Mid-term Test for EE3331C Feedback Control Systems – Part 2

LT4, 10-11:30am, 24 October 2017

	Answer all questions in the space provided.				
0.4	(a) Vassa Nama	Wass.	Varia Matria Na		(2
Q.1	(a) Your Name	<u>Key</u>	_ Your Matric No:		(2 marks)
	(b) Who are the lecturers	for this module	both Part 1 and Part 2)?	?	
					(2 marks)
	Part 1 Lecturer: Arthu	r Tay			
	Part 2 Lecturer: Ben N	Л. Chen			
	(c) What is the key prope	rty that a linear s	ystem should have?		(2 marks)
	Superposition.				
	(d) What is a Bode plot?				
					(2 marks)
	Bode plot is a plot of n	nagnitude respor	se and phase response	of a transfer	
	function, say G(s), in the	he frequency dor	nain with $s = j \omega$.		
	(e) Name one real contro	l system example	that the lecturer has m	entioned in the o	class.
					(2 marks)
	Toilet water tank.				

Q.2 The magnitude responses for the following systems are shown in Figure Q.2 below.

$$G_1(s) = \frac{50s}{s+50}$$
, $G_2(s) = \frac{50}{s(s+50)}$, $G_3(s) = \frac{50s}{s^2+50s+50}$, $G_4(s) = \frac{50}{s+50}$

Match the magnitude responses with the given transfer functions.

Figure Q.2

Label the transfer functions directly on the graphics above.

(10 marks)

Q.3 The magnitude response of a typical second order system characterized by

$$H(s) = \frac{Y(s)}{U(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

is given in Figure Q.3 below.

Figure Q.3

(a) Find the DC gain, K, the damping ratio, ζ , and the natural frequency, ω_n , of the given system.

(5 marks)

Solution: It is simple to observe from the magnitude response that the static or DC gain is unity, i.e., K = 1. The corner frequency, which is also the natural frequency, of the magnitude response is 1 rad/sec, i.e., $\omega_n = 1$ rad/sec. The peak at the corner frequency is about 8 dB, which is corresponding to a damping ratio $\zeta = 0.2$. Thus, the transfer function is given by

$$H(s) = \frac{Y(s)}{U(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{s^2 + 0.4s + 1}$$

(b) Given an input signal, $u(t) = \cos t$, find its corresponding steady-state output, y(t).

(5 marks)

Solution: For the given input, we have $\omega = 1$ rad/sec. Its corresponding frequency response is given by

$$H(j\omega)\Big|_{\omega=1} = \frac{1}{j^2 + j0.4 + 1} = -j2.5 = 2.5 \angle -90^{\circ}$$

Thus, the corresponding steady-state output is given by

$$y(t) = 2.5\cos(t - 90^\circ)$$

(c) Find the steady state error due to a unit step input.

(5 marks)

$$Y(s) = \frac{1}{s^2 + 0.4s + 1} U(s) = \frac{1}{s^2 + 0.4s + 1} \cdot \frac{1}{s}$$

$$\Rightarrow y_{ss} = \lim_{s \to 0} s \cdot \frac{1}{s^2 + 0.4s + 1} \cdot \frac{1}{s} = 1 \Rightarrow e_{ss} = y_{ss} - u = 0$$

Q.4 The transfer function of a television receiver has a frequency (magnitude) response as shown in Figure Q.4 below:

Figure 4

(a) Does the system have an integrator? Why?

(3 marks)

Solution: No. The magnitude response does not roll off at low frequency.

(b) Does the system have a differentiator? Why?

(3 marks)

Solution: Yes. The magnitude response does roll up 20 dB per decade at low frequency.

(c) Determine the transfer function of the system?

(3 marks)

Solution: From the asymptotes, we can obtain the transfer function

$$G(s) = \frac{s}{(1+s)(1+s/100)} = \frac{100s}{(s+1)(s+100)}$$

(d) Determine the magnitude of its output signal when its input is $\cos (1000t + 13^{\circ})$?

(3 marks)

Solution: From the given magnitude response, its gain = -20 dB = 0.1 at $\omega = 1000 \text{ rad/s}$. Thus, the magnitude of the corresponding output signal is 0.1.

(e) What is the DC gain of the system?

(3 marks)

Solution: The DC gain is 0.