Optimization

In an optimization problem, the objective is to optimize (maximize or

minimize) some function f. This function f is called the objective function.

For example, an objective function f to be maximized may be the revenue in
a production of TV sets, the yield per minute in a chemical process, the
hourly number of customers served in some office, the hardness of steel, or

the tensile strength of a rope.

Similarly, we may want to minimize f if f is the cost per unit of producing
certain cameras, the operating cost of some power plant, the daily loss of
heat in a heating system, the idling time of some lathe, or the time needed to

produce a fender.
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Unconstrained Optimization: An Example

Inverse kinematics of a robotic manipulator: Given tip
position {px. py. Pz}, find joint rotations {64, 02,03 }.

Link 2

Joint

Joint
axis 2
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Unconstrained Optimization: An Example (cont.)

A solution via forward kinematics
A (arn. 1 A~ Ao\ _ A o. M
C1(@2Co + a@3Co3 — Q4523) — Q351 — Px
Si(@2Cy + azCoz — dsSo3) + 031 = Py
di — @Sy — azSpz — dyCoz = P2

0
A
fi (©) = ¢y (8202 + @3Cpz — daSp3) — U3S1 — Px =0
A
f2(©) = 81 (@2C2 + @3Coz — AsSp3) + d3¢1 — py = 0
A
3(©) = dy — @S2 — @3zSe3 — daCoz — Pz =0

o=1[06; 6, 03]
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Unconstrained Optimization: An Example (cont.)

An optimization-based approach

f1(©) =0 ( f2(©) =0 ) 3
{fg(@)0}<:>< f2(0)=0 p < > 7(©)=0
5 ( 2(@) =0 =1

3
= minimize F(©) = RAC)
=1

Advantages of the approach:

» it works regardless of the relation of the number of
equations versus the number of unknowns.

» it offers a “best” approximate solution if no exact solutions
exist.

epeur) ‘BLI0YIIA JO AlISIBAIUN
J0 N7 Buays-npA 10SS8j04d JO AS814n0D

EE2012 ~ Page 151 / Part 2 ben m chen, nus ece



EE2012 ~ Page 152 / Part 2

ben m chen, nus ece



Constrained Optimization: An Example

e A constrained-optimization based path planning for
obstacle avoidance

minimize  F = j}é" g(o,t)dt
subject to: X(t) = f(#(t)) (kinematics)

epeur) ‘BLI0YIIA JO AlISIBAIUN
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Background

In most optimization problems the objective function f depends on several

variables
Xl e, X

There are called control variables because we can “control” them, e.g.,

1) The yield of a chemical process may depend on pressure x,
and temperature X,.

2) The efficiency of a certain air conditioning system may depend
on temperature x,, air pressure x,, moisture content x,, Cross-
sectional area of outlet x,, etc.
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Background

Optimization theory develops methods for optimal choices of X, X, ..., X, ,

which maximize (or minimize) the objective function f, that is methods for
finding optimal values of x;, X,, ..., X,.

In many problems the choice of values of x,, x,, ..., X, IS not entirely free but
IS subject to some constraints, that is, additional conditions arising from the
nature of the problem and the variables.

For example, if x, is production cost, then x, > 0 and there are many other
variables (time, weight, distance travelled by a salesman, etc.) that can take
nonnegative values only. Constraints can also have the form of equations
(instead of inequalities).
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Unconstrained Optimization

Let us first consider unconstrained optimization in the case of a real-valued
function f (x, X, ..., X,). We also write X = (X, X, ..., X,)' and f (x), for
convenience.

f has a minimum at point X = X, in a region R if f (x) > f (X,) for x in R.

Similarly, f has a maximum at X, if f (x) <f (X,) for all x in R. Minima and

maxima are called extrema.

f is said to have a local minimum at X, if f (x) > f (X,) for all x in a
neighbourhood of X,, for all x satisfying

X=X, |<r

where r > 0 is sufficiently small.
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Example:
Minimizing a Function of a Single Variable

/

Golden Section Search
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Unconstrained Optimization

Question: How can

one reach the valley
bottom (minima)

fastest?

Answer: Take the
path in the most
downhill direction.
Mathematically, this

IS the direction of the

negative gradient.
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Unconstrained Optimization (cont.)

If f is differentiable and has an extremum at a point X,, then the partial
derivatives of /ox,---,of /ox, must be zero at X,. Thus its gradient

of /ox,
vi(X,)=| =0. (1)
of 0%, )

0

A point X, at which Vf (X,) =0 is called a stationary point (valley bottom) of f.

Condition (1) is necessary for an extremum of f at X, in the interior of R, but
IS not sufficient. In practice, solving (1) will often be difficult. For this reason,
one generally prefers solution by iteration, by search processes that start at
some point and move stepwise to points at which f is smaller (if a minimum
of f is wanted) or bigger (in the case of maximum).
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Cauchy’s Method

Cauchy’s method of steepest descent or gradient method is one such popular
method. However, convergence can sometimes be slow. Given a multivariable

function f (x), we examine its Taylor expansion (obtained from Taylor series)
Xl 8)(1 of /8x1
x=| i [ &x=| i |,Vf(X)=
i 0 of /o
Thus, we can expect a decrease in value of Xn Xn / OX

f(X+1t-8x) = f(X)+tVF(X) 8x+---,

f if we set the step direction ox to be

oX = —=VT (X)
and the step size t > 0. This is because

..........................
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Cauchy’s Method (cont.)

Why VT (x)" Vf (x) > 0? Noting that

| ; | of of
of /ox, of /ox,

and

[ A . \( £ \2 APV
ORI :[6@;] A E
X
1 n a.l:/axn 1 n

thus, we have

[ f(x—tvf (x)) = T () —t] VI ()T VI (x) | < f (x) J (2)
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Basic Idea of Cauchy’s Method

Now suppose that we start from an initial point, say X,, and an appropriate

step size t; > 0 and let x; = x, —t,Vf (xy). From (2), we have

(%)) = T (X 1T (X)) = F(Xo) —t,| VF (X0)T VI (%) | < F (o)

Let us move on from x, by defining x, = x; — t,Vf (x,) with an appropriately

chosen step size t,. Again from (2), we have

f (%) = f (%~ L,V () = F (%) ~t, [ VF () TVE () ] < £ ) < (%)

By repeating this process, we obtain an iterative sequence or scheme:

[ X; =X —tVI(Xi,) ] (3)

such that the resulting sequence has the following property:

F(Xo) = FOG) 22 F(x4) 2 F )22 F(X)
The sequence generated by (3) would converge to X, as i tends to o.
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Cauchy’s Method — Selection of Step Size

The issue on how to select an appropriate step size is quite complicated. In
principle, we can fix the step size t to be some appropriate small positive

scalar, say t*, and carry on the iteration:

[ X; = X4 —t Vi (Xil)} (4)

Such an iteration might not be efficient, but surely works. Alternatively, we can
also determine the step size t; and the corresponding point
Xi =Xy ~§VI(Xi4)

at which the function f (x;) is the smallest (a bit closer to the minima ©) among

all the possible choices of step size t. We illustrate this in an example...
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An lllustrative Example

[ f(x):xf+3x§]

f (%)

........................... Oops, |
................. e x - overshoot -
.-o ., 2 e ., K

.
°, °®
00000000
................
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Example

Determine a minimum of f (x) = x? + 3x2, starting from x,=(6 3) using the
method of steepest descent. Clearly, inspection shows that f (x) has a
minimum at 0. Knowing the solution gives us a better feeling of how the
method works. We first obtain the gradient
of /o 2
vi (x| O/ _( 2%
of /ox, 6X,
and the iteration scheme
Xgi1 2Xqi4 (1-2t)%; 4
X () =%, —tVf(x;_,)=| 7 |-t T = ’ (5)
(=X i (Xz,ij (6X2,i1J [(1_6t)xz,i1
Note that x; is depended on the choice of the step size t, and x,;_, and x,;_;

are the values of x, and x, corresponding to x; ;. We are now to select a step

size t; such that the resulting f (x;) is the smallest among all the choices of t.
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Optimal Selection of Step Size

% f(X):Xlz‘l‘SXg }
From (5), we have

1-2t 1,i-1
f (%)= f (((1_ 6t)):2’,i_1) =(1-20)" X355 +3(1-6)" X3, 4

To find the small value of f above with respect to t, we take

d . d 2,2 d 2,2

5 FOa0) = [ =207 [+ 30607,
=2-(1-2)X{;4 - (-2) +2- 31— 6t)x5,_; - (-6)
= —4(1-2t)x;; —36(1—-6t)X5; ,
= (8xfi_1 + 216x§’i_1)t - (4xfi_1 + 36x§,i_1) =0

2 9 2
o Xiaa T I9X5 50 ; ; ;
=) t, = > > <4 [ the optimal choice of step S|ze]
2X1 i +94X5, 4
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Starting from x, :(2), we compute the values for x, and x, as listed in the

table below and plotted in the figures on the next page.

Step | = = Stesjize
0 6.000 3.000 0.210
1 3.484 —0.774 0.310
2 1.327 0.664 0.210
3 0.771 —0.171 0.310
4 0.294 0.147 0.210
5 0.170 —0.038 0.310
6 0.065 0.032 fast...

2 2
- Xii1 +9%X5i
' 2x2 , +54x2

1,i-1 2,i-1

2Xq;
Vi (xi4) = (ij
2,i-1

[ X; =X —tVI(X_,) ]

M
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Example (cont.) — Solving it with a fixed step size

Step i X % Fié?SeStEEp

0 6.0000 3.0000 0.15

1 4.2000 0.3000 0.15

2 2.9400 0.0300 0.15

3 2.0580 0.0030 0.15

4 1.4406 0.0003 0.15
0.15

20 0.0048 3x107%0 slow...

2%y i
Vi(Xi4) = (6;"1}
2,i-1

[t* :0.15J

[ X; =X , —t Vf (Xi—l)]

The drawback of the method
with a fixed step sizeis: itis
generally slow in converging

to the solution.

M
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Summary of Unconstrained Optimization (Cauchy’s Method)

Given a real valued nonlinear function f (x) = f (x;,-, Xx,) and an initial point X, the problem

is to find a solution X, such that f(X,) is optimal (either minimum or maximum)

s
[ Compute the gradient of f (x), i.e., Vf(X) }

v

[ Design and perform an iterative scheme: X, =x. , — ¢, Vf(X,_; ) 1

I —1

v

If the iterative scheme converges and stops at a certain step, say k, then X, % X, and the

minimum value of f (X) is then approximately given by f (x,), i.e., f (X,) = f (Xi)
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Linear Programming

Linear programming (or linear optimization) consists of methods for solving
optimization problems with constraints in which the objective function f is a

linear function of the control variables x,, X, ..., X,.

Problems of this type arise in production, distribution of goods economics,

and approximation theory.
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Example

A Container Production Optimization Problem:

Suppose that in producing two types of containers K and L one uses two
machines M, and M,. To produce a container K, one needs M, two minutes
and M, four minutes. Similarly, L occupies M, eight minutes and M, four

minutes. The net profit for a container K is $29 and for L it is $45.

Determine the production plan that maximizes the net profit.
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Example (cont.)

Problem Formulation:

If we produce x, containers K and x, containers L per hour, the profit per
hour is

f(4,%)=29% +45%,.
The constraints are

2% +8x%, <60  (resulting from machine M, )

4% +4x, <60  (resulting from machine M,)

x>0
X, 20
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Figure 2 shows these constraints (x,, x,) must lie in the first quadrant and
below or on the straight line 2 x; + 8 x, = 60 as well as below or on the line
4 x, +4 X%, =60. Thus, (X, X,) is restricted to the quadrangle OABC.

We have to find (x;, X,) in OABC such that f (x;, X,) is maximum.

Now f (X;,X,) = 0 gives x, = — (29/45) x, (see Fig. 2). The lines f (x;, X,) = constant
are parallel to that line. We see that B, that is, x, = 10 and x, = 5, gives the

optimum f (10, 5) = 515.
m 2) e \

Hence the answer is that

the optimal production
plan that maximizes the >~

profit is achieved by ~ -

producing containers K
and L in the ratio 2:1, the

maximum profit being
$515 per hour. \
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Simplex Method

In practice, linear programming problems might contain many more
variables than the two variables considered in the previous
example. A computational method is then required to solve the

problem. One such technique is the Simplex Method. We illustrate

such a method through examples...
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Example

Maximize f =x, +4x, subject to constraints
—-X; +2X, <6
59X, +4x, <40
Xy, Xo 20
Idea: Introduce slack variables w;, W, . The constraints then become

—X +2X, +W, =6
5X, +4X, +w, =40
Xp s Xoy W, W, 20

and the objective function f — X, —4x, =0

Solution: Simplex table (to be constructed on the next page)...
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Formulation of Simplex Method

The problem is equivalent to finding one of the solutions of the following set

of linear equations:

O-f—x +2X,+w,+0-w, =6
O-f+5x +4x%,+0-w, +w, =40
f—x —4%,+0-w, +0-w, =0

subject to the constraints, Xy, X,, W;, W, > 0, such that f is maximum. From
what we have learnt in linear algebra, we know solutions to the above linear

equations remain unchanged with the following 3 basic operations (B.O.):

B.O.1: Interchange of two equations
B.0O.2: Multiplication of an equation by a nonzero constant

B.0.3: Addition of a multiple of one equation to another equation
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Key Idea of Simplex Method

The key idea of Simplex Method is to carry out a series of these
basic operations (mainly B.O.2 and B.0O.3) on the equations to
transfer them into an certain form for which the desired solution
(the solution corresponding to the maximum f can be easily

observed and deduced).

We will illustrate this idea through specific examples...
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National University
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Simplex Table:
Similar to the Matrix Form of Linear Equations
Problem variables Slack variables Constants
A —_—
N N\
Basis X1 Xo Wy W» b check
4
Wi -1 2 1 0 6 8
W, 5 4 0 1 40 50
N
f -1 —4 0 0 0 5
O-f—x +2%,+wW, +0-w, =6 unity matrix

O-f +5x +4x,+0-w, +w, =40

f—x —4%,+0-w,+0-w, =0
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Simplex Method (cont.)

The check column on the right hand side is included to provide a check on
the numerical calculations as we develop the simplex. For each row, total

up the entries in that row and enter the sum in the check column.

We are to perform a series of basic operations (B.0.2 and B.0O.3) such that
the coefficients associated with the objective function are all nonnegative.
For the given example, it will be seen soon that the objective function can

be transformed into:

{f+0-x1+0-x2+%wl+§W2=24 = f:24—%wl—§w2, wl,wzzo}

Clearly, the maximum of f is 24 (by setting w, = w, = 0).

EE2012 ~ Page 180 / Part 2 ben m chen, nus ece



Steps:

1. Key column: Select the most negative entry in the index row; in this case —4.

Basis X X3 Wi W b check
W —1 2 1 0 6 8
) 5 4 0 1 40 50

f —1 —4 0 0 0 -5
key column

aiversity

key row

2. Key row: Divide the entry in the b-column by the positive entry in the key column.

The smallest positive ratio determines the key row.

3. The entry at the intersection of the key column and the key row is called the pivor.

4. Divide each entry in the key row by the pivot to reduce the pivot to a unit pivot,
which we then circle. The revised key row is now called the main row.
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Basis X1 X "y Wh b check

Main row

< 0 3 4
M 5 4 0 1 40 50
f -1 —4 0 0 0 = Index row

Key columm

5. Use the main row to operate on the remaining rows to reduce the other entries in the
key column to zero. The new entries can be calculated as follows:

New number = Old number — product of corresponding entries in key row and key column

For example, in the second row (1w, ): B, O 3
5isreplaced by 5-(-L)d)=5+2=7
In the third row (f):

Lad

—1 isreplaced by —-1-(—$)(4) =-1-2=-

EE2012 ~ Page 182 / Part 2 ben m chen, nus ece



6. Confirm that the new values 1 the check column are indeed the sums of the entries in
the corresponding rows. If not. there is a mistake somewhere in the calculation, which
should be corrected.

7. Change of basic variables: Change the variable in the key column (x,) with the basic
variable in the main row ().

Basis X1 X2 Wi W b check

oWy || —3 1 9 0 3 4
W 7 0 -2 1 28 34
f -3 0 2 0 12 11

The basic variables are now x; and w,, and the basic solution is thus x, =3, w, =28.

However, the index row ( /) still contains a negative entry, and therefore this is not
the optimum solution.
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8. Repeat steps 1 to 7 until no negative entries remain in the index row.

Basis X1 X Wy Ws b check

s -1 1 1 0 3 4

W @ 0 -2 = 4 =

....... f -3 0 2 0 12 11
Basis X1 X Wy W b check

X 0 1 ﬁ ﬁ 5 %

Y1 o 1 0 -3 T 4 >

rle o s 3 | o

8 3 8 3
f+0-x,+0-X%+=-W+=-W,=24 = f=24——w,——w,, W,w,>0
7 7 7
A new basic solution emerges as x; =4. x, =5. Since there are no negative sntries in the
index row, this is also the optimal solution. The optimal value for f'is given in the » column,
1.e. [ =24,
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Simplex Method (re-cap)

We have gone through the simplex in some detail by way of explanation. The solution for the
problem would normally look like this:

Maximize f =x; +4x, subject to the constraints

—x, +2x, <6
5x, +4x,<40

X;.% 20,

Entering slack variables ;. w, . this is written as
=X, +2x,+w, =6

S5x; +4x, +w, =40
f—x —4x,=0.
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Basis X1 X2 Wy W b check

a|qel xsjdwis a19jdwo)d
s

f -1 —4 0 0 0 -5
Xo W -+ 1 > 0 3 4
Wa 7 0 —2 1 28 34 8 O -
f -3 0 2 0 12 112 | J e 3 .........
X2 -1 1 + 0 3 4 |
w [(D) o x4 | 4| o 80,
f -3 0 2 0 12 w |

X1 W 1 0 - % % 4 37_4 .......
£ 0 0 g_ % o4 % 3

f =24 with x =4, X,=5
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The Problem: Suppose that in producing two types of containers K and L

one uses two machines M, and M,. To produce a container K, one needs M,
two minutes and M, four minutes. Similarly, L occupies M, eight minutes and
M, four minutes. The net profit for a container K is $29 and for L it is $45.

Determine the production plan that maximizes the net profit per hour.

Formulation: If we produce X, containers K and X, containers L per hour, the

profitis f(x,x,)=29x +45x, subject to the constraints:

2%, +8X, < 60 2%, +8X, +w, =60

4%, +4X, <60
X, 20,%,20

4%, +4X, +w, =60
f —29x, —45x, =0

X, Xou Wy, W, >0
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W,
1

=

60

60

-29

oO(— | O

0.25

7.5

60

-29

0.25

0.125

—0.5

7.5

30

-17.75

0

5.625

337.5

X0y X9, Wy, W, 20
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...olmplex Ex_2...

basis

basis

f

basis
X2
Xl

f

b

check

0.125 0

7.5

8.875

—0.5 1

30

33.5

5.625 0

337.5

325.375

X

W, W,

check

0.25

©,

0.125 0

—0.166 0.333

7.5

10

8.875

11.1666 « b o

-17.75

5.625 0

337.5

325.375

X

W, W,

b

check

0.166  —0.083

—0.166 0.333

5

10

6.083 - &

11.1666

2.666 5.917

515

523,582 « |+ o

f +2.666w, +5.917w, =515
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Simplex Method for More Variables

Many problems in real life involve more than just two variables. However,
the method of computation and the key idea remain basically the same. It
IS an iterative process which is repeated until the index row contains no

negative entry, at which point the optimal value of the objective function is

attained.

We illustrate the process for solving optimization problems for more

variables thru the following examples...
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Example of 3 Variables

/ Maximize f =2x; + 6x, +4x, subject to the constraints

2%, +5x, +2x; £38
dx; +2x, +3x;3 =57
y+3x, +5x =57

X% .x20.

Introduction of slack variables ;. w, . w; gives

2%, +5%, + 2x; +1y =38

dx; +2x, + 335 + 1y =57
X +3x, +5x; +wy =57
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................................

................................

Basis X1 Xo X3 W Wy W3 b check
Wi 2 5 2 1 0 0 38 48
W, 4 2 3 0 1 0 57 67
W3 1 3 5 0 0 1 57 67
f -2 -6 -4 0 0 0 0 -12
BOZ ...... I , @ ; ; . i . -
W, 4 2 3 0 1 0 57 67
W3 1 3 5 0 0 1 57 67
f -2 -6 -4 0 0 0 0 -12
X2 Wi Z 1 z L 0 0 3 48
e 2 T B
wo |08 0 #4001 | %
A I S T | I I
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Basis X1 X X3 Wi Wo W3 b check
X2 5 1 z L 0 0 3 18
we | B0 E o op 1 o |
worbw [ & 0 @ & o & | e | m
S N
X2 i 1 0 i 0 -2 4 106
w | B0 0 1 op | 2 | g p1803]
oW | -k 0 1 =% 0 5 | 9 |
f o 0 0 = 0 2 60 iz
[ fax =60 with x1:0,x2:4,x3:9.]?
{ f+%xl+gwl+%w3:60 = f :60—£x1—%wl—%w3, X, Wy, Wy >0 }
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Example with > Constraint

Maximize f =7x +4x, subject to the constraints

2x, +x, =150
4x; +3x, =350
x, +x, 280 ---------- > [ —X — X, <80 ]

Xp.X% =20,

Introduction of slack variables w;, w,, w, gives

4 2% + % + W, =150 ) d This innovative procedure was h
4%, +3X, + W, =350 suggested by Yin Mingbao, a student
X X, W, =—80 [ taking EE2012 in Semester 1 of
X, X3 Wy, Wy Wy > 0 S Academic Year 2009/2010. y

\_ %
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Complete Simplex Table

EE2012 ~ Page 195 / Part 2



Q basis X1 X, Wy w, Wi b check

3 X, W 1 0 1 o 11| 10 73

=l e e -

) wpy 120 0 L L ;__2_+ _____ 40 [

D X, W 0 1 ! 0 2 10 8

2 f 0 0 3 o | -1 830 532

133 X, 1 0 1 0 1 70 73

D W3 W, 0 0 -0.5 0.5 @ 20 21

>_<| X, 0 1 -1 0 -2 10 8

® [ ;| o o s o o s ||
o) X, 1 0 15 0.5 0 50 52 |/7.BO3
=y W, 0 0 0.5 0.5 1 20 21

8 X, 0 1 -2 1 0 50 50

Z f 0 0 2.5 0.5 0 550 553

[ fh, =550 with X =50, x, =50, w, =20 | C?

{ f+2.5w +0.5w, =550 = f =550-2.5w, -0.5w,, w,w,=>0 }

EE2012 ~ Page 196 / Part 2 ben m chen, nus ece



Another Example with > Constraint

Maximize f =8x; +4x, subject to the constraints

2x, +3x, =120
X +x, =45
3y 5%, 225 ceeeeeees > [ 3¥, —9%, =25 J

:rl.xEEO.

Introduction of slack variables w;, w,, w; gives

(23 ew=120 ) v N
X, + X, +W, =45 We are to solve this problem once
3% —5x. +W. =25 | > again using the procedure
' 2o suggested by Yin Mingbao.
kxl,xz,wl,wz,w320 . \_ )
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ra|ge xajdwis

basis Xq X, w, w, W, b check
W1 ir._z._.\} 3 1 0 0 120 126
w, |01 10 1 o | 45 | 48
wy; |1 31 -8 0 0 1 o5 o6
f :\.:§__.'i —4 0 0 0 0 12
w, 2 3 1 0 0 120 126
w, @ 1 0 1 0 45 48
W3 3 -5 0 0 1 25 26T
f -8 —4 0 0 0 0 12
4] 0 1 1 _2 0 30 30

X, W 1 1 0 1 0 45 48
Wi 0 -8 0 -3 1 ~160 | -170
f 0 4 0 8 0 360 372

f +4x,+8w, =360 = f =360-4x,—-8w,,
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XW,=0 = f_ =3607

—8X, —3w, +w, =-160 = w,=-160<0. Thisis a contradiction!

ben m chen, nus ece



=N US
G2
National University

of Singapore

What to do next?

[The remaining control Variable.} [ The row has problem...}

basis X4 x2 Wy w, W, b check
w, 0 1] 1 2 0 30 30
[ |
Xy 1 1] 0 1 0 45 48
S RS S . L
W3 | 0  —8) 0 -3 1 -160 —-170 |
........... E. ).II_._._._._._._._._._._._._._._._._._.__._.___,
f 0 | 4] 0 8 0 360 | 372

Pivot: The intersection of the row containing w; and the control variable X,

— to get rid of w; in the basis and obtain an explicit solution for x,.
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(N

A\~ a4

3 basis X4 X, wy w, Wi b check

=3 w, 0 1 1 -2 0 30 30

c>|2 X, 1 1 0 1 0 45 48 -

Q—Jl W, 0 (1) 0 38  -1/8 | 20 | 21.25°

U O 4 O 8 O 360 372 | pre——

5 |2 STreey
" 0 0 : lo/8 g 0 P [ (St

/-\O 1

o X, 1 0 0 5/8 1/8 25 26.75

¢:-5|- X, 0 1 0 3/8 -1/8 20 21.25

—
f 0 0 0 6.5 0.5 280 287

[~ T, =280 with x =25 x =20, w =10 | ﬁ?

f +6.5w, +0.5wW, =280 = f =280-6.5w, —0.5w;, w,,w;>0 J
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Summary of Constrained Optimization (Simplex Method)

Given a set of linear equations and/or inequalities (constraints), the problem is to

determine a solution such that a certain objective function is maximized

v

[ Construct a Simplex table with slack variables ]

v

[ Perform iteratively a series of basic operations (B.0.2 & B.0.3) }

v

The maximum value of the objective function can be determined when all its

resulting coefficients are nonnegative

EE2012 ~ Page 201 / Part 2 ben m chen, nus ece



