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1

Tutorial 2.1 

 

Question 2.1.0: (open discussion – no solution is to be provided): What is a curve? What is the length 

of a curve? How to characterize a circle and a straight line? What is a complex integral? What is the 

upper bound of a complex integral? 

 

Question 2.1.1: Find the parametric representation and the length of the curve: 3 , 0 1y x x   . 

 

Question 2.1.2: Let C be a circle with radius r and centred at the origin, i.e., : ( ) ,i tC z t a re  , 

[0,2 ]t  and 2( )f z z . Calculate the integral 2

C

z dz . 

 

Question 2.1.3: Find the upper bound for the absolute value of 
C

z dz where C is the half-circle, i.e., 

( ) , [0, ]i tz t e t   , as shown in Figure 1. 

 

 

 

 

 

 

 

 

Question 2.1.4: Calculate the integral 
2

2

2 1

z

z
dz

z z


 . Hint: You can try Cauchy's integral theorem 

here and note the poles inside. Draw a graph of the circle and indicate the poles. 

 

Question 2.1.5: Calculate
2

2
2

1

1z

z
dz

z


 . 

 

Question 2.1.6: Calculate
3

2

1

( 4)z

dz
z z  . 

Figure 1: ( ) , [0, ]itz t e t    
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Tutorial 2.2 

 

Question 2.2.0: (open discussion – no solution is to be provided): What is an analytic function? What 

is the Cauchy-Rieman condition for? What is the derivative of a complex function? What is a singular 

point? What is the order of singularities? What is the Cauchy’s integral theorem? What is the 

Cauchy’s integral formula? 

 

Question 2.2.1: Find the singularities of 
2

sin 1
( )

ze z
f z

z

 
 . 

Question 2.2.2: Calculate 
2

2 1

z

z

e
dz

z  . 

 

Question 2.2.3: Calculate 
2

1

1

sinz
z

z
dz

e z


 . 

 

Question 2.2.4: Calculate 
2

2 2 2z

z
dz

z z   . 

 

Question 2.2.5: Calculate 
2 2

0

sin

5 4cos
d

 


  . 
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Tutorial 2.3 

 
Question 2.3.0: (open discussion – no solution is to be provided): What are the Taylor series 
expansion and Laurent series expansion of complex functions? What are the residues of complex 

functions? What is Jordan’s Lemma? What is argument principle? What is Rouche’s Theorem? 

 

Question 2.3.1: Calculate
2 2

1

( 1)( 9)
dx

x x



   . 

 

Question 2.3.2: Calculate
2 2

1

( 1)
dx

x



  . 

 

Question 2.3.3: Calculate 
2

sin

2 5

x x
dx

x x






  . 

 

Question 2.3.4: Calculate 
2

cos

2

x x
dx

x x



   . 

 

Question 2.3.5: From the definition of the inverse Laplace transform 

 1 1
( ) ( ) ( )

2
st

C

f t L F s e F s ds
i

 
  , 

calculate the inverse transform of 
2

( )
3

s
F s

s



 if existent. 

 

Question 2.3.6: Calculate 
1

cos sin
C

dz
z z  , :C z   . 

 

Question 2.3.7: Use Rouche's theorem determine the number of roots (zeros) of 4( ) 5 1p z z z    

that lie within the annular region 1 2z  . 
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 Tutorial 2.4 

 

Question 2.4.0: (open discussion – no solution is to be provided): What is the Cauchy’s steepest 

descent method for? What is the key idea in Cauchy’s steepest descent method? What is the key idea 

in the Simplex Method? What are the basic operations in the Simplex Method? 

 

Question 2.4.1: Use the Cauchy’s method of steepest descent to derive an iteration scheme that yields 

an optimal solution corresponding to the minimum value of 

2 2 2
1 1 2 2 3( ) 2 2 3f x x x x x   x  

Show detailed iterations from a starting point x0 = ( 1  2  3 )' and a fixed step size t* = 0.1. Calculate 

the results with fixed step sizes t* = 0.2 and t* = 0.4, respectively. 

 

Question 2.4.2: Maximize 1 211 15f x x   subject to the constraints 

 

1 2

1 2

1 2

1 2

3 5 130

4 5 25

5 75

, 0 .

x x

x x

x x

x x

 
  

 


 

 

Question 2.4.3: Minimize 1 23 4f x x    subject to the constraints 

 

1 2

1 2

1 2

1 2

3 54

3 34

2 12

, 0 .

x x

x x

x x

x x
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Solutions to Tutorial 2.1 
 

Question 2.1.0: (open discussion – no solution is to be provided): What is a curve? What is the length 

of a curve? How to characterize a circle and a straight line? What is a complex integral? What is the 

upper bound of a complex integral? 

 

Discussion: 

1. What is a curve?  

2. What is the length of a curve?  

3. How to characterize a circle and a straight line?  

4. What is a complex integral?  

5. What is the upper bound of a complex integral? 
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Question 2.1.1 

Find the parametric representation and the length of the curve: 

3 , 0 1y x x   . 

Solution: 

Let , 0 1x t t   .  

3y t   

3( ) , 0 1z t t it t      

1 1
2 4

0 0

1 3 1 9L i t dt t dt      

A numerical solution for L can be found.  
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Question 2.1.2 

Let C be a circle with radius r and centred at the origin, while 2( )f z z . 

Thus : ( ) , [0, 2 ]i tC z t a re t     

Calculate the integral 2

C

z dz . 

Solution: 

By observation, the parametric representation of C can be rewritten as ( ) i tz t re , since it is centered 

at the origin. Then ( ) i tz t ire   and 

2 3 22 3 3 3

0
0

0
3

i t i t

C

ir
z dz ir e dt e

i
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Question 2.1.3 

Find the upper bound for the absolute value of 
C

z dz  where C is the half-circle 

: ( ) , [0, ]i tC z t e t   . 

 

Solution: 

To find the upper bound, we need to find the maximum magnitude of ( )f z z  on the curve C and 

the length of curve C: 

 

0 0

1i tL e dt dt
 

      

max , [0, 2 ]

1

itM e t  


 

Thus 
C

z dz M L    

Note that if we evaluate the integral directly, we obtain 2

0 0
. 0it it i t

C

z dz e ie dt ie dt
 

     . 
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Question 2.1.4 

Calculate the integral 
2

2

2 1

z

z
dz

z z


 .  

Solution: 

Note that
2

2 1 2 1

( 1)

z z

z zz z

 



 has two poles 0 and 1 and these are both inside the integration path, a 

circle with radius 2 and centred at the origin. (see Fig. 1). 

 

2

C

C2C1

 

Fig. 1 

 

Thus, we can substitute the original integral by the individual integrals along the path around the two 

poles as shown in Fig. 1, where C1 is a circle around point z=0 and C2 is a circle around point z=1: 

1 2

2 2 2
2

2 1 2 1 2 1

z C C

z z z
dz dz dz

z z z z z z

  
 

        

Using partial fractions, we obtain: 

1 2 1 2

1 1 2 2

2 2

2 1 2 1 1 1 1 1

1 1

1 1 1 1

1 1

C C C C

C C C C

z z
dz dz dz dz

z z z zz z z z

dz dz dz dz
z z z z

                  

   
 

   

   

   

   
 

From the Cauchy Integral Theorem, if the path C encloses the point 0z , then  

0

0 1
( )

2 1
n

C

n
z z dz

i n

 
     

  

and if a function ( )f z  is analytic inside the region enclosed by C, we have 
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( ) 0
C

f z dz  . 

Thus 

 
1

1
2

C

dz i
z

  ,  
1

1
0

1
C

dz
z


 ,  

2

1
0

C

dz
z

 , 
2

1
2

1
C

dz i
z

 
  

Hence,  

2
2

2 1
4

z

z
dz i

z z
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Question 2.1.5 

Calculate
2

2
2

1

1z

z
dz

z


 . 

Solution: 

Cauchy's integral formula states that for an analytic function ( )f z  and C a closed curve which 

encloses 0z :  

0
0

( )
2 ( )

C

f z
dz i f z

z z
 

  

Refer to Fig. 2. Note that 
2 1

1

z

z




 is analytic inside C2 and 
2 1

1

z

z




 is analytic inside C1. 

2

C

C1 C2

 

Fig. 2 

 

2 2

2 1

2 2

2 2

2
2 2

1 1
( 1) ( 1)

1 1
( 1) ( 1)1 1

1 1

( 1)( 1)1

( 1) ( 1)

2 2

2 2

0

z z

z z
z z

C C

z z
z zz z

z z
dz dz

z zz

dz dz
z z

i i

i i
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Question 2.1.6 

Calculate
3

2

1

( 4)z

dz
z z   

Solution: 

We will use the relation associated the power series, stating that 

( )
0

1
0

( )( )
2

!( )

n

n
C

f zf z
dz i

nz z   
 , 

to solve this problem. 

Refer to Fig. 3. We then find that 

1
4

3 3
2 2

2

2
0

3
0

1
0

( 4)

2 1

2! 4

2

( 4)

2

64

z

z z

z

z

dz dz
z z z

i d

zdz

i
z

i



 





 


     

 
    




    

 

 

-4 2

C

0

 

 

           Fig. 3 
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Solutions to Tutorial 2.2 
 

Question 2.2.0: (open discussion – no solution is to be provided): What is an analytic function? What 

is the Cauchy-Rieman condition for? What is the derivative of a complex function? What is a singular 

point? What is the order of singularities? What is the Cauchy’s integral theorem? What is the 

Cauchy’s integral formula? 

 

 

Discussion: 

1. What is an analytic function?  

2. What is the Cauchy-Rieman condition for? 

3. What is the derivative of a complex function?  

4. What is a singular point?  

5. What is the order of singularities?  

6. What is the Cauchy’s integral theorem?  

7. What is the Cauchy’s integral formula? 
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Question 2.2.1 

Find the singularities of 
2

sin 1
( )

ze z
f z

z

 
 . 

Solution: 
2 3

1
2! 3!

z z z
e z      

3 5 7

sin
3! 5! 7!

z z z
z z      

Hence 

2

2 3 3 5 7

2

2 3 4 6 7

2

2 4 5

sin 1
( )

1
1 1

2! 3! 3! 5! 7!

1
2 2

2! 3! 4! 6! 7!

1 2
2

2! 3! 4! 6! 7!

ze z
f z

z

z z z z z
z z

z

z z z z z

z

z z z z

 


    
              

     
 

     
 

    

 





 

 
The Laurent expansion of ( )f z has no negative powers of z. The function ( )f z  therefore has a 

removable singularity at 0z  . 
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Question 2.2.2 

Calculate 
2

2 1

z

z

e
dz

z  . 

Solution: 

By observation, 
2 1

ze

z 
 has two simple poles at 1z   and both of them are inside the integration 

path (See Fig. 1).  

2

C

-1 1

 
Fig. 1 

According to ( )
C

f z dz
1

2 Res( , )
n

i
i

i f z


   , we have 

 2
2

2 Res( ,1) Res( , 1)
1

z

z

e
dz i f f

z

   
  

From 
0

0 0Res ( , ) lim ( ) ( )
z z

f z z z f z


  ,  

1
Res ( ,1) lim

1 2

z

z

e e
f

z
 


  

1

1
Res ( , 1) lim

1 2

z

z

e e
f

z




  

 
 

Hence,   

1

2
2

2
2 21

[ 1/ ]

z

z

e e e
dz i

z

i e e
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Question 2.2.3 

Calculate 
2

1

1

sinz
z

z
dz

e z


 . 

Solution: 

Let ( ) sinzg z e z . 

Then ( ) cos sin (0) 1 0z zg z e z e z g     .  

Therefore ( )g z  has a 1st order zero in 0z  , and ( )f z  has a simple pole in 0z  . 

  

Therefore, using the 3rd formula on p. 1-18 of the lecture notes, we find that 
2

1

2

0

1
2 Res ( , 0)

sin

1
2

sin cos

2

z
z

z z
z

z
dz i f

e z

z
i

e z e z

i






 

 
   

 
 

  

1

C

0

 
Fig. 2 
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Question 2.2.4 

Calculate 
2

2 2 2z

z
dz

z z   . 

Solution: 

2
( )

2 2

z
f z

z z


 
 has simple poles at 1z i   . See Fig. 3. 

 1
2

1

Res( , 1 ) (1 )
( 1 )

z i

z
f i i

z i  

 
        

 

 1
2

1

Res( , 1 ) (1 )
( 1 )

z i

z
f i i

z i  

 
        

 

 
 2

2

2 Res ( , 1 ) Res ( , 1 )
2 2

2

z

z
dz i f i f i

z z

i



      
 

 


 

2

C

-1-i

-1+i

 
Fig. 3 
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Question 2.2.5 

Calculate 
2 2

0

sin

5 4cos
d

 


  .  

Solution: 

From    
2

1 1 1 1
2 2

0 1

1
(cos ,sin ) ,z i z

z

f d f z z dz
i z





         , we have 

 
 

2
1 12 2
2

1 1
0 1 2

4 2

2 2
1

2 2

2 1
1 2

1
2

sin 1

5 4cos 5 4

1 2 1

4 (2 5 2)

1 ( 1)

4 2 ( )( 2)

1
2 Res( ,0) Res( , )

4

i z

z z

z

z

z
d dz

i zz

z z
dz

i z z z

z
dz

i z z z

i f f
i









    
     

 
 

 


 

 

      

 










 

2 2

10
2

2 2 2 2

2 20

5
4

( 1)1
Res ( , 0) lim

1! 2( ) ( 2)

2( 1) 2 (2 5 2) ( 1) (4 5)
lim

(2 5 2)

z

z

zd
f

d z z z

z z z z z z

z z





 
  

   
     


 

 

 

1
2

2 2
1
2 2

3
4

( 1)
Res ( , ) lim

2 ( 2)z

z
f

z z


 





 

Note that pole 2z    falls outside of the region enclosed by the integral path. See Fig. 4.  

1

C

-�-2

 
Fig. 4 

Thus   
2 2

3 5
4 4

0

sin 1
. 2

5 4cos 4 4
d i

i

  
     

  . 
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Solutions to Tutorial 2.3 
 

Question 2.3.0: (open discussion – no solution is to be provided): What are the Taylor series 
expansion and Laurent series expansion of complex functions? What are the residues of complex 

functions? What is Jordan’s Lemma? What is argument principle? What is Rouche’s Theorem? 

 

 

Discussion: 

1. What is the Taylor series expansion of complex functions?  

2. What is the Laurent series expansion of complex functions? 

3. What are the residues of complex functions?  

4. What is Jordan’s Lemma?  

5. What is argument principle?  

6. What is Rouche’s Theorem? 
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Question 2.3.1 

Calculate 
2 2

1

( 1)( 9)
dx

x x



   . 

Solution: Let  

2 2

1 1
( )

( )( ) ( 3 )( 3 )( 1)( 9)
f z

z i z i z i z iz z
 

    
 

From Fig. 1, only z i  and 3z i  are in the upper half plane. 

 

-i

-3 i

+i

+3 i
C

 
Fig. 1 

 

Thus, 

 

 2 2

3

1
2 Res( , ) Res( ,3 )

( 1)( 9)

1 1
2

( ) ( 3 )( 3 ) ( ) ( )( 3 )

2
16 48 12

z i z i

dx i f i f i
x x

i
z i z i z i z i z i z i

i i
i
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-i

+i
C

Question 2.3.2 

Calculate 
2 2

1

( 1)
dx

x



  . 

Solution: 

Let 
2 2 2 2

1 1
( )

( 1) ( ) ( )
f z

z z i z i
 

  
. The function has a 2nd order pole at z i . See Fig. 2. 

 

  

 

 

 

 

 

 

 

  Fig. 2 

 

2 2 2

3

1 1 1
2 Res ( , ) 2 lim

1!( 1) ( )

2
2 lim

2( )

z i

z i

d
dx i f i i

dzx z i

i
z i
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Question 2.3.3 

Calculate 
2

sin

2 5

x x
dx

x x






  . 

Solution: 

Let 
2

( )
( ( 1 2 ))( ( 1 2 ))2 5

i z i zz e z e
f z

z i z iz z

 

 
      

. The function has a pole in the upper half-plane 

at 1 2z i   . 

 

Thus  

 

2 2

2

1 2

2 2 2

sin
Im 2 Res , 1 2

2 5 2 5

( 1 2)
Im 2 Im 2

( 1 2 ) 4

Im ( 1 2)( ) Im
2 2

i z

i z i

z i

x x z e
dx i i

x x z z

z e i e
i i

z i i

i e e i e
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Question 2.3.4 

Calculate 
2

cos

2

x x
dx

x x



   . 

Solution: 

Refer to Fig. 3. Consider  

1 2 3

2 1

( ) 2 ( ) 1

0
( 1)( 2) ( 1)( 2)

Ri z i z

C R C C C

z e z e
dz dz

z z z z

  

     

 
       

     
        

Let ( )
( 1)( 2)

i zz e
f z

z z


 
, then 

1

2

0 2
( )

2
lim ( ) Res ( , 2)= lim

1 3

i z i

z
C

z e i e
f z dz i f i

z



 



      

  

2

0 1
( )

lim ( ) Res ( ,1)= lim
2 3

i z i

z
C

z e i e
f z dz i f i

z 



     

  

Thus 
22

( ) 0
3 3

i ii e i e
f z dz

 



 
    


22

( )
3 3

2
(cos 2 sin 2) (cos1 sin1)

3 3

i ii e i e
f z dz

i i
i i

 



 
 

 
   

  


2

cos 2
Re (cos2 sin 2) (cos1 sin1)

3 32

2
sin 2 sin1

3 3

x x i i
dx i i

x x





         
 

 

  

R

C3

C1()

-R

-2- -2+

-2

C2()

1- 1+

 1

 

Fig. 3 
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Question 2.3.5 

From the definition of the inverse Laplace transform 

 1 1
( ) ( ) ( )

2
st

C

f t L F s e F s ds
i

 
  , 

calculate the inverse transforms of 
2

( )
3

s
F s

s



 if existent. 

Solution: It is straightforward to verify that for the given F(s),  

2 2
lim 0 and lim 1

3 3s s

s s
s

s s 
  

 
 

Thus, the inverse Laplace transform of F(s) exists and is given by 

2 2

3 3

3 3

3 3

( ) Res , 3 Res , 3
3 3

3 3

3 3

2 3 2 3

cosh 3
2

zt zt

zt zt

z z

t t

t t

z e z e
f t

z z

z e z e

z z

e e

e e
t

 





   
     

    
   

    
    


 




 

 



EE2012 Analytical Methods in ECE  Tutorials for Part 2 

 25

Question 2.3.6 

Calculate 
1

cos sin
C

dz
z z  , :C z   . 

Solution: 

2

2

1 1 1

cos sin sin / coscos

1 sec

tan

( )1
, ( ) tan

( )

C C

C

C

dz dz
z z z zz

z
dz

z

f z
dz f z z

f z




    

 

 


  


 





 





 

We can therefore apply the argument theorem to solve the problem. Since  

sin
tan

cos

z
z

z


 


, 

the zeros of ( )f z  are the zeros of sin z , which are 0 , 1, 2 , 3, 4z        Of these, only 

0 , 1, 2 , 3z      (seven of them) lie within C. Similarly, the poles of ( )f z  are the zeros of 

cos z , which are 3 5 71
2 2 2 2, , ,z      Of these, only 3 51

2 2 2, ,z      (6 of them) lie within C.  

Thus by the argument theorem 

( )1 1 1
2 [7 6] 2

cos sin ( )
C C

f z
dz dz i i

z z f z


    

      . 
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Question 2.3.7 

Use Rouche's theorem determine the number of roots (zeros) of 4( ) 5 1p z z z    that lie within the 

annular region 1 2z  . 

Solution: 

1 : 1C z   Choose ( ) 5f z z   and 4( ) 1g z z  . 

on 1C : ( ) 5 2 ( )f z g z   . 

By Rouche's theorem ( ) ( ) ( )p z f z g z  has one zero inside 1C , since ( )f z  has one zero inside 1C . 

 

2 : 2C z   Choose 4( )f z z  and ( ) 5 1g z z   . 

On 2C : ( ) 16 11 ( )f z g z   . 

Thus by Rouche's theorem, ( ) ( ) ( )p z f z g z   has four zeros inside 2C , since ( )f z  has four 

zeros inside 2C . 

Hence there are 41=3 zeros of ( )p z  inside the annular region 1 2z  . 
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 Solutions to Tutorial 2.4 
 

Question 2.4.0: (open discussion – no solution is to be provided): What is the Cauchy’s steepest 

descent method for? What is the key idea in Cauchy’s steepest descent method? What is the key idea 

in the Simplex Method? What are the basic operations in the Simplex Method? 

 

Discussion: 

1. What is the Cauchy’s steepest descent method for?  

2. What is the key idea in Cauchy’s steepest descent method?  

3. What is the key idea in the Simplex Method?  

4. What are the basic operations in the Simplex Method? 
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Question 2.4.1 

Use the Cauchy’s method of steepest descent to derive an iteration scheme that yields an optimal 

solution corresponding to the minimum value of 

2 2 2
1 1 2 2 3( ) 2 2 3f x x x x x   x  

Show detailed iterations from a starting point x0 = ( 1  2  3 )' and a fixed step size t* = 0.1. Calculate 

the results with fixed step sizes t* = 0.2 and t* = 0.4, respectively. 

 

Solution: 

We first compute the gradient of the objective function, i.e., 

1 1 2

2 1 2

3 3

2 2

( ) 2 4

6

f x x x

f f x x x

f x x

     
           
       

x  

The resulting iteration for t* = 0.1 is 

 

 

 

 

 

SStteepp  i 
x

i 
x

1,i         x
2,i        x3,i   

  
FFiixxeedd  SStteepp  

SSiizzee  t* 

0  1.0000 2.0000 3.0000 0.1 

1  0.4000 1.0000 1.2000 0.1 

2  0.1200 0.5200 0.4800 0.1 

3 –0.0080 0.2880 0.1920 0.1 

4 –0.0640 0.1744 0.0768 0.1 

5 –0.0861 0.1174 0.0307 0.1 

6 –0.0924 0.0877 0.0123 0.1 

7 –0.0914 0.0711 0.0049 0.1 

: : : : 0.1 

10 –0.0765 0.0488 0.0003 0.1 

: : : : 0.1 

20 –0.0349 0.0215 0.0000 0.1 

: : : : 0.1 

70 –0.0007 0.0004 0.0000 Slow 

1, 1 1, 1 2, 1
*

1 1 2, 1 1, 1 2, 1

3, 1 3, 1

2 2

( ) ( ) 2 4

6

i i i

i i i i i i

i i

x t x t x

t t f x t x t x

x t x

  

    

 

  
 

      
   

x x x
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The result for t* = 0.2: 

 

SStteepp  i 
x

i 
x

1,i         x
2,i        x3,i   

  
FFiixxeedd  SStteepp  

SSiizzee  t* 

0  1.0000 2.0000  3.0000 0.2 

1 –0.2000 0.0000 –0.6000 0.2 

2 –0.1200 0.0800  0.1200 0.2 

3 –0.1040 0.0640 –0.0240 0.2 

4 –0.0880 0.0544  0.0048 0.2 

5 –0.0746 0.0461 –0.0010 0.2 

6 –0.1503 0.0390  0.0002 0.2 

7 –0.0535 0.0331  0.0000 0.2 

8 –0.0453 0.0280  0.0000 0.2 

: : : : 0.2 

30 –0.0012 0.0007  0.0000 Faster 

 

 

The result for t* = 0.4: 

 

SStteepp  i 
x

i 
x

1,i         x
2,i        x3,i   

  
FFiixxeedd  SStteepp  

SSiizzee  t* 

0  1.0000  2.0000   3.0000 0.4 

1 –1.4000 –2.0000  –4.2000 0.4 

2 1.3200 2.3200   5.8800 0.4 

3 –1.5920 –2.4480  –8.2320 0.4 

4 1.6400 2.7424  11.5248 0.4 

5 –1.8659 –2.9574 –16.1347 0.4 

6 1.9928 3.2672   22.5886 0.4 

7 –2.2152 –3.5545  –31.6241 0.4 

8 2.4006 3.9049   44.2737 0.4 

9 –2.6438 –4.2634  –61.9831 Failed 
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Question 2.4.2 

Maximize 1 211 15f x x   subject to the constraints 

 

1 2

1 2

1 2

1 2

3 5 130

4 5 25

5 75

, 0 .

x x

x x

x x

x x

 

  
 



 

Solution: 

Forget about the artificial variables introduced in the textbook. We can solve this problem using the 

procedure suggested by Yin Mingbao in the presentation notes, i.e., by converting the constraints as 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

3 5 130 3 5 130

4 5 25 4 5 25

5 75 5 75

, 0 , 0

x x x x

x x x x

x x x x

x x x x

     
                     
      

 

Inserting slack variables and artificial variables as required yields 

1 2 1

1 2 2

1 2 3

1 2 1 2 1 2 3

3 5 130

4 5 25

5 75

11 15 0 , , , , , 0

x x w

x x w

x x w

f x x x x w w w

  
   

    

   

 

 

 Basis x1 x2 w1 w2 w3 b check 

w1 3 5 1 0 0 130 139 

w2 4 –5 0 1 0 –25 –25 

w3 –1 –5 0 0 1 –75 –80 

f –11 –15 0 0 0 0 –26 

w1 3 5 1 0 0 130 139 

w2 –4/5 1 0 –1/5 0 5 5 

w3 –1 –5 0 0 1 –75 –80 

f –11 –15 0 0 0 0 –26 
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 Basis x1 x2 w1 w2 w3 b check 

w1 7 0 1 1 0 105 114 

x2 –4/5 1 0 –1/5 0 5 5 

w3 –5 0 0 –1 1 –50 –55 

f –23 0 0 –3 0 75 49 

w1 7 0 1 1 0 105 114 

x2 –4/5 1 0 –1/5 0 5 5 

w5 1 0 0 1/5 –1/5 10 11 

f –23 0 0 –3 0 75 49 

w1 0 0 1 –2/5 7/5 35 37 

x2 0 1 0 –1/25 –4/25 13 69/5 

x1 1 0 0 1/5 –1/5 10 11 

f 0 0 0 8/5 –23/5 305 302 

w1 0 0 5/7 –2/7 1 25 185/7 

x2 0 1 0 –1/25 –4/25 13 69/5 

x1 1 0 0 1/5 –1/5 10 11 

f 0 0 0 8/5 –23/5 305 302 
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max 1 2420 with 15 , 17 .f x x     

 

 

Basis x1 x2 w1 w2 w3 b check 

w3 0 0 5/7 –2/7 1 25 185/7 

x2 0 1 4/35 –3/35 0 17 631/5 

x1 1 0 1/7 1/7 0 15 114/7 

f 0 0 23/7 2/7 0 420 2965/7 
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Question 2.4.3 

Minimize 1 23 4f x x    subject to the constraints 

1 2

1 2

1 2

1 2

3 54

3 34

2 12

, 0 .

x x

x x

x x

x x

 

 
  



 

Solution: 

If f denotes the objective function to be minimized, we write 

 g f  . 

We then determine maxg  in the normal way, and finally,  

 min max( )f g  . 

Inserting slack variables as required then yields 

1 2 1

1 2 2

1 2 3

1 2 1 2 1 2 3

3 54

3 34

2 12

3 4 0 , , , , , 0

x x w

x x w

x x w

g x x x x w w w
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max min 1 216 16 with 8 , 10 .g f x x       

Basis x1 x2 w1 w2 w3 b check 

w1 1 3 1 0 0 54 59 

w2 3 1 0 1 0 34 39 

w4 1 –2 0 0 1 –12 –12 

g –3 4 0 0 0 0 1 

w1 1 3 1 0 0 54 59 

w2 1 1/3 0 1/3 0 34/3 13 

w3 1 –2 0 0 1 –12 –12 

g –3 4 0 0 0 0 1 

w1 0 8/3 1 –1/3 0 128/3 46 

x1  w2 1 1/3 0 1/3 0 34/3 13 

w3 0 –7/3 0 –1/3 1 –70/3 –25 

g 0 5 0 1 0 34 40 

w1 0 8/3 1 –1/3 0 128/3 46 

x1 1 1/3 0 1/3 0 34/3 13 

w3 0 1 0 1/7 –3/7 10 75/7 

g 0 5 0 1 0 34 40 

w1 0 0 1 –5/7 8/7 16 122/7 

x1 1 0 0 2/7 1/7 8 66/7 

x2  w3 0 1 0 1/7 –3/7 10 75/7 

g 0 0 0 2/7 15/7 –16 –95/7 


