Q.3 Evaluate the following integrals

(a)
$$\int_{C} \frac{1}{z - (1 + i)} dz$$
, $C = \{z(t) = e^{it}, 0 \le t \le 2\pi\}$
(b) $\int_{C} \frac{1}{z(z - 1)} dz$, $C = \{z(t) = \frac{1}{2} + e^{it}, 0 \le t \le 2\pi\}$
(c) $\int_{0}^{2\pi} \frac{1}{3\cos\theta + 5} d\theta$

(d)
$$\int_0^\infty \frac{1}{(x^2+4)^2} dx$$

(25 marks)

Solution:

$$\begin{array}{c} (1) \text{ Evaluate the following integrals} \\ 20 \\ a) \quad c_{C}^{2} \frac{1}{z^{2} - (1+1)} \overset{1}{A^{2}} \qquad C(t) = (\cos t, s, wt) \quad 0 \text{ sts } z\pi \\ a) \quad c_{C}^{2} \frac{1}{z^{2} - (1+1)} \overset{1}{A^{2}} \qquad C(t) = \frac{1}{2} + (\cos t, s, wt) \quad 0 \text{ sts } z\pi \\ b) \quad c_{C}^{2} \frac{1}{z(2-1)} \overset{1}{d^{2}} \qquad C(t) = \frac{1}{2} + (\cos t, s, wt) \quad 0 \text{ sts } z\pi \\ b) \quad c_{C}^{2} \frac{1}{z(2-1)} \overset{1}{d^{2}} \qquad C(t) = \frac{1}{2} + (\cos t, s, wt) \quad 0 \text{ sts } z\pi \\ c) \quad \int_{C}^{2\pi} \frac{1}{z(2-1)} \overset{1}{d^{2}} \qquad C(t) = \frac{1}{2} + (\cos t, s, wt) \quad 0 \text{ sts } z\pi \\ c) \quad \int_{C}^{2\pi} \frac{1}{z(2-1)} \overset{1}{d^{2}} \overset{2}{d^{2}} \overset{2}{d$$

Q.4 A factory manufactures two types of hobby choppers, *A* and *B*, each of which requires labour, machine time and storage space. The two choppers generate net profits of \$500 for *A* and \$650 for *B* per piece, respectively. The factory has a maximum of 300 cm³ storage space available; chopper *A* has a volume of 3 cm³ and chopper *B* has a volume of 5 cm³. The factory has a maximum of 500 machine hours per day to manufacture the helicopters and the choppers *A* and *B* require 8 and 10 machine hours, respectively. The factory has a maximum of 160 labour hours per day to manufacture the choppers *A* and *B* require 2 and 3 labour hours, respectively. Let *x* and *y* represent the number of choppers *A* and *B* produced daily. Use the Simplex Method to maximize the daily profit.

(25 marks)

Solution: It is straightforward to formulate the problem as maximizing

$$P = 500x + 650y$$

subject to the following constraints

$$3x + 5y \le 300$$
$$8x + 10y \le 500$$
$$2x + 3y \le 160$$
$$x \ge 0, \quad y \ge 0$$

Introducing slack variables w_1 , w_2 and w_3 , the constraints then become

$$3x + 5y + w_1 = 300$$

$$8x + 10y + w_2 = 500$$

$$2x + 3y + w_3 = 160$$

$$x \ge 0, \quad y \ge 0, \quad w_1 \ge 0, \quad w_2 \ge 0$$

And the objective function

$$P - 500x - 650y = 0$$

From this, we set up the simplex table for the problem.

Basis	x	у	w_1	<i>w</i> ₂	<i>W</i> ₃	b	Check
W_1	3	5	1	0	0	300	309
<i>w</i> ₂	8	$\left(10\right)$	0	1	0	500	519
<i>w</i> ₃	2	3	0	0	1	160	166
Р	- 500	- 650	0	0	0	0	- 1150

Basis	x	у	w_1	<i>w</i> ₂	<i>W</i> ₃	b	Check
W_1	3	5	1	0	0	300	309
<i>y</i> ₩ ₂	0.8	$\begin{pmatrix} 1 \end{pmatrix}$	0	0.1	0	50	51.9
<i>W</i> ₃	2	3	0	0	1	160	166
Р	- 500	- 650	0	0	0	0	- 1150

Basis	x	у	w_1	<i>w</i> ₂	<i>W</i> ₃	b	Check
<i>w</i> ₁	- 1	0	1	- 0.5	0	50	49.5
y ₩2	0.8	1	0	0.1	0	50	51.9
<i>w</i> ₃	- 0.4	0	0	- 0.3	1	10	10.3
Р	20	0	0	65	0	32500	32585

Optimal solution: x = 0, y = 50, $P_{\text{max}} = $32,500$