Q.3 (a) Find the derivative of f(z) = Im(z) if existent. Justify your answer otherwise.

(5 marks)

Solution:

$$f(z) = \operatorname{Im}(z) = y + i \cdot 0 \implies \frac{\partial u}{\partial x} = 0 = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = 1 \neq -\frac{\partial v}{\partial y} = 0$$

Thus, f(z) is not differentiable and its derivative does not exist.

(b) Compute $\prod_{|z|=1} \overline{z} \cdot dz$, where \overline{z} is the complex conjugate of z.

(5 marks)

Solution: On the unit circle, $z = e^{i\theta}$, $0 \le \theta \le 2\pi$

$$\iint_{|z|=1} \overline{z} \cdot dz = \int_{0}^{2\pi} e^{-i\theta} \cdot ie^{i\theta} d\theta = i \int_{0}^{2\pi} d\theta = 2\pi i$$

(c) Compute $\iint_{|z|=\pi} z^2 e^{1/z} dz$

(5 marks)

Solution:

$$f(z) = z^{2}e^{1/z} = z^{2}\left(1 + \frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^{2}} + \frac{1}{3!} \cdot \frac{1}{z^{3}} + \cdots\right) = z^{2} + z + \frac{1}{2!} + \frac{1}{3!} \cdot \frac{1}{z} + \frac{1}{4!} \cdot \frac{1}{z^{2}} + \cdots$$

has an essential singularity point at $\,z_0^{}=0\,$ and its corresponding residue or

$$a_{-1} = \frac{1}{3!} = \frac{1}{6}$$

Thus,

$$\iint_{|z|=\pi} z^2 e^{1/z} dz = 2\pi i \cdot \text{Res}(f, z_0) = \frac{2\pi i}{6} = \frac{\pi}{3} i$$

(d) Compute $\int_C \text{Re}(z) dz$, where C is a straight line connecting point (-1-i) to point (1-i), as showed in the figure below.

(5 marks)

Solution: Re(z) is not an analytic function. We have to integrate it directly. On the straight line C connecting point (-1-i) to point (1-i), we have

$$z(t) = (b-a)t + a = (1-i+1+i)t - 1 - i = (2t-1)-i, t \in [0,1]$$

and the integral on C is given by

$$\int_{C} \operatorname{Re}(z) dz = \int_{0}^{1} \operatorname{Re}(z(t)) z'(t) dt = \int_{0}^{1} (2t - 1) 2 dt = 2(t^{2} - t) \Big|_{0}^{1} = 0$$

(e) Compute
$$\int_{0}^{\infty} \frac{\cos(\pi x)}{4x^2 + 1} dx$$

(5 marks)

Solution: Since $\frac{\cos(\pi x)}{4x^2+1}$ is an even function, we have

$$\int_{0}^{\infty} \frac{\cos(\pi x)}{4x^{2} + 1} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos(\pi x)}{4x^{2} + 1} dx = \frac{1}{2} \operatorname{Re} \left[2\pi i \sum_{j} \operatorname{Res} \left(f e^{i\pi z}, a_{j} \right) \right] = \frac{1}{2} \operatorname{Re} \left[2\pi i \cdot \operatorname{Res} \left(\frac{1}{(2z + i)(2z - i)} e^{i\pi z}, \frac{i}{2} \right) \right]$$

$$= \frac{1}{2} \operatorname{Re} \left[2\pi i \cdot \lim_{z \to \frac{i}{2}} \left(z - \frac{i}{2} \right) \frac{1}{(2z + i)(2z - i)} e^{i\pi z} \right] = \frac{1}{2} \operatorname{Re} \left[\pi i \cdot \lim_{z \to \frac{i}{2}} \left(2z - i \right) \frac{1}{(2z + i)(2z - i)} e^{i\pi z} \right]$$

$$= \frac{1}{2} \operatorname{Re} \left[\pi i \cdot \frac{1}{2\frac{i}{2} + i} e^{i\pi \frac{i}{2}} \right] = \frac{1}{2} \operatorname{Re} \left[\pi \cdot \frac{1}{2} e^{-\frac{\pi}{2}} \right] = \frac{\pi}{4} e^{-\frac{\pi}{2}} = 0.1633$$

- **Q.4** The C-gate Technology has hired three workers, W_1 , W_2 and W_3 , to produce two kinds of hard disk drives, D_1 and D_2 , the profit being \$3 and \$2, respectively.
 - Worker W_1 prepares all parts for D_1 in 4 minutes and for D_2 in 3 minutes. W_1 works for 8 hours daily.
 - Worker W_2 assembles D_1 in 6 minutes and D_2 in 5 minutes. W_2 works for 8 hours daily.
 - Worker W_3 packs both D_1 and D_2 in 1 minute each. W_3 only works for 4 hours daily in the afternoon.

Use the Simplex Method or any other technique to determine production figures that maximize the daily (8 working hours) profit.

(25 marks)

Solution:

If C-gate Technology produces x_1 sets of drive D_1 and x_2 sets of drive D_2 daily (8 hours), the profit daily is

$$f(x_1, x_2) = 3x_1 + 2x_2$$

The constraints are

 $4x_1 + 3x_2 \le 480$ (resulting from Worker W_1 in 8 hours)

 $6x_1 + 5x_2 \le 480$ (resulting from Worker W_2 in 8 hours)

 $x_1 + x_2 \le 240$ (resulting from Worker W_3 in 4 hours)

$$x_1 \ge 0$$
, $x_2 \ge 0$

We introduce slack variables w_1 and w_2 . The constraints become

$$4x_1 + 3x_2 + w_1 = 480$$

$$6x_1 + 5x_2 + w_2 = 480$$

$$x_1 + x_2 + w_3 = 240$$

$$x_1, x_2, w_1, w_2, w_3 > 0$$

and the objective function $f - 3x_1 - 2x_2 = 0$. We construct the following Simplex Table:

basis	x_1	x_2	w_1	w_2	W_3	b	check
w_1	4	3	1	0	0	480	488
w_2	6	5	0	1	0	480	492
W_3	1	1	0	0	1	240	243
f	_3	-2	0	0	0	0	-5

basis	x_1	x_2	W_1	W_2	W_3	b	check
w_1	4	3	1	0	0	480	488
w_2	1	5/6	0	1/6	0	80	82
W_3	1	1	0	0	1	240	243
f	-3	-2	0	0	0	0	-5

basis	x_1	x_2	w_1	W_2	W_3	b	check
w_1	0	-2/6	1	-4/6	0	160	160
w_2	1	5/6	0	1/6	0	80	82
W_3	0	1/6	0	-1/6	1	160	161
f	0	3/6	0	3/6	0	240	241

We have

$$f - \frac{1}{2}x_2 - \frac{1}{2}w_2 = 240 \implies f = 240 + \frac{1}{2}x_2 + \frac{1}{2}w_2$$

Obviously, the maximum profit occurs when we set $x_2 = w_2 = 0$ and $x_1 = 80$. The maximum profit is \$240 for daily by producing 80 sets of drive D_1 and 0 set of drive D_2 .