s 

equivalent circuits 

are exactly the 

same. 
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From the Norton's equivalent circuit, the two parameters      and       

can be obtained from:
sci inR

Short circuit currenti sc R in

i

=v 0

= i sc

= i sc

R in

Resistance seen with
=source replace by

internal resistance
R in

Open Circuit
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Example: Reconsider the circuit The Norton's equivalent 

circuit is therefore:

1 7

And the Thevenin's equivalent 

circuit is:

7

7

21

43

21

3

2

0

isc

4

isc4
isc−

6−3isc

43

Rin = 7

1 6− 3isc isc4+ = 1isc =or
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Summary on how to find an equivalent circuit:

Step 1. Identify the circuit or a portion of a complicated circuit that is to be  

simplified. Be clear in your mind on which two terminals are to be 

connected to the other network.

Step 2. Short-circuit all the independent voltage sources and open-circuit 

all independent current sources in the circuit that you are going to simplify. 

Then, find the equivalent resistance w.r.t. the two terminals identified in 

Step 1.

Step 3. Find the open circuit voltage at the output terminals (for Thevenin’s 

equivalent circuit) or the short circuit current at the output terminals (for 

Norton’s equivalent circuit).

Step 4. Draw the equivalent circuit (either the Thevenin’s or Norton’s one).
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More Example For Equivalent Circuits:

i R vR

R R

1i

1R2

vR

R R

1i

1

i v

R R

1i

R

R
2

2

1

vR

R R

1i

1

vR

R R1

v

R
2

2

i v

R R

1i

R

R
2

2

1
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2.21  Superposition

Consider finding      in the circuit:sci

3

isc

4

1 2

By using the principle of super-

position, this can be done by finding 

the components of      due to the 2 

independent sources on their own 

(with the other sources replaced by 

their internal resistances):

sci

1

43

1/7

2

3 4

2(3/7)2(4/7)
24/7 24/7

2(3/7) (1/7)

3 4

1 2

= + = 1isc

Open circuit

Short circuit
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Linear Systems and Superposition

Linear System
in1

in2

Out = 6 in1 + 7 in2

(the definition of the 

linear system)

Linear System
16

0
6 (16) = 96

Linear System
0

27
7 (27) = 189

Linear System
16

27
96 + 189 = 285

Note that:

Linear system: linear 

relationship between 

inputs and outputs

Superposition:

Applicable only to 

linear systems
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2.22  Dependent Source

Consider the following system:

CD
Player Amplifier

This may be represented by

1 v

300

CD Player Amplifier Loudspeaker

23 kvd 2vd

2
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Note that the source in the Amplifier block is a dependent source.  Its 

value depends on     , the voltage across the inputs of the amplifier. Using 

KCL and KVL, the voltage     can be easily found:
dv

v

3300
1

vd = 11
10 2vd = 11

201 v

300

23 k

2

11
5

= 11
10

However, if we use the principle of superposition treating the dependent 

source as an independent source (which is wrong !), the value of v will be 0:
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0

vd = 0 20

300

23 k

2

0

0

3300
1

vd = 11
10 01

300

23 k

2

0

0

vd = 0

Dependent sources, which depend on other voltages/currents in the circuit 

and are therefore not independent excitations, cannot be removed when 

the principle of superposition is used. They should be treated like other 

passive components such as resistors in circuit analysis.
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Topics Skipped

• Nonlinear Circuit

• Delta Circuit

• Star Circuit

• All these topics are not examinable in test and examination.
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Reading Assignment

• Appendix C.1.  Matrix Algebra

• Appendix C.2.  Complex Number

• Appendix C.3.  Linear Differential Equation
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Chapter 3. AC Circuit Analysis
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Appendix Materials: Operations of Complex Numbers

Coordinates:  Cartesian Coordinate and Polar Coordinate
⎟
⎠
⎞

⎜
⎝
⎛−

+==+ 12
5tan

2239.0
1

51213512
j

j eej
real part       imaginary part          magnitude       argument

Euler’s Formula: )sin()cos( θθθ je j +=

Additions: It is easy to do additions (subtractions) in Cartesian coordinate.

)()()()( wbjvajwvjba +++=+++

Multiplication's: It is easy to do multiplication's (divisions) in Polar coordinate.

)()( ωθωθ +=•
jjj eruuere )( ωθ

ω

θ
−= j

j

j

e
u
r

ue
re
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3.1  AC Sources

Voltages and currents in DC circuit are constants and do not change with 

time.  In AC (alternating current) circuits, voltages and currents change with 

time in a sinusoidal manner. The most common ac voltage source is the 

mains:

230 2

1
50

t

π2 50
0.4
( )

−

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=+=+= θπθωθπ

T
trtrftrtv 2cos2cos22cos2

( )4.0100cos2230 += tπ

rad4.0== phaseθ

Hz50== frequencyf

srad3141002 ==== ππω frequencyangularf

s02.0
50
11

==== period
f

T

V32422302 === value peakr

V230== valuesquare)mean(rootrmsr
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r 2

t

How to find the phase for a sinusoidal function?

)cos(2)( trtv ω=

a−

)cos(2

])[cos(2)(

atr

atrtv

ωω

ω

+=

+=

4.0
)50(2

4.0314 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

π
ωθ a

for previous example.

aωθ =Phase

πθπ ≤≤−
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3.2  Phasor

A sinusoidal voltage/current is represented using complex number format:

The advantage of this can be seen if, say, we have to add 2 sinusoidal 

voltages given by:

)sin()cos( ωωω je j +=Euler’s Formula:

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

6
cos231

πωttv ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

4
cos252

πωttv

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ += tjj

eettv ω
ππω 23Re

6
cos23 6

1 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ −=

− tjj
eetv ω

ππω 25Re
4

cos25 4
2

( ) ( ) ( )[ ] ( )( )[ ]tjjtj ereertrtv ωθθωθω 2ReRe2cos2 ==+= +

( ) ( ) ( ) ( )( )[ ]tjjtjj
eeeeetvtv ωω

ππ

247.6Re253Re 32.046
21

−−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+ ( )32.0cos247.6 −= tω
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Note that the complex time factor            appears in all the expressions.  

If we represent         and         by the complex numbers or phasors:

tje ω2

( )tv1 ( )tv2

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +==

6
cos233 1

6
1

πω
π

ttveV
j

ngrepresenti

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −==

−

4
cos255 2

4
2

πω
π

ttveV
j

ngrepresenti

then the phasor representation for                    will be( ) ( )tvtv 21 +

ngrepresenti32.046
21 47.653 jjj

eeeVV −−
=+=+

ππ

( ) ( ) ( )32.0cos247.621 −=+ ttvtv ω

)sin()cos( ωωω je j +=Euler’s Formula:

32.046 47.603.214.6
4

sin
4

cos5
6

sin
6

cos353 jjj
ejjjee −−

=−=⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛−+⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+

ππππππ
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By using phasors, a time-varying ac voltage

( ) ( ) ( ) ( )[ ]tjj eretrtv ωθθω 2Recos2 =+=

becomes a simple complex time-invariant number/voltage θrV = rejθ =

( )tvVVr  of value r.m.s. of modulusmagnitude/ ===

[ ] VV ofphase== Argθ
Graphically, on a phasor diagram:

V

Imag

Real0
θ

r

Complex Plane

Using phasors, all time-varying ac quantities 

become complex dc quantities and all dc circuit 

analysis techniques can be employed for ac 

circuit with virtually no modification.
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Example:
4

6 3 2cos )+ 0.1( tω5 2cos )− 0.2( tω

i )( t

4

65 j- 0.2e

I

3 j 0.1e

46

30 j- 0.2e

I

3 j 0.1e

Thevenin's equivalent circuit
for current soure and 6 Ω resistor Copyrighted by Ben M. Chen78



46

30 j- 0.2e 3 j 0.1e

I 30 j- 0.2e 3 j 0.1e−
10

= = 2.64 − j0.63 = 2.71e j 0.23-

[ ] [ ]

23.0641.2
626.0tan

22

1.02.0

71.2626.0641.2

626.0641.2)030.0299.0()596.0940.2(
1.0sin1.0cos3.0)2.0sin()2.0cos(3

10
330

1

j
j

jj

ee

jjj
jj

eeI

−⎟
⎠
⎞

⎜
⎝
⎛ −

−

=+=

−=+−−=
+−−+−=

−
=

−

)23.0cos(271.2)( −=⇒ tti ω
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3.3  Root Mean Square (rms) Value

For the ac voltage

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=+= θπθπ

T
trftrtv 2cos22cos2

( ) ( ) 1cos22cos 2 −= xx

( ) ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ += θπθπ 24cos12cos2 2222

T
tr

T
trtv

2

T

r

t
π2

− Tθ

t

2 r2

v )( t

v )( t2

The average or mean of the square value is

( ) ( ) =∫=∫
T dttv

T
dttv 0

2
1

2 1
1

1
period period 

2
0

2
0

2 124cos11 rdtr
T

dt
T

tr
T

TT =∫=∫ ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ++ θπ

The square root of this or the rms value of v (t) is ( ) rtr =+ θωcos2 of value rms

Side Note: rms value can be defined for any periodical signal.
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3.4  Power

Consider the ac device:

Device

ri )( t = i 2cos )+( tω θi

rv )( t = v 2cos )+( tω θv

( ) ( ) ( ) ( )212121 coscoscoscos2 xxxxxx ++−=Using                                                           ,  the instantaneous power
consumed  is

( ) ( ) ( ) ( ) ( )vivi ttrrtvtitp θωθω ++== coscos2 ( ) ( )[ ]vivivi trr θθωθθ +++−= 2coscos

The average power consumed is

( )∫= period period 11
1 dttppav ( ) dt

T
t

T
rr T

vivi
vi ∫ ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ +++−= 0

4coscos θθπθθ ( )vivirr θθ −= cos

Copyrighted by Ben M. Chen81



2

T

t

v )( t

t

−
π2
Tθv

rv

i )( tv )( t

rvri cos − θvθ i( )

2

t

i )( t ri

−
π2
Tθ i

In phasor notation:

,vj
verV θ=

,ij
ierI θ=

)(* vij
iv errIV θθ −=

)(* ivj
iv errVI θθ −=

vj
verV θ−=*

ij
ierI θ−=*

[ ] [ ] [ ]**)( ReReRe)cos()cos( VIIVerrrrrrp ivj
ivviivivivav ===−=−= −θθθθθθ
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Note that the formula                    is based on rms voltages and currents. 

Also, this is valid for dc circuits, which is a special case of ac circuits with 

f = 0 and V and I having real values.

[ ]VIpav
∗=Re

Example: Consider the ac circuit,
46

30 j- 0.2e 3 j 0.1e

2.7 e j 0.23-

( ) ( ) [ ] ( ) 66.733.0cos1.81.8Re37.2Re3 33.01.023.01.0 ===⎥⎦
⎤

⎢⎣
⎡ ∗− jjjj eeee :source

( ) ( ) ( ) 96.8003.0cos81307.2Re30 2.023.02.0 −=−=⎥⎦
⎤

⎢⎣
⎡− −∗−− jjj eee :source

( ) ( ) ( ) 74.437.267.267.2Re6 223.0*23.0 ==⎥⎦
⎤

⎢⎣
⎡ ×Ω −− jj ee:resistor

( ) ( ) ( ) 16.297.247.247.2Re4 223.0*23.0 ==⎥⎦
⎤

⎢⎣
⎡ ×Ω −− jj ee:resistor

= 0

2327.0
1.02.0

7148.2
64
330 j

jj
eeeI −

−

=
+
−

=

Copyrighted by Ben M. Chen83



3.5  Power Factor

Consider the ac device:

Devicee= rv
θ vjV

e= ri
θ ijI

Ignoring the phase difference between 

V and I, the voltage-current rating or 

apparent power consumed is

VAivrrIV === rating current-voltagepower Apparent

However, the actual power consumed is

[ ] ( )WcosRe viivrrIV θθ −== ∗power Actual

The ratio of the these powers is the power factor of the device:

( )vi θθ −== cos
power Apparent

powerActualfactor Power

This has a maximum value of 1 when viVI θθ =⇔⇔ phaseinandfactor powerUnity

The power factor is said to be leading or lagging if

viVI θθ >⇔⇔ phaseinleadsfactor power Leading

viVI θθ <⇔⇔ phaseinlagsfactor powerLagging
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Consider the following ac system:

AC
Generator Electrical

Cables
Electrical Machine

0.1 Ω 230 V, 2300 VA

AC
Generator

Electrical
Cables

Electrical
Machine

e θ vj
e θ ij

0.1 e θ ij10

230

230=vr 102300 =⇒= ivi rrr

Unknowns
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Voltage-
current
rating

VA2300 VA2300 VA2300

Voltage
across
machine

V230 V230 V230

Current A10 A10 A10

Power
factor

leading11.0 1 lagging11.0

vi θθ − ( ) rad4.111.0cos 1 =− 0 ( ) rad46.111.0cos 1 −=− −

Power
consumed
by machine

( )( ) W23211.02300 = ( )( ) W230012300 = ( )( ) W23211.02300 =

Power loss
in cables

( )( ) W10101.0 2 = ( )( ) W10101.0 2 = ( )( ) W10101.0 2 =

The power consumed by the machine and power loss at different power factors are:
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3.6  Capacitor

A capacitor consists of parallel metal plates for storing electric charges.

+++++

+++++

+++
+++++++ −−−−−

−−−−−−
−−−−

−−−
−−−d

Conducting plate
with area A

Insulator
with a dielectric

constant  
(permittivity)

ε

The capacitance of the capacitor is given by or  Farad  F
d
AC ε=

Area of metal plates required
to produce a 1F capacitor in

the free space if d = 0.1 mm is

2
12 (km)3.11

F/m108.85
m0001.0F1

=
×
×

== −ε
CdA

Copyrighted by Ben M. Chen87



The circuit symbol for an ideal 

capacitor is:

Cv (t)

i (t)

Provided that the voltage and current 

arrows are in opposite directions, the 

voltage-current relationship is:

( ) ( )
dt

tdvCti =

For dc circuits:

( ) ( ) ( ) 00 =⇒=⇒= ti
dt

tdvtv constant

and the capacitor is equivalent to 

an open circuit:

Cv (t) = constant

i (t) = 0 i (t) = 0

This is why we don’t consider the 

capacitor in DC circuits.
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Consider the change in voltage, 

current and power supplied to the 

capacitor as indicated below:

0 t

v( t)

1

vf

0 t

i ( t)

1

vfC

0 t

v ( t)

1

i ( t)p( t) =

vfC 2
Area = Energy stored =

vfC 2

2

= Instantaneous power supplied

In general, the total energy stored in 

the electric field established by the 

charges on the capacitor plates at 

time is
( ) ( )

2

2 tCvte =

Proof.

[ ]

.0)(if,
2

)(

)()(
2

)(
2

)()(

)()(

)()()()(

2

22

2

=−∞=

−∞−=

=∫=

∫=

∫=∫=

∞−∞−

∞−

∞−∞−

vtCv

vtvC

xvCxdvxvC

dx
dx

xdvCxv

dxxixvdxxpte

tt

t

tt

consumed
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Now consider the operation of a capacitor in an ac circuit:

)cos(2)( vv trtv θω +=
)

2
cos(2

)sin(2)()(

πθωω

θωω

++=

+−==

vv

vv

tCr

tCr
dt

tdvCti

CjI
V

ω
1

= V

I

Cωj
1

With phasor representation, the capacitor behaves as if it is a resistor 

with a "complex resistance" or an impedance of

Cj
ZC ω

1
= [ ] [ ] 0ReReRe

2

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=== ∗∗

Cj
I

IZIVIp Cav ω

In phasor format:

Ce= rv
θ vjV

=I rvCω
π
2e θ vj e

j
= rvCω e θ vjj = Cωj V

An ideal capacitor is a non-dissipative but energy-storing device.
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Since the phase of I relative to V that of  is

[ ] [ ] [ ] 090Arg1ArgArgArgArg ==⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=− Cj

ZV
IVI

C
ω

the ac current i(t) of the capacitor leads the voltage v(t) by 90°.  

a−

)sin( tω

)cos( tω

)sin( tω−

2
π−

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +==⎟

⎠
⎞

⎜
⎝
⎛ −−

2
sincos

2
sin πωωπω ttt
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Example: Consider the following ac circuit:

30
319

230 V
50 Hz

μF
Ω

In phasor notation (taking the source 

to have a reference phase of 0):

30

1
10-6j 2π(50)

= 10j−
(319)

30

230
j10

=10j−

230

30 −
7.3e j 0.32

230 e j 0 = 230
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Total circuit impedance ( ) Ω−= 1030 jZ

Total circuit reactance [ ] [ ] Ω−=−== 101030ImIm jZX

Total circuit resistance [ ] [ ] Ω=−== 301030ReRe jZR

Current (rms) A3.7=I

Current (peak) A1023.72 ==I

Source V-I phase relationship rad32.0by leadsI

Power factor of entire circuit ( ) leading95.032.0cos =

Power supplied by source ( ) ( )[ ] ( )( ) ( ) kW6.132.0cos3.72303.7230Re 32.0 ==∗ je

Power consumed by resistor ( ) ( ) ( ) kW6.1303.73.7303.7Re 232.032.0 ==⎥⎦
⎤

⎢⎣
⎡ ×

∗ jj ee
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Impedance, Resistance, Reactance, 

Admittance, Conductance, and Susceptance
Relations?

jXRZ +=Impedance:

Admittance: ( )( )

jBG
XR

Xj
XR

R
XR
jXR

jXRjXR
jXR

jXRZ
Y

+=
+

−
+

+
=

+
−

=

−+
−

=
+

==

222222

11

Conductance Susceptance
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3.7  Inductor

An inductor consists of a coil of wires 

for establishing a magnetic field. The 

circuit symbol for an ideal inductor is:

Lv (t)

i (t)

Provided that the voltage and current 

arrows are in opposite directions, the 

voltage-current relationship is:

( ) ( )
dt

tdiLtv =

For dc circuits:

( ) ( ) ( ) 00 =⇒=⇒= tv
dt

tditi constant

and the inductor is equivalent to a 

short circuit:

L= 0v (t)

i = constant(t)

= 0v (t)

That is why there is nothing 

interesting about the inductor in DC 

circuits.
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Consider the change in voltage, 

current and power supplied to the 

inductor as indicated below:

0 t

v( t)

1

i f

0 t

i ( t)

1

i fL

0 t

v ( t)

1

i ( t)p( t) =

i fL 2
Area = Energy stored =

i fL 2

2

=  Instantaneous power consumed

In general, the total energy stored 

in the magnetic field established 

by the current i(t) in the inductor 

at time t is given by

( ) ( )
2

2 tLite =

[ ]

.0)(if,
2

)(

)()(
2

)(
2

)()(

)()(

)()()()(

2

22

2

=−∞=

−∞−=

=∫=

∫=

∫=∫=

∞−∞−

∞−

∞−∞−

itLi

itiL

xiLxdixiL

dx
dx

xdiLxi

dxxixvdxxpte

tt

t

tt
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Now consider the operation of an inductor in an ac circuit:

Lv (t)

i (t) )cos(2)( ii trti θω +=

)
2

cos(2

)sin(2)()(

πθωω

θωω

++=

+−==

ii

ii

tLr

tLr
dt

tdiLtv

In phasor:

Lv (t)

i (t) ij
ierI θ=

ILjeLrjeeLrV ii j
i

jj
i )(2/ ωωω θπθ ===

Lj
I
VZL ω==V

I

Lωj

ZL is the impedance of the inductor. The ave. power absorbed by the inductor:

[ ] [ ] [ ] [ ] 0ReReReRe 2 ===== ∗∗∗ ILjILIjIZIVIp Lav ωω
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Since the phase of I relative to that of V is

[ ] [ ] 0901Arg1ArgArgArgArg −=⎥⎦

⎤
⎢⎣

⎡=⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=−

LjZV
IVI

L ω

the ac current i(t) lags the voltage v(t) by 90º.

As an example, consider the following series ac circuit:

319
230 V
50 Hz

μF
Ω

31.9 mH

3

We can use the phasor representation to convert this ac circuit to a ‘DC’

circuit with complex voltage and resistance.
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230
j10

=
3 − 77

10-3j 2π(50) =
10j−

230 (31.9)

3

10j

10j−
230

3

10j

10j+

773

10j230 770j

770j−
230

10j−

Total circuit
impedance Ω=+−= 310103 jjZ
Total circuit reactance [ ] [ ] Ω=== 03ImIm ZX
Total circuit resistance [ ] [ ] Ω=== 33ReRe ZR
Current (rms) A77=I
Current (peak) A1082772 ==I
Source voltage-current
phase relationship ( )phase in0
Power factor of entire
circuit ( ) 10cos =

Power supplied by
source ( ) ( )[ ] kW1823077Re =∗

Power consumed by
resistor ( ) ( )[ ] kW1877377Re =×∗

Summary of the circuit:
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Note that the rms voltages across the inductor and capacitor are larger 

than the source voltage.  This is possible in ac circuits because the 

reactances of capacitors and inductors, and so the voltages developed 

across them, may cancel out one another:

230

Source
=voltage

770

Voltage
across

capacitor
j−

+
230

Voltage
across
resistor +

770

Voltage
across

inductor
j

In dc circuits, it is not possible for a passive resistor (with positive 

resistance) to cancel out the effect of another passive resistor (with 

positive resistance).
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3.8  Power Factor Improvement

Consider the following system:

Electrical Machine

230
230 V
2.3 kW

0.4 lagging power factor

50 Hz

Mains V =

I0

The current I0 can be found as follows:

( )( ) ( )( )
25

4.0230
23004.0

AV230
W2300

0
0

==⇒= I
I

[ ] [ ]{ }
[ ] [ ] [ ] ( ) 16.14.0cosArg

0ArgArg
4.0ArgArgcos 1

0
0

0 −=−=⇒
⎭
⎬
⎫

<−
=− −I

VI
VI

Due to the small power 

factor, the machine 

cannot be connected to 

standard 13A outlets even 

though it consumes only  

2.3 kW of power.

Can we improve it?

[ ] 16.1Arg
00 250 jIj eeII −==
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EG1103 Mid-term Test

• When? The time of your tutorial class in the 
week right after the recess week.

• Where? In your tutorial classroom.
• Why? To collect some marks for your final 

grade for EG1103.
• What? Two questions cover materials up to 

DC circuit analysis.
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To overcome this problem, a parallel capacitor can be used to improve 

the power factor:

New Electrical Machine

Mains

e j− 1.1625

Original
Machine

Zold = 230
e j− 1.1625

= e j1.169.2Cj2π
1=ZC (50) C

I

230V =

( )23230001023102300025 16.1 −+=−+=+= − CjjCje
Z
VI j

C
ππ

Thus, if we choose mF32.02323000 =⇒= CCπ then A10=I

( ) ( )[ ] 1ArgArgcos =−= VImachinenew offactor Power

and

By changing the power factor, the improved machine can now be connected to 

standard 13A outlets.  The price to pay is the use of an additional capacitor.
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To reduce cost, we may wish to use a capacitor which is as small as possible. 

To find the smallest capacitor that will satisfy the 13A requirement:

( ) 2222 13237220010 =−+= CI ( )222 23722001013 −+= C

( ) ( ) 22222 3.82372200237220013100 −−=−+−= CC

( ) ( )3.823722003.823722000 +−−−= CC

mF44.0mF2.0 or=C

There are 2 possible values for C, one giving a lagging overall power factor, 

the other giving a leading overall power factor.  To save cost, C should be

mF2.0=C
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Chapter 4. Frequency Response
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4.1  RC Circuit

Consider the series RC circuit:

160 mF

Ω2

10-3j2π
=

(160) jf f
1 1ZC =

2

V

v(t) =
a 2cos )+ θ( t2π f

v (t)C

b 2cos )+ φ( t2π f
=

= a θe j V = b φe j
C

( ) ( )
fj

jf

jf
Z

Ze
a
b

ae
be

V
VfH

C

Cj
j

j
C

21
1

12

1

2 +
=

+
=

+
==== −θφ

θ

φ

I

Frequency
Response

)2( CZIV +=Input:
CC IZV =Output:
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The magnitude of H ( f ) is

( )

( ) 22 41
1

21
1

ff

a
b

V
V

V
VfH CC

+
=

+
=

===

and is called the magnitude response.

The phase of H ( f ) is

( )[ ] [ ] [ ]

[ ] ( )ffj

fj

VV
V
VfH C

C

2tan21Arg

21
1Arg

ArgArg=ArgArg

1−−=+−=

⎥
⎦

⎤
⎢
⎣

⎡
+

=−=

−⎥⎦
⎤

⎢⎣
⎡=

θφ

and is called the phase response.

The physical significance of these responses is that H ( f )

gives the ratio of output to input phasors, |H ( f )| gives the 

ratio of output to input magnitudes, and Arg[H ( f )] gives the 

output to input phase difference at a frequency f. 

Copyrighted by Ben M. Chen107



Input
( ) ( )[ ]752cos23 += ttv π

73 jeV =

( ) ( )[ ] ( ) ⎥⎦
⎤

⎢⎣
⎡ −==

2
42cos42sin πππ trtrtv

2

2
πjerV −=

Frequency 5=f 4=f

Frequency
response ( )

101
15
j

H
+

= ( )
81

14
j

H
+

=

Magnitude
response ( )

101
15 =H ( )

65
14 =H

Phase
response ( )[ ] ( )10tan5Arg 1−−=H ( )[ ] ( )8tan4Arg 1−−=H

Output
( ) ( ) ( )[ ]10tan752cos

101
23 1−−+= ttvC π

( )[ ]10tan7 1

101
3 −−= j

C eV

( ) ( ) ( )[ ]

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −−=

−=

−

−

2
8tan42cos

65

8tan42sin
65

1

1

ππ

π

tr

trtvC

( )[ ]28tan 1

130
π−− −

= j
C erV
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Due to the presence of components such as capacitors and inductors 

with frequency-dependent impedances, H ( f ) is usually frequency-

dependent and the characteristics of the circuit is often studied by 

finding how H ( f ) changes as f is varied.  Numerically, for the series 

RC circuit:

f ( ) ( )241
1

f
fH

+
= ( )[ ] ( )ffH 2tanArg 1−−=

0 ( ) dB01log201 == 00=rad0

5.0
( )

dB3
2

1log20
2

1
5.041

1
2

−=⎟
⎠
⎞

⎜
⎝
⎛==

+
( ) 01 45=rad

4
5.02tan −−=×− − π

∞→ dB0 ∞−=→ ( ) 01 90rad
2

tan −=−=∞− − π
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0 f0.5

H ( f )

H ( f )[ ]Arg

1 = 0 dB

0.7 =

0
f

0.5

90− o

45− o

t

 Input

 Output

Low
f

t

 Output

 Input

High
f

− 3 dB

High 
Frequency

Low Frequency
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At small f, the output approximates the input.  However, at high f, the output 

will become attenuated. Thus, the circuit has a low pass characteristic (low 

frequency input will be passed, high frequency input will be rejected).

The frequency at which |H ( f )| falls to –3 dB of its maximum value is called 

the cutoff frequency. For the above example, the cutoff frequency is 0.5 Hz.

To see why the circuit has a low pass characteristic, note that at low f, C has 

large impedance (approximates an open circuit) when compare with R (2 in 

the above example). Thus, VC will be approximately equal to V :

=f
1ZC VCfLow ∝ ∞ open circuit( ) ≈

R

V
V
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However, at high f, C has small impedance (approximates a short circuit) 

when compare with R.  Thus, VC will be small:

R

V
fHigh VC 0≈ small( )=f

1ZC short circuit( )∝ 0

Key Notes: The capacitor is acting like a short circuit at 

high frequencies and an open circuit at low frequencies. It is 

totally open for a dc circuit.
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An Electric Joke

Q: Why does a capacitor block DC but allow AC to pass 

through?

A: You see, a capacitor is like this −−−| |−−− , OK. DC 

Comes straight, like this −−−−−, and the capacitor stops 

it. But AC, goes up, down, up and down and jumps 

right over the capacitor!
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4.2  RL Circuit

Consider the series RL circuit:

Ω5

VLHzf

5
V

10-3j 2π =(160) jf fZL =

160 mHHzf
v(t)

sinusoid
Hzf

sinusoid

v (t)L

I
Input: V=I ( 5 + ZL ) Output: VL=I ZL

( )
jf

jf
Z

ZfH
V
V

L

LL

+
=

+
==

55 Frequency Response
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The magnitude response is

( ) 2

2

22

2

255 f
f

f
ffH

+
=

+
=

The phase response is

( )[ ]

[ ] [ ]

⎟
⎠
⎞

⎜
⎝
⎛−=

+−=

⎥
⎦

⎤
⎢
⎣

⎡
+

=

−

5
tan

2

5ArgArg
5

ArgArg

1 f
jfjf

jf
jffH

π

Numerically:

f ( ) 2

2

25 f
ffH
+

= ( )[ ] ⎟
⎠
⎞

⎜
⎝
⎛−= −

5
tan

2
Arg 1 ffH π

0 ( ) dB0log200 ∞−== 009=rad
2
π

5 dB3
2

1log20
2

1
525

5
2

2
−=⎟

⎠
⎞

⎜
⎝
⎛==

+
01 45=rad

45
5tan

2
ππ

=⎟
⎠
⎞

⎜
⎝
⎛− −

∞→ dB01 =→ ( ) 01 0rad0tan
2

==∞− −π
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Physically, at small f, L has small impedance (approximates a short circuit) 

when compare with R (5 in the above example).  Thus, VL will be small:

fLow
V

VL 0≈ small( )

R

0fZL∝ ≈ short circuit( )

However, at high f, L has large impedance (approximates an open 

circuit) when compare with R.  Thus, VL will approximates V :

VL ≈ V

R

V
fHigh fZL∝ ≈ (open circuit)∞

Due to these characteristics, the circuit is highpass in nature.
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4.3  Series Tune Circuit

1.4 F

Hzf
VC

I

V

j 2π =(0.64) jf fZL = 4

= jj2π (1.4)f
1 1ZC = f9

0.64 HL =

=C

Ω0.067R =

Hzf
v(t)

sinusoid
Hzf

sinusoid

v (t)C

2
30

Output

The total impedance is

⎟
⎠

⎞
⎜
⎝

⎛ −+=

++=

++=

f
fj

fj
fj

ZZRZ CL

9
14

30
2

9
14

30
2

( )( ) ( )( ) LCCL
ff

πππ 2
1

22
1

6
1

94
1

00 ==⇔==Resonance Frequency

Input

R
LfQfQ 00 210

302
32 π

=⇔===
Resistance

atinductorofReactanceQ factor

30
2

=
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The frequency response is

( )
fjf

fj
fj

fj
Z

Z
V
VfH CC

6.0361
1

9
14

30
2

9
1

2 +−
=

++
===

The magnitude response is

( )
( ) ( ) ( ) ( ) 16.07236

1

6.0361

1
2222222 +−−

=
+−

=
ffff

fH

( ) ( )
22222

222

72
6.011

72
6.01

72
6.0136236

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=

ff

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

72
6.02

72
6.0

72
6.0136

1
2222

2f

22

2

2
2

2

22

2

22
2

⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ −=

+⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=

+−

bcbx

cb

bxbx

cbxx

Since f only appears in the [•]2 term in the denominator and [•]2 >= 0, |H ( f )|

will increase if [•]2 becomes smaller, and vice versa.
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The maximum value for |H ( f )| corresponds to the situation of [•]2 or at a 

frequency  f = fpeak given by:

0

2
2

6
11

72
6.0136 ffff peakpeakpeak ≈⇔≈⇔≈−=

At f = fpeak , [•]2 and the maximum value for |H ( f )| is

( )
( )

( ) QfHfH peakpeak ≈⇔=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 10

2
72
6.0
1

72
6.02

72
6.0

1
222

H( f)

f0

QH( f )peak ≈ =10

≈fpeak f0 = 1
6

The series tuned circuit has a 

bandpass characteristic.  Low- and 

high-frequency inputs will get 

attenuated, while inputs close to the 

resonant frequency will get amplified 

by a factor of approximately Q.
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The cutoff frequencies, at which |H ( f )| decrease by a factor of 0.7071 

or by 3 dB from its peak value |H ( fpeak)| , can be shown to be given by

⎟
⎠

⎞
⎜
⎝

⎛ −≈
Q

fflower 2
110 ⎟

⎠

⎞
⎜
⎝

⎛ +≈
Q

ffupper 2
110

H( f)

f0

QH( f )peak ≈ = 10

≈fpeak f0 = 1
6

≈flower f0 = 0.95
6−

f0
2Q

≈fupper f0 = 1.05
6+

f0
2Q

2
H( f )peak ≈ = 7.07Q

2
fbandwidth ≈ = 0.1

6
f0
Q

Very roughly, the 

circuit will pass inputs 

with frequency 

between flower and fupper.  

The bandwidth of the 

circuit is

Q
ffff lowerupperbandwidth
0≈−=

and the fractional 
bandwidth is

Qf
fbandwidth 1

0
≈
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The larger the Q factor, the sharper the magnitude response, the bigger 

the amplification, and the narrower the fractional bandwidth:

H( f)

f0

Large Q

Small Q

In practice, a series tune circuit usually consists of a practical inductor or 

coil connected in series with a practical capacitor. Since a practical 

capacitor usually behaves quite closely to an ideal one but a coil will 

have winding resistance, such a circuit can be represented by:
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Hzf

L

Equivalent circuit for coil or practical inductor

V

R

C VC

The main features are:

Circuit impedance
fCj

fLjRZ
π

π
2
12 ++=

Resonance frequency
LC

f
π2

1
0 =

Q factor
R

LfQ 02π
=

Frequency response ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
+−

=

0

2

0

22

1

1
241

1

f
f

Q
j

f
ffCRjLCf

fH
ππ
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For the usual situation when Q is large:

Magnitude response Bandpass with ( )fH  decreasing as 0→f  and ∞→f

Response peak ( )fH  peaks at 0fff peak ≈=  with ( ) QfH peak ≈

Cutoff frequencies ( )
( )

22
QfH

fH peak ≈=  at

⎟
⎠

⎞
⎜
⎝

⎛ +⎟
⎠

⎞
⎜
⎝

⎛ −≈=
Q

f
Q

ffff upperlower 2
11,

2
11, 00

Bandwidth
Q
ffff lowerupperbandwidth
0≈−=

Fractional bandwidth
Qf

fbandwidth 1
0

≈
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The Q factor is an important parameter of the circuit.

resistance Circuit
 at reactance Inductor 002 f

R
LfQ ==

π

However, since R is usually the winding resistance of the practical coil 

making up the tune circuit:

coil practical of Resistance
atcoilpracticalofReactance 0fQ =

As a good practical coil should have low winding resistance and high 

inductance, the Q factor is often taken to be a characteristic of the practical 

inductor or coil. The higher the Q factor, the higher the quality of the coil.
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Due to its bandpass characteristic, tune circuits are used in radio and 

TV tuners for selecting the frequency channel of interest:

L

C

Channel 5

f5

Channel 8

f8

Amplifier
and

Other
Circuits

VC
Practical inductor or coil

To tune in to channel 5, C has to 

be adjusted to a value of C5 so 

that the circuit resonates at a 

frequency given by

5
5 2

1
LC

f
π

=
f0 f5 f8

H( f)
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To tune in to channel 8, C has to be adjusted to a value of C8 so that 

the circuit resonates at a frequency given by

8
8 2

1
LC

f
π

=

and has a magnitude response of:

f0 f5 f8

H( f)
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Additional Notes on Frequency Response

Frequency response is defined as the ratio of the phasor of the output

to the phasor of the input. Note that both the input and output could be

voltage and/or current. Thus, frequency response could have

( ) .
)(
)(,

)(
)(,

)(
)(,

)( inputV
outputI

inputI
outputI

inputV
outputV

inputI
outputV
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Chapter 5. Periodic Signals
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5.1  Superposition

In analyzing ac circuits, we have assumed that the voltages and currents 

are sinusoids and have the same frequency f.  When this is not the case 

but the circuit is linear (consisting of resistors, inductors and capacitors), 

the principle of superposition may be used. Consider the following system:

3 2cos )+ 0.1( t4065 2cos )− 0.2( t

i )(t

4
0.0025 F

The current i(t) can be found by summing the contributions due to the two 

sources on their own (with the other sources replaced by their internal 

resistances).
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6

I

65 2 cos )− 0.2( t

i )( t

4

1

0.0025 F

e j− 0.25

1
j4

1
(0.0025) = 100 j−
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6e j− 0.25
100 j−

I 1 =
(6)

= e j− 0.25
6 100 j− e j 1.30.3

65 2 cos )− 0.2( t

i )( t

4

1 = 0.3 2 cos )+ 1.3( t4

0.0025 F
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I

6

i )( t2

0.0025 F

2 j 40
1 =(0.0025) 10 j−

3 2 cos )+ 0.1( t40

6 e j 0.13
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I 2 == 6 10 j− e j 1.10.26

)i ( t2 = 0.26 2 cos )+ 1.1( t40

6 e j 0.13
10 j−

e j 0.13− −

−

6
0.0025 F

3 2 cos )+ 0.1( t40

Copyrighted by Ben M. Chen135



Lastly, the actual current when both sources are present:

3 2cos )+ 0.1( t4065 2cos )− 0.2( t

i )(t

4
0.0025 F

)i (t2

=
0.26 2cos )+1.1( t40−

i )( t1=
0.3 2cos )+1.3( t4

+
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5.2  Circuit Analysis using Fourier Series

Using superposition, the voltages and currents in circuits with sinusoidal 

signals at different frequencies can be found.

Circuits with non-sinusoidal but periodic signals can also be analyzed by 

first representing these signals as sums of sinusoids or Fourier series.

The following example shows how a periodic square signal can be 

represented as a sum of sinusoidal components of different frequencies:
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t

Original periodic square waveform: v (t)

0 1

Fundamental component: sin(2π t)

t0 1

1

4
π

t

Third harmonic: sin(6π t)
3

1
3

Fundamental

sin(2π t)

t

+

third harmonic:+
sin(6π t)

3

Any periodic signal can be 

represented as an infinite 

sum of sine signals.

Freq. is triple.

( ) ( ) ( ) ( )
L+++=

5
10sin

3
6sin2sin ttttv πππ

Same freq.
as the orginal.
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v )(t

sin(2π t)

sin(6π t)
3

160 mF

Ω2

v (t) vC (t)

sin(2π t)

sin(6πt)
3

Ω2

160 mF vC (t)

sin(10π t)
5

v )(t

Fourier
representation

for

2
S

f Hz
SC

160 mF

Ω2
s (t)

sC (t)
Sinusoid

f Hz

j2
1
(0.16) =πf j f

1
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( )
fj

jf

jf
S

SfH C

21
1

12

1

+
=

+
==

The frequency response:

From superposition, if the input is the periodic square signal

( ) ( ) ( ) ( )
L+++=

5
10sin

3
6sin2sin ttttv πππ

then the output will be

( ) ( ) ( ) L+−+−= 4.16sin05.01.12sin44.0 tttvC ππ

( ) ( )[ ]
( ) ( )

( ) ( )[ ]
( ) ( )

L+
×+

×−
+

×+

×−
=

−−

2

1

2

1

3213
32tan32sin

1211
12tan12sin tt ππ

( )[ ]
( )

∑
+

−
=

∞

=

−

L,5,3,1 2

1

21
2tan2sin

n nn
ntnπ

Side Notes:

Superposition for 

infinite series will 

not be examined.

Topic on Fourier 

Representation of 

periodic signal is 

skipped and 

hence ...
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Chapter 6. Transient Circuit Analysis

Copyrighted by Ben M. Chen141



C.3  Linear Differential Equation

General solution:

n th order linear
differential equation

( ) ( ) ( ) ( )tutxa
dt

txda
dt

txd
n

n

nn

n

=+++ −

−

− 01

1

1 L

General solution ( ) ( ) ( )txtxtx trss +=

Steady state response
with no arbitrary constant

( )
( )tu

txss

 as form same the have to solution
assuming from obtained integral particular=

Transient response with
n  arbitrary constants

( )
( ) ( ) ( ) 001

1

1 =+++

=

−

−

− txa
dt

txda
dt

txd

tx

trn
tr

n

nn
tr

n
tr

L          

equation shomogeneou of solution general
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General solution of homogeneous equation:

n th order linear
homogeneous equation

( ) ( ) ( ) 001

1

1 =+++ −

−

− txa
dt

txda
dt

txd
trn

tr
n

nn
tr

n

L

Roots of polynomial
from homogeneous
equation

 
( ) ( ) 0

1
11

1 ,,

azazzzzz

zz
n

n
n

n

n

+++=−− −
− LL

L

 by given
 :Roots

General solution
(distinct roots)

( ) tz
n

tz
tr

nekektx ++= L1
1

General solution
(non-distinct roots)

( ) ( ) ( ) tttt
tr ekeketkketktkktx 41

7
31

6
22

54
132

321 ++++++=
if roots are 13 13 13 22 22 31 41, , , , , ,
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Particular integral:

( )txss Any specific solution (with no arbitrary constant)
of

( ) ( ) ( ) ( )tutxa
dt

txda
dt

txd
n

n

nn

n

=+++ −

−

− 01

1

1 L

Method to determine
( )txss

Trial and error approach: assume ( )txss  to have
the same form as ( )tu  and substitute into
differential equation

Example to find ( )txss  for
( ) ( ) tetx

dt
tdx 32 =+

Try a solution of he t3

     ( ) ( ) 2.0232 3333 =⇒=+⇒=+ heheheetx
dt

tdx tttt

( ) t
ss etx 32.0=

Standard trial solutions ( ) ( )

( )
( ) ( ) ( ) ( )ththtbta

ethhte
htt
hee

txtu

tt

tt
ss

ωωωω

αα

αα

sincossincos 21

21

++
+

 for solution trial
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6.1  Steady State and Transient Analyses

So far, we have discussed the DC and AC circuit analyses. DC analysis can be 

regarded as a special case of AC analysis when the signals have frequency f = 0.  

Using Fourier series, the situation of having periodic signals can be handled using 

AC analysis and superposition. These analyses are often called steady state

analyses, as the signals are assumed to exist at all time.

In order for the results obtained from these analyses to be valid, it is necessary for 

the circuit to have been working for a considerable period of time. This will ensure 

that all the transients caused by, say, the switching on of the sources have died 

out, the circuit is working in the steady state, and all the voltages and currents are 

as if they exist from all time.

However, when the circuit is first switched on, the circuit will not be in the steady 

state and it will be necessary to go back to first principle to determine the

behavior of the system.
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6.2  RL Circuit and Governing Differential Equation

Consider determining i(t) in the following series RL circuit:

3 V 7 H

Ω5t = 0

v(t)

i (t)

where the switch is open for t < 0 and is closed for t ≥ 0.

Since i(t) and v(t) will not be equal to constants or sinusoids for all time, 

these cannot be represented as constants or phasors.  Instead, the 

basic general voltage-current relationships for the resistor and inductor 

have to be used:
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3 7

5t = 0
i (t)

v(t) = 7 d i(t)
d t

i (t)5

3 7

5

t < 0

i (t) = 0

v(t) = 7 d i(t)
d t

i (t)5

3 7

5
i (t) = 0

v(t) = 7 d i(t)
d t = 0

i (t)5 = 03

voltage cross
over the switch

KVL

For t < 0
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3 7

5
i (t)

v(t) = 7 d i(t)
d t

i (t)5

t 0≥

0

Applying KVL:

( ) ( ) 0,357 ≥=+ tti
dt

tdi

and i(t) can be found from determining the 

general solution to this first order linear 

differential equation (d.e.) which governs 

the behavior of the circuit for t ≥ 0.

Mathematically, the above d.e. is often 

written as

( ) ( ) ( ) 0,57 ≥=+ ttuti
dt

tdi

where the r.h.s. is ( ) 0,3 ≥= ttu
and corresponds to the dc source or 

excitation in this example.
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6.3  Steady State Response

Since the r.h.s. of the governing d.e.

( ) ( ) ( ) 0,357 ≥==+ ttuti
dt

tdi

Let us try a steady state solution of

( ) 0, ≥= tktiss

which has the same form as u(t), as a 
possible solution.

( ) ( )

( ) ( )

5
3

3507

357

=⇒

=+⇒

=+

k

k

ti
dt

tdi
ss

ss

( ) 0,
5
3

≥= ttiss

( ) ( ) 0,3
5
35

5
3757 ≥=⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+ t

dt
dti

dt
tdi

ss
ss

and is a solution of the governing d.e.

In mathematics,  the above solution is 

called the particular integral or solution 

and is found from letting the answer to 

have the same form as u(t). The word 

"particular" is used as the solution is only 

one possible function that satisfy the d.e.
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In circuit analysis, the derivation of iss(t) by letting the answer to have 

the same form as u(t) can be shown to give the steady state response

of the circuit as t → ∞.

3 7

5

v(t) = 7 d i(t)
d t

t → ∞

i (t) = k

v(t) = 7 d i(t)
d t = 03 7

5
i (t) = k

i (t)5 = k5

Using KVL, the steady state 

response is

( ) ∞→=⇒

=⇒

=++=

tti

k

kk

,
5
3

5
3

50503

This is the same as iss(t).
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6.4  Transient Response

To determine i(t) for all t, it is necessary to find the complete solution of 

the governing d.e.
( ) ( ) ( ) 0,357 ≥==+ ttuti

dt
tdi

From mathematics, the complete solution can be obtained from summing 

a particular solution, say, iss(t), with itr(t): ( ) ( ) ( ) 0, ≥+= ttititi trss

where itr(t) is the general solution of the homogeneous equation

( ) ( ) 0,057 ≥=+ tti
dt

tdi

( ) ( )
( )

5757

57

01 +=+=

+

zzz

ti
dt

tdi
z

dt
tditr

tr

tr  by replaced 

7
5

1 −=z

( ) 0,7
5

11
1 ≥==

−
tekekti

ttz
tr

where k1 is a constant (unknown now).

( ) ∞→→=
−

tekti
t

tr ,07
5

1

Thus, it is called transient response.
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6.5  Complete Response

To see that summing iss(t) and itr(t) gives the general solution of the governing d.e.

( ) ( ) 0,357 ≥=+ tti
dt

tdi

note that

( ) 0,
5
3

≥= ttiss 0,3
5
35

5
37 ≥=⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ t

dt
dsatisfies

( ) 0,7
5

1 ≥=
−

tekti
t

tr satisfies 0,057 7
5

1
7
5

1 ≥=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
tekek

dt
d tt

( ) ( ) 0,
5
3 7

5

1 ≥+=+
−

tektiti
t

trss 3
5
35

5
37 7

5

1
7
5

1 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−− tt
ekek

dt
dsatisfies

( ) ( ) ( ) 0,
5
3 7

5

1 ≥+=+=
−

tektititi
t

trss is the general solution of the d.e.
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i )( tss

t < 0 t 0≥

5
3

0

Switch
close

t = 0

0

t = 5
7 (Time constant)

0
Complete response

i )( ttri )( tss +

5
3

+ 5
3

k1

e
k1

e− 5
7 t t 0≥,k1)( t =i tr

k1

Transient Response

Steady State 
Response

Complete Response

k1 is to be 
determined later

Copyrighted by Ben M. Chen153



Note that the time it takes for the transient or zero-input 

response itr(t) to decay to 1/e of its initial value is

Time taken for itr(t) to decay to 1/e of initial value

and is called the time constant of the response or system.

We can take the transient response to have died out after a 

few time constants.

5
7

=
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6.6  Current Continuity for 

Inductor

To determine the constant k1 in 

the transient response of the RL 

circuit, the concept of current 

continuity for an inductor has 

to be used.

Consider the following example:

i )( tL

0 1 2 4 t

1

2

= 7
d

d t
i )( tLv )( tL

t

7

7−

To ∞

t

7

i )( tL v )( tL =Instantaneous power supplied

To ∞

14−

Lv (t)

i (t)

= 7
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Due to the step change or discontinuity in iL(t) at t = 2,  

and the power supplied to the inductor at t = 2 will go 

to infinity. Since it is impossible for any system to 

deliver an infinite amount of power at any time, it is 

impossible for iL(t) to change in the manner shown.

In general, the current through an inductor must be 

a continuous function of time and cannot change in a 

step manner.
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3 V 7 H

Ω5t = 0

v(t)

i )( t

Now back to our RL Circuit:

0

5
3

+ 5
3

Switch
close

+ 5
3

e− 5
7 t t 0≥,

i )( t =

= 5
3 +

t < 0,i )( t = 0

k1

i )( ttri )( tss +

k1

Using current continuity for an 

inductor at t = 0:

( )
5
30

5
30 11 −=⇒=+== kkti

( )
⎪⎩

⎪
⎨
⎧

≥−

<
= −

0,
5
3

5
3

0,0

7
5

te

t
ti t

0

5
3

Switch
close

i )( t =

= 5
3 −

t < 0,i )( t = 0

5
3

i )( ttri )( tss +

e− 5
7 t t 0≥,
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6.7  RC Circuit

Consider finding v(t) in the following 

RC circuit:

3 V
7 F

Ω5

v(t)
2 V

Ω500

t = 0

i (t)

where the switch is in the 

position shown for t < 0 and is 

in the other position for t ≥ 0.

3
7

5

v(t)
2

500

d v(t)
d t= 7i (t)

t < 0

Taking the switch to be in this 

position starting from t = −∞, the 

voltages and currents will have 

settled down to constant values 

for practically all t < 0. 

( ) ( ) ( ) 0,077 <=== t
dt

d
dt

tdvti constant
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3
7

5

2

500

dv (t)
d t= 7i (t)

t < 0

v(t)

= 0

3
7

5

2

500

i (t)

=500 i (t) 0

v(t) = − 2

= 0

t 0≥

3
7

5

2

500

d v (t)
d t= 7i (t)

v(t)

5i (t) d
d t= 35
v(t)

Applying KVL:

( ) ( ) ( ) 0,335 ≥==+ ttutv
dt

tdv

( ) ( ) ( ) 0, ≥+= ttvtvtv trss

which has a solution
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(1) Steady State Response

( ) 0,3 ≥= ttu

( ) ( )

330

335

=⇒=+⇒

=+

kk

tv
dt

tdv
ss

ss

( ) 0, ≥= tktvss

( ) 0,3 ≥= ttvss

(2) Transient Response
( ) ( ) 0,035 ≥=+ ttv

dt
tdv

tr
tr

( ) ( )
( )

13535

35

01 +=+=

+

zzz

tv
dt

tdv
z

dt
tdvtr

tr

tr  by replaced 

35
1

1 −=z

( ) 0,35
11

1 ≥==
−

tekektv
t

tz
tr

( ) ( ) ( ) ⎪⎩

⎪
⎨
⎧

≥+

<−
=

⎩
⎨
⎧

≥+
<−

= −
0,3

0,2

0,
0,2

35
1 tek

t

ttvtv
t

tv t

trss
Complete Response
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6.8  Voltage Continuity for Capacitor

To determine k1 in the transient response of the RC circuit, the concept 

of voltage continuity for a capacitor has to be used.

Similar to current continuity for an inductor, the voltage v(t) across a 

capacitor C must be continuous and cannot change in a step manner.

Thus, for the RC circuit we consider, the complete solution was derived as:

( ) ( ) ( ) ⎪⎩

⎪
⎨
⎧

≥+

<−
=

⎩
⎨
⎧

≥+
<−

= −
0,3

0,2

0,
0,2

35
1 tek

t

ttvtv
t

tv t

trss

At t = 0,

( ) 5230 11 −=⇒−=+= kkv ( )
⎪⎩

⎪
⎨
⎧

≥−

<−
= −

0,53

0,2

35 te

t
tv t
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6.9  Transient with Sinusoidal Source

Consider the RL circuit with the dc source changed to a sinusoidal one:

7

5t = 0
i (t)

3 2cos )+ 0.1( tω

For t < 0 when the switch is open:

7

5

t < 0

i (t) = 0

7 d i(t)
d t = 03 2cos )+ 0.1( tω
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For t ≥ 0 when the switch is closed:

7

5
i (t)

7 d i(t)
d t

i (t)5t 0≥

3 2cos )+ 0.1( tω

The governing d.e. is

( ) ( ) ( ) 0,57 ≥=+ ttuti
dt

tid

( ) ( ) ( )[ ] ( )( )[ ] 0,23Re23Re1.0cos23 1.01.0 ≥==+= + teeettu tjjtj ωωω

with

Looking for general solution

( ) ( ) ( ) 0, ≥+= ttititi trss
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Since u(t) is sinusoidal in nature, a trial solution for the steady state

response or particular integral iss(t) may be

( ) ( ) ( ) ( )[ ] 0,2Recos2 ≥=+= teretrti tjj
ss

ωθθω

( ) ( ) ( )( )[ ] ( )( )[ ]tjj
tjj

ss
ss ere

dt
eredti

dt
tdi ωθ

ωθ
2Re52Re757 +=+

( )( )( )[ ] ( )( )[ ]tjjtjj ereejre ωθωθ ω 2Re52Re7 +=

( )( )( )[ ]tjj ejre ωθ ω 257Re +=

( )( )[ ] )(23Re 1.0 tuee tjj == ω

( ) 1.0357 jj erej =+ θωThis is Method One:
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Method Two:

7

5
i (t)

v(t) = 7 d i(t)
d t

i (t)5t 0≥

3 2cos )+ 0.1( tω

3 j 0.1e

I

ωj 7

5

5

ωj 7I

=I r e θj

=+ωj 7 5( )I +ωj 7 5( )r e θj = 3 j 0.1e
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( ) 1.0357 jj erej =+ θω

(1) Steady State Response

75
3 1.0

ω
θ

j
ere

j
j

+
=⇒

222

1.0

75
3

75
3

ωω +
=

+
=

j
e

r
j

[ ] [ ]

⎟
⎠
⎞

⎜
⎝
⎛−=

+−=

−

5
7tan1.0

75ArgArg

1

1.0

ω
ωθ je j

(2) Transient Response

( ) ( ) 0,057 ≥=+ tti
dt

tdi
tr

tr

itr(t) will have the same form as the dc 

source case:

( ) 0,7
5

1 ≥=
−

tekti
t

tr

( ) ( ) 0,
5

7tan1.0cos
4925
23cos2 1

2
≥⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−+

+
=+= − tttrtiss

ωω
ω

θω

Complete Response
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Complete Response

( ) ( ) ( ) 0, ≥+= ttititi trss

0,
5

7tan1.0cos
4925
23 7

5

1
1

2
≥+⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−+

+
=

−− tekt
tωω

ω

To determine k1, the continuity of i(t), the current through the inductor, can be used.

( ) 0,0 <= tti ( ) ( ) ( ) 1
1

2 5
7tan1.0cos

4925
23000 kiii trss +⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−

+
=+= − ω

ω

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−

+
−= −

5
7tan1.0cos

4925
23 1

21
ω

ω
k

⎪
⎩

⎪
⎨

⎧

≥
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−−⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛−+

+

<

= −−− 0,
5

7tan1.0cos
5

7tan1.0cos
4925
23

0,0
)( 7

5
11

2
tet

t
ti tωωω

ω
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An FAQ: Can we apply KVL to the rms values of voltages in AC circuits?

Answer: No. In an AC circuit, KVL is valid for the phasors of the voltages 

in a closed-loop, i.e., the sum of the phasors of voltages in a closed-loop is 

equal to 0 provided that they are all assigned to the same direction. KVL 

cannot be applied to the magnitudes or rms values of the voltages alone. 

For example, a closed-loop circuit containing a series of an AC source, a 

resistor and a capacitor could have the following situation: The source has 

a voltage with a rms value of 20V, while the resistor and the capacitor have 

their voltages with the rms values of 9V and 15V, respectively. All in all, if 

you want to apply KVL in AC circuits, apply it to the phasors of its voltages. 

By the way, KVL is valid as well when the voltages are specified as functions 

of time. This is true for any type of circuits. 
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6.10  Second Order RLC Circuit

Consider determining v(t) in the following series RLC circuit:

11 V
7 F v(t)

i (t)

2 V

Ω500

t = 0

3 5 HΩ

t = 0

Both switches are in the position shown for t < 0 & are in the other positions for t ≥ 0.

11
7 v(t)

2

5003 5

dv (t)
d t7

i (t) = 0
For t < 0
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Taking the switches to be in the positions shown starting from t = − ∞, the 

voltages and currents will have settled down to constant values for 

practically all t < 0 and the important voltages and currents are given by:

dv (t)
d t7 = 0

v(t) = 2
11

7
2

5003 5

0

Mathematically:

( ) 0,2 <= ttv & ( ) 0,0 <= tti
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dv (t)
d t7

11
7 v(t)

2

5003 5

d v (t)
d t35 2

2dv (t)
d t21For t ≥ 0

2

2 )()()(
dt

tvdLC
dt

tdvC
dt
dL

dt
diLtvL =⎟

⎠
⎞

⎜
⎝
⎛==

Applying KVL:
( ) ( ) ( ) ( ) 0,112135 2

2
≥==++ ttutv

dt
tdv

dt
tvd

Due to the presence of 2 energy storage elements, the governing d.e. is a 

second order one and the general solution is

( ) ( ) ( ) 0, ≥+= ttvtvtv trss
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(1) Steady State Response

( ) 0,11 ≥= ttu ( ) 0, ≥= tktvss

( ) ( ) ( ) 11002135 2

2
=++=++ ktv

dt
tdv

dt
tvd

ss
ssss ( ) 0,11 ≥= ttvss

(2) Transient Response

( ) ( ) ( )
( )

1213521352135 2012
2

2
++=++=++ zzzzztv

dt
tdv

dt
tvd

z
dt

tdv
tr

trtr

tr  by replaced 

( ) ( ) ( ) 0,02135 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

( ) 0,06.0
2

54.0
121

21 ≥+=+= −− tekekekektv tttztz
tr

( )( )
( ) ( ) 06.0,54.0

352
1721

352
13542121,

2

21 −−=
±−

=
−±−

=zz
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Complete Solution (Response)

( ) ( ) ( ) ⎩
⎨
⎧

≥++
<

=
⎩
⎨
⎧

≥+
<

= −− 0,11
0,2

0,
0,2

06.0
2

54.0
1 tekek

t
ttvtv
t

tv tt
trss

To be determined

To determine k1 and k2, voltage continuity for the capacitor and current 

continuity for the inductor have to be used.

The voltage across the capacitor at t = 0:

9211)0( 2121 −=+⇒=++= kkkkv

⎩
⎨
⎧

≥−−
<

== −− 0),06.054.0(7
0,0)(7)( 06.0

2
54.0

1 tekek
t

dt
tdvti tt

The current passing through the inductor at t = 0:

006.054.0006.054.0)0( 2121 =+⇒=−−= kkkki

8
9

1 =k

8
81

2 −=k
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General RLC Circuit:

7

5003 5

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t21 )( tvtr

R L

C

dt
tdvCti tr )()( =

RC LC

By KVL: ( ) ( ) ( ) 0,02

2
≥=++ ttv

dt
tdvRC

dt
tvdLC tr

trtr

for t ≥ 0

( ) ( ) ( )
( )

0112
2

2
=++=++ RCzLCztv

dt
tdvRC

dt
tvdLC

z
dt

tdv
tr

trtr

tr  by replaced 

LC
LCRCRCzz

2
4)(,

2

21
−±−

=
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Recall that for RLC circuit, the Q factor is defined as

RC
LC

LCR
L

LCR
L

R
LfQ ====

π
ππ

2
122 0

L
QRR

LC
RC
LCRCRC

LC
LCRCRCzz

2
41

2
)(

41

2
4)(,

222

21
−±−

=
−±−

=
−±−

=

Thus,

=

two real roots if 1− 4Q2 > 0 or Q2 < 1/4 or Q < 1/2

two identical roots if 1− 4Q2 = 0 or Q = 1/2

two complex conjugate roots if 1− 4Q2 < 0 or Q > 1/2
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6.11  Overdamped Response

Reconsider the previous RLC example, i.e.,

7
2

5003 5

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t21 )( tvtr

( ) ( ) ( ) 0,02135 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

2
12817.0

21
35

<===
RC
LCQ

( )( )
( ) ( ) 06.0,54.0

352
1721

352
13542121,

2

21 −−=
±−

=
−±−

=zz
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( ) 0,06.0
2

54.0
121

21 ≥+=+= −− tekekekektv tttztz
tr

k1

− t t 0≥,ek2
0.06

0 t

k2

− t t 0≥,ek1
0.54

0 t

0 t

k1 k2+
)( t =vtr

− tek1
0.06 − t t 0≥,ek2

0.54+

Due to its exponentially decaying 

nature, the response itr(t) and the RLC 

circuit are said to be overdamped.

Typically, when an external input is 

suddenly applied to an overdamped

system, the system will take a long time 

to move in an exponentially decaying 

manner to the steady state position.

The response is slow and sluggish, and 

the Q factor is small. 
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6.12  Underdamped Response

7
2

5000.03 5

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t0.21 )( tvtr

2
128

703.0
5

>==Q ( ) ( ) ( ) 0,021.035 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

( )( )
( ) ( ) 17.0003.0

352
96.13921.0

352
135421.021.0,

2

21 jzz ±−=
−±−

=
−±−

=

2)0( =trv
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( ) tztz
tr ekektv 21

21 += ( ) ( ) tjtj ekek 17.0003.0
2

17.0003.0
1

−−+− +=

( ) ( ) tjtj
tr ejkejkti 17.0003.0

2
17.0003.0

1 )17.0003.0(7)17.0003.0(7)( −−+− −−++−=

( )

0)(19.1042.0

)(19.1)(021.0

)17.0003.0(7)17.0003.0(70

21

2121

21

=−+−=

−++−=

−−++−=

kkj

kkjkk

jkjkitr

0353.021 jkk −=−

( ) 20 21 =+= kkvtr
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( ) tztz
tr ekektv 21

21 += ( ) ( ) tjtj ekek 17.0003.0
2

17.0003.0
1

−−+− +=

( )tjtjt ekeke 17.0
2

17.0
1

003.0 −− +=

( ) ( )[ ] ( ) ( )[ ]{ }tjtktjtke t 17.0sin17.0cos17.0sin17.0cos 21
003.0 −++= −

( ) ( ) ( ) ( )[ ]tkkjtkke t 17.0sin17.0cos 2121
003.0 −++= −

( ) ( )[ ] 0,17.0sin0353.017.0cos2003.0 ≥+= − ttte t

( ) 0,117.0cos2 003.0 ≥−= − tte t o

( ) ( )⎥⎦
⎤

⎢⎣

⎡
+

+
+

+= − tte t 17.0sin
0353.02

0353.017.0cos
0353.02

20353.02
2222

22003.0

( ) ( )[ ] 0,17.0sin1sin17.0cos1cos2 003.0 ≥+= − ttte t oo
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t0

− t t 0≥,e 0.003

Frequency = 0.17

)( t =vtr t 0≥,− te 0.003 cos(0.17t )

2
2

2 _ 1o

When an external input is applied to an 

underdamped system, the system will 

oscillate. The oscillation will decay expon-

entially but it may take some time for the 

system to reach its steady state position.

Underdamped systems have large Q 

factors and are used in systems such as 

tune circuit.  However, they will be not be 

suitable in situations such as car 

suspensions or instruments with moving 

pointers.

It will take too long for the pointer to 

oscillate and settle down to its final position 

if the damping system for the pointer is 

highly underdamped in nature.

Since this is an exponentially decaying 

sinusoid, the response vtr(t) and the RLC 

circuit are said to be underdamped.
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6.13  Critically Damped Response

7
2

5005

t 0≥

)( tvtr

0

d
d t35 2

2 )( tvtrd
d t

)( tvtr

20
7

140

d
d t

)( tvtr7

2
1

7720
5

==Q

( ) ( ) ( ) 0,014035 2

2
≥=++ ttv

dt
tdv

dt
tvd

tr
trtr

35
1, 21 −=zz

( ) ( ) ( ) 2)0( 1
35

2121
1 ==⇒+=+=

−
kvetkketkktv tr

t
tz

tr

( ) ( )
35
20

35357
0

2

0

3521
2

0

35
21 =⇒=⎟

⎠
⎞

⎜
⎝
⎛ −−=+=

=

−

=

−
ketkkketkk

dt
di

t

t

t

t
tr
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Example: The switch in the circuit shown in the following 

circuit is closed at time t = 0. Obtain the current i2(t) for t > 0.

    A          10 Ω     B      C

       t ≥ 0          i2
  5 Ω

                 100 V   0.01 H                    5 Ω

 i1

   F          E                          D

After the switch is closed, the current passing through the source 

or the 10Ω resistor is i1 + i2. Applying the KVL to the loops, 

ABEFA and ABCDEFA, respectively, we obtain
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( )
( ) 100510

10001.0510

221

1
121

=++

=+++

iii
dt
diiii

( ) 15/10100 12 ii −=

3333833 1
1 =+ idt

di

( ) A0.4833/33331 ==∞i 0.4)( 833
1 += − teti α

( ) 001 =i 0.4−=α ( )teti 833
1 10.4)( −−=

teti 833
2 67.20.4)( −+=
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Chapter 7: Magnetic Circuit
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7.1  Magnetic Field and Material

In electrostatic, an electric field is formed by static charges. It is described in 

terms of the electric field intensity. The permittivity is a measure of how easy 

it is for the field to be established in a medium given the same charges.

Similarly, a magnetic field is formed by moving charges or electric currents.  

It is described in terms of the magnetic flux density B, which has a unit of 

tesla(T) = (N/A)m. The permeability μ is a measure of how easy it is for a 

magnetic field to be formed in a material.  The higher the μ, the greater the 

B for the same currents.

In free space, μ is mH104 7
0

−×= πμ . The relative permeability μr is

0μ
μμ =r

Most "non-magnetic" materials such as air and wood have 

μr ≈ 1. However, "magnetic materials" such as iron and steel 

may have μr ≈ 1000.
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7.2  Magnetic Flux ---- Consider the following magnetic system:

N turns

Magnetic material

i

Permeability μ

Cross sectional area A

Average length l

If μ is large, almost 

the entire magnetic 

field will be 

concentrated inside 

the material and 

there will be no flux 

leakage.
The distribution of flux density B or field lines will be

i
Total flux Φ

Field lines
form closed paths

N turns

Since the field lines form 

closed paths and there 

is no leakage, the total 

flux Φ passing through 

any cross section of the 

material is the same.
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Assuming the flux to be uniformly distributed so that the flux density B have 

the same value over the entire cross sectional area A:

Total flux Φ

Cross sectional area A

Same flux densityB = Φ
A

A
B Φ

= with units ( ) ( )
2m
WbweberTtesla =
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7.3  Ampere's Law

The values of Φ or B can be calculated using Ampere's law:

Line integral of       along any closed path = current enclosed by path
μ
B

N turns

i

Path length l

Cross sectional area A

Permeability μ

Line integral of       along dotted path
μ
B

Φ⎟
⎠

⎞
⎜
⎝

⎛==
A
lBl

μμ

= Current enclosed by dotted path Ni
Φ⎟

⎠

⎞
⎜
⎝

⎛=
A
lNi

μ
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Note that the ratio H = B/μ is called the magnetic field 

intensity and Ampere's law is usually stated in terms of 

H.  Stating the law in terms of H has the advantage that 

the effects of magnetic materials, which influence μ, is 

not in the main equation.  In a certain sense,  

characterizes the magnetic field due to only current 

distributions. By multiplying H with μ to end up with the 

most important flux density B, the effect of the medium is 

taken into consideration.

Φ⎟
⎠

⎞
⎜
⎝

⎛=
A
lNi

μ
i

l
N

Al
ANi

A
BH ⎟

⎠
⎞

⎜
⎝
⎛==

Φ
==

μ
μ

μμ
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B

H

.current   the tolpropotiona is   which, ii
l
NH ⎟

⎠
⎞

⎜
⎝
⎛=

μ
BH =

0

Saturated

Saturated
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7.4  Magnetic and Electric Circuits --- A more complicated example:

N turns

i

Area A1

Average length l2

Average length l1

Area A2

Permeability μ1

Permeability μ2

N turns

i

Area A2

Total flux Φ

Flux density = ΦB2 A2

Area A1

Total flux Φ

Flux density = ΦB1 A1

Assuming no flux 
leakage and 
uniform flux 
distribution, the 
field lines, total 
flux and flux 
densities are:

Ampere’s Law:
Line integral of       
along any closed 
path = current 

enclosed by path

μ
B
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N turns

i

Same total flux Φ
Area A1Average length l 1

Permeability μ1 Flux densityB1

Line integral =
l 1

μ1

B1 = A1

l1
μ1

Φ

Area A2Average length l2

Permeability μ2 Flux densityB2

Line integral =
l2

μ2

B2 = A2

l2
μ2

Φ

Average length l2            Area  A2

Permeability μ2     Flux density B2

Line integral = Φ=
22

2

2

22

A
lBl

μμ

Φ=
22

2

2

22

A
lBl

μμ

Average length l1           Area  A1

Permeability μ1     Flux density B1

Line integral = Φ=
11

1

1

11

A
lBl

μμ

Line integral of      along entire path
μ
B Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+=

22

2

11

1

2

22

1

11

A
l

A
llBlB

μμμμ

= Current enclosed by path = Ni

Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

22

2

11

1

A
l

A
lNi

μμ
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Note that the above process of calculation magnetic flux is the same 

as the calculation of current in the following electric circuit:

Ni

Φ
1= A1

l1
μ1

2= A2

l2
μ2

1Φ 2Φ

Φ

ℜ ℜ

ℜℜ

From KVL, the same equation can be obtained:

Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=ℜΦ+ℜΦ=

22

2

11

1
21 A

l
A

lNi
μμ

 

This is not surprising because the two basic laws in electric circuits are 

equivalent to the two basic laws in magnetic circuits and the following 

quantities are equivalent:
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 Electric circuits Magnetic circuits

KCL:
total current entering a closed
surface equals total current
leaving the surface

Flux lines form closed path:
total flux entering a closed surface
equals total flux leaving the surface

KVL:
sum of voltages along a closed
path equals zero

Ampere's law:
integral or sum of B μ  ("magnetic
voltage drops") along a closed path
equals currents enclosed ("magnetic
voltage sources")

Voltage Ni  (magnetomotive force or mmf)

Current Φ  (flux)

Resistance ℜ =
l
A
1

1 1μ
 (reluctance)
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Thus, provided there is no flux leakage and uniform distribution of flux across 

any cross section, the parallel magnetic circuit with reluctances as indicated:

N turns

i

Φ1 Φ2

2

1

53

4

6 7

ℜ ℜ

ℜℜ

ℜℜ

ℜ

N i

Φ1 Φ2
2ℜ 4ℜ

7ℜ6ℜ

5ℜ3ℜ

1ℜ

equivalent one to the other

You can use the DC

circuit techniques to

solve this problem.
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7.5  Inductance --- Consider the magnetic circuit:

N turns

Permeability μ

Area A

Average length l

i )(t

Assuming no flux leakage and uniform flux distribution, the reluctance and 

the flux linking or enclosed by the winding is

A
l

μ
 =ℜ ( ) ( )

ℜ
==Φ

 
tNit

reluctance
mmfand
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From Faraday's law of induction, a voltage will be induced in the winding 

if the flux linking the winding changes as a function of time. This induced 

voltage, called the back emf (electromotive force) will attempt to oppose 

the change and is given by

( ) ( ) ( )
dt

tdiN
dt

tdNtv
ℜ

=
Φ

=
 

2
i )( tN=Φ )( t

Flux linking winding

N turns

i )( t

ℜ

Voltage induced

N=v )( t Φ )( td
d t =

i )( td
d t

N 2

ℜ
( ) ( ) ( )

dt
tdiN

dt
tdNtv

ℜ
=

Φ
=

 

2

=

i (t)

Lv (t) = L d
d t
i (t) N 2

ℜ

An equivalent inductor:

The inductance
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The following summarize the main features of an ideal magnetic 

system with no flux leakage:

Number of turns N

Current at time t ( )ti

Reluctance ℜ 

MMF at time t ( )tNi

Flux at time t ( ) ( )
ℜ

=Φ
 

tNit

Back emf at time t ( ) ( )
dt

tdNtv Φ
=

Inductance
ℜ

=
2NL

Energy stored in
magnetic field at

time t

( ) ( ) ( )[ ] ( )
222

222 ttNitLite Φℜ
=

ℜ
==
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7.6  Force --- Consider the magnetic relay:

turns

8 cm

7 cm

2 cm2

0.1 cm

Permeability
μ04000

300

5 A

Air gap permeability μ0

Movable armature
held stationary

by spring

With no flux 
leakage and 
uniform flux 
distribution 
(even in air 
gaps)

Reluctance of entire magnetic material

( )
( ) ( ) 0

24
0

2
0 8

98.2
m1024000

m298.0
cm24000

cm1.08cm72
μμμ

=
×

=
−+

= −

( )
( ) ( ) 00

2
0

10
cm1
1.0

cm2
cm1.02

μμμ
===

Reluctance of two air gaps

Total reluctance
000

375.1010
8

3
μμμ

 =+=ℜ=

Flux

( )

( ) Wb10182.0104145

375.10
5300

37
0

−− ×=×=

=
ℜ

=Φ

π

μ 
mmf
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Due to the much smaller permeability, the reluctance of the air gaps is much 

larger than that of the entire magnetic material. The inductance and energy 

stored in the system are

( ) ( ) mH9.10
375.10
300

0

22

==
ℜ

=
μ 

turns of no.LInductance:

Energy stored in magnetic field  =
( ) J137.0

2
10182.0375.10

2 0

232
=

×
=

Φℜ −

μ
 

To determine the force of attraction f on the armature, suppose the 

armature moves in the direction of f by δl so that the total reluctance 

changes by δℜ.  Also, suppose the current is changed by δi but the flux is 

not changed:
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turns300

5 + δ i

0.1 cm − δ l

fForce

2 cm2

Same flux Φ as before

As there is no change in flux 

linkage (which will be the case if 

the magnetic system is close to 

saturation), there is no back emf

and there is no energy supplied 

by the electrical system. Then

Work done by armature = f (δl)

Increase in energy stored in magnetic field

( )
222

222 Φℜ
=

Φℜ
−

Φℜ+ℜ
=

 δ  δ

From energy conservation:

( )
l

flf
δ

 δ δδ ℜ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
−=⇒

Φℜ
−=

22

22

For our example

( ) ( ) 0

4

2
0

2
0

10
cm2
cm1.0

cm2
cm1.02

μ
δ

μμ
δ δ ll

−=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=ℜ

( )
( ) N132

1042
10182.010

2
10

2 7

234

0

242
=

×
×

=
Φ

=
ℜ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
−= −

−

πμδ
 δ

l
f
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7.7  Mutual Inductor
Reluctance ℜ

N2N1

Flux Φ (t)

i1(t) i2 (t)

v2 (t)v1(t)

Primary
winding

Secondary
winding

The two dots are 

associated with the 

directions of the 

windings. The fields 

produced by the two 

windings will be 

constructive If the 

currents going into 

the dots have the 

same sign.

Total mmf = ( ) ( )tiNtiN 2211 +

( ) ( ) ( )
ℜ
+

=
ℜ

=Φ=
  

tiNtiNt 2211mmftotalTotal flux

( ) ( ) ( ) ( )
dt

tdiNN
dt

tdiN
dt

tdNtv 2211
2

1
11 ⎟

⎠
⎞

⎜
⎝
⎛

ℜ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ℜ

=
Φ

=
  

( ) ( ) ( ) ( )
dt

tdiN
dt

tdiNN
dt

tdNtv 2
2
2121

22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ℜ

+⎟
⎠
⎞

⎜
⎝
⎛

ℜ
=

Φ
=

  
ℜ

•
ℜ

=
ℜ

2
2

2
121 NNNN
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Inductance of primary winding on its own
 ℜ

==
2

1
1

NL

Inductance of secondary winding on its own
 ℜ

==
2

2
2

NL

( ) ( ) ( ) ( ) ( )
dt

tdiM
dt

tdiL
dt

tdiLL
dt

tdiLtv 21
1

2
21

1
11 +=+=

( ) ( ) ( ) ( ) ( )
dt

tdiL
dt

tdiM
dt

tdiL
dt

tdiLLtv 2
2

12
2

1
212 +=+=

M
i1(t) i2 (t)

=
2

ℜ

= Ld
d t
i1(t)

v2(t) 2+M d
d t
i2(t)

= L d
d t
i1(t)

v1(t) 1 + M d
d t
i2(t) L1 L2

L1
N1 , =

2

ℜL2
N2 , =M 2 L1 L2 for no flux leakage and perfect coupling

where                     is called the mutual inductance between the two 

windings. Graphically,
21LLM =
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In an ac environment when the currents i1(t) and i2(t) are given by:

( ) ( )[ ] ( )[ ]tjeIItIti ωω 2ReArgcos2 1111 =+= ( ) ( )[ ]tjeIti ω2Re 22 =

( ) ( ) ( ) ( )[ ] ( )[ ]

( )[ ] ( )[ ]
( )( )[ ]tj

tjtj

tjtj

eMIjILj

eIjMeIjL

dt
eIdM

dt
eIdL

dt
tdiM

dt
tdiLtv

ω

ωω

ωω

ωω

ωω

2Re

2Re2Re

2Re2Re

211

211

21
1

21
11

+=

+=

+=+=

2111 MIjILjV ωω +=

( ) ( )( )[ ]tjeILjMIjtv ωωω 2Re 2212 += 2212 ILjMIjV ωω +=

I1
M

L1 L2

I2

1V = L1jω I1 + jω I2M 2V = L2jω I1 + jω I2M
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7.8  Transformer

Now consider connecting a mutual inductor to a load with impedance ZL

I1
M

L1 L2

I2

1V = L1jω I1 + jω I2M 2V = L2jω I1 + jω I2M ZL I2ZL

 ℜ
=

2
1

1
NL

 ℜ
=

2
2

2
NL

21LLM =

( )
( )

ratio turn ,n
N
NN

L
L

ILILL
ILILL

ILLIL
ILILL

MIIL
ILMI

V
V

==
ℜ
ℜ

==

+
+

=

+
+

=
+
+

=

1

2
2

1

2
2

1

2

22111

22112

22111

22121

211

221

1

2

 Ν
 

22122 ILjMIjIZV L ωω +=−=

221 )( IZLjMIj L+=− ωω

if

n
L
L

LL
L

Mj
Lj

Mj
ZLj

I
I L

−=−=−=

−≈
+

−=

1

2

21

2

22

2

1

ω
ω

ω
ω

LZLj >>|| 2ω
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I1

V1

1 : n

V1n

I1
n

Voltages and currents of the primary

and secondary windings of the ideal

transformer with 

Equivalent Load: A load connected

to the secondary of a transformer 

can be replaced by an equivalent

load directly connected to the primary

I1

V1

1 : n

V1n

I1
n

ZL

2
1

11
1 n

Z
I
VZ

n
InV L

L =⇒=

I1

V1
ZL

n2

LZLj >>|| 2ω
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Annex G.7. A Past Year Exam Paper

Appendix C.4 will be attached to this year’s paper!
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Q.1 (a) Using nodal analysis, derive (but DO NOT simplify or solve) the 

equations for determining the nodal voltages in the circuit of Fig. 1(a).

20

4010

Fig. 1(a)

10

84 2

8

10

Numbering the nodes in the circuit by 1, 2 and 3 from left to right, and 

applying KCL:

0
10

10
108

84 31211 =
−−

+
−

+
− vvvvv

0
401020

32122 =
−

+
−

+
vvvvv

0
10

102
40

1323 =
+−

++
− vvvv

v1

v2
v3
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(b) Using mesh analysis, derive (but DO NOT solve) the matrix 

equation for determining the loop currents in the circuit of Fig. 1(b). 

Note that the circuit has a dependent source.

15

9

Fig. 1(b)

v12 6v 2i1i 3i

Relating loop to branch currents and applying KVL:

vi =3

( ) ( )
062712

01296

321

12232

=−+−⇒
=−++−

iii
iiiii

( )211215 iiv −==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
−

15
15
0
0

012120
0001
627120
1001

3

2

1

i
i
i
v
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(c) Determine the Thevenin or Norton 

equivalent circuits as seen from 

terminals A and B of the network of 

Fig. 1(c). What is the maximum power 

that can be obtained from these two 

terminals?

Fig. 1(c)

20

A

B
25120 20

Replacing all independent sources 

with their internal resistances, the 

resistance across A and B is

102020 || ==R

Using superposition, the open 

circuit voltage across A and B is

310

20
2020

2025
2020

20120

=

⎟
⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
=ABv

310

10
A

B

The maximum power ( )104
3102

=p
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Q.2 (a) A 5 kW electric motor is operating at a lagging power factor of 0.5.  

If the input voltage is 

determine the apparent power, and find the phasor and sinusoidal 

expression for the input current.

( ) ( )010sin500 += ttv ω

Letting V and I to be the voltage and current phasors, the apparent power is

||||VA10000
5.0

5000 IVVI ===

( ) 000 809010

2
500

2
500 jj eeV −− ==where and 220

500
21000010000

===
V

I

( ) ( ) ( )5.0cosargarg 1−−=− VI

( )5.0cos80 10

220
−−−= jeI

( ) ( )
( )5.0cos80cos40

5.0cos80cos2220
10

10

−

−

−−=

−−=

t
tti

ω

ω
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(b) In the circuit of Fig. 2(b), the 

current i(t) is the excitation and the 

voltage v(t) is the response. 

Determine the frequency response 

of the circuit.  Derive (but DO NOT 

solve) an equation for finding the 

"resonant" frequency at which the 

frequency response becomes 

purely real.

Fig. 2(b)

v(t)i (t)

1

0.1

1

Using phasor analysis

( )

21.01
1.0

11.0

1.01

ωω
ω

ω
ω

ω
ω

−+
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

+
==

j
j

j
j

j
jI

VfH

The phase response is

( )[ ] ⎟
⎠
⎞

⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛= −−

2
11

1
1.0tan

1.0
tanarg

ω
ωωfH

The resonant frequency is therefore given by

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
= −−

2
11

1
1.0tan10tan
ω
ωω
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(c) A series RLC resonant circuit is to be designed for use in a communication 

receiver.  Based on measurements using an oscilloscope, the coil that is 

available is found to have an inductance of 25.3mH and a resistance of 2 Ω. 

Determine the value of the capacitor that will give a resonant frequency of 

1.kHz.  If a Q factor of 100 is required, will the coil be good enough?

F1
1000103.252

1
2

1
2

1
2

3

2

0
0 μ

πππ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

×
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⇒=

−fL
C

LC
f

( ) 5.79
2

103.2510002 3
0 ===

−πω
R

LQ

Since this is less than 100, the coil is not good enough.
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Q.3 (a) In the circuit of Fig. 3(a), the switch has been in the position shown 

for a long time and is thrown to the other position for time t ≥ 0. Determine 

the values of i(t), vC(t), vR(t), vL(t), and di(t)/dt just after the switch has been 

moved to the final position?

R

Fig. 3(a)

i (t)

2

t = 0
v (t)R v (t)L

v (t)C C

L

1

Taking all the voltages 

and currents to be 

constants for t < 0:

( ) ( ) 0==
dt

tdvCti C

( ) ( ) 0== tRitvR

( ) ( ) 0==
dt

tdiLtvL

( ) ( ) ( ) ( ) 11 =⇒=++ tvtvtvtv CLRC

Applying continuity for i(t) and vC(t):

( ) 00 =i ( ) 10 =Cv( ) ( ) 000 == RivR

( ) ( ) ( ) ( ) 102000 =⇒=++ LLRC vvvv

( ) ( ) ( ) ( )
LL

v
dt

tdi
dt

tdiLtv L

t
L

10

0

==⇒=
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(b) For vS(t) = cos(t+1), derive 

(but DO NOT solve) the 

differential equation from which 

i(t) can be found in the circuit of 

Fig. 3(b). Is this differential 

equation sufficient for i(t) to be 

determined?

R

Fig. 3(b)

i (t)
v (t)S C L

( ) ( )
dt

tdiLtvL =

( ) ( ) ( ) ( )
2

2

dt
tidCL

dt
tdvC

dt
tdvCti LC

C ===

( ) ( ) ( ) ( ) ( )ti
dt

tidCLtititi CR +=+= 2

2

( ) ( ) ( ) ( )tRi
dt

tidRCLtRitv RR +== 2

2

Applying KVL:

( ) ( ) ( )
( ) ( ) ( ) ( )1cos2

2

+=++=

+=

t
dt

tdiLtRi
dt

tidRCL

tvtvtv LRS

This is not sufficient for i(t) to be determined.
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(c) The differential equation characterizing the current i(t) in a certain RCL 

circuit is

Determine the condition for R, L and C such that the circuit is critically 

damped.

( ) ( ) ( ) jte
CL

ti
dt

tdi
CRdt

tid
=++

1
2

2

The characteristic equation for the transient response is

012 =++
CLCR

zz

2

411
22

2,1
CLRCCRz

−±−
=

Thus, the circuit will be critically damped if

CLRC
41

22 =
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Q.4 (a) Determine the mean and rms values of the voltage waveform in 

Fig. 4(a).  If this waveform is applied to a 20 Ω resistor, what is the power 

absorbed by the resistor?

Fig. 4(a)

40

0 2 4 6 second8 10

Volt

One period of the waveform is

( )
⎩
⎨
⎧

<≤
<≤

=
42,0
20,20

t
tt

tv

10
4

2
220

4

20
2

2

0 =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

== ∫ tdt
vm

( )
3

800
4

3
2400

4

20
3

2

0

2

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

== ∫ dtt
vms

3
800

=rmsv ( ) 3
40

203
800

20

2

=== rmsvp
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(b) In the circuit of Fig. 4(b), a transformer is used to couple a loudspeaker 

to a amplifier. The loudspeaker is represented by an impedance of value 

ZL=.6 + j 2, while the amplifier is represented by a Thevenin equivalent circuit 

consisting of a voltage source in series with an impedance of ZS = 3 + j a. 

Determine the voltage across the loudspeaker. Hence, find the value of a

such that this voltage is maximized. Will maximum power be delivered to the 

loudspeaker under this condition?

Fig. 4(b)

1 : 2

10

Amplifier Loudspeaker

ZS

ZL
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If V is the voltage across the loudspeaker, the currents in the primary & secondary 

windings are

LZ
VI =2

LZ
VII 22 21 ==

21
VV =The primary voltage is

Applying KVL to the primary circuit:
2

210 11
V

Z
VZVZI

L

S
S +=+=

( )
( )2418
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341
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2
12

10
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+
=

+
=
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j

j
aj

Z
ZV

L

S

For the magnitude of this to be maximized, the denominator has to be minimized:

( )
( ) ( )[ ]2418min

2418
2620max ++=⎥

⎦

⎤
⎢
⎣

⎡
++

+ aj
aj

j

2
1

4
2

−=−=a

Maximum power will be delivered since power is proportional to |V |2.
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Method 2: The given circuit is equivalent to the following one,

Then, we have

The rest follows …...

10

3 + j a

6 + j 2
4V1
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( )
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=⎟
⎠
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⎜
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