Q.3 (a) Given a complex function
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determine its singular points, the orders of singularise of its singular points and the

f(z)=
corresponding residues.

Solution: Noting that
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it follows that f(z) has a 1st order singular point at z =0, and the corresponding residue

is given by
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Res(f,0)= Iin(')l

(6 marks)

(b) Given a complex function
f(z) = z¢”*
determine its singular points, the orders of singularise of its singular points and the

corresponding residues.

Solution: Noting that
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it follows f(z) has an essential singularity at z=0, and by definition, its residue is given
by

Res(f,0)=a1:%

(6 marks)



(c) Evaluate the following integral
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Solution: Let
f(z)= ﬁ = its has a 2nd order singularity at z =i on the upper plane
+
We have
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(6 marks)
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Laurent series for f(z) in the region 1<|z| < 2 as indicated in Fig. Q.3 (d).

(d) Given a complex function f(z)= C,:|lzZ|=1and C,:|z|=2, find the

Solution: (7 marks)
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Fig. Q.3 (d)

Alternatively, one may solve this problem with
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where C is any close path within the ring. The solution should be

the same as given above.



Q.4 Refer to Fig. Q.4 below. The upper arc between z, and z; is kept at a potential of
—3000V whereas the lower arc is kept at a potential of 3000 V.
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Fig. Q.4

(a) Determine a linear fractional transformation w=g(z) that maps |z|<1 onto |w|<1
(i.e., a unit disc onto another unit disc) with z, =i/2 being mapped onto w=0.
Verify that z, =(3+14)/5 is mapped onto w=-1, and z, =(-3+1i4)/5 is mapped
onto w=1.

Solution: Recall the mapping that maps a unit disc onto another disc in the lecture notes, we

have

o 1-z, 1-il2  27-i i-2z
z;z-1 —iz/2-1 —-iz-2 2+iz

W

For z, =(3+14)/5,

w12z _i-2(3+i4)/5_5i-6-8 _—6-3i
Y240z, 2+i(3+i4)/5 10+3i-4 6+3i

For z, =(-3+14)/5,
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(10 marks)



(b) Plot the image of the unit circle on the w plane and label the potentials of the arcs

after transformation.

Solution: We need to determine how the upper arc between z, and z; are mapped. Let us

i-27, i-2i i

choose another point z, =i. We have w, = — = — =—=—1.Thus,
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(5 marks)

(c) Determine the electrostatic potential function inside the unit disc of Fig. Q.4. What

Is the potential at z, =1/27?

Solution: The problem under transformation is exactly the same as that of Example 8 in the

lecture notes. Recall the mapping obtained in Example 8, i.e.,w=—i z_+i Thus, the required
Z —_

transformation that the transform the given problem into Example 3 of Simple Geometries
is given by
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and thus the complex and real potential functions are respectively given by
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The potential at z, =i/2, which is mapped onto w, =0, is 0. (10 marks)



