EE2012 Mid-Term Test 2 (Complex Analysis)

Name: _____ Matric No: _____ Score: _____

NOTE: ANSWER ALL QUESTIONS AND ANSWER DIRECTLY ON THE TEST PAPER...

Q.1 Show that the following function is analytic on the whole complex plane and find its derivative:

$$f(z) = \left[x^3 + x^2 - (3x+1)y^2\right] + i\left[xy(3x+2) - y^3\right]$$
(30 marks)

Solution: Noting that

$$u(x, y) = x^{3} + x^{2} - (3x+1)y^{2}, \quad v(x, y) = xy(3x+2) - y^{3}$$

$$\downarrow \downarrow$$

$$\frac{\partial u}{\partial x} = 3x^{2} + 2x - 3y^{2} = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = 6xy + 2y = -\frac{\partial u}{\partial y}$$

it is clear that Cauchy-Riemann equations hold for all *x* and *y*. Its derivative is given by

$$f'(z) = \frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = (3x^2 + 2x - 3y^2) + i(6xy + 2y)$$

which is continuous. Thus, the function is analytic on the whole complex plane.

Q.2 Show that $\overline{e^z} = e^{\overline{z}}$, where $\overline{e^z}$ is the complex conjugate of e^z and \overline{z} is the complex conjugate of z. (15 marks)

Proof. Let z = x + iy

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y)$$

$$\downarrow \downarrow$$

$$\overline{e^{z}} = e^{x}(\cos y - i\sin y) = e^{x}e^{-iy} = e^{x-iy} = e^{\overline{z}}$$

Q.3 Show that
$$\int_C \frac{1}{z-2} dz = 0$$
, $C = \{ z(t) = e^{it} \mid 0 \le t \le 2\pi \}$ (15 marks)

Proof. The given function is analytic at every point enclosed by *C*. Thus, by Cauchy's Integral Theorem, its integration is 0.

Q.4 Compute
$$\int_C \text{Re}(z) dz$$
, $C = \{ z(t) = 1 + it | 1 \le t \le 2 \}$ (15 marks)

Solution: By the definition of complex integral, we have

$$\int_{C} \text{Re}(z) dz = \int_{1}^{2} \text{Re}(1+it)(1+it)' dt = \int_{1}^{2} 1 \cdot i \cdot dt = i \cdot t \Big|_{1}^{2} = i$$

Q.5 Find the Taylor series expansion of $f(z) = \frac{z}{z-1}$ at $z_0 = 1$ and its corresponding radius of convergence. (10 marks)

Solution: The given function is not analytic at $z_0 = 1$. Thus, there is no Taylor series expansion for f(z) at $z_0 = 1$.

Q.6 Find the Taylor series expansion of $f(z) = \frac{z}{z+1}$ at $z_0 = 1$ and its corresponding radius of convergence. (15 marks)

Solution:

$$f(z) = \frac{z}{z+1} = \frac{z+1-1}{z+1} = 1 - \frac{1}{z+1} = 1 - \frac{1}{(z-1)+2} = 1 - \frac{1}{2} \cdot \frac{1}{1+\frac{z-1}{2}}$$

$$= 1 - \frac{1}{2} \cdot \frac{1}{1 - \left(\frac{1-z}{2}\right)} = 1 - \frac{1}{2} \left(1 + \left(\frac{1-z}{2}\right) + \left(\frac{1-z}{2}\right)^2 + \left(\frac{1-z}{2}\right)^3 + \cdots\right)$$

$$= \frac{1}{2} + \frac{1}{2^2} (z-1) - \frac{1}{2^3} (z-1)^2 + \frac{1}{2^4} (z-1)^3 + \cdots$$

Its radius of convergence is given by

$$\left| \frac{1-z}{2} \right| < 1 \quad \Rightarrow \quad \left| z - 1 \right| < r^* = 2$$