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1. Introduction to Part 2




1.1 Course Outline

e Revision: General introduction to control systems; demonstration of

actual control example; review of basic linear system theory.

e Properties of linear quadratic regulation (LQR) control; returned
differences; guaranteed gain and phase margins; Kalman filter;

linear quadratic Gaussian (LQG) design technique.

e Introduction to modern control system design; H, and H, optimal
control; solutions to regular and singular H, and H_ optimal control

problems; solutions to some robust control problems.
e Robust & perfect tracking (RPT) control technique.

e Loop transfer recovery (LTR) design technique.
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1.2 Reference Textbooks

B. M. Chen, Z. Lin, Y. Shamash, Linear Systems Theory: A Structural Decomposition Approach,
Birkhauser, Boston, 2004.

F. L. Lewis, L. Xie and D. Popa, Optimal and Robust Estimation, CRC Press, 2007.

A. Saberi, P. Sannuti, B. M. Chen, H, Optimal Control, Prentice Hall, London, 1995.

B. M. Chen, Robust and H_ Control, Springer, New York, 2000.

A. Saberi, B. M. Chen, P. Sannuti, Loop Transfer Recovery: Analysis and Design, Springer,
London, 1993.

J. M. Maciejowski, Multivariable Feedback Design, Addison Wesley, New York, 1989.

G. Cai, B. M. Chen, T. H. Lee, Unmanned Rotorcraft Systems, Springer, New York, 2011.
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EE5102/6102 PART 2 ~ PAGE 4 BEN M. CHEN, NUS ECE



1.3 Homework Assignments

There will be three (3) homework assignments (for EE5102, it is to design
control systems for an HDD servo system, whereas for EE6102, it is to
design a flight control system for an unmanned helicopter), which require
computer simulations. All students are expected to have knowledge in
MATLAB™ (Control Toolbox and Robust Control Toolbox) and SIMULINK™
after completing these assignments. Homework assignments are to be

marked and counted as a certain percentage in your final grade.

¢ EE5102 students can choose to do the EE6102 assignments instead!

% You are welcome to do both assignments if you like ©
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1.4 Final Grades for Part 2

4 N

Final Grade = 70% x Final exam marks for Part 2 (max = 50) + ...

30% x Homework assignments marks (max = 50)

\_ /
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2. Revision: Basic Control Concepts

A /
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2.1 What is a control system?

: — Information
m\ aircraft, missiles, b h
| i about the
Desired S to the economic systems, S
Performance .
; system cars, etc
REFERENCE RROR OuTPUT /

\_
System to be controlled

.
[ concater |-

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key Issues: (1) How to describe the system to be controlled? (Modeling)

(2) How to design the controller? (Control)

EE5102/6102 PART 2 ~ PAGE 8 BEN M. CHEN, NUS ECE



2.2 Some Control Systems Examples

REFERENCE

o]

Desired Government
Performance Policies Economic System
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2.3 Uncertainties, Nonlinearities and Disturbances

There are many other factors of life have to be carefully considered when

dealing with real-life problems. These factors include:

R (s) E(s)

disturbances [_

\ 4

A 4

= T_ K(s)

U (s)

\ 4

uncertainties
: noises
R
G(s) ; -
; Y (s)
nonlinearities
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2.4 Control Techniques - A Brief View

The following is my personal view on the clarification of control techniques...

>

Classical control

PID control, developed in 1940s and used heavily for in industrial processes.

Optimal control

Linear quadratic regulator control, Kalman filter, H, control, developed in 1960s to
achieve certain optimal performance.

Robust control

H_ control, developed in 1980s & 90s to handle systems with uncertainties and
disturbances and with high performances.

Nonlinear control

Developed to handle nonlinear systems with high performances.
Multi-agent systems & cooperative control

It is a hot topic at moment.

Intelligent control (with a link to deep learning...)

Knowledge-based control, adaptive control, neural and fuzzy control, etc., developed
to handle systems with unknown models.
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ANUS

"Wy Wational University

of Singapore

2.5 An Accident due to Control Failure

Respect the

The Chernobyl Story

Finally, to make this point most dramatically, let me recount
the story of the nuclear accident at Chernobyl (Figure 2). On 28
April 1986, news came out of Ukraine that a nuclear power
plant had destroyed itself two days earlier and had released
significant amounts of radioactive contaminants over a wide
area. Short of nuclear war or impending long-term climate
changes, this kind of accident certainly looms large in the pub-
lic mind as one of the more serious threats to our well being.

Gunter Stein

k.

Whether we choose to recognize it or not, control played
a major role in that accident. The plant’s hardware did not
fail. No valve hung up, no electronic box went dead, and no
metallurgical flaw caused a critical part to break. Instead,
the reactor control system systematically drove the plant
into an operating condition from which there was no safe
way to recover. This is true, at least, if we count the control
system’s hardware, its human operators, and its operating
policies as part of the system.

PP
Figure 2. Chernobyl nuclear power plant shortly after the accident on 26 April
1986.

We will consider unstable to be synonymous with dangerous.
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2.6 An Actual Control System Design Example

Avionic System

- Helion .
Bare Helicopter
Command Control Signal i -

_/_./
Real-time Data ‘ A
I
I

Measurement 1 Manual

i Operation

I
i

The first fully autonomous unmanned
‘ helicopter constructed at NUS i
Ground Station RC Joystick
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Modeling - Data Collection

Data Collection Procedure: | M_AMWWAMWWWW y
1). Chirp-like signal issued | W—JMMMMNWWJ’WMWWW |

in single channel; O B e S T

2). Chirp-like signal issued “T i
o -
i 1 1 h l . %% 5:]15 slu 55 &= = séu a&las Eel'u o 560
in multi-channels; ..
5 T T | T T T | | T
3). Step-like and random T e A Y WW\I\NUV WIRRIE ToaT R
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signals issued for validation. Pt £ Sk 3 ) g
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|
{ I DI |

Body-frame ¥-axis Velocity U (mfs)

Chirp-like signal and corresponding responses
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Modeling - Test Flights

Flight testing for modeling purpose
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Modeling - Model Structure

Hover Model of HeLion

Bu
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Physical meanings of the plant parameters

Table 6.1 State and input variables of the flight dynamics model

Variable Physical description Unit
P,—(xy, vy zy) Position vector in the local NED frame m
w=(u v w) Local NED velocity projected onto the body frame m/s
mgm —(p q r) Angular velocity of the local NED respect to the body frames rad/s
.0, 1] Euler angles rad
as, bs Tip-path-plane (TPP) flapping angles of the main rotor rad
Oped.int Intermediate state of yaw rate feedback controller NA
Olat Normalized aileron servo input (—1, 1) NA
N Normalized elevator servo input (—1, 1) NA
Ol Normalized collective pitch servo input (—1, 1) NA
Oped Normalized rudder servo input (—1, 1) NA
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Modeling - Parameter Identification

1). Angular rate dynamics;

3). Yaw dynamics;

2). Horizontal velocity dynamics;

4). Heave dynamics.

| 040 0 A\ o lo -am -am o 1 oo 0 0
L o) 0 o Lo o 0 oms | o 0 0
—————— [~ 4
| _14m ~0.427, 8 0 0 0 5.05 36020 0 0 0
I\-u.ugs ~0.543) 0 0 0 0 17245 -s881 0 0 0
0 0 1 0 0 0 0 0 0 0 0
A=10 0 0 1 00 0 0 0 0 0
0 0 0 -1 0 0 ~T3l 4021 0 0 0
0 0 -1 0 0 0 o801 =73/ 0 0 0
0 0 0 0 0 0 I_m;? O T =0l =030 0
_______________ Lo
0 0 -0 0 0 0 0 0 0 -5 -6
0 0 0 o 0 0 0 0 0 279 -1L112)
—-— \ __________________
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Flight Control System Structure

Outer-loop Inner-loop
Control

v

Mission
Planning —| Control

v
v

v

\ 4

v

Inner-loop control is to stabilize the overall aircraft and to properly control its
attitude.

The outer-loop control is to control the position of the aircraft and at the same time
to generate necessary commands for the inner-loop control system...

EE5102/6102 PART 2 ~ PAGE 19 BEN M. CHEN, NUS ECE



NUS

National University
of Singapore

NUS research team & unmanned systems platforms...

s

LEIETTT

srmrm
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Video demo of a fully automatic UAV flight control systems

Indoor Navigation & Control Firefighting Inside Forest Navigation

nnnnn
FFFFFF

SETEEREA SRS AR

Hybrid UAVs Cargo Transportation
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7 N
3. Brief Review of

Basic Linear Systems

Theory
AN /

..Chapter 3...

EE5102/6102 PART 2 ~ PAGE 22 BEN M. CHEN, NUS ECE



EE5102/6102 PART 2 ~ PAGE 23

3.2 Dynamical Responses

Given a linear time-invariant system

>

c(t) = A ot w(t), x(t) € R", u(t) e R™
{J(f) A x(t) + B u(t), =(t) (t) € 3.1.1)

y(t) = C x(t) + D u(t), yt) €R?

The solution of the state variable or the state response, x(t), of ¥ with an initial

condition ¢y = x(0) can be uniquely expressed as

1
z(t) = ettay + / =T Bu(r)dr, t>0, (3.2.1)
Jo

where the first term 1is the response due to the initial state, xg, and the second
term is the response excited by the external control force, u(t).

Lastly, it 1s simple to see that the corresponding output response of the system
(3.1.1) 1s given as:

ot

y(t) = Cetag + / Ce'=7) Bu(r)dr + Du(t)
Jo

t>0. (3.2.13)

-
4 —
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3.3 System Stability

A linear time-invariant system is said to be asymptotically stable if all its
closed-loop poles are located on the left-half complex plane (LHP), unstable

if at least of its poles are on the right-half plane (RHP)...

Marginally
A Im(s) - E Stable

_________________________________

_________________________

Re(s)
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Lyapunov Stability

Consider a general dynamic system, X = f (x) with f(0) = 0.
If there exists a so-called Lyapunov function V(x), which
satisfies the following conditions:

1. V(x) is continuous in x and V(0) = 0;

2. V(x) >0 (positive definite);

Aleksandr Lyapunov
1857-1918

3. V(X) = a%x f (X) <0 (negative definite),
then we can say that the system is asymptotically stable at x = 0. If in addition,
V(X) —> 0, as ||X|| —> o

then we can say that the system is globally asymptotically stable at x = 0. In this

case, the stability is independent of the initial condition x(0).
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Lyapunov Stability for Linear Systems

Consider a linear system, X = AX. The system is asymptotically stable (i.e., the
eigenvalues of matrix A are all in the open LHP) if for any given appropriate
dimensional real positive definite matrix Q = Q" > 0, there exists a real positive

definite solution P = P' > 0 for the following Lyapunov equation:

AP+ PA=-Q

Proof. Define a Lyapunov function V (x) = x'P x. Obviously, the first and second

conditions on the previous page are satisfied. Now consider
V(X)=X"TPx+X"TPx=(AX)"Px+xTP Ax = xT(ATP+ PA)X:—XTQX< 0
Hence, the third condition is also satisfied. The result follows.

Note that the condition, Q = Q" > 0, can be replaced by Q = Q" > 0 and (A, Q%)

being detectable.
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3.4 Controllability and Observability
Theorem 3.4.2. The given system Y. of (3.1.1) 1s controllable if and only if
rank (().) = n, (3.4.11)

where
Q.:=|B AB --- A”_lB] (3.4.12)

1s called the controllability matrix of ..

Theorem 3.4.3. The given system Y. of (3.1.1) is controllable it and only if, for
every eigenvalueof A, \;,7 =1,2,...,n,

rank [\;] — A B]|=n. (3.4.21)
Definition 3.4.2. The given system Y of (3.1.1) is said to be stabilizable if all

its uncontrollable modes are asymptotically stable. Otherwise, Y. is said to be
unstabilizable.
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Theorem 3.4.6. The given system 3. of (3.1.1) is observable it and only if either
one of the tollowing statements is true:

1. The observability matrix of X,

- o -
CA
Qo = : (3.4.27)
L CAM
is of full rank, i.e., rank (Q),) = n.
2. Foreveryeigenvalueof A, A\;,1 = 1,2,....,n,
rank [AJC A] = n. (3.4.28)

Definition 3.4.4. The given system Y. of (3.1.1) is said to be detectable it all its
unobservable modes are asymptotically stable. Otherwise, X is said to be unde-
tectable.
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3.5 System Invertibility

Recall the given system (3.1.1), which has a transfer function
H(s)=C(sI - A)"'B+D. (3.5.1)

Definition 3.5.1. Consider the linear time-invariant system 3. of (3.1.1). Then,

1. Y. 1is said to be left invertible if there exists a rational matrix function of s,
say L(s), such that

Lizs H g = Ly (3:5.2)

2. X 1s said to be right invertible if there exists a rational matrix function of s,
say R(s), such that

H(s)R(s) = I,. (3.5.3)
3. X 1s said to be invertible if it is both lett and right invertible.

4. Y 1s said to be degenerate if it is neither left nor right invertible.
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3.6 Normal Rank and Invariant Zeros

Definition 3.6.1. Consider the given system . of (3.1.1). The normal rank of its

transter function H(s) = C(sI — A)"'B + D, or in short, normrank{ H (s)}, is
defined as

normrank { H (s) } = max {rank [H (\)] ‘ AeC}. (3.6.2)

Definition 3.6.2. Consider the given system ¥ of (3.1.1). A scalar 3 € C is said
to be an invariant zero of X if

rank { P» ()} < n + normrank { H (s)}. (3.6.4)

Here
491_4*4 _B
Py (s) := [ C D ]

which i1s known as the so-called Rosenbrock system matrix.

Howard H. Rosenbrock
1920-2010

BEN M. CHEN, NUS ECE
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3.7 Frequency Responses

Consider the following feedback control system,

r e
K (S) G () 4

v

\ 4

Hendrik Wade Bode
1905-1982

-+
|
4

Bode Plots are the magnitude and phase responses of the open-loop transfer
function, i.e., K(s)G(s), with s being replaced by jaw. For example, for the ball and

beam system with a PD controller, which has an open-loop transfer function

C37+23s| 37+ 23w

K(s)G(s)|,_,, =(0.37+ 0.235)2—?

_________________________________________________________________________________________________________________________________________________
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of Singapore

0
2

crossover
frequency
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Nyquist Plot

Instead of separating into magnitude and phase diagrams as in Bode plots, Nyquist

plot maps the open-loop transfer function K(s)G(s) directly onto a complex plane,

e.g.,

Irmag Axis

Harry Nyquist
1889-1976
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Gain and phase margins

The gain margin and phase margin can also be found from the Nyquist plot by zooming
in the region in the neighbourhood of the origin.

A

Remark: Gain margin is the maximum
+L+ additional gain you can apply to the closed-

loop system such that it will still remain

v

e stable. Similarly, phase margin is the

maximum phase you can tolerate to the

closed-loop system such that it will still

' remain stable.

Mathematically, e eeeeees s sss eSS
1 : : :
GM = _ _ , where o, is such that ZK(Jw,)G(Jjw,)=180°
K(jop)G(jay) : o
PM= /K(jw,)G(jw,)+180°, where e, is such that \K(jmg)e(ja)g)\zl
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Sensitivity functions

Consider the typical feedback control scheme

A
¥

S\ - K(s) . G(s) -

The sensitivity function is defined as the closed-loop transfer function from the

reference signal, r, to the tracking error, ¢, and given by

1
14+ K(s)G(s)

S(s)

The complimentary sensitivity function is defined as the closed-loop transfer function

between the reference, r, and the system output, y, and is given as

o K (s)G(s)
T(s) = 1+ K (s)G(s)

Clearly, S(s)+T'(s) = 1.
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T T T A good control system design should
. . ™ L have a sensitivity function that is small
at low frequencies for good tracking
performance and disturbance

rejection and is equal to unity at high

SRS frequencies. On the other hand, the
L,

-100

complementary sensitivity function

120l i issssss;1 i 5355553;2 i issssss;a i issssss;‘ i 53555535 should be made unityatlow
Frequency (Hz)

frequencies. It must roll off at high

10 Serious Desian 89 frequencies to possess good
attenuation of high-frequency noise.
E
£ e AIC
% Kén?anF‘enq :
E Venkatakrishnan Venkataramanan =
- ey e
Hard Disk Drive
Servo Systems
ti’nd Edition
0.0 0.5 1.0 1.5 2.0
Frequency i’ 5
Figure 3. Sensitivity reduction at low frequency unavoidably Gunter Stein ¥

leads to sensitivity increase at higher frequencies.
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4. Properties of LQR Control




Linear Quadratic Regulator (LQR)

Consider a linear system characterized by
X=AX+Bu

where (4, B) is stabilizable. We define a cost index

© Jacopo Francesco Riccati
J(x,u,Q,R):j(xTQx+uTRu)dt, Q>0, R>0 1676-1754
0
and (A,Q"?) is detectable. The linear quadratic regulation problem is to find
a control law u = - Fx such that (A - B F) is stable and J is minimized. The
solution is given by F = R'B"P, with P being a positive semi-definite solution

of the following Riccati equation:

PA+ A'/P-PBR'B'P+Q =0

(See the reference by Saberi et al, 1995, for the methods on how to solve Riccati equations)
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If we arrange the LQR control in the following block diagram,

—(O)—|i=Ax+Buf|—| F |—7—

we can find its gain margin and phase margin as we have done in classical

control. It is clear that the open-loop transfer function,
Open loop transfer function = F(sl = A)'B=R"'B"P(sl -A)"'B

The block diagram can be re-drawn as follows,

v

— R'B'P(sl - A)'B
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Return Difference Equality and Inequality

Consider the LQR control law. The following so-called return difference equality holds:
R+B'(—jol —A")'Q(jol —A) 'B=[1+B'(—jol —=A")'F"]R[I + F(jol — A)"'B]

The following is called the return difference inequality:

Then we have
— Pjol + PA+ Pjol + AP —(PBR‘I)R(R‘lBTP) +Q=0

P(jol —A)+(—jol — AP+ F'RF =Q
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1

Multiplying it on the left by B'(— jwl — A")™" and on the right by (jol — A)"'B,

B'(—jwl — AN ' P(jol — A)(jol — A'B+B"(=jol — A (= jol — ADP(jol — A)'B
+B'(=jol —AT)'F'RF(jol = A)'B=B"(-jol — A))'Q(jal —A)'B

v

B'(—jol —=A")'PB+B'P(jol —A)'B+B'(—jol —=A")'F'RF(jol —A)"'B
=B'(—jol —A")"'Q(jwl —A)'B
Noting the fact that

..................................................................................................

we have

R+B"(=jol =AY 'F'R+RF(jwl —A)'B+B"(—jol — A 'F'RF(jol — A)'B
=B"(—jol - A)'Q(jwl —A)'B +R

[1+BT(—jol —A")'F"IR[I + F(jol —=A)'B]=R+B"(=jol - AT)'Q(jol — A)'B
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Single Input Case

In the single input case, the transfer function

.....................................................................................

is a scalar function. Then, the return difference equation is reduced to

r+b"(—jol = A")'Q(jol —A) 'b=r[1+b"(—=jwl =AY f"][1+ f(jewl — A)"'b]

'

r+a=r‘1+ f(jol —A)"'b ‘2 where o >0
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Graphically, | |1+ f(jol -A)'b[ 21 = |f(jol ~A)'b—(~1+j0)|>1H implies

] ) 1 ‘
PM > 60°
Clearly, the phase margin resulting from the
LQR design is at least 60 deg. The gain margin is from [ 0.5, ).

* R E. Kalman, When is a linear control system optimal? Journal of Basic Engineering, Transactions of the ASME,
Series D, Vol. 86, No. 1, pp. 51-60, 1964.
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Example: Consider a given plant characterized by

, 0 1 0
X = X+| |u
Al
Solving the LQR problem which minimizes the following cost function

....................................................................................................................................

_____________________________________________________________________________________________________________________________________

we obtain

[0.6872 0.2317
- 10.2317 0.1373

} and F =[2.3166 1.3734]

which results the closed-loop eigenvalues at —1.1867 + j1.3814 . Clearly, the

closed-loop system is asymptotically stable.
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National University

of Singapore

Eﬂ

Bode Diagrams

From: U(1)

-20
-40
-60
-80

-100

(L)A 0L
(gp) apnyubep (b6ap) aseyd

GM =

Frequency (rad/sec)

PM =84’
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5. Kalman Filter
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Rudolf E. Kalman, 1930-2016
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Kalman and Bucy (1977)
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Review: Random Process

A random variable X is a mapping between the sample space and the real numbers.

A random process (a.k.a stochastic process) is a mapping from the sample space

into an ensemble of time functions (known as sample functions). To every member in

the sample space, there corresponds a function of time (a sample function) X(t).

 X(t)

- .
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Mean, Moment, Variance, Covariance of Random Process

Let f (x,t) be the probability density function (p.d.f.) associated with a random process
X(t). If the p.d.f. is independent of time ¢, i.e., f (x,t) = f (x), then the corresponding random
process is said to be stationary. We will focus our attention only on this class of random

processes in this course. For this type of random processes (RP), we define:

1) mean (or expectation): 2) moment ( j-th order moment)
m:E[X]:Tx-f(x)dx E[xjjzoij-f(x)dx
3) variance B 4) covariance of t_:;/o random processes
o’ =E|(x—m) | = T (x —m)? f (x)dx con(v,w) = E[(v—E [v])(w— E[w])]

Two RPs v and w are said to be independent if their joint p.d.f. f(v,w)= f(v)- f(w)

= E[w]= T TWVf (v, w)dvdw = T vf (v)dvT wf (w)dw = E[V]E[wW]

........................................................................................................................................................
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Autocorrelation Function and Power Spectrum

Autocorrelation function is used to describe the time domain property of a random

process. Given a random process v, its autocorrelation function is defined as

follows:

R, (t,,t,) = E[v(t)Vv(t,)]
If vis a wide sense stationary (WSS) process,
R,(t,t,) =R (t,—t) =R () =R (t,t+7) = E[v(t)v(t +7)]
Note that R, (0) is the time average of the power or energy of the random process.

Power spectrum of a random process is the Fourier transform of its autocorrelation
function. It is a frequency domain property of the random process. To be more

specific, it is defined as

..........................................................
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White Noise, Colored Noise and Gaussian Random Process

White Noise is a random process with a constant power spectrum, and an autocorrelation

R,(7)=0-0(7)

function

which implies that a white noise has an infinite power and thus it is non existent in real
life. However, many noises (or the so-called colored noises, or noises with finite energy
and finite frequency components) can be modeled as the outputs of linear systems with an
injection of white noise into their inputs, i.e., a colored noise can be generated by a white

noise

white noise —— Linear System |——— colored noise

Gaussian Process v is also known as normal process has a p.d.f.

~(V-p)?
f(v):—1 e 402,
o2

[ =mean, o =variance

51
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Kalman Filter for a Linear Time Invariant (LTI) System

Consider an LTI system characterized by

{)’( = Ax+Bu+v(t) vistheinputnoise

y=Cx+w(t) w is the measurement noise

Assume: (1) (A,C)is observable

(2) v(t) and w(t) are independent white noises with the following properties

E[v(t)]=0, E[v(t)v'()]1=Qd(t—-7), @=Q >0,
E[w(£)]=0, E[w(t)w'(r)]=Ro(t—7), R=R" >0

I
(3) (A, Qé) is stabilizable (to guarantee closed-loop stability).

The problem of Kalman Filter is to design a state estimator to estimate the state x(t)
by X(t) such that the estimation error covariance is minimized, i.e., the following

index is minimized:
J. = E[{x() - &(1)}" {x() - k(1)}]

EE5102/6102 PART 2 ~ PAGE 52 BEN M. CHEN, NUS ECE



Construction of Steady State Kalman Filter

Kalman filter is a state observer with a specially selected observer gain (or Kalman

filter gain). It has the dynamic equation:
£=AX+Bu+K (y—9),  %(0)is given
§ = CR
with the Kalman filter gain K, being given as
K, = F’eCTR_1

where P, is the positive definite solution of the following Riccati equation,

PA"+ AP, —PC'R'CP.+Q =0

Let e = X — X . We can show (see next) that such a Kalman filter has the following

properties:

lim E[ e(t)] = lim E[ x(t) - ()] =0, lim J, =lim E[e" (1) e()] = trace P,

t—oo
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Kalman Filter and LQR - They Are Dual

Recall the optimal regulator problem,

X = Ax+ Bu X(0) =X, given
J :j(xTQx+uTRu)dt, Q=Q">0 and R=R" >0
0

The LQR problem is to find a state feedback law u = - F x such that / is minimized. It was

shown that the solution to the above problem is given by

F=R'B'P PA+A'P-PBR'B'P+Q=0, P=P"'>0
and the optimal value of ] is given by J = XOTP X, - Note that x, is arbitrary. Let us consider
a special case when x, is a random vector with

E[X,]=0, E[X,X, ]=|

Then, we have

pij Xoixoj:| — ZZ pij E[XOiXOj] — Z pii = trace P
i=1

i=l j=I
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The Duality

& Linear Quadratic Regulator & Kalman Filter
i_________._.____I;_____é__l.l;).T_l_D_ _____________________ i i _____________ I;;;_F;ec_:;_:l ____________________ i
i PA+A'"P-PBR'B'P+Q=0 i i PA"+AP,—-PC'R7'CP,+Q=0 i
i Jopﬁmall = trace P i i Jopﬁmall = trace P, i
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Proof of Properties of Kalman Filter

Recall that the dynamics of the given plant and Kalman filter; i.e.,

X = AX+ Bu+V(t) 2 >*<:A>2+Bu+Ke(y—§/)
y =Cx+w(t) y=CX
We have
€ = X— X = AX+ Bu+V(t) — AR — Bu— K_[Cx +w(t) — CX]
=(A-K.,C)(x=X)+Vv(t) — K w(t)
V —
=(A-K,Cle+| | —K, ]( j:Ae+d(t)
W
with

E[d(t)]:E{[l Ke](\\//v((tt))ﬂ:[l —Ke](;[\\llv((?)]]j:“ —Ke](gj:o

Next, it is reasonable to assume that initial error e¢(0) and d(t) are independent, i.e.,

E[e(0) d"(t)] = E[e(0)]- E[d" ()] =0
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Furthermore,

E[d(t)d" ()] =] —Ke](E[V“)VT(fﬂ E[v<t>wT<r)]M | }

E[w(tv' ()] E[ww' ()] )| -K,

[ _Ke](Q5(t—1) 0 M |T}
0 Ro(t—7))|-K,

=( Q+K,RK] }&(t-1)
=Vo(t—r1)

where V =Q + K_RK_ > 0.

We will next show A is asymptotically stable and

lim E[e(t)e"(t)]=P,
\ )
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Recall that K, = I:’eCTR_1 and

PAT+AP,—-PCTR'CP,+Q =0
We have
F’eAT — PeCTR_lCPe + AF’e — F’eCTR_lCF’e + PeCTR_lCPe +Q=0

—» P(A"-C'R'CR)+(A-PC'R'C)R,+PC'R'CR,+Q=0
—» P (A"-C'K])+(A-K,C)P,+PC'R'RR'CP,+Q=0
—» PA"+AP =-K.RK/-Q=-V<0
Since Q = Q"> 0 and (A, Q% j is assumed to be stabilizable, it follows from Lyapunov

stability theory that matrix A = (A — KeC) is asymptotically stable.

Recall also the solution to € = Ae +d (1), 1ie,
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Noting that e”! is deterministic, we have

P(t) = E[e(t)e” (t)] = E{(e’“ 'e(O)+jeA(tT)d(f)-drj-(e“ -e(O)+_t[eA(”)d(r)-drj }

R

= e™E[e(0)e” (0)]e*" + j eI d(r)e (0)]e*" -dr

t 10
j [e(O)dT(r)] AD dr g j At ”drj E[d(r)d"(c)e" © -do

=e™E[e(0)e" (0)]e" " + j At “drj Vo(r—o)e © .do
= eME[e(0)e (0)]e” +J‘eA(t Iyeh 9 . dr = eME[e(0)e" (0)]e* +IeA’7VeA’7 dn

Since A is stable, we have e 0, as t— oo, Thus,

________________________________________________________
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We next show that P(«) = P,, i.e., the solution to the Kalman filter ARE. Let
7=A"z, 2(0) given = z(t)=e"'z(0), z(x)=0

In view of PeKT + KPe = -V, we have
"[PAT+APJz=-2'VZ = z'PA"z+7'APz=-7'Vz

= 2'P2+2'Pz=-2'Vz = %(ZTPEZ)z—ZTVZ

Next, we have

_T 2"Vzdt = — sz 2" (0)eMver 'z(0)dt = —2" (O)ﬁeAtVeAT‘dt} 2(0) =—2" (0)P(0)z(0)

T% 2"P.z)dt = zT(t)Pez(t)‘: = 7' (00)P,z(0) 2" (0)P,2(0) =0— 2" (0)P,z(0)

Thus, we have for every given z(0),

..........................................................................................................................................
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It is now simple to see that

lim Ele(t)e' (t)]=P(0)=P, = lim E[e'(t)e(t)]=trace P

e

Finally, we have

t—o0

lim E [e(t)] = g{e“ -E[e(0)]+ j " IE[d(7)]- dr} =0

Example: Consider a given plant characterized by the following state space model,

= 0! ) t), E[v(tv' (r)]=Qd(t _0.105t
{x— 1t u+v(t), E[v(t)v (r)]=Qo(t-7)= 0 0 (t-7)

y=[1 O)x+w(t), E[wt)W'(r)]=RS({t-7)=025(t-7)

Solving the Kalman filter ARE, we obtain

00792 -0.0343] [ 03962] © [%=A%+Bu+K,(y-9)
~0.0343  0.0314] ° | -0.1715| |

e
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Related Topics:
Extended Kalman Filter (EKF): In estimation theory, the EKF is the nonlinear

version of the Kalman filter, which linearizes about the current mean and covariance.
The EKF has been considered the de facto standard in the theory of nonlinear state

estimation, navigation systems and GPS.

Unscented Kalman filter (UKF): When the state transition and observation models,
the predict and update functions are highly nonlinear, the extended Kalman filter can
give particularly poor performance. This is because the covariance is propagated
through linearization of the underlying non-linear model. UKF uses a deterministic
sampling technique known as the unscented transform to pick a minimal set of
sample points (called sigma points) around the mean. These sigma points are then
propagated through the non-linear functions, from which the mean and covariance of
the estimate are then recovered. The result is a filter which more accurately captures

the true mean and covariance.
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e

A

6. Linear Quadratic Gaussian (LQG)

/




Problem Statement

It is very often in control system design for a real life problem that one cannot measure
all the state variables of the given plant. Thus, the linear quadratic regulator, although it
has very impressive gain and phase margins (GM = « and PM > 60 degrees), is
impractical as it utilizes all state variables in the feedback, i.e., u = - F x. In most of
practical situations, only partial information of the state of the given plant is accessible

or can be measured for feedback. The natural questions one would ask:

e Can we recover or estimate the state variables of the plant through the partially
measurable information? The answer is yes. The solution is Kalman filter.

e Can we replace x the control law in LQR, i.e., u = - F x, by the estimated state to
carry out a meaningful control system design? The answer is yes. The solution
is called LQG.

e Do we still have impressive properties associated with LQG? The answer is no.

Any solution? Yes. It is called a loop transfer recovery (LTR) technique.
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Linear Quadratic Gaussian Design

Consider a given plant characterized by

X = AXx+ Bu+v(t) V is the input noise (4, B) stabilizable
y =CXx+w(t) W is the measurement noise (4, () detectable

where v(t) and w(t) are white with zero means. v(t), w(t) and x(0) are independent, and

E[v(t)v' ()]=Q.0(t-7), Q, =0, E[wt)w'(7)]=R.S(t—17), R, >0, E[X(0)]=X,
The performance index has to be modified as follows:

)
J =limlEU(xTQx+uTRu)dt}, Q>0, R>0
0

T—)ooT

The Linear Quadratic Gaussian (LQG) control is to design a control law that only
requires the measurable information such that when it is applied to the given plant, the

overall system is stable and the performance index is minimized.
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Solution to LQG Problem - Separation Principle

Step 1. Design an LQR control law u = - F x which solves the following problem,

X=AX+Bu J(x,u,Q,R):j(xTQx+uTRu)dt, Q>0, R>0
0
i.e.,, compute

PA+A'P-PBR'B'P+Q=0, P>0, F=R'B'P.

Step 2. Design a Kalman filter for the given plant, i.e.,
£=A%+Bu+K, (y—Y), §=C&
where K = PeCTR_l, PeAT + AP, — F’eCTRe_lC:F’e +Q.=0, P,>0.

Step 3. The LQG control law is given by U = —F X, i.e.,

R=ARX+Bu+K (y-C & [ R=(A=BF -K.C)%+K
{ Ff HK(Y-CR) { ( C)R+K, y
U=—rF X ' u
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Block Diagram Implementation of LQG Control Law

Reference U
r —| 6 —O o[ PLANT y_,
/" B
e 2
{ G =[C,(A-BF)" B]_I} LQR CONTROL |« KALMAN FILTER
'\

LQG Control Law

Matrix C, is related to output variables of interest, say
z=0C,Xx

where z is to track the reference r.
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Closed-Loop Dynamics of Given Plant together with LQG Controller

X = AX+ Bu+v(t)
y =Cx+w(t)

Recall the plant: {

and controller { X=(A-BF -K.C)X-BGr+K,y
u

—F X-Gr
We define a new variable € = X— X and thus
6= X— % = AX— BF{ — BGF +V(t)— A% + BF{ + K,C% + BGr — K Cx — K, w(t)
= A(X— )~ K.C(X= %)+ V(1) — K,w(t) = (A— K,C)e +v(t) — K w(t)
and
X = Ax+ Bu +Vv(t) = Ax— BFX—BGr +v(t) = Ax—BF(x—e)—BGr +v(t)
— (A—BF )X+ BFe - BGr +V(t)

Clearly, the closed-loop system is characterized by the following state space equation,

1 aelCH e =l
y=[c 0][Xj+w

The closed-loop poles are given by A(A—BF) U A(A—-K_C), which are stable.
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Homework Assignment 1:

Using the LQR design, the Kalman filter design and their combination, i.e., the
LQG control method to design an appropriate measurement feedback control
law that meets all the design specification specified in the (HDD or helicopter)

problem.

Show all the detailed calculation and simulate your design using MATLAB and

Simulink. Give all the necessary plots that show the evidence of your design.

EE5102/6102 PART 2 ~ PAGE 69 BEN M. CHEN, NUS ECE



George Zames
1934-1997
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A Real Control Problem

disturbances

\ 4

Sensor noise

control input

Controller Objective: To provide desired responses in face of
disturbances

Controller

response

measurements

commands

a

» Uncertain plant dynamics + External inputs { sensor noise
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Representation of Uncertain Plant Dynamics

A

Perturbation

\ 4

disturbance
J response

Sensor noise Nominal Plant

v

\ 4

measurements

A 4

control inputs

\ 4

* Nominal Plant is an FDLTI System

* Perturbation is Member of Set of Possible Perturbations
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Analysis Objectives

* Nominal Performance Question (H, Optimal Control):

Are closed loop responses acceptable for disturbances? sensor noise?

* Robust Stability Question (H_ Optimal Control):

Is closed loop system stable for nominal plant? for all possible perturbations?

* Robust Performance Question (Mixed H, /H_ Optimal Control):

Are closed loop responses acceptable for all possible perturbations and all

external inputs? Simultaneously?
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Complete Picture of Robust Control Problem

A

S P
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>

7
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Introduction to the Problems

Consider a stabilizable and detectable linear time-invariant system % with a proper

controller 2,

W Z
i 2
u i y
X,
where
X=AX+Bu+Ew . V=Av+B.y
2: «y=C, x+ Ou+D,w " Ju=C,v+D,y
1z=C,x+D,u+ 0w
g
xeR" < state variable ueR" < control input
1 yeR" < measurement & weR < disturbance
(z€ R" < controlled output veR" < controller state
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The problems of H, and H_ optimal control are to design a proper control law X_ such

that when it is applied to the given plant with disturbance, i.e., 2, we have

e Theresulting closed loop system is internally stable (this is necessary for any

control system design).

e The resulting closed-loop transfer function from the disturbance w to the
controlled output z, say, T _(s),is as small as possible, i.e., the effect of the

disturbance on the controlled output is minimized.
e H, optimal control: the H,-norm of T _(s) is minimized.

e H_ optimal control: the H -norm of T, (s) is minimized.

Note: A transfer function is a function of frequencies ranging from 0 to co. It is hard to
tell if it is large or small. The common practice is to measure its norms instead. H,-
norm and H_-norm are two commonly used norms in measuring the sizes of a transfer

function.
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Closed Loop Transfer Function from Disturbance to Controlled Output

Recall that

o v=AVv+B Yy
X=AX+Bu+ Ew DI
and u=C v+D_,y

N

y=C x+ Ou+D,w
= V=Av+B(Cx+Dw)

= Av+B.Cx+B.Dw

z=C,x+D,u+ 0w
X=Ax+ B(Cv+Dy)+ Ew

+B(Cv+Dy)+ Ew {)’(:Ax+BCCv+BDC(C1x+D1W)+EW
—

=Jy=C, + DWW z=C,x+D,Cv+D,D (Cx+Dw)
'z=C,x+D,(Cv+D.y)

{x = (A+BD.C,)x+BC.V+(E + BD.D,)w

X=Ax+BCyv+BD.y+Ew
= z=(C,+D,DC)x+D,Cv+D,D.Dw

z=Cx+D,Cv+D,D.y

(x) [A+BDC, BC,
V) o BC, A

c

{E+BDCD1
+

3 D }W:AC1Y+BdW

z=[C,+D DC,  D,Cc] + D DD w=C_,X+D_w

2 1

< x < X
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Thus, the closed-loop transfer function from w to z is given by
TZW(S) — C:cl (SI o Acl )_l Bcl + DC|

The resulting closed-loop system is internally stable if and only if the eigenvalues of

cl

|A+BD.C, BC,
| BC A

are all in open left half complex plane.

Remark: For the state feedback case, C; = and D, = 0, i.e,, all the states of the given
system can be measured, Z_ can then be reduced to u = F x and the corresponding

closed-loop transfer function is reduced to
T.(8)=(C,+D,F )(sl-A-BF)'E

The closed-loop stability implies and is implied that A + B F has stable eigenvalues.
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H,-norm and H_-norm of a Transfer Function

Definition: (H,-norm) Given a stable and proper transfer function T, (s), its H,-norm is

defined as

Graphically,

Note: The H,-norm is the total energy corresponding to the impulse response of
T,,,(s). Thus, minimization of the H,-norm of T,,(s) is equivalent to the minimization

of the total energy from the disturbance w to the controlled output z.
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Definition: (H -norm) Given a stable and proper transfer function T, (s), its H,-norm is

defined as

..............................................................

.=suwp o, [T, (jo)]

. 0<w<w i

where 6 [T,,(j®)] denotes the maximum singular value of T, (jw). For a single-input-

single-output transfer function T,,(s), it is equivalent to the magnitude of 7,,(j®).

Graphically,

Note: The H_ -norm is the worst case gain in T,,,(s). Thus, minimization of the H_-norm
of T,,(s) is equivalent to the minimization of the worst case (gain) situation on the

effect from the disturbance w to the controlled output z.
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Infima and Optimal Controllers

Definition: (The infimum of H, optimization) The infimum of the H, norm of the

closed-loop transfer matrix T,,(s) over all stabilizing proper controllers is denoted
by y,", thatis
y,:=inf{ | T, |, | =, internally stabilizes > }.

Definition: (The H, optimal controller) A proper controller X is said to be an H,

optimal controller if it internally stabilizes X and H T, H ) = Vs -

Definition: (The infimum of H_ optimization) The infimum of the H_-norm of the

closed-loop transfer matrix T,,(s) over all stabilizing proper controllers is denoted by
v, that is |
y,, :=inf { H T, HOO ‘ 3, internally stabilizes 3 }.

Definition: (The H_ y-suboptimal controller) A proper controller X, is said to be an H,,

v- suboptimal controller if it internally stabilizes ¥ and H T, HOO <y (> 7/00)
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Critical Assumptions: Regular Case vs Singular Case

Most results in H, and H_ optimal control deal with a so-called a regular problem or
regular case because it is simple. An H, or H_ control problem is said to be regular if

the following conditions are satisfied,
1. D, is of maximal column rank, i.e., D, is a tall and full rank matrix
2. The subsystem ( A,B,C,,D, ) has no invariant zeros on the imaginary axis;
3. D, is of maximal row rank, i.e., D, is a fat and full rank matrix [ ]

4. The subsystem ( 4,E,C,,D,) has no invariant zeros on the imaginary axis;

An H, or H_ control problem is said to be singular if it is not regular, i.e., at least one

of the above 4 conditions is not satisfied.

Note: For state feedback control, Conditions 1 and 2 are sufficient for the regular case.
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Solutions to the State Feedback Problems: the Regular Case

The state feedback H, and H_, control problems are referred to the problems in which

all the states of the given plant Z are available for feedback. That is the given system is

(x= AX+ Bu+Ew
X: y= X

z=C,x+D,u

where ( 4, B) is stabilizable, D, is of maximal column rank and ( 4, B, C,, D, ) has no

invariant zeros on the imaginary axis.

In the state feedback case, we are looking for a static control law

Uu=F X
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Solution to the Regular H, State Feedback Problem

Solve the following algebraic Riccati equation (H,-ARE)
T T T T L (NT To)_
AP + PA+CJC, - (PB+C]D,)(DID,)" (DJC, +B"P)=0

for a unique positive semi-definite stabilizing solution P > 0. The H, optimal state

feedback law is then given by
u=F x=—(D]D,)"(DIC,+B"P)x

It can be showed that the resulting closed-loop system T, (s) has the following
property:

k

H Tow Hz =72

1
[t can also be showed that 7, = [ trace(ET PE)] A. Note that the trace of a matrix is

defined as the sum of all its diagonal elements.
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Example: Consider a system characterized by The closed-loop magnitude response

from the disturbance to the controlled

=
5 2 1 . output:
3 4 2 0
Z ] y = X : .
2= 1 1 ] X +1 u
% 6
Solving the following H,-ARE using MATLAB, = 4
we obtain a positive definite solution 2
0 i s
— 14440 | 10° 10° 107 10°
40 16 : Cramminne fradlenc
and . The optimal performance or infimum
is given b
F=[-41 -17] - y

. =19.1833
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Classical LQR Problem is a Special Case of H, Control

[t can be shown that the well-known LQR problem can be re-formulated as an H,

optimal control problem. Consider a linear system,
X=Ax+Bu, x(0)=X,

The LQR problem is to find a control law u = F x such that the following index is
minimized: o
J = j (XTQ x+uTRu) dt
0
where Q > 0 is a positive semi-definite matrix and R > 0 is a positive definite matrix.

The problem is equivalent to finding a static state feedback H, optimal control law

u = Fx for
X=AX+ Bu+ X w

y =X

z—{ 0 }H R,
"o 0
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Solution to the Regular H_ State Feedback Problem

Giveny >y, ", solve the following algebraic Riccati equation (H_-ARE)

AP+ PA+CIC, + PEE'P/y* —(PB+C]D, ) (DID, | (DIC,+B'P)=0

for a unique positive semi-definite stabilizing solution P > 0. The H_ y-suboptimal state

feedback law is then given by
u=Fx=—-(DID,)"(DIC,+B'P)x

The resulting closed-loop system T, (s) has the following property: H T, Hoo <y.

Remark: The computation of the best achievable H_ attenuation level, y_", is in general
quite complicated. For certain cases, v, can be computed exactly. There are cases in
which y_" can only be obtained using some iterative algorithms. One method is to keep
solving the H_-ARE for different values of y until it hits y,~ for which and any y <vy_ ", the

H_-ARE does not have a solution. Please see the reference by Chen (2000) for details.

EE5102/6102 PART 2 ~ PAGE 89 BEN M. CHEN, NUS ECE



Example: Again, consider the following system

A B E

o P

X: 4 y=X

z=[1 1]x+1-u
\ ¢, D,

[t can be showed that the best achievable H_,

performance for this system is |y, =5]|.

Solving the following H_-ARE using MATLAB

with y = 5.001, we obtain a positive definite

solution

330111.5 110028.8
110028.8  26679.1

F=[-110029.8 —36680.1]
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The closed-loop magnitude response

from the disturbance to the controlled

output:

Magnitude

107 10" 10° 10° 10°

Clearly, the worse case gain, occurred
at the low frequency is roughly equal

to 5 (actually between 5 and 5.001)
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Why are zeros more interesting?...

Consider the system

2. y= X

(= AX+ Bu+Ew

1z=C,x+D,u

with D, being square and full rank, i.e., it is nonsingular. We can then apply a pre-

feedback U=—D,'C,x+ D,'V to the given system, which yields

(%=(A-BD;'C,)x+BD;'v+Ew
Ty = X

Z= 0 X+ | v

(X=AX+Bv+Ew

é 1Yy= X

Lz:0x+lv

and the Rosenbrock system matrix of the subsystem from v to z is given by

sl — A —Iﬂ

PZ(S):|: 0 |
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All the eigenvalues of A are the

invariant zeros of the system!
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If (4, B, C,, D, ) is of minimum phase, i.e., all its invariant zeros are stable, or

equivalently A is a stable matrix, the its corresponding H,-ARE, i.e,,
AP + PA+CIC, - (PB+CID,)(DID,)" (DIC, +B'P)=0

can be simplified as

A'P+PA-PBB'P =0

Then, it can be seen that P = 0 is the required solution! The optimal solution is

given by
v=F x=—(I1"1)"(1"7-0+B"-0)x=0

and the solution in terms of the original control input is given by

u=-D;'C,x+D;'v=-D;'C,x
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Similarly, the corresponding H_-ARE, i.e.,

AP+ PA+C]C, +PEE'P/y* —(PB+CID, ) (DID,)" (DIC,+B'P)=0
can be simplified as
A'P+PA+PEE"P/y*-PBB'P=0
Again, P =0 is the required solution. The optimal solution (for this special situation,

the H_, control has an optimal solution) is given by
v=Fx=-(I1"1)"(1"-0+B7-0)x=0
and the solution in terms of the original control input is given by
u=-D;'C,x+D;'v=-D;'C,x
In both cases, the closed-loop transfer function matrix from w to z is
T.(5)=0-(sl —A)"'E=0!

and all the stable invariant zeros of (4, B, C,,D,) are the closed-loop system poles!

EE5102/6102 PART 2 ~ PAGE 93 BEN M. CHEN, NUS ECE



If (4, B, C,, D, ) has all its invariant zeros to be unstable, or equivalently A is an anti-

stable matrix, the its corresponding H,-ARE, i.e,,

AP+ PA-PBB'P =0
has a solution P = 0 too. But, it does not give a stabilizing control law (why?). However,

it can be converted into a Lyapunov equation
P! (—K)T + (—/K) P'=-BB' [ = P (—K)T P+(-A)=-BB'P }
From the Lyapunov stability theorem, it has a unique positive definite solution. The

optimal solution is given by
v=Fx=—(1"1)"(1"-0+B"-P)x=—B"Px = u=-(D;'C,+(DID,) BP|x
and the resulting closed-loop system matrix
A+BF=A-BB'P=A+P"'(-A) P-A=P'(-A) P
The mirror images of the unstable invariant zeros of (4, B, C,, D, ), i.e.,, A (—,&) are

the closed-loop system poles!
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Similarly, the corresponding H_-ARE, i.e.,
A'P+PA+PEE'P/»*~PBB'P =0

can be re-written as

P'AT+AP'=BB"-EE"/y’

which can be solved by solving two Lyapunov equations:

Ian Petersen

SAT+AS=BB" and TAT+AT=EE"

[t can be showed that

1
7/;=\/lmax(TS_l) and P:(S—%T] >0, Vy>y.

The y-suboptimal solution is given as

Exacy f
ct Computation of the Infimym

-1 limization Vig o i

- & P g e [~
e o = e St s
- - e 4. 4
e T S -~ —
— T ey -
Tl

More general results for the singular case can be found in Chen et al (199‘2).;
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Q: What happens if the given system has both stable and unstable invariant zeros?

A: For the case when A has both stable and unstable eigenvalues, there exists a

similarity transformation T such that

e [A0 .
T7AT = 0 Al A_stable, A, anti-stable.

=+

One can then deal with each part separately. The solution to the ARE corresponding to
the stable part is 0 and the solution to the ARE corresponding to the unstable part can

be calculated by solving Lyapunov equations as on the previous page.

Q: It can be seen that when the given system is of nonminimum phase, the overall
performance of the closed-loop system is limited. Can we relocate the zeros as the way

that we have changed the locations of poles?

A: Yes. It involves relocations of the sensors and/or actuators e e Sl

of the given system. It is called sensor/actuator placement.
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Solutions to the State Feedback Problems - the Singular Case
Consider the following system again,

(Xx= AX+ Bu+Ew
2. qYy= X
1z=C,x+D,u

Kemin Zhou
where (4, B) is stabilizable, D, is not necessarily of maximal rank and

(4, B, C,, D,) might have invariant zeros on the imaginary axis.

Solution to this kind of problems can be done using the following trick

(or so-called a perturbation approach): Define a new controlled

P Khargonekar
output - ~ - ~ B B
2] ¢, D,
Z=|eX|=|el" X+ 0 [U small
gu 0 el perturbations

Clearly, Z oc 7 if = 0.
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Now let us consider the perturbed system

(X =AXx+Bu+Ew C, D,
S Jy= X where C,:= |gl | and D,:=| 0
Z7=C,x+D,u 0 ¢

"

Obviously, D, is of maximal column rank and (A, B,(Z, 52) is free of invariant zeros for
any ¢> 0. Thus, T satisfies the conditions of the regular state feedback case, and hence
we can apply the procedures for regular cases to the perturbed system to find the H,

and H_ control laws.

Example: 5 2 0 |
g X= X+ u-+ w
5 2 0 1 3 4 1 2
X = X+ u-+ W _
3 4 1 2 N<Y—_1 1‘X‘o‘
2 =
y=X g 0 0
.= X+ u
Cz=[1 1]x+0-u \ 0 ¢ 0
10 0] & |
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Solution to the General H, State Feedback Problem
Given a small > 0, Solve the following algebraic Riccati equation (H,-ARE)
TH . B AT 5 AT R STR Y (AT TH
A"P+PA+C,C,~(PB+C;D,)(D,D,) (D;C,+B"P)=0

for a unique positive definite solution P > 0. Obviously, P is a function of . The H,

suboptimal state feedback law is then given by
u=F x=—(D] D, )_1( 5;62+BTIS)X
[t can be showed that the resulting closed-loop system T,,(s) has
|| T, ||2 —y, as >0

[t can also be showed that
- 1 .
[ trace(ETPE)]A —y, as &—0.
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Example: Consider

.{5
X =
3

X: 4 yYy=X

[1

Z

C

a system characterized by
2 0 1

X+ [u+| _|w
4 1 2

1]x+0-u

Solving the following H,-ARE using MATLAB

with £=1, we obtain

46.2778 18.2517

* c=0.1

* £=0.0001

~ | 1.6701 0.0424
0.0424 0.0112
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3 {186.1968 46.2778

- | 21.2472 49311
49311 1.8975

}, F=[-49.3111 -18.9748]

}, F =[-423.742 -112.222]

}, F =[-46.2778 —18.2517]2

The closed-loop magnitude response
from the disturbance to the controlled

' output:

2.9

—
£n

Magnitude

—

0.5

107 10° 10° 10°

Croaranry (rad/car

The optimal performance or infimum

is given by

y. =1.225
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Solution to General H_ State Feedback Problem

4 e = N
Step 1: Givenay >v,", choose ¢= 1. . ? ’
C,:= |el| and D,:=| O

Step 2: Define the corresponding 62 and 52 \_ L U] |84 )

Step 3: Solve the following algebraic Riccati equation (H_-ARE) for P
~ ~ ~ o~ ~ ~ ~ ~ o~ ~mo~ \—1 o~~~ ~
AP+ PA+C,C,+PEE"P /y* ~(PB+C;D,)(D,D,) (D;C,+B"P)=0
Step 4: If P >0, go to Step 5. Otherwise, reduce the value of £and go to Step 2.

Step 5: Compute the required state feedback control law

~

u=Fx=—(D; D,)"'( D, C,+B"P)x
[t can be showed that the resulting closed-loop system T, (s) has: H T, HOO <y.

More general results for the singular case can be found in Chen (2000).
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Example: Again, consider the following system The closed-loop magnitude response

5 9 0 1 from the disturbance to the controlled
FX= X+| (u+| |w i
{3 } { } { } output:
X: 3 Yy=X 0.8
z=[1 1]x+0-u
0.6

[t can be showed that the best achievable H

performance for this system is 7. =0.5]. 0.4

Solving the following H_-ARE using MATLAB

0.2
withy = 0.6 and £=0.001, we obtain a

positive definite solution 0

0

10° 10 10° 10°

Clearly, the worse case gain, occurred

{15.1677 0.9874}

0.9874 0.0981 |
and - at the low frequency is slightly less

~ than 0.6. The design specification is
F =[-987.363 -98.1161] ;
. achieved.
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Solutions to Output Feedback Problems - Regular Case

Recall the system with measurement feedback, i.e.,

(x=Ax+ Bu+ Ew

M

y=C, X +D,w

z=C,x+D,u

where (4, B) is stabilizable and (4, C;) is detectable. Also, it satisfies the following

regularity assumptions:

1. D, is of maximal column rank, i.e., D, is a tall and full rank matrix
2. The subsystem (4, B, C,, D, ) has no invariant zeros on the imaginary axis
3. D, is of maximal row rank, i.e., D, is a fat and full rank matrix

4. The subsystem (4, E, C;, D,) has no invariant zeros on the imaginary axis
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Solution to Regular H, Output Feedback Problem

Solve the following algebraic Riccati equation (H,-ARE)
A"P +PA+C,C,—(PB+C;D,)(D;D, )1 (D;C,+B"P)=0
for a unique positive semi-definite stabilizing solution P > 0, and the following ARE

QA" + AQ+EE" —(QC +ED] ) (D, D} )_1 (D,E" +C,Q)=0

for a unique positive semi-definite stabilizing solution Q > 0. The H, optimal output

feedback law is then given by

. _{VZ(A+BF+K61)V—Ky

u= F v
where F=—(D, D, )_1( D2TC2+BTP) and K:—(QCI+ED1T)(D1D1T)_1

Furthermore,

¥y = { trace(ETPE)+trace[ (ATP + PA+C2TC2) Q ] }%
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Example: Consider a system characterized by The closed-loop magnitude response

5 2 0 1
rX= X + u-+ W
13 4 1 2

>: < y=[0 1]x +1-w

z=[1 1]x+1-u

Solving the following H,-AREs using MATLAB,

we obtain

{144 40} F:[—41 _17]
40 16

49.7778 23.3333 K= —-24.3333
23.3333 14.0000 | -16.0000
and an output feedback control law,
[ 5 -22.3333 24.3333
V= v+ y
o 38 -29 16

u= [-41 -17] v

M

\§
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from the disturbance to the controlled

output:

200

—
on
]

_________________________________________________________

Magnitude
=
[

10° 10° 10° 10°

Eraranry (rad/car

. The optimal performance or infimum

s given by

y, =347.3
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Solution to Regular H, Output Feedback Problem

Given ay >y, ', solve the following algebraic Riccati equation (H_-ARE)

A"P+PA+C]C, + PEE'P/y* ~(PB+C]D, )(DID,) (DIC,+B'P)=0 John Doyle

for a positive semi-definite stabilizing solution P > 0, and the following ARE

QA" + AQ+EE" +QC,C,Q/y* —(QC +ED] ) (D,D] )_1 (D,E"+C,Q)=0

for a positive semi-definite stabilizing solution Q > 0. In fact, these
P and Q satisfy the so-called coupling condition: o(PQ) < y°. The
H_ y-suboptimal output feedback law is then given by [DGKF] (1989)

_{\’/ =A,, V+B,. Y

u=C_ v

cmp

cmp

where chp =— (| _7/—2QP)_1 K, C = Gilead Tadmor

cmp

A, = A+y EETP+BF +(1-7?QP) K(C, +yDE'P)

cmp

and where F=—(D, D, )‘1( DgC2+BTP), K:—( QCf+ED1T)(D1D1T)_1.

Bruce Francis
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Example: Consider a system characterized by

C[5 2] Jo] [1
r X= X+ u-+ W
3 4|7 1] |2

y=[0 1]x +1-w

z=[1 1]x+1-u

[t can be showed that the best achievable H_,

performance for this system is |y, = 96.32864|.

Solving the following H_-AREs using MATLAB

with y = 97, we obtain

40.1168 16.0392 23.3556 14.0118

P_{144.353 40.1168} [49.8205 23.3556}5 oL

rv__—38.814 ~1848.66 | [1836.58
S i1 59414 -914.112 894.227
u=[-41.116 -17.039] v
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The closed-loop magnitude response
from the disturbance to the controlled
output:

100

1) USRS OSSOSO SO WS

_________________________________________________________

]
[

_________________________________________________________

Magnitude

) AU SO WSS W

10 10° 10°

Crvrnimneg fradlcnah

- Clearly, the worse case gain, occurred

y at the low frequency is slightly less

than 97. The design specification is

- achieved.
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Solutions to Output Feedback Problems - Singular Case

For general systems for which the regularity conditions are not satisfied, it can be

solved again using the perturbation approach. We define a new controlled output:

Z C

ex|=lel |[x+| 0 |u

D

2 2

N
[l

su 0 cl

and new matrices associated with the disturbance inputs:

~ ~

E=[E ¢l 0] and D,=[D, 0 ¢&l].

The H, and H, control problems for singular output feedback case can be obtained

by solving the following perturbed regular system with sufficiently small ¢:

(X=Ax+ Bu+EWw
n ﬁl W Remark: Perturbation approach might

DM@

y=CXx

~ jd ~ ; . !
7=C,x+D,u have serious numerical problems!
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Side Notes on H_ Singular Case
1. .D,-is of- maximal column rank; i:e. D is-a tall and-full rank-matrix
2. (+A;B;Gy3 D ) has Ae-invariant-zeros- on-the imaginary-axis
3.P;-is of maximal row-rank;-i-e;;-Dy-is-a-fat-and full rank matrix
4. (- Asf556y5 D} has R invariant zeros on-the-imaginary axis

Construction of closed-form solutions and computation of y_* etc...

Anton Stoorvogel & coworkers Carsten Scherer Bugs Bunny & coworkers
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Side Notes on (Almost) Disturbance Decoupling

1. Ify,"=0, then the corresponding H, optimal control problem is also called an
H, (almost) disturbance decoupling problem. It can be showed that the H,
almost disturbance decoupling problem is solvable if the following

conditions are satisfied:

* (A, B)isstabilizable and (4, C; ) is detectable
* (4, B,C,D,)isrightinvertible and has no invariant zeros on open RHP

* (A, E C,D,)isleftinvertible and has no invariant zeros on open RHP

Necessary and sufficient conditions for the solvability of the almost
disturbance decoupling problem is available in the literature. However, they
can only be expressed in terms of certain geometric subspaces on the given

system...
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2. Ify,. =0, then the corresponding H_, optimal control problem is also called an H_,
almost disturbance decoupling problem. It can be showed that the H_ almost

disturbance decoupling problem is solvable if the following conditions are satisfied:

* (4, B)isstabilizable and (4, C, ) is detectable
* (4, B,C,D,)isrightinvertible and of minimum phase

* (A E C,D,)isleftinvertible and of minimum phase

Studies on disturbance decoupling problems led to the development of the geometric

theory in linear systems...

&

W. M. Wonham Jan C. Willems Carsten Scherer Bugs Bunny
1939-2013
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« N

Applications: Some Robust Control Problems

A /
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Robust Stabilization of Systems with Unstructured Uncertainties

Consider an uncertain plant with an unstructured perturbation,

A} Small Gain Theory (!)
W VA i
If A is stable and HAHOO HM HOO <1, then
! " > the interconnected system is stable.
y
s | (s

>| <
<

w £ Assume | T | <7 - Then the system with

unstructured uncertainty if

_|

1
ITol AL <7 ]al <t = [al<

W
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Robust Stabilization with Additive Perturbation

Consider an uncertain plant with additive perturbations,

. % has a transfer function G (s)=C (sl -A ) 'B, +D,
y 2., is an unknown perturbation.
u
2y >, and X +2 have same number of unstable poles.

Given a y, > 0, the problem of robust stabilization for plants with additive perturbations
is to find a proper controller such that when it is applied to the uncertain plant, the
resulting closed-loop system is stable for all possible perturbations with their L_-norm
<Y, (The definition of L _-norm is the same as that of H_-norm except for L_-norm, the
system need not be stable.) Such a problem is equivalent to find an H_, y-suboptimal

Control laW (Wlthyz 1/ Ya) for P UL L I IR .
i (Xx=A x+B_u+0w '
aq: 1Y=C_x+D_u+Iw

\Z=0X+1Ll
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Robust Stabilization with Multiplicative Perturbation

Consider an uncertain plant with multiplicative perturbations,

> has a transfer function G _(s)=C (sl - A )"'B, +D,

v
g
|

¥ is an unknown perturbation.

> and ¥ x¥ have same number of unstable poles.

Given a y,, > 0, the problem of robust stabilization for plants with multiplicative
perturbations is to find a proper controller such that when it is applied to the uncertain
plant, the resulting closed-loop system is stable for all possible perturbations with their
L. -norm <vy,_. Again, such a problem is equivalent to find an H_ y-suboptimal control law

(withy=1/v.) for the following system,

(x=A x+B u+B_w
1 y=C_x+D u+D_w

\Z:Ox+1u
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Homework Assignment 2:

Using both H, and H,, control techniques to design appropriate measurement
feedback control laws that meet all the design specification specified in the

(HDD or helicopter) problem.

Show all the detailed calculation and simulate your design using MATLAB and

Simulink. Give all the necessary plots that show the evidence of your design.
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O

K Ben M. Chen /

Robust and H.. Control
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Robust and Perfect Tracking Control

The robust and perfect tracking (RPT) control technique developed
Robust and H.. Control

by Chen and his co-workers is to design a controller such that the
resulting closed-loop system is stable and the controlled output
almost perfectly tracks a given reference signal in the presence of

any initial conditions and external disturbances.

One of the most interesting features in the RPT control method is its
capability of utilizing all possible information available in its
controller structure. Such a feature is highly desirable for flight
missions involving complicated maneuvers, in which not only the
position reference is useful, but also its velocity and even

acceleration information are important or even necessary to be used

in order to achieve a good overall performance.
Bugs Bunny
The RPT control renders flight formation of multiple UAVs a trivial task.
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Problem formulation

Consider the following continuous-time system:

¥X= A2+ B u++ E
e =0 % + D
Z2=Cx+ D, u+ Dn

where x € R” is the state, u € R™ is the control input, w € R" is the external distur-

bance, y € R” is the measurement output, and g € R is the output to be controlled.

Given the external disturbance w € Lp, p € [1.0), and any reference signal vector

re RO with r, #, ---, '* 1) Kk > 1, being available, and #(¥) being either a vector
of delta functions or in Lp, the RPT problem for the system in (8.1) is to find a
parameterized dynamic measurement control law of the following form:

{ V= Acmp(‘g)v —|‘B(,mp (€)y +Go(e + G (8.2)
u=Cemp(e)v +Dunp y+Ho(e|rqt---+ Hi (9-12)

such that when the controller of (8.2) is applied to the system of (8 1), we have the
following

1. There exists an € > 0 such that the resulting closed-loop system with r =0 and
w = 0 is asymptotically stable for all € € (0,"].

2. Let Z(t, €) be the closed-loop controlled output response and let e(z, €) be the re-
sulting tracking error, i.e., e(t,€) :=Z(t,€) — r(t). Then, for any initial condition
of the state, xo € R",

5 l/p
= t)|P dt as e — 0. 8.3
lelp=( [ letiPar) " 0)ase 8.3
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(9.1.1)
(8.1)

Robust to
disturbance &

initial condition

A

RPT CONTROL

*

Perfect in
Tracking
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Solvability conditions:

Corollary 9.2.1. Consider the given system (9.1.1) with its external distur-
bance w € L,, p € [1,00), its initial condition z(0) = zo. Assume that all
its states are measured for feedback, i.e., C; = I and D; = 0. Then, for any
reference signal r(t), which has all its i-th order derivatives, 1 =1,2,---,k — 1,
k > 1, being available and r(®)(¢) being either a vector of delta functions or in
L,, the proposed robust and perfect tracking (RPT) problem is solvable by the
control law of (9.1.2) if and only if the following conditions are satisfied:

1. (A, B) is stabilizable;
2. Dyy = 0;
3. Xp, ie., (A, B,Cy, D), is right invertible and of minimum phase.

The solvability condition for the general measurement feedback case is rather
complicated. Please refer to the reference text for details (Theorem 9.2.1).
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Solution:

Remark 9.2.1. Note that the required gain matrices for the state feedback
RPT problem might be computed by solving the following Riccati equation,

pA+A’p+c‘:;c":2_(pB+é;b2)(b;b2)“(pB+é;b2)’:o, (9.2.43)

for a positive definite solution P > 0, where

) C» ) D,
C,; = €lxotin , Dg= 0 ; (9244)
0 el
~ () IE .o 01
<[4 0 i = = e oz
A = I: 0 A] y Ao = EI~g+ 00 ... IE 3 (9245)
L0 0 -+ 0.

and where B, C2 and D are as defined in (9.2.30) and (9.2.31). The required
gain matrix is then given by

F(E) = - (b;bz) 1(I)B 3 é;bg), - [Ho(E) 2 H,{_l(E) F(E)],
(9.2.46)
where Hi(¢) € R™*! and F(¢) € R™*". Finally, we note that solutions to
the Riccati equation (9.2.43) might have severe numerical problems as ¢ tends
smaller and smaller. &]
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Special Case...

For the special case when the given plant is of a double integrator, i.e.,

o ofl e v} =t

where p is the position and v is the acceleration, assuming the reference position
(p,), velocity (v.) and acceleration (a,) are all available, it can be shown that the

RPT control law can be calculated in the following closed-form

2 2
u:—{w; Zga)n}(p}{a)g}prJr(2ga)njvr+ar
£ e [\v) ¢ £

where ¢ is the damping ratio and o, is the natural frequency of the closed-loop

system, and ¢ is the tuning parameter.

We note such a plant is very common in real applications including the outer loop
flight control systems. In fact, the RPT control is very effective in improving flight

performance for UAVs.

EE5102/6102 PART 2 ~ PAGE 122 BEN M. CHEN, NUS ECE



Case Study... Unmanned Helicopter Flight Control Systems

N \f@,\ ¥
Mission ‘

Management )
~ An unmanned system
> Path Trajectory Outer Loop Inner Loop Measured
»| Planning Generation Control Control Signal
v Inner Loop to stabilize UAV attitude v" Outer Loop to control position/velocity
0 PID Control (commonly used) 0 PID Control (commonly used)
O Optimal Control 0 Pole placement
0 Robust Control 0 RPT Control
0 Nonlinear Control 0 Robust Control
o .... o ....
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Detailed control structure
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Inner-loop control system design setup

lvwind
r hin
—) e
INNER
INNER-LOOP | Uact ~ hout
. ) > ROTORCRAFT
CONTROLLER - ‘ y
. DYNAMICS
> —

XZ[‘P O p q as bs r 6].)ed.im W]T
Uaet = [‘Slat Slon 6pecl}T
y=[0 6 p g r yJ

houﬂz{‘p 0 W}T
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Inner-loop linearized model at hover

m y =Cx
- hou[ :COU[x
¢
0
P
y:
g
I
W
¢
hout: 0
4

~ X=AX+4+Bu+Ew

OO0 OO0 O OO

(== B = i o I o Y o Y e e e

OO OO O OO

l 0 0
0 0.9992 0
—0.0302 -0.0056 —0.0003
0 —-0.0707 267.7499
0 —1.0000 —-3.3607
—1 0 2.4483
0.0579  0.0108 0.0049
0 0 0
0 0.0389 0
0 07
0 0
0 43.3635
0 0
2.5878 0
—0.0663 0
0 —83.1883
0 —3.8500
0 0.

0 0.0009
0 —0.0389
585.1165 11.4448
—0.0003 0
22223 0
—3.3607 0
0.0037 —21.9557
0 -1
0 0.9992

i 0 0

0 0

—0.0001 0.1756

0.0000  0.0003

E= 0 0

0 0

—0.0002  —0.3396

0 0

L 0 0

OOOOOOOOOI

0
0
—0.0395
0.0338
0

0
0.6424
0

0

One can use the techniques covered earlier, i.e., H, control, H_, control, or LQG to

design an appropriate inner-loop controller for the above system.
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Inner-loop command generator

5, The inner-loop command generator is given as
QQS'.’ ap ¢ l;‘\".\'[-lli-l.()'()l‘ & _ —
R | o, S, 0 0.0019  0.0477
&
&\6 é |= 0 0.1022 -0.0037 |a,,
6.) |—-0.1022 0 0.0001
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Outer-loop control system design setup

Loop | @nr
CONTROL
Law

OUTER
ap RoTOR- P,
CRAFT
DyNAMICS

VIRTUAL

ACTUATOR
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Properties of the virtual actuator

T

Magnimde (dB)

X Channel

i
10°

BN NURRUUURY VU SO U B O 1 SUUROUUO DONOUREON NN JUR UL B I A PO \1 L

Frequency response of the virtual actuator...

10’
Frequency (rad/s)

Magnitude (dB)

Phase (deg)
|
S
T

300

10"
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Phase (deg)
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Frequency (rad/s)

Unstable Zeros!

~

From practical point of view, it is safe

to ignore them so long as the outer-

loop bandwidth is within 1 rad/sec...
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Properties of the outer-loop dynamics

It can also be verified that coupling among each channel of the outer loop dynamics is
very weak and thus can be ignored. As a result, all the x, y and z channels of the

rotorcraft dynamics can be treated as decoupled and each channel can be characterized
by
0.) [o 1]7(p.) (0

= + a.
V, 0 Ol 1

where p- is the position, v. is the velocity and a. is the acceleration, which is treated a

control input in our formulation.

For such a simple system, it can be controlled by almost all the control techniques
available in the literature, which include the most popular and the simplest one such as

PID control...
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Outer-loop RPT control law

axn — :
€2 Ex
v, 2
ayn = Wy y 2§)’®ny w':y' 4 zgywny
| 82 e E~“ £

G=1, §y=1, §=1.1
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Simulation of RPT control with{=0.7 & o, =1...

Position

red: actual response; blue: reference
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0.7 & ®,=1 (cont.)

Simulation of RPT control with
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10. Loop Transfer Recovery
k|
/

All Saberi, Ben M. Chen and
Pecdapulisiah Sannuti

Loop Transfer Recovery:
Analysis and Design

BEN M. CHEN, NUS ECE
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Is LQG Controller Robust?

It is now well-known that the linear quadratic regulator (LQR) has very impressive
robustness properties, including guaranteed infinite gain margins and at least 60° phase
margins in all channels. The result is only valid, however, for the full state feedback case.
If observers or Kalman filters (i.e., LQG regulators) are used in implementation, no
guaranteed robustness properties hold. Still worse, the closed-loop system may become
unstable if you do not design the observer of Kalman filter properly. The following

example given in Doyle (1978) shows the unrobustness of the LQG regulators.

Example: Consider the following system characterized by

(= ! 1x 0 1v =[1 O]xX+w
“lo 1T M YT

where x, u and y denote the usual states, control input & measured

output, and w and v are white noises with intensities 1 & ¢ > 0, John ?;yle
1955-

respectively.
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The LQG controller consists of an LQR control law + a Kalman filter.
LQR Design: Suppose we wish to minimize the performance index
]:T(XTQX+UTRu)dt, R=1, Q:q{ﬂ 11 1],q>0
0
It is known that the state feedback law u = - F x which minimize the
performance index J is given by
F=R'B'™, PA+A"P-PBR'B'P+Q=0, P>0.

For this particular example, we can obtain a closed-form solution,

F=(2+4+q)01 11=f[1 11.

It can be verified that the open loop of LQ regulator with any g > 0 has an
infinite gain margin and a phase margin over 105 degrees. Thus, it is very

robust.
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It can also be shown that the Kalman filter gain for this problem can be expressed as

oot [,

which together with the LQR law result an LQG controller,

X
u

Suppose that the resulting closed-loop controller has a scalar gain 1 + ¢ (nominally unity)

K

(A-BF -KC)X+K y
~F x

or u=-F(sI-A+BF+KC) 'Ky

associated with the input matrix, i.e.,

0
the actual input matrix =(1+¢)B = { }
l+¢

Tedious manipulations show that the characteristic function of the closed-loop system

comprising the given system an the LQG controller is given by

..........................................................................................................................................
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A necessary condition for stability is that

2¢kf+k+f-4>0 and 1-¢kf >0

It is easy to see that for sufficient large q and o, the closed-loop could be unstable for a
small perturbation in B in either direction. For instance, let us choose g = o = 60. Then it

is simple to verify the closed-loop system remains stable only when - 0.08 < ¢ < 0.01.

The above example shows that the LQG controller is not robust at all!

What is wrong?

The answer is that the open-loop transfer function of the LQR design and the open-loop
transfer function of the LQG design are totally different and thus, all the nice properties
associated with the LQR design vanish in the LQG controller. It can be seen more clearly
from the precise mathematical expressions of these two open-loop transfer functions,

and this leads to the birth of the so-called Loop Transfer Recovery technique.
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Open-Loop Transfer Function of LQR

(-
c
>

r=0 :
X = AX+ BuU

v

—F

A

Open-loop transfer function: When the loop is broken at the input point of the

plant, i.e., the point marked x, we have
u=—F(sl-A) " Bu
Thus, the loop transfer matrix from u to — U is given by
L(s)=F(sI-A)"'B

We have learnt from our previous lectures that the open loop transfer L,(s) have

very impressive properties if the gain matrix F comes from LQR design.

EE5102/6102 PART 2 ~ PAGE 139 BEN M. CHEN, NUS ECE



Open-Loop Transfer Function of LQG

=0 ,4,u | x=Ax+Bu

A 4
O
v

~-F(sI-A+BF+KC)!K

A

Open-loop transfer function: When the loop is broken at the input point of the

plant, i.e., the point marked x, we have

U=—F(sI-A+BF +KC)"'KC(sl -—A) " Bu
Thus, the loop transfer matrix from u to— U is given by
L (s)=F(sl—A+BF +KCY'KC(sI-A)"'B

Clearly, L,(s) and L (s) are very different and that is why LQG in general does not

have nice properties as LQR does.
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Loop Transfer Recovery

The above problem can be fixed by choosing an appropriate Kalman filter gain matrix
K such that L,(s) and L (s) are exactly identical or almost matched over a certain range

of frequencies. Such a technique is called Loop Transfer Recovery.

The idea was first pointed out by Doyle and Stein in 1979. They had given a sufficient
condition under which L (s) = L,(s). They had also developed a procedure to design the
Kalman filter gain matrix K in terms of a tuning parameter g such that the resulting

L,(s) = L,(s) as g — o, for invertible and minimum phase systems..

Doyle-Stein Conditions: It can be shown that L (s) and L,(s) are

identical if the observer gain K satisfies

K(1 +C®K) "' =B(C®B)"', @ =(sl-A)"

which is equivalent to B = 0 (prove it!). Thus, it is impractical.

Gunter Stein
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Classical LTR Design

The following procedure was proposed by Doyle and Stein in 1979 for left invertible and

minimum phase systems: Define
2 T
Qq =Q,+qBVB', R=R,

where @, and R, are noise intensities appropriate for the nominal plant (in fact, Q, can be
chosen as a zero matrix and R, =1 ), and V is any positive definite symmetric matrix (V

can be chosen as an identity matrix). Then the observer (or Kalman filter) gain is given by
K=PC'R™
where P is the positive definite solution of
AP+ PA" + Q, - PC'R'CP =0

[t can be shown that the resulting open-loop transfer function L (s) from the above

observer or Kalman filter has

L (s) > L(s), as q— .
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Example: Consider a given plant characterized by

.| 0 1 0 35
X = 3 4 x+1 u+ 61 v, y=[2 1]x+w

with E[v(t)] = E[w(t)] = 0 and E[v(t)v(z)] = E[w(t)W(z)] = S(t — 7).

This system is of minimum phase with one invariant zero at s = - 2. The LQR control

law is given by

u=-F x=-[50 10]x

The resulting open-loop transfer function L,(s) has an infinity gain margin and a phase
margin over 85°. We apply the Doyle-Stein LTR procedure to design an observer based
controller, i.e.,

U=-F[®"'+BF +KC] 'Ky

where K is computed as on the previous page with

o 35 35 _6l1+q" 0 0 1 1225 2135
T 61 T 122135 3721+¢% |
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a0k L,(s)with |
Mg
s e TSR - q?=10000
20 :
S 1op .
23 ; !
= E
o D/r’— ' i
= é
~!Ii'|:} - | : . .
L,(s) with L,(s) with
target ik q%=500 q?=100000
_3{] 1 I I T I I ) I 1 1 F 1 §idq 1 i [ B BN 1 | [ T O I
10-2 10 100 101 102
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New Formulation for Loop Transfer Recovery

Consider a general stabilizable and detectable plant,

X=AX+Bu
y=Cx+Du

The transfer function is given by P(s) = COB + D, ® = (sl — A)™'. Also, let F be a state
feedback gain matrix such that under the state feedback control law u = - F x has the

following properties:
e the resulting closed-loop system is asymptotically stable; and
o the resulting targetloop L, (S) = F ®B meets design specifications (GM, PM).

Such a state feedback can be obtained using LQR design or any other design methods so
long as it meets your design specifications. Usually, a desired target loop would have the

shape as given in the following figure.
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& " To avoid high-frequency
un-modolled dynamics

’

To have a good
disturbance rejection

min singular values

Typical desired open-loop characteristics...
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The problem of loop transfer recovery (LTR) is to find a stabilizing controller u = —C(S)y

v

—mmm P(S)

A

C(s)

such that the resulting open-loop transfer function from u to —U, i.e,,
L,(s) = C(s)P(s)

is either exactly or approximately equal to the target loop L,(s). Let us define the recovery

error as the difference between the target loop and the achieved loop, i.e.,
E(s) = L (5)— L, (s) = FOB —C(5)P(s)

Then, we say exact LTR is achievable if E(s) can be made identically zero, or almost LTR is

achievable if E(s) can be made arbitrarily small.
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Observer Based Structure for C(s)

r=0 u
e ><‘? + P(S) y >
iy : Full Order Observer :
:  Based Controller — ==
g 3 » D SO
! B .
| X l —
E F e O :+ K | (A) :
; " C

Dynamic equations of C(s): X = A X+ B U + K(y—CX—Du), UG=u=-F X
Transfer function of C(S)=C (S) = F(®"' +BF +KC-KDF)'K

Achieved open-loop: L (s)=C (s)P(s)= F(®" +BF +KC-KDF)"'K(CDB+D)
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Lemma: Recovery error, E_(s), i.e., the mismatch between the target loop and the

resulting open-loop of the observer based controller is given by

E.(s)=M(S) [l +M(s)]'(1 + F®B), M(s)=F (@' +KC)"(B-KD)

Proof.
L. (s)=C,(s)P(s)=F(® '+ BF + KC - KDF)"'K(C®B + D)
l =F[l + (@ +KC)"(B-KD)F] (@ + KC)"'K(CDB + D)
=[I +F(@®"'+KC)"(B-KD)]'"F(®" + KC)"K(CDB + D)
=[1+M(s)]'[F(@" + KC)'KCDB + F (@™ + KC)'KD] Credit to G C Goodman in
=[1+ M) {F[I (@ +KC) ' & JOB+F(O +KC) KD} | (ondectot semitt i 1084
=[1 +M(S)]'[FOB-F(®"'+KC)'B+F(®"' +KC)'KD] .
=[ I
=[ I

l + AB)'A=A(I + BA)™!

| + M (s)]'[FOB-F (@ +KC)™(B-KD)]
| + M (5)]'[FOB-M ()]

Note that we have used (™' +KC)"'KC =1 —(0' +KC)"'®™". Thus,

Michael Athans

E =L -L =FOB—[l +M]'[FOB-M]=[I +M]'M(I +F®B).  1937-

EE5102/6102 PART 2 ~ PAGE 149 BEN M. CHEN, NUS ECE



Loop Transfer Recovery Design

It is simple to observe from the above lemma that the loop transfer recovery is
achievable if and only if we can design a gain matrix K such that M(s) can be made

either identically zero or arbitrarily small, where M(s)=F(®™' + KC)"(B-KD).

Let us define an auxiliary system

(x= ATXx+C"u+F™w
ZaUX: <y:X + u:_KTX
\z:BTx+ D"u

=P Closed-loop transfer function from wto zis (B' =D'K')(sl =A" +C'K')"F' =M '(s).

- Thus, LTR design is equivalent to design a state feedback law for the above auxiliary
system such that certain norm of the resulting closed-loop transfer function is made
either identically zero or arbitrarily small. As such, the H, and H_, optimization

techniques can be used to solve the LTR problem. There is no need to repeat all over

- again once this is formulated.
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What really got me interested in control
was my first unintentional discovery. I
was asked to simulate some examples
on loop transfer recovery (LTR) in the
book Control System Design, by Bernard
Friedland. It was mentioned in the text
that under the Doyle-Stein condition for
LIR, the link feeding the control input
signal to an observer-based control law
might be omitted. When I simulated
examples without satisfying the Doyle-

Stein condition (which can never be
met in any physical system, by the way)
by removing the link to the observer,
to my surprise, the recovery perfor-
mance turned out to be unbelievably
good. When I showed the result to my
advisor, I got kicked out of his office,
as apparently I had violated the com-
mon belief in control systems design—
the separation principle. Nevertheless,
the discovery eventually led to a new
controller structure for the LTR design

!
/rZO
; R, @

s P(s)
_; | {Fallorderobserver
Based Controller
| g
& )
3 . ]

. )] -—O-+ X
A story behind a

new controller <

structure for LTR... \
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LTR Design via CSS Architecture Based Controller

_n
S
=
J)

@

\ ' CSS Based Controller i /
Ali Saberi

Proposed by Chen, Saberi and Sannuti in 1991, the CSS based controller =~ 1949-

has the following characteristics:
Dynamic equations of C(s): V=(A—-KC)v+ Ky, U=u=-Fv

Transfer function of C(s)=C_(s)=F(®~' +KC)"'K

Achieved open-loop: L,(5)=C,(5)P(s)= F(®" +KC)'K(COB+D) ~ Feddasammut
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Lemma: Recovery error, E (s), i.e,, the mismatch between the target loop and the

resulting open-loop of the CSS architecture based controller is given by

E.(s)=M(s)=F(@®"'+KC)'(B-KD)

Proof. E_(S)=L/(S)-L.(S)
=FOB-F (@' + KC)'K(C®B +D)
=F(@"'+KC)'[(® + KC)DPB - KCDB - KD]
=F(@®" +KC)"'(B+KC®B-KC®B - KD)

[t is clear that LTR via the CSS architecture based controller is achievable if and only if
one can design a gain matrix K such that the resulting M(s) can be made either |
identically zero or arbitrarily small. This is identical to the LTR design via the

observer based controller. Thus, one can again using the H, and H,, techniques to

carry out the design of such a gain matrix.

3 1
T VT S VTV VT ey 3

* B. M. Chen, A. Saberi and P. Sannuti, A new stable compensator design for exact and approximate loop transfer
recovery, Automatica, Vol. 27, No. 2, pp. 257-280, March 1991.

Collected in Bibliography on Robust Control by P. Dorato, R. Tempo, G. Muscato in Automatica, Vol. 29, No. 1, January 1993.
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What is the Advantage of CSS Structure?

Answer: Theorem. Consider a stabilizable and detectable system X characterized by
(4, B, C, D) and target loop transfer function L,(s ) = F ®B. Assume that X is left
invertible and of minimum phase, which implies that the target loop L,(s ) is
recoverable by both observer based and CSS architecture based controllers. Also,
assume that the same gain K is used for both observer based controller and CSS
architecture based controller and is such that for all € €2, where Q is some frequency

region of interest,

O<o [M(JC())] << 17 O-min[L[(ja))]:Gmin[F(ja)l _A)_IB] >>1

max

Then, forall w € Q,

Onax [ Ec(J0)] << 0, [E, (JO) .

Proof. See Chen, Saberi and Sannuti, Automatica, vol. 27, 1991.
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Remark: In order to have good command following and desired disturbance rejection
properties, the target loop transfer function L,(j®) has to be large and consequently,
the minimum singular value o . [L ()] should be relatively large in the appropriate

frequency region. Thus, the assumption in the above theorem is very practical.

Example: Consider a given plant characterized by

X = 0 1x+0u =[2 1]x+0-u
-3 4 Pt e

Let the target loop L,(s) = F ®B be characterized by a state feedback gain F = [50 1()],

Using MATLAB, we know that the above system has an invariant zero at s = - 2. Hence
it is of minimum phase. Also, it is invertible. Thus, the target loop L,(s) is recoverable

by both the observer based and CSS architecture based controllers.

6.9
Using the H, optimization method, we obtain matrix K = {84 6} ,
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Example: Consider a given plant characterized by

-2 0 1 0 0 1 17 2 0 07
-1 2 0 0 0 0 1 0 0
3 2 -1 0 0 -2 1 1 0 0

A= 2 0 -4 2 0 -1 B={0 2 0] C=[L 0354
0 30 -2 1 -1 0 3 0
1 2 -3 2 2 0 0 0 1
-1 -1 1 0 0 -1 1. L0 ~1 0.

The target loop L,(s) = F ®B is characterized by an LQR state feedback gain with Q = [,
and 0.001 x I5. The observer and CSS controller gain matrices are chosen thru the

classical LTR design technique with tuning parameter summarized in the table below.

Tuning Supremum Supremum
parameter Omax { EO(.'w)} omax{Ec (] (0)}

Case 1 og=10 203.0387 19.9622
Case 2 =100 136.1517 2.1660
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Homework Assignment 3:

Using the loop transfer recovery control technique to design appropriate
measurement feedback control laws that meet all the design specification

specified in the (HDD or helicopter) problem.

Show all the detailed calculation and simulate your design using MATLAB and

Simulink. Give all the necessary plots that show the evidence of your design.
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11. Concluding Remarks

Some Personal Viewpoints on Control Systems Design

A /
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Question: Why is PID control still dominating in practical applications even though there

are so many advanced control techniques out there?

Answer (B.M.C.): PID control is always the first choice of practicing engineers because it
is structurally simple and it is easy to tune. If a system cannot be controlled by a PID
controller, the first thing that engineers would do is to redesign the system (such as to
restructure the system mechanical part or to reselect and/or replace the system sensors
and actuators), instead of trying an advanced control technique. As such, PID is
dominating in practical applications. However, this does not mean that PID is superior.
Because of its structural limitation, it is generally difficult to push for an optimal
performance of the PID controlled system. Furthermore, many multivariable systems
cannot even be stabilized by PID control laws. For MIMO systems, LQR control on the

other hand is the most popular choice among all the control techniques.

By the way, many advanced control methods do not make much difference in controlling

practical systems.

TCCT Newsletter, April 2014
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A more advanced course in linear systems and control...

Linear Systems and Control

Ben M. Chen

Professor of Electrical & Computer Engineering
National University of Singapore

Office: E4-06-08, Phone: 6516-2289
Email: bmchen@nus.edu.sg http://www.bmchen.net

Course material is available online at www.bmchen.net
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The course is aimed to answer the following questions:

Linear Systems angd Control

» Why is the commonly used PID a bad controller?
What control performance can one expect from a given system?
Why are system nonminimum phase zeros bad for control?

What else are bad to be controlled?

vV VYV V V

When an airplane passes through turbulences, why can it maintain its position

while its body is shaking badly?

» When and how can disturbances, uncertainties and nonlinearities be attenuated

through proper control system design?

» What is the best way to design a control system?
O to design a good control law? or

O to design a good system?
» How to design a good system through sensor and actuator selection?
» Why is PID not bad at all after all?
» How to improve control performance?
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That’s all, folks!
Thank You! ...

1940-
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