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Flow Chart of Material in Complex Analysis

A Complex function of Complex function of a complex
: a real variable variable
Starting ~ define a curve on ~ define a complex mapping from
a complex plane one complex plane to another
4 :
:
g ¢ f (Z) dz — O .......... I f(Z)dZ:j f [Z(t)]z’(t)dt cecen
C C o
Cauchy’s Integral theorem Complex integral
~ valid when f (z) is analytical ~ integration of a complex
for every point encircled by a function (of a complex variable)
closed curve C on a complex curve
~ Cauchy-Riemann equations, ~ upper bound of a complex
singularities integration

ST » to be continued on the next page...
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Flow Chart of Material in Complex Analysis (cont.)

........ 4 1) dz = 27 f (z,)
J2-1,

Cauchy’s integral formula
~ (Cis a closed curve encloses
Z, and f (z) is analytic for
every point inside C

§ 1D gy oo 1)

L (z-z7y)™ n!

Another integral formula
~n 20, Cis a closed curve encloses z,
and f (z) is analytic inside C
~ power series of an analytic function

Applications of complex
integral

v

to be continued on the next page...
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 f(z)dz=2mi Res(f,z,)  few
C

complex integral in terms of residues
~ Taylor series, Laurent series,
order of singularities, residues
~ The most general result for
complex integral !
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Flow Chart of Material in Complex Analysis (cont.)

v

[ Applications of complex }

integral

v

(- & N

_[ f (x)cos mxdx

2!)Z[f(cose,sine)dG Iof(x) dx=i% dx -

_f f (x)sin mxdx
\_ /

Laplace transform J [ argument principle 1 [ Rouche’s theorem }

X y

Mission completed
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Basic Operations of Complex Numbers

Cartesian and Polar Coordinates:

y

Z=X+iy=|z]|e'" = /x*+y? e (Xj =| z |[cos(arg z) +isin(arg z)]

Euler’'s Formula: { e =cos(6) +isin(d) ]

Additions: It is easy to do additions (subtractions) in Cartesian coordinate, i.e.,

[ (a+ib) + (v+iw) = (a+V) +i(b+w) ]

Multiplication: It is easy to do multiplication (division) in Polar coordinate, i.e.,
i0
[ re” .ue'” = (ru)e'”* ] re” _ T gic-o)
ue” U

EE2012 ~ Page 13 / Part 2 ben m chen, nus ece




Complex Functions of a Real Variable

Complex functions of a real variable are needed to represent paths
or contours in the complex plane.

[z(t) —x(t)+iy(t), te[a b]}

Example 1

z(t)=5e",  te[0,2n]
=5cost+15sint

= X(t)=5cost
y(t)=>5sint, te[0,2n]
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o lim z(t)=lim x(t)+i lim y(t)
t—a t—a t—a

e zis continuous if x and y are continuous, i.e. !im X(t) = x(a), !im y(t)=y(a)
—a —a

e Z/()=x'(1)+i1y'(t)

e z(t) is smooth if z'(t) is continuous, i.e. if X'(t)and Yy'(t) are continuous.

o Z(1) is piecewise smooth if z(t) is smooth everywhere except for a finite

number of discontinuities.
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Properties of Comple
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 Normal differentiation and integration rules are applicable:

~

! !
(.2, +¢,2,) =¢Z; +C,2Z,

j)'(c;lzl+c222)dt :cljl 7 dt+c2_tfz2 dt
a a a

b
jz'dt = z7(b) - z(a)

. /
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Curves

 The set of images
Smooth closed curve

C ={z(t) |t e[a,b]} % Smooth curve /f\

IS called a curve Iin -

C

the complex plane

) . Piecewise smooth S) curve
« The curve is smooth if e (pws) cu

z'(t) Is continuous
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Curves (cont.)

« The length of a curve is

given by Im

L = ?\z'(t)\dt /\‘
a /\

| | / Re

e A curve is thus a mapping a b

of the real number line

onto the complex plane
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Two Special Curves

e Circle

The parametric description
for a circle centred at
complex point a and with a

radius r is

[z(t):a+re“, te[0,2n]1

EE2012 ~ Page 19 / Part 2
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Two Special Curves

o Straight Line

Im

The parametric description

b
of a straight line segment /
with starting point a and a

: . Re
endpoint b is

[z(t)=(b—a)t+a, te[O,l]}
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- Parametric Re

] WAL 1 1W Gl 1 \\Ww

and Length of Curves

('D

a) The line segment that connects the points —2-i3 and 5+16

2(t)=(7+i9)t+(=2—-i3), te[0,1] |
b 1 1 ]
L=[lz(dt=[7+i9dt = [V7?+9?dt=V130  Lofo .
a 0 0 ¥
)

b)  The circle with radius 2 and centre 1—i

z(t) = (1—i)+2e", te[0,2n]

27 27

L= jz (t)|dt = j2| j2|

0

It

dt = j 2x1dt = 4r
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Example 2 (cont.)

C) Y=X+2, 2<X<3
Let X=t, 2<t<3 = y=t+2

= z()=t+i(t+2), 2<t<3

L= }\z’(t)\dt - f\1+ i|dt = }\/Edt =2
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Complex Functions of a Complex Variable

A complex function of a complex variable maps one plane to another plane.

Im[z] Im[w]

w = 1(2)
2 Re[w]

image

Re[z]

domain

These functions are of the form f(z)=w = f(x+iy)=u+iv=u(x,y)+iv(x,y).

EE2012 ~ Page 23 / Part 2 ben m chen, nus ece



Complex Mapping

A complex-valued function
w=Tf(z)=f(x+1y)=u(Xx,y)+iv(X,Yy), Z=X+1Yy
defines a mapping of a domain, D, onto its image the w-plane.

For any point z, in D, we call the point W, = f (z,) the image of z,. Similarly,

the points of a curve C are mapped onto a curve on the w-plane.

Im[z] Im[w]
Re[w]

w = f(2) \
! D R :: /
IMage
domain
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Example: z°

a) w=f(z)=2°=(x+iy)*
= X% — Y% +i2xy
=U+IV
The function f (z) = 22 would for example map the complex number 1 +i to i2

and the number2 —-ito3—1i4.

The line segment x €[0,2], y=0 or x=t, t[0,2], y =0 is mapped to
the line segment | =t2 t ¢ [0,2], v=0.Since

U+iv=(x+iy)? = (t+i0)* =t*
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Example: z2 (cont.)

In polar coordinate: W= f (2) = Re® = 72 = (rei¢)2 _ 2 pi20
For example, the image of the region1<r <3/2, n/6<¢$p<n/3

under the mapping w=2z%is 1<R <9/4, n/3<0<2n/3

V
\ /
\/ Y £
J \ /
2 \ /
/ o7 N
— — s f/ “
1—-&\ - / A
) \ f RN f\'\ :
P Y { I A !
- } i |
| [ i
X I I I u
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Example: e?

b) W= f(2) =€’
:ex+iy
=g (cosy+isiny)

=e*cosy+ie*siny=u+iv

For example, f(1+1)=ecosl+iesinl
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Example: e (cont.)

In terms of polar coordinates
w=f(z)=Re® =e? =e*"¥ =¢*e"

Therefore

Note that W=e’ #0 V z
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Example: e?(cont.)

For w = e’, consider the images of:

1.

i T B e—

ben m chen, nus ece

Straight lines X = X, = const

and y =Yy, =const

From R=¢*, 0=y, we see

that X = X ic manned nntn tha
O 19 MPP\'U J J ~

circle w=e™ and y =Y,

IS mapped onto the ray

arg(w) = Yo

Yo
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2. Rectangle D={z=x+iy/a<x<b, c<y<d }

Example: e?(cont.)

From (a), we can conclude that any rectangle with side parallel to the

coordinate axes is mapped onto a region bounded by portions of rays

and circles. Therefore the image of D is

EE2012 ~ Page 30 / Part 2

D'={w=Re"®/e?<R<e’ c<0<d}
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Example: e?(cont.)

3. The fundamental region —T< Yy < 7t

The fundamental region is mapped onto the entire w-plane, excluding the

origin. The strip 0 <y <1 is mapped onto the upper half-plane

y Vv

x (N

-1 1

More generally, every horizontal strip C < Yy < C+ 21 is mapped onto the

full w-plane excluding the origin.
Mvpmnevchinotendt [ Ree’, o=y

EE2012 ~ Page 31 / Part 2
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Example: In z

The natural logarithm w = In (z) is the inverse relation of the exponential
function €7, i.e.,

Inz

Ine” =z, et =7

It follows

[ Inz= In(| Z| -eiargz): In(e'”'z'”argz): In|z|+iarg z }
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More Example

1z -z
e +e
c) f(2)= 5
i ei(x+iy) +e—i(x+iy) i eix—y +e—ix+y
2 2
_e_y(cosx+isinx)+ey(cosx—isinx)

2
N N |
:cosx2+|smx

= Ccos xcosh y —isinxsinhy

=Uu+Iv
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More Example
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Alternatively, f(z)=c0sz=cos(x+iy)

since sin(ix)=isinh(x), cos(ix)=cosh(x), tan(ix)=itanh(x).

Keep in mind that

EE2012 ~ Page 34 / Part 2

=cos(X)cos(iy)—sin(x)sin(iy)
=cos(x)cosh(y)—isin(x)sinh(y)
=U+IiV
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Observations

Identities for trigonometric functions also hold for complex arguments, e.g.

-

cos’ z+sin’z =1 N

sin(z, £ z,) =sinz, cosz, £ cos z, sin z,
cos(z, +z,) =co0Sz,€C0SZ, ¥sin z,sSin z,

sin(tz)=cosz , cos(5+z)=Fsinz

J

Also note that

sinz =sin xcosh y +1cos xsinhy,
COS Z =C0s Xcosh y —isin xsinh y
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Observations

« f(2)=w is continuous at the point z =X, +iYy, if u(x,y) and v(x,y) are

continuous at X, +1Yj .

For example, f (z) = z? is continuous everywhere, because u = x* — y*

and v =2xy are continuous everywhere.

. It can be shown that the regular rules of differentiation and integration

are still valid, e.qg.

d _n_ e dsinz=cosz
{ dzz =Nz } [dz
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Complex Integral

Consider the curve C:t—z(t), t<[o,p] and the complex function f which

is continuous on C. The complex integral of f along C is then defined as

B
jf(z)dz :j f[z(t)]Z'(t) dt
C o
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Example 4

a) Let C:z(t)=2t+i3t, 1<t<2 i b) LetCbe acirclewithradiusr
and f(2) = 22 : and centred at the origin and
5 f(z)=1/z

2 4o _ )2 - _

C 1
= (2 + |3)\j t° dt 27 - it
! o uzdz= [t
re
: M3 C 0

=(2+i3)° 4 .
2421 =I£dt=2nl
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Properties of Complex Integrals

As for real integrals, the following rules apply:

1. j[f@)+gandz=jf(ndz+jgcndz
C C C

2. [kf(2)dz=k | f(2)dz, k complex
C C
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Properties of Complex Integrals

. [f@e=[f@a+[ e | 4 [f@d-=-|t@)d
C C C, C ol
C G C
G C
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Estimation of a Complex Integral

« Letf(z) be continuous on C:t—z(t), te[a,p]. If \f(z)\ <M on C, then

jf(z)dz <ML

C

where L is the length of the curve C, i.e.

- froa= (&) (4] a

(0]
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Estimation of Complex Integral — An Illustration

Graphically, take real integration as an example,

= shaded area with red lines<M -L

b
j f (t)dt
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Example 5 ‘ 4+i6

Find the upper bound for the absolute value of Iez dz

C
where C is the line connecting the points 24j3 and 4+i6

z()=(2+i13)t + (2+13), t €[0,1]
= (2t +2) +1(3t + 3), t [0,1]

= X(t) +1 y(t)
ez _ ex+iy _ exeiy _ ex .eiy :ex
- M =e* —e?"?|  —e*=54.5082
x=largest =1
Thus, |[e” dz <ML =+/13¢* =196.8566
C

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
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1 dz<4TC

Show that —‘-I sz 72 11 3

Noting that ‘

0
.............................................
o *,

27| = (22 +1)+ (D) < 27 414t =2 <141

and thus on the circle |z| = 2, we have

41227 -1-3 = < -M
1 4
- LZ|_222+1dngL=;

EE2012 ~ Page 45 / Part 2

0.34;

0.32 -

0.3-

0.28 -

0.26 -
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Analytical Functions

A function f (z) defined in domain D is said to be an analytic function

if it I1s differentiable with a continuous first order derivative in all

points of D. The function f (z) is said to be analytic at a point z, in D if
f is analytic in a neighbourhood of z,.

A

neighborhood on

a complex plane
/ a ‘ is a disc

EE2012 ~ Page 46 / Part 2
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Analytical Functions

Discrepancy of Definitions of Analytic Functions...

Definition given by most popular texts (e.g., the reference text):

A function f (z) defined in domain D is said to be analytic if it is differentiable

at every point of D.

Definition given in some odd books or the text by Garg et al.:

A function f (z) defined in domain D is said to be analytic if it is differentiable

with a continuous first order derivative at every all point of D.

Nevertheless, we will use the definition given by Garg et al. throughout...
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Singularities

Points where a function is not analytic are called singular points or

singularities or poles sometimes.

Example:

f(z)= 1 IS analytic everywhere
Z

Sl

in D except z =0, which is thus
the singular point or pole of the

function.

Note that a function is either analytic or singular at any given point...
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Analytical Functions

Observations:

It can be shown that the existence of continuous first derivatives implies
the existence of a continuous second derivative, etc. This also implies

the existence of a Taylor series.

4

2
F(2)4 (2 )(2—2.)4 F7(z.)E %)
P \%0/ T \&0/\~ “0J i \~0/ 2'

An analytic function can thus also be defined as a function for which a

Taylor series expansion exists.
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Theorem

If a function f (z) =u + i1 v is analytic in D, then the following Cauchy-Riemann

equations hold, i.e.

ou oV ou oV
—=—  and —=——
ox oy oy OX

Alternatively, if the Cauchy-Riemann equations hold for a functionf(z) =u+iv
and the function has continuous first order partial derivatives, then f (z) is

analytic in D.
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Proof.

(f@)= J
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Example

f(2)=2°=Xx*—y*+i2Xy =U+iv

and the partial derivatives are continuous V z.

Consequently, f(z) is analytic V z.
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Example
z X .y .
f(z)=—5= —i =Uu+iv
‘2‘2 XZ 4 y2 X2 4 y2
ou y*-x* v ou_ -2xy v

ox (X2 +y?)? - oy oy - (X + y?)? T X

= f(z) is analytic everywhere, except where x* + y? =0
I.e. at the origin.
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Example

f(z2)=2 =x—iy=U+iv

u_y o, g o

OX oy oy OX

= f(z) is not analytic anywhere

EE2012 ~ Page 54 / Part 2
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Example

f(z)=x°y*+i2x°y* =u+iv

OX

The Cauchy-Riemann equations only
hold for x = 0 and/or y = 0. Since the
function is not analytic in a
neighbourhood of x=00ry=0,f(z) is

not analytic anywhere.

oV ou oV
=2xy° | =4x°y =2X°y , —=A4xy
oy oy

o M e mm s mm s s s mm s Em s Em s o r o r o n o s h = d e = e = = = e ey

P .
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Observations

1. The sum or product of analytic functions is analytic.
2. All polynomials are analytic.

3. Arvrational function (the quotient of two polynomials) is analytic, except

at zeroes of the denominator.
4.  An analytic function of an analytic function is analytic.

5. Functions €, sinz, cosz, sinhz, coshz are analytic everywhere.

EE2012 ~ Page 56 / Part 2 ben m chen, nus ece



Cauchy’s Integral Theorem

A domain D in the complex plane is called simply connected if every closed

curve in D only encloses points in D. A domain that is not simply connected is

called multiply connected.

Simply connected Doubly connected Triply connected

EE2012 ~ Page 57 / Part 2
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Cauchy’s Integral Theorem

If f (z) is analytic in a simply connected domain D, then for every closed path

CinD
[ st ii2)ez=t } mndamental Theorem of Calculb

C

If F(z) is an analytic function with a
D continuous derivative f (z) = F'(z) in a
region D containing a piecewise

C smooth (pws) arcy:z=1z(t), a <t<p

" J 1 (2)dz = F(2(8)) - F (2() y

ben m chen, nus ece
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-

Z(a) Z(B)
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Applications of Cauchy’s Theorem

Applications: z,

1. If f (z) is analytic in a simply connected

domain D, then the integral of f (z) is

independent of path in D.

jf(z)dz+jf(z)dz:o

C, C;

= [f(@@)dz=-] f(2)dz= [ f(2)dz

C, C, C,
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Applications (cont.)

2. Consider a doubly connected domain D. If
the function f (z) is analytic in D, then the
integral of f (z) is the same around any

closed path that encircles the opening.

jf(z)dz+jf(z)dz=o

C, C,

= [f(@)dz=-[ f(2)dz= [ f(2)dz

C C, C,

EE2012 ~ Page 60 / Part 2
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Applications (cont.)

The integral along a closed path C, of the function f (z) which is analytic
in the multiply connected domain D, is given by the sum of the integrals

around paths which encircle all openings within the region bounded by

C,, e.0.

jf(ndz+jf(ndz+jf(ndz_ ///////——Zf;\\\\\

Thus jf(ndzz—jf(ndz— f(ndz GE::")(&E::I’
C, C, C;
_jf(ndz+jf(ndz

EE2012 ~ Page 61 / Part 2
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Applications (cont.)

4. In general, it can be shown that if the path C encloses the point Zo, then

; 0 n=z-1
cﬁ(z—zo) dz = _
z 21l n=-1

Proof. Without loss of any generality, we assume z,=0. Forn >0, z"is

analytic anywhere on the whole complex plane. By Cauchy’s theorem, its
integration over any closed curve is 0. For n =— 1, By Application 2, the
integration over any path enclosed z, is the same. It was shown earlier

that the integration of 1/z over a circle C: z(t)=re", te[0,2x]

jyd —_['re dt—l_[ dt = 2

EE2012 ~ Page 62 / Part 2 ben m chen, nus ece



T N US
= ()
National University
of Singapore

Proof of Application 4 (cont.)

Forn<-—1,letm=-n>1and integrate over C: z(t)=re", te[0,2n]. We have

21 - it . 27
1 Ire I i
~dz = _dt=— | e7'(M Dyt
lzm _([ rmelmt rm—l_(.).
_ b 1 Le-i(m-Dt 2n
T om=1 3 . 0
r i(m-1)

_ 1 |:e—i2(m—1)n _1:|

C(m-1r™?
o fon - s
-t [1-0-1]=0

(m-1)r™*"
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Example

@ §1/2dz with C the ellipse x? +4y? =1
C

(x=%)?  (Y=¥o)* _,

The equation of the ellipse is given by 5 0’
a

A 2a

2Db
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Example (cont.)

Consequently, the ellipse x?+4y? =1 is centred at the origin. The function
f (z) = 1/z is differentiable everywhere except at z = 0. The integral of f(2)
Is therefore the same for any path which encloses the origin. C may thus

be replaced with a circular path of radius 1, i.e., z(t)=e", te[0,2n]

27 - it
k c § Laz= [ " dt=2n
& CZ Oe
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Example

e
<j> ,—— dz=0
Z —
2=2 y)
[

The function f(z) =e”/(z*-9) is ¢ ¢
analytic inside the region enclosed -3 3
by the curve.
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Example

4 I
<J5 L -dz = <J5 1 —dz=0
z|=1/2 z+1-1 z|=1/2 z—(=1+1)
o J
X

of integration. 7

(& J

NI

e The function is analytic inside h
the region enclosed by the path /

EE2012 ~ Page 67 / Part 2 ben m chen, nus ece



Cauchy’s Integral Formula

Let D be a simply connected domain with z, a fixed point in D. Let f (z) be

analytic in D.

Then ) IS not analytic in D.
Z—1,

However, the integral f(2) dz = 0 will be the same for any path enclosing Z,
Z—1
C 0
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Cauchy’s Integral Formula

Consider a circle z =z, + Re", t [0, 2n] with centre Zy . Then

27 it _ 2n :
§ D gz [ M2 RED it —i [ 1z, + e
s 2-1 5 Re 0

Since f (z) is continuous and the integral will have the same value for all

values of R, it follows that

0 0 0

e Z—Z0 R—0
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Cauchy’s Integral Formula

This leads to Cauchy's integral formula, stating the following:

Let f (z) be analytic in D. Let C be a closed curve in D which encloses
Z,- Then

- ~
$ 12 g7 2t (z,)

N /

EE2012 ~ Page 70 / Part 2
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Examples

sin z § 41 4 iy
(@) Cﬁdz—ansml (b) <f>z(z 3 2= ¢ z

-

\J /
1
W

%
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Power Series as Analytic Function

A power series is of the form

icn (2—24)" =Co+C(2—25) +Cy(z—25)° +-
. n=0

Convergence: Every power series ch (z-z,)" has aradius of
n=0
convergence r* such that the series is absolutely convergent for

z-1z,|<r" and divergent for z-7,>1".

Example: The following well known geometric series has an r* = 1.

S P
1

- 1-7
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Power Series as Analytic Functions

The radius of convergence is

. given by
/

Ly r = lim |
N—o0 Cn+1
Convergent
Divergent Each power series defines a

function which is analytic inside

the radius of convergence.

Example: 1—1 174224
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f

on and

Power Serles

(S:
)
r—l-
-h
QD

Inside the radius of convergence, the power series

f(@)=Y ¢, (2-2,)"
n=0

can be integrated and differentiated on a term-by-term basis, i.e.

jf(z)dz:icn (z-12,)" dz

d - - .
dZ[f(z)]:chn(z—zo) Yo Jz—zpl<r
n=0
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Analytic Functions as Power Series

Theorem: Let f (z) be an analytic function in domain D. Let z, be a point in D
and R be the radius of the largest circle with centre z, lying inside D. Then

there is a power series > ¢, (z—z,)" which converges to f (z) for z— 2y <R .
20
Furthermore !

C

dz

n

_ 0z _ 1(15 f(2)

n!  2m L (z—25)""

where C is the closed circle which encloses z,.
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Analytic Functions as Power Series

From the last equation, also note that

b 1D g @)
(z—z,)" n!

C
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Examples

@ SNty 2 2
‘Z‘: Z4 o 3| dz3 z=0 6
7e’ 2mi d3 ;7 T, ;7 dem
(b) <J>2(Z_1)4 ST R Wy KU
7=
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|_aurent and Taylor Series Expansions
of Complex Functions

If a function f (z) is analytic for |z -z, <R,

then f (z) has a Taylor series expansion

(@)=Y a, (2-2)
n=0

where
1 f
n— . C_ﬁ (Z)n+1 dZ
21 2 (Z2-12,)
_ f(n)(zo)
~nl

EE2012 ~ Page 78 / Part 2 ben m chen, nus ece



aurent and Taylor Series Expansions
of Complex Functions
If a function f (z) is analytic in
the ring area R, <|z—-75|<R,,
then f (z) has a Laurent series
expansion
f(2)=) & (2-2)"
where
_ 1 Cﬁ f(z) dz Points where a function is not analytic
n -
2ni 4 (z-27,)"" . .
C 0 are called singularities.
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Example 10

(@) The functions e*, sinz and cosz are analytic functions, and have

Taylor series expansions with a centre z, =0 of

2 3

VA * )
e’ =1+z+——+—+-- — anl = r =Ilim Cn
21 3l n! n—w| C
n+1
. 72 7° 7 Y
31 51 71 nseo 1
(n+1)!
2 4 6
Z Z Z . n+1)!
cosz=1-—+———+--- :Ilm( )
21 41 6l nowx Nl
=lim(n+1) =
N—oo
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Example 10 (cont.)

, :

(b) The functions € and SII’;Z are not analytic in the point z = 0. In the
Z Z

region excluding the point z, = 0, these functions have Laurent series

expansions of
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Example 10 (cont.)

. 1 . . . . .
(c) The function L, s analytic for |z| <1. The Taylor series expansion with

centre z, = 0 of this function is the geometric series, i.e.,
1
= =14 z+7%
1-2

: : : 1 : .
(d)* Find Taylor series expansion of f(z) = E at z, = 3 & its convergence radius.

1
= . Y N3 B ;2 ;3
f-to_3 1y, 8-z (3-2y (8-2y | 123 (-9 (-9,
z 1_(3—zj 3 3 3 3 3 3 3 3
3

<1 = |z-3|<3.Thus,its 1" =3.

: 3—-1
The series converges for all ‘—
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Classification of Singularities

Poles

Consider the Laurent expansion of different functions:

1.

. . . Inz
No negative powers of z in the expansion. For example >ih 2 has a

Z
singularity at z, = 0.

sin z 72 7% 7°
SNz _q

L5 L , SO that its Laurent expansion
z 31 5! 7l

has no negative powers of (z—z,). The function is said to have a

removable singularity at z, = 0.

EE2012 ~ Page 83 / Part 2
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Poles (cont.)

2. Afinite number of negative powers of z in the expansion, e.g.,

e 1 1 1 1 z

ST e e W
73 723 72 217 31 4l

The highest negative power is 3. This function is said to have a 3rd

order pole at z, = 0.

An infinite number of negative powers of z in the expansion, e.g.,

Vo141 12+ 13+
z 21z 3z

This function is said to have an essential singularity at z, = 0.
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Example 11

cosz—-1 1 72 7% 7 z 7° 7°
= e — — — cee | — :——+7—7+...
@ 1= zKl 2 4 el )1} 21" 41 6l

The function f (z) has a removable at z, = 0.

(b) T@)=""5 =|Z 51 71

. [ 3 5 7 j 2
sinz 1 ooz 1 1 1 z N
7° Z 3!

The function f (z) has a 4th order pole at z, = 0.
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Example 11 (cont.)

(© f(2)=2%e"" 72|14 12+ 13+--- PP S
z 2127 3z 21 3!z

The function f (z) has an essential singularity at z, = 0.

2° -2 7°+271+1-22-1-2 (z+1)°-2(z+1)-1
(z+1)° (z+1)° (z+1)°
12y

(z+1)* (z+1)

d) f(z)=

Thus, f (z) has 2nd order pole at z, = —1.
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Example 11 (cont.)

z2—2_z+2_2_1+ 1 2
z(z+1) z+1 z z+1 z

e f()=

It is clear that f (z) has 2 singular points at z, = 0 & z, = —1, respectively.

For z, = 0, we have the following Laurent series of f (z) centered at z, =0

2 -2 1 2 2 1
=1+ ———=1-—+
Z2(z+1) z+1 z z 1-(-2)

f(2) =
__2 +1+[1+ (-2)+(-2)* + (-2)* + ]
z

2
=—S+2-72+42° -2+~
z

Thus, the order of singularity of f (z) atz, =0 is 1.
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Example 11 (cont.)

For z, = -1, we have the following Laurent series of f (z) centered at z, = -1

2_
fy=2 =2 9. b 2 g, 1 2

_|_
Z(z+1) z+1 z z+1 1-(z+1)

:1+l+2-[1+(z+1)+(z +1)* +(z+1)3+---}
z+1
= 14\1 +3+2(z+D)+2(z+D)*+2(z+1)° +---

=
(Z+1

Thus, the order of singularity of f (z) at z, = -1 is again equal to 1.

[ 1st order poles are also called simple poles or simple singularities. }
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Zeros

If 9(z,) =0, then the function g (z) is said to have a zero or root in z = z,,.

If 9(z,)=9'(z,)=9"(z,)=...9" " (2,)=0 and g™ (z,) =0, then the function

IS said to have an nth order zero in z = z,,.

(T N

heorem:

If the function g (z) has an nth order zero in z = z,, then f(2) -1 has an

9(2)
/

n-th order pole in z = z,.
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Example 12

1

a) Consider the function f(z)=
(z-1)(e* —¢)

, which has a singularity atz, =1

Let g(z) =(z-1)(e’ -e)
Then g'(z) =€’ —e+(z-1)e° g'()=0
9"(z)=e’+(z-1e*+e* g"(1)=2e=0

Therefore g(z) has a 2nd order zero in z, = 1, and f (z) has a 2nd order

pole inz,=1.
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Example 12 (cont.)

b) Consider f(z)= , which has a singularity at z, =0

Z—-Sinz

Let g(z)=z-sIinz.

9" (z) =cosz g"(0)=1+0

Therefore g(z) has a 3rd order zero in z, = 0, and f (z) has a 3rd

order pole at z, = 0.
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Order of Singularities

The following method is modified from a suggestion made by Ang Zhi Ping,

a student taking EE2012 in Semester 1 of Year 2007/08.

Given a function f (z) =h (z) / g (z) and g (z,) = 0, the order of the pole at z = z,

can be determined without finding Laurent series as follows:
1. Find the order (say n) of zero of g (z) at z = z,,

2. Find the order (say m) of zero of h (z) at z = z,, if it is a zero of h (2);

Otherwise, m = 0.

The order of the pole of f (z) at z = z, is given by n — m. Note that there are m

pole-zero cancellations between the numerator and denominator.
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Example

An alternative solution to Q.2.2.1 in Tutorial 2.2, i.e., finding the order of

poles for

f(z) =

h(z) e*-sinz-1

g(z)  7°

1. Itis obvious that g (z) has a zero of order2atz=0, i.e., n=2.

[ h(0) =[e? —sin z-1] =0
2. Noting ! h'(0) =/ e* —cos z]z_o =0
h"(0) =| &% +sin Z:|z=0 =120

N

., we have m = 2.

3. The order of the pole of f (z) at z,=0 is given n —m = 0. It is removable.
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Residues

We know that if f (z) is analytic in domain D except at the point z,, it has a

Laurent series expansion of

o0

f(2)= ) a,(z-2)
with
1 f(2)
" 27 <-'f(z— z,)"™ &

and C any closed curve in D which encloses z,.
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Residues

From last expression of a,, it follows that

1
a,=—@f(z)dz=Res(f,z
1= P10 (f.2)

where Res(f,z,) is known as the residue of f at z,. Thus

gf>f(z) dz = 27 Res(f, z,)
C
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Residues

If f (z) is not analytic in several points Z;, Z,,...Z, , then

gSf(z)dz:gSf(z)du qu(z)dz+..-+<J‘>f(z)dz
C

C C, C,

n

=2m Res(f,z)+2m Res(f,z,)+---+2mni Res(f,z,)

=2mi Y Res(f,z;)
i=1

EE2012 ~ Page 96 / Part 2 ben m chen, nus ece



=BNUS
= (2
National University
of Singapore

Calculation of Residues

1.  f(2) has a simple pole at z =z, LRES(f Zy)=1lim (z-2,) f(2) }

2.  f(z) has an nth order pole at z = z;;:

1 - dn—l N
{ Res(f’zo):(n_]_)!ZII—>nZ10|:dZn_1|:(Z_ZO) f(Z)ﬂ }

A
3. f(2)= 58 where B(z) has a simple zero at zZ = z,,, while A(z,) #0

and both A and B are differentiable at z = z,: {Res(f 1 Zy) = I:’((ZO)) J
Zo
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Calculation of Residues

The 2nd formula of the previous page can be modified as follows:

Assuming that f (z) has an n-th order pole at z = 7, then

LRes(f,zo) = (mil)! Zli_)r2|:ddzm_1|:(z—zo)m f(Z)ﬂJ

where m is any integer with m > n.

This formula was proposed and derived by Phang Swee King, a
student taking EE2012 in Semester 2 of Year 2007/08. It may yield

a simpler way in computing the residue for certain situations.
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Example using Formula 2

Example: The extra freedom in selecting m in Formula 2’ can simplify
some problems in computing residues and thus complex integrals. We
consider the following example (which was solved earlier),

sSin z
cﬁ Z dz
7

|z|=1

It was shown that the function has a 3rd order pole at z, = 0. However, if
we use m = 4 instead of 3, it is much easier to compute the associated

residue compared with that using the original formula 2, i.e.,

3 ; 3 '
sin z i1 d (24-8"12) — 27 = lim d—3(sinz) =27rii(—COSO)=—ﬂ
z* 3! 20| dz° Z 3! 20| dz 3! 3

|z|=1
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Example 13

(a) Calculate Cﬁ I _32 dz. [ Res(f,zy) = Z“_)”Z\ (2-12,) f(2) }
=2 °
f(z)= 4oz 4-3 has simple poles in z,=0and z, = 1.

A 1

<j.> 32_32 dz = 2xi [Res(f,0)+ Res(f,1)] /\\(\:
z=2%

i VARV,
_oni Lim 2 =32 4 lim \\\\\h 1 )
| 250 7—-1 -1

= 2ni[-4+1] =-6ni
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Example 13

YA
(b) Compute Cﬁe dz
7= 2 C
gf> © 4z = 2 Res(f,0)
z ! 7K
= 0 1
= 27i lime?
z—>0
= 2mi

‘ Res(f,z,) = ler? (z—-1z,) f(2) 1
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Example 13

sinz

(c) Compute (J-) 2 dz
\Z\zl C
sinz
f(z)=—— has a simple pole at z, = 0.
( ) 22 piep 0 x
0 1
Thus

- & -
453'”Zdz: § = dz=2n lim>"2 = o

Z z—>0 7
2= z=

‘ Res(f,zo)::Jh?(z——zo)f(z)}
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21

(d) Compute ZC_E(Z (1) dz

The function f(z) = 22

pole at z,=—4 and a 2nd order pole at z, = 1.
Res(f,—4) = lim 22 ___8
Y (- 25
Res(f . 1)—4 d { 2z }
lz->1dz|z+4
_lim 2(z+4)—222: 8
-1 (2+4) 25

(z+4)(z-1)?

C
has a simple N N
\ 7\
-4 1 5

27
> |z?35 -1

= 27i {Res(f,—4) +Res(f,1)} =

‘ Res(f,z,)=1lim(z—1z,) f(2) |
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(e) Compute dz

z

fal=e

1Zdz:27ci Res(f,0)

1-e
= 2T {12}
—€ z=0

= 27

z=1

O

K
0

‘ Res(f,z,) = 9((220)) }
0
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Example 13

(f) Compute <J'> 222+4dz / C
220572 +7-6
ras X
f(2) = 222+4 _ 2244 '3K 223
2°+72-6 (z+3)(z-2)

has a simple pole at z, = 2 enclosed by C. Thus,

Cﬁ 27+4 [22+4}:16ni
S

dz =2mni Res(f,2) =2mi lim
Z+3

2
— 2
22052 2 6 2>

4[ Res(f,z,)=1lim(z—z,) f(2) }
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Applications

21
Real Integral of the form I f (cos6,sin6) do
0

These integrals can be transformed to an integral of a complex function

along the circle |z| —1.

The circle can be described by Z=¢'", 0<0<2x, Then

/ i0 —-i0 \ K i0 —ie\ / \
cosf="*° sing =" dz:EdG
2l de
_1 1 l 1 = 0
_E(Z_i_;j :E(Z_;j =1e"do
\ / \ J o J
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Real Integrals

Consequently, we have

(e

0

N
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Example 14

27

1 c
(a) Evaluate | ———d®
! oS0 + 2 / \\

X
0. - 1
T 1 do= ¢ L 14 o i
> C0S0+2 |Z|:1§(z+§)+2 iz
1
__2||i122+4z +1 4z
1
=-2i dz
|i1(z—(—2+\/§))(z—(—2—ﬁ))

2T
=—2i 2mi Res(f,—2++/3)="=
J3

4[ Res(f,z,)=1lim(z—z,) f(2) }
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Example 14

L 4o
5+3sin06 /

27
(b) Compute _[
0

T o1 1 1 S
_ -i1/3
-([5+3sin6 a0 |i15+3[%(z—%)] iz az |

1 2 1
st 3z° +10iz -3 3 st 2° + Wiz -1

22 242
2 1 2 5 '

=—<_f> : — dz = — 2mii Res(f,—%)
3|Z|:1(Z+%)(Z+|3) 3 -i3 X
4 1

3 1> (2+i3
L[ 2% +i(a—b)z+ab=(z-ib)(z +ia) |
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We now consider real integrals for which the interval of integration is not

finite. These are called improper integrals, and are defined by

j f(x)dx_nmj f (x) dx

—00

P(X . : :
Assume that the f (x) = S 2 Is a real rational function with
Q(x)

* Q(x) =0 forall real x (i.e. no real poles)

 degree[Q(x)] > degree[P(x)]+ 2
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Consider the complex integral gfp f (z)dz with C as indicated in the figure
C

below. Since f (x) is rational, f (z) will have a finite number of poles in the upper

half-plane, and if we choose R large enough, C encloses all these poles.

4 )

Note that C consists of a straight

path from — R to R and a half

K circle S on the upper plane.

)
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Improper Integrals...

Then R
$f(@)dz= [ f(2)dz+ | f(2)z (*)
C S

-R

The 2nd condition, i.e., degree [Q(x)] > degree [P(X)] + 2, implies if

Q(z)=q,z" +q, 2" +-+0q, P@)=p,z"+p, 2"+t Py

then, n>m+ 2. Thus, for zon Swhen R is large

2°P(z " ep 2™ pl1 K K K
21 (@)= ) = Pt P P Sk s (@) =
Q(2) 0,2 +QpqZ +- dn | |7 |z2°| |z]
K Kn
- jf(z)dngL:RZnR:R—w as R — o (Result S)
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And consequently lim J' f(z)dz =0. From the equation (*) on last slide,
S

R—oo

we therefore have that

R

lim f(z)dz:gSf(z)dz

R—w
-R C
o /T XN
00 X X X
[ f(0dx=2ri Y Res(f,a) [ . <\
i -R R

—00

where the sum is taken over all the poles in the upper half-plane.
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Example 15

a) Calculate dx
® j 1+ X°
Let f(z)= L 5 = _1 :
1+z° (z+1)(z—-1)
T 1 dX:27ciReS(f,i):27til:Tc a(-i
J 1+ %2 2i

4[ Res(f,z,)=1lim(z—z,) f(2) }
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Example 15

(b) Calculate _[

1+ x%)?
Let f(Z)—(1+Zz)3 (z+i)%(z-i)° g

I . dx 27 Res (1 i) — i lim 12 _m(—ﬁlj:&t
2 @+x%)? ey °

4{ Res(f,Zo)—(nf ).Z'l?([ddnn_l[(z_%) f(z)ﬂ }
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Example 15

T 1
(c) Calculate j dX. Let f(2)= 1 and its poles are given by
4+ x° z" +4

2'+4=0 = 7'=-4=4¢&"V" = g =(4)% ei(2n+1)%
= Z =ﬁei(2n+l)%, n=0,123,:--

= g=2e " h_2e%-14i, n=0
Z,= ﬁei<2ﬁ+l)% :\E eis% =-1+1, n=1
=2 T -2e7-1-i n=2 X | x

i(2x3+1) 7 i 7
z4zﬁe /:\/§e7/=1—i, n=3
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Example 15

Then

j4 ;Ox =27 [Res(f,1+i)+Res(f,~1+i)]
S + X

-1+ 1+i
|l 1 1 X X
42 z=1+i 42 Z=—1+i >
-1 : 1 .
=21 | —@A+1)+—(Q-1
ri| @ )}

=27 ﬂ)zn

8/) 4

‘ Res(f,2,) = Q((Zzo)) }
0
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Improper Integrals of Fourier-type

Consider integrals of the form

Tf(x)cosmxdx or [ f(x)sinmxdx

Assume that f (x) = P(x) / Q(x) is a real rational function with

* Q(x) =0 for all real x (i.e. no real poles)

o degree [Q(X)] > degree [P(x)] + 1

e m>0
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Improper Integrals of Fourier-type

Consider the complex integral

R
cJSf(z)eimz dz = j f(z)e™dz + j f(z)e™dz =2niy Res(fe™,a;)
C S ]

-R

We will show (i.e., Theorem X next page) that under the conditions m >0 and
degree [Q(x)] > degree [P(X)] + 1, we have SB f(z)e™ dz=0 as R — . Noting

. . S
that ™ =cosmz +isinmz, it can be shown

.
_[f(x)cosmxdx:Re{ZniZRes(fe‘mZ,aj)
% j ]
- — X
[I f (x)sin mx dx:lm{ZniZRes(fe‘mz,aj) R
b j I
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Theorem X

If g(z) = % with degree[Q(Xx)] > degree[P(x)]+1 and m >0, then

R—o0

Iimjg(z)eimz dz=0 «
S

-R

There is no name for this theorem. As such, for easy references, we call it
Theorem X. The result has been used earlier in deriving improper integrals

of Fourier-type. It will be used later few more times.
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Proof of Theorem X (self-study)

Observing the curves on the right, if we let LY

X — o (=Y > woand R - ), the integral 4 S
of the function along S is the same as it X X x
along the blue straight lines. Under that 5

degree [Q(X)] > degree [P(x)] + 1

and along the straight line from X + 10 to X + iY, we have

K K _K Oy . ) )
9(z)| <K = g(z)glz|:|X+iy|Sx’ ei™ |= gim(X +iy) - gimX ||le™™ |z ™
and thus
X+iY Y
j g(z)e™dz sKje‘mydyzK-l(l—e‘mY)<K—)O as X = oo
X+i0 X 0 X m mX
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Proof of Theorem X (cont.) (self-study)

Similarly, we can show the integral along

the straight line from -X + 1Y to =X + 10 has S
a same bound, i.e.,

—X+i0 _ K

_XLYg(z)e'mzdz <W_>O as X — R -X X R

The integral along the line from X + 1Y to —X + iY, we have

K K _K - S . ) )
9(z)| <K = g(Z)SIZIZIXHYlSY’ |elmz = e|m(x+|Y):| aimx I-|e mY e mY
and thus
—X+iY _ —“my X
_[ g(z)e"™dz| < ke _[ dx =2K(Xe‘ij—>O as X 5w, Y >
X+iY Y _X Y

QED
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Example 16

(a) jxgosxd = Re| 21 Res 22e y
< ox +1 i z°+1
= Re Zni(ze j }
21 i
~Re 5'} X -i
e

‘ Res(f,2,) = Q((Zzo)) }
0
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K -

‘ Res(f,2,) = Q((Zzo)) }
0
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Example 16

© | COS2X 1o _ Re

= Re

= Re

‘ Res(f,2,) = Q((Zzo)) }
0
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- C
Example 16 / 14

(d) j M2 d4x = Im| 2ni Res[ 5 © ,—1+iﬂ

X2 +2X+2 7° 42742

—00 L

imfani 2]z

_ Im_ne_i } _ Im{n(cosl—isinl)}

€ €

T .
=——SInl

e
‘ Res(f,2,) = Q((Zzo)) }
0
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Simple Poles on the Real Axis

Up to now, we have only considered functions which do not have poles on the
real axis. We can avoid this pole by sidestepping it with a small half-circle of

which the radius tends to zero.

Consider a function f (z) which has a simple pole at
the point z = a on the real axis. The Laurent series

of this function is then given by

o0

(=) a (z-a)" =" +9(2)

N=—o0

where the function g () is differentiable in the R a R

neighbourhood of the point z = a.

EE2012 ~ Page 127 / Part 2 ben m chen, nus ece



Simple Poles on the Real Axis

Let C(p) be the circle segment with parametric description
C(p): z=a+pe”, 0<0<nx

Then

f(2)dz= [ 22dz + [ g(z)dz C(p)
C!p) o C!p)z_a Z C'(‘-P) m

T - i0 a
:a_l_[lpe.ed9+ j g(z)dz
5 Pe’ c(
p)

=mia_, + j g(z)dz

C(p)
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Simple Poles on the Real Axis

Since g (2) is differentiable, it is continuous and bounded, and therefore

<ML=M (np)—2>0 m(p)
p

a

[ a(2)az

C(p)

This results in Jordan's lemma, stating that

lim j f(z)dz = mia, =i Res(f,a)
p—0
C(p)
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Example 17

(a) Calculate J'smx

eiz
Consider Cﬁdz , with C the path as indicated in the illustration.
Z

C iz
Because the function f (z) = € s analytic in

4
the domain enclosed by C, and according to

Cauchy's integral theorem, the integral must

° be zero, i.e.,
/{(P) iz —p R iz
e e
R " T 5 - C'i)zdz: _jR +C2[p)+£+£ Zdz:O

EE2012 ~ Page 130 / Part 2 ben m chen, nus ece



Example 17

Let p—> 0 and R — oo . Then, by Jordan’s lemma

lim | f(z)dz=—=iRes(f,0)=—xilime" =
p—0 z—0
C(p)

By Theorem X, we have |im j f (z) dz=0

R—o

cj}e:dz: {JPJFJ' +T+j} eiZdz—'(fdz+( In)+jdz+0 0
C p S

= Te;zdz=i7c {T Coxsxdx O} [Tsmxdx n}
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Example 17

S
b) Calculat M 1
(b) Calculate I(x+1)(x2+2)dx
o -

Consider

R

1 Lo 1
CIJ(z+1)(z2+2)dle e[+ 4} (212 +2) 7 = 2ni Res(fiv2)

C -R Cp) -1+p S
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Example 17

Note
27i Res(f,iv2) =2ri lim 1 =
52 (2+1)(2+1N2) /2
. 1
mc(j f(z)dz =—mi Res(f, —l)——nIZILm122+2
P)
lim j f(z)dz=0  (ResultS)
and
1 M—1-p R | 1

dx = + | + | + dz el %l

?:S(Z+1)(22+2) [—L c'([p) —1'[+p iJ(Z+1)(ZZ+2) I

= 2rti Res( f,i/2)

T P D N T VN
Y @+n2+2) 0 3 20 3 J(x+)(+2) 32
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Laplace transform of a function f (t) is defined as

F(s) = L[f(t)]:Te‘St f (t) dt

_ 1 s
Inverse transform: f(t) =L 1[F(S)] = ZTCiCﬁe "F(s)ds
C

7

Conditions for the existence of an inverse Laplace transform of F(s):

limF(s)=0 and lims-F(s)=finite

S—>0

In terms of the complex variable z: f (t) = Zl_qSeZt F(z)dz = Z Res[F(z)e”,s.]
T :
C [
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Example 18

Find the inverse Laplace transform of F(s) =

Solution:
f(t)= Res{
7% + ®°
zt
_|:Z—|—I(D:|
e —e‘

{

1
$? +

o |+ Res 2,—io)
7’ +

e } A X

=i ‘

2

AL
Lal

AV2

210

' sinot

7

®

‘ Res(f,z,)=1lim(z-z,) f(2) 1

EE2012 ~ Page 135 / Part 2

ben m chen, nus ece



Argument Principle

Argument theorem (the proof can be found in the reference text):

Let f (z) be analytic in a domain D except at a finite number of poles.

A

b
2aid i " N
where D

Let C be a simple closed path in D not passing through

any of the zeroes or poles of f (z). Then

v

n = number of zeroes of f (z) inside C, counting their multiplicities,

p = number of poles of f (z) inside C, counting multiplicities.
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Example 19

YA
Calculate Cﬁcot Z dz :C
Y
f'(z _ _ Sl on on 10 2 2nl| 3 ¢
Note that CO'[Z=() with f(z)=sinz e A "
f(z)
>

Inside C, f(z) has zeros of order 1 at —2n, —7, 0, , 21 and no poles.

Then, according to the argument theorem,

f'(z) : :
cotzdz= dz=2n(5-0)=10mi
A A1
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Application of Argument Principle

Let us focus on the case when f (z) is a rational function, which is analytic

except at possibly a finite number of points. The argument principle implies

1 ¢ '(2) 1 1 .
27ti<£ f O =2ni<j>d In[f(z)] =2m<£>d {In|f (z)| +iarg[ f (2)]}

A

1

/’\ :ZI[ [d In| f (z)+ifj {iarg[ f (z)]}}

1 . L\ _ 1
_ 271:i{O+ jarg[ f (z)]Zl } = 2Tcarg[f (2)]

Zy

Z

Note that the In|f (z)| is a real function.
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Application of Argument Principle

Zy

Larg[f(2)] =n-p
T

Z

Case 1: If there is one zero and no pole of f (z) encircled

by C on z-plane, then

arg[ 1 ()]

= 2n(n— p) = 2n(1-0) = 2

l.e., f (C) will encircle the origin on the image plane once anti-clockwise.

B
»

________ t £(C)
% ,\ f) — )
0 R ‘ :
f(zz)/
f(z,)
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Application of Argument Principle

Zy

Larg[f(2)] =n-p
T

Z

Case 2: If there is no zero and one pole of f (z) encircled

by C on z-plane, then

arg[ 1 (2)]

l.e., f (C) will encircle the origin on the image plane once clockwise.

=2n(n—p)=27(0-1) =-2=x

Zy
Z

t £(C)

)

EE2012 ~ Page 140 / Part 2 ben m chen, nus ece




Application of Argument Principle

Zy

Larg[f(2)] =n-p
T

Z

Case 3: If there is no zero and no pole (or equal numbers

of poles and zeros) of f (z) encircled by C on z-plane, then

arg[ 1 ()]

l.e., f (C) will not encircle the origin on the image plane at all.

7

=2n(n—-p)=2n-0=0

Zy
Z;

B
»
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Rouche's Theorem

Let functions f (z) and g (z) be analytic everywhere on and inside C. If

f(2))>]9(2)

on C, then the total number of zeros of p (z) =f (z) + g (z) inside C is

equal to the number of zeros of f (z) inside C.

7
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Proof of Rouche's Theorem (self-study)

Lett € [0, 1]. Since f (z) and g (z) are analytic everywhere on and inside C
and since |f(z) >|g(z)| on C, we have f (z) + tg (z) # 0 for any z € C (why?).

Let

1 _[ f’(z)+tg’(z)dz
C

o0 =il T )1 19(2)

By Argument Principle ¢(t) = number of zeros of f (z) + t g (z) inside C (why?),
l.e., ¢(t) is integer-valued. It can also be shown (pretty complicated!) that ¢(t)
IS a continuous function of t. Thus, ¢(t) can only be a constant, which implies
that the number of zeros of f (z) + t g (z) inside C is constant for all t € [0, 1].

The result of Rouche’s theorem follows by letting t =0 and t = 1, respectively.
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Example 20

Determine the number of roots (zeros) of p(z) =2z’ -22°+2°-8z-2

that lie within the circle C:|z|=1.
Choose f (z)=-8z, g(z)=12"-22z°+2z%—2. Then on the circle C :|z|=1
1(2) = |-82/=[8 [2/=8
9(2)=12"-22°+2° -2 < 2°|+2|2° + 22 |+2=1+2+1+2=6

Thus,

f(z)|]=8>6=|g(z) on C and f(z) and g (z) are analytic on and within C.

As f (z) has only one root inside C, p (z) =f (2) + g (2) also has one root inside C.
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Example 20 (cont.)

15 ‘
*
N -\ : ........................... |
i s - . 9roots of f(z) |
. are marked in *; |
05— - 5 :
i and ;
0 > " Indeed only one |
" ofthemis |
05 - . ,
. Inside the unit .
L SR - circle '
) 1/
1.5 ‘
-1.5 1 0.5 0 0.5 1 15
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Example 21

Show that all the roots (zeros) of p(z) =z°®+az>+0.1z2* -0.2z2°-0.3z+0.1,

where a is unknown, lie within the unit circle, i.e., C ;\z\ —1,if|a] <0.3.

Let f(z)=2°, g(z)=az’>+0.1z* —=0.22° - 0.3z +0.1. Then on the unit circle:
f(2)=|2° =1

g(2) =|az® +0.12* 0.2z - 0.3z +0.1 <|a|-z°[+0.1z* +0.2/z%/+0.3/z|+0.1
=|a|+0.1+0.2+0.3+0.1=a|+0.7 <1

Thus,
f (z) has 6 roots inside C, p (z) =f (z) + g (z) also has its 6 roots inside C.

f (z))>|g(z)| on C and f(z) and g (z) are analytic on and inside C. As
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Example 21 (cont.)

0.1+i0.28

a=

a=0.295

ben m chen, nus ece
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