P39. 1. $f(z)=e^{x}(\cos y+i \sin y)$
SOLUTION: $u(x, y)=e^{x} \cos y$ and $v(x, y)=e^{x} \sin y$

$$
\begin{array}{ll}
\frac{\partial u(x, y)}{\partial x}=e^{x} \cos y & \frac{\partial v(x, y)}{\partial x}=e^{x} \sin y \\
\frac{\partial u(x, y)}{\partial y}=-e^{x} \sin y & \frac{\partial v(x, y)}{\partial y}=e^{x} \cos y \\
\therefore \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=e^{x} \cos y & ,
\end{array} \begin{array}{ll}
\partial x & \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=e^{x} \sin y
\end{array}
$$

$f(z)$ satisfies the Caucly-Riemann equations.
2. $f(z)=\cos x \cosh y-i \sin x \sinh y$

SOLUTION:

$$
\begin{aligned}
& u(x, y)=\cos x \cdot \operatorname{coch} y=\cos x \cdot\left(e^{y}+e^{-y}\right) / 2 \\
& v(x, y)=-\sin x \cdot \sinh y=\sin x \cdot\left(e^{-y}-e^{y}\right) / 2 \\
& \frac{\partial u}{\partial x}=-\sin x \cdot\left(e^{y}+e^{-y}\right) / 2 \\
& \frac{\partial u}{\partial y}=\cos x \cdot\left(e^{y}-e^{-y}\right) / 2 \\
& \frac{\partial V}{\partial x}=\cos x \cdot\left(e^{-y}-e^{y}\right) / z=-\cos \cdot\left(e^{y}-e^{-y}\right) / 2 \\
& \frac{\partial V}{\partial y}=\sin x \quad\left(-e^{-y}-e^{y}\right) / z=-\sin x\left(e^{-y}+e^{y}\right) / z \\
& \frac{\partial u}{\partial x}=\frac{\partial V}{\partial y} \quad \text { and } \quad \frac{\partial V}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

so, $F(z)$ satisfies the Canchy-Riemann equations.

P39. 3. $f(z)=\sin x \cosh y+i \cos x \cdot \sinh y$
SOLUTION:

$$
\begin{aligned}
& u(x, y)=\sin x \cdot \cosh y=\sin x \cdot\left(e^{y}+e^{-y}\right) / z \\
& V(x, y)=\cos x \cdot \sinh y=\cos x \cdot\left(e^{y}-e^{-y}\right) / 2 \\
& \frac{\partial u}{\partial x}=\cos x \cdot \cosh y \\
& \frac{\partial u}{\partial y}=\sin x\left(e^{-y}-e^{-y}\right) / z=\sin x \sinh y \\
& \frac{\partial V}{\partial x}=-\sin x \cdot \sinh y \\
& \frac{\partial V}{\partial y}=\cos x \cdot\left(e^{y}+e^{-y}\right) / z=\cos x \cdot \cos h y \\
& \frac{\partial u}{\partial x}=\frac{\partial V}{\partial y} \quad \text { and } \quad \frac{\partial V}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

SO, $f(z)$ stastifies the Canchy-Riemamn equations.
4. $\quad f(z)=e^{x^{2}-y^{2}}(\cos 2 x y+i \sin 2 x y)$

SOLUTION:

$$
\begin{aligned}
u(x, y) & =e^{x^{2}-y^{2}} \cos 2 x y \\
v(x, y) & =e^{x^{2}-y^{2}} \sin 2 x y \\
\frac{\partial u}{\partial x} & =e^{x^{2}-y^{2}} \cdot 2 x \cos 2 x y-e^{x^{2}-y^{2}} \cdot \sin 2 x y \cdot z y \\
\frac{\partial u}{\partial y} & =e^{x^{2}-y^{2} \cdot(-2 y) \cos 2 x y-e^{x^{2}-y^{2}} \cdot \sin 2 x y \cdot 2 x} \\
\frac{\partial V}{\partial x} & =e^{x^{2}-y^{2}} 2 x \cdot \sin 2 x y+e^{x^{2}-y^{2}} \cos 2 x y \cdot 2 y \\
\frac{\partial v}{\partial y} & =e^{x^{2}-y^{2}}(-2 y) \sin 2 x y+e^{x^{2}-y^{2}} \cos z x y \cdot 2 x \\
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

so, $f(z)$ startifies the Cauchy - Riemann equations.

IN EXERCISES $1-7$, EXPRESS EACH NUMBER IN THE FORM $x+i y$
2. $e^{(1+\pi i) / 2}=e^{\frac{1}{2}} \cdot e^{i \frac{\pi}{2}}=e^{\frac{1}{2}} \cdot\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=0+i \cdot e^{\frac{1}{2}}$
4. $e^{(-1+\pi i) / 4}=e^{-\frac{1}{4}} \cdot e^{i \cdot \frac{\pi}{4}}=e^{-\frac{1}{4}} \cdot\left(\cos \frac{\pi}{4}+i \cdot \sin \frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} e^{-\frac{1}{4}}+i \frac{\sqrt{2}}{2} e^{-\frac{1}{4}}$
6. $e^{-i \pi / 2}=\cos \left(-\frac{\pi}{2}\right)+i \cdot \sin \left(-\frac{\pi}{2}\right)=0-i$

IN EXERCISES 8-10, FIND Ah h THE COMPLEX NUMBERS Z THAT SATISFY THE GIVEN CONDITIONS.
8. $e^{2 z}=-1$, Let $z=x+i y$

$$
\begin{aligned}
& e^{2 \cdot z}=e^{2(x+i y)}=e^{2 x} \cdot(\cos 2 y+i \sin 2 y)=-1 \\
& \left|e^{2 z}\right|=e^{2 x}=|-1|=1 \quad \Rightarrow \quad x=0 \\
& \therefore \quad \cos 2 y+i \cdot \sin 2 y=-1+i \cdot 0 \\
& \Rightarrow\left\{\begin{array}{l}
\cos 2 y=-1 \\
\sin 2 y=0
\end{array} \Rightarrow 2 y=2 k \pi+\pi, \quad k=0, \pm 1, \pm 2, \cdots\right. \\
& \therefore y=k \pi+\frac{\pi}{2}, k=0, \pm 1, \pm 2, \cdots \\
& \quad z=\left(0, k \pi+\frac{\pi}{2}\right) \quad k=0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

10. $e^{i z}=-1$, Let $z=x+i y$

$$
\begin{aligned}
& e^{i z}=e^{i(x+i y)}=e^{-y+i x}=e^{-y}(\cos x+i \sin x)=-1 \\
& \left|e^{i z}\right|=e^{-y}=1 \quad \Rightarrow y=0 \\
& \cos x+i \sin x=-1+i \cdot 0 \\
& \Rightarrow\left\{\begin{array}{l}
\cos x=-1 \\
\sin x=0
\end{array} \Rightarrow x=(2 k+1) \pi, \quad k=0, \pm 1, \pm 2, \cdots\right. \\
& \therefore z=(2 k \pi+\pi, 0) \quad, k=0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

12. SHOW THAT $\overline{\left(e^{\bar{z}}\right)}=e^{\bar{z}}$; LET $z=x+i y$

$$
\begin{aligned}
\left(\overline{e^{z}}\right) & =\overline{\left(e^{(x+i y)}\right)}=\overline{e^{x} \cdot(\cos y+i \sin y)}=e^{x}(\cos y-i \sin y) \\
& =e^{x}(\cos (-y)+i \sin (-y))=e^{x} \cdot e^{-i y}=e^{(x-i y)}=e^{\bar{z}}
\end{aligned}
$$

IN EXERCISES 13-20, CALCULATE EACH NUMBER USING De Moiver's THEOREM.
14. $(-1+i)^{17}$

$$
\begin{aligned}
(-1+i) & =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \cdot \sin \frac{3 \pi}{4}\right) \\
(-1+i)^{17} & =(\sqrt{2})^{17} \cdot\left(\cos \frac{3 \times 17}{4} \pi+i \sin \frac{3 \times 17}{4} \pi\right) \\
& =256 \sqrt{2}\left(\cos \left(12 \pi+\frac{3 \pi}{4}\right)+i \sin \left(12 \pi+\frac{3 \pi}{4}\right)\right. \\
& =256 \sqrt{2}\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=-256+i 256
\end{aligned}
$$

16. $(2+2 i)^{12}$

$$
\begin{aligned}
& 2+2 i=2 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& (2+2 i)^{12}=(2 \sqrt{2})^{12}\left(\cos \frac{\pi}{4} \times 12+i \sin \frac{\pi}{4} \times 12\right)=-2^{12} \cdot 2^{6}=-2^{18}
\end{aligned}
$$

18. $(-\sqrt{3}+i)^{13}$

$$
\begin{aligned}
(-\sqrt{3}+i) & =2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right) \\
(-\sqrt{3}+i)^{13} & =2^{13}\left(\cos \frac{5 \pi}{6} \times 13+i \cdot \sin \frac{5 \pi}{6} \times 13\right) \\
& =2^{13}\left(\cos \left(10 \pi+\frac{5 \pi}{6}\right)+i \sin \left(10 \pi+\frac{5 \pi}{6}\right)\right. \\
& =2^{13}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=2^{13}\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=-2^{12} \sqrt{3}+i 2^{12}
\end{aligned}
$$

20. $\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)^{19}=\left(\cos \left(-\frac{\pi}{4}\right), \sin \left(-\frac{\pi}{4}\right)\right)^{19}$

$$
\begin{aligned}
& =\left(\cos \left(-\frac{\pi}{4} \times 19\right), \sin \left(-\frac{\pi}{4} \times 19\right)\right) \\
& =\left(\cos \left(-4 \pi-\frac{3 \pi}{4}\right), \sin \left(-4 \pi-\frac{3 \pi}{4}\right)\right) \\
& =\left(\cos \left(\frac{-3 \pi}{4}\right), \sin \left(-\frac{3 \pi}{4}\right)\right) \\
& =\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \cdot i
\end{aligned}
$$

IN EXERCISES $1-8$, EXPRESS EACH OF THE NUMBERS IN THE FORM $x+i y$.
2. $\cos (-i)=\frac{1}{2}\left(e^{i(-i)}+e^{-i(-i)}\right)=\frac{1}{2}\left(e+e^{-1}\right)+0 \cdot i$
4. $\sinh \pi i=\frac{1}{2}\left(e^{\pi i}-e^{-\pi i}\right)=i \sin \pi=0$
6. $\tan 2 i=\sin 2 i / \cos 2 i=\left(e^{i(2 i)}-e^{-i(2 i)}\right) / i\left(e^{i(2 i)}+e^{-i(2 i)}\right)$

$$
\begin{aligned}
& =\left(e^{-2}-e^{2}\right) / i\left(e^{-2}+e^{2}\right) \\
& =0-i \cdot \frac{1-e^{4}}{1+e^{4}}
\end{aligned}
$$

8. $\cosh (\pi i / 4)=\frac{1}{2}\left(e^{i \cdot \frac{\pi}{4}}+e^{-i \frac{\pi}{4}}\right)=\frac{1}{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}+\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)$

$$
=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}
$$

IN ExERCISES 9^{-12}, FIND ALL complex NUMBERS z SUCH THAT THE GIVEN CONDITIONS ARE MET.
10. $\cos z=-i \sin z$, LET $z=x+i y$.

$$
\begin{aligned}
& \cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)=\frac{1}{2}\left(e^{i(x+i y)}+e^{-i(x+i y)}\right) \\
&=\frac{1}{2}\left(e^{(-y+i x)}+e^{(y-i x}\right) \\
&=\frac{1}{2}\left[e^{-y}(\cos x+i \sin x)+e^{y}(\cos x-i \sin x)\right] \\
&=\frac{1}{2}\left[\left(e^{-y}+e^{y}\right) \cos x+i \cdot\left(e^{-y}-e^{y}\right) \sin x\right] \\
&-i \sin z=-\frac{1}{2}\left[e^{i z}-e^{-i z}\right]=-\frac{1}{2}\left[e^{i(x+i y)}-e^{-i(x+i y)}\right] \\
&=-\frac{1}{2}\left[e^{(-y+i x)}-e^{(y-i x)}\right] \\
&=-\frac{1}{2}\left[\left(e^{-y}-e^{y}\right) \cos x+i\left(e^{-y}+e^{y}\right) \sin x\right] \\
& \Rightarrow\left\{\begin{array} { l }
{ (e ^ { - y } + e ^ { y }) \operatorname { c o s } x = (e ^ { y } - e ^ { - y }) \operatorname { c o s } x } \\
{ (e ^ { - y } - e ^ { y }) \operatorname { s i n } x = + (e ^ { y } + e ^ { - y }) \operatorname { s i n } x } \\
{ \therefore e ^ { - y } \operatorname { c o s } x = 0 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\cos x=0 \\
\sin x=0
\end{array}\right.\right. \\
& \Rightarrow\left\{e^{-y} \sin x=0\right.
\end{aligned}
$$

12. $\cosh z=i$, LET $z=x+i y$

$$
\begin{aligned}
& \cosh z=\frac{1}{2}\left(e^{z}+e^{-z}\right)=\frac{1}{2}\left(e^{(x+i y)}+e^{(-x-i y)}\right) \\
& =\frac{1}{2}\left(e^{x}(\cos y+i \sin y)+e^{-x}(\cos y-i \sin y)\right) \\
& =\frac{1}{2}\left[\left(e^{x}+e^{-x}\right) \cos y+i\left(e^{x}-e^{-x}\right) \sin y\right]=i \\
& \Rightarrow\left\{\begin{array} { l }
{ \frac { 1 } { 2 } (e ^ { x } + e ^ { - x }) \operatorname { c o s } y = 0 } \\
{ \frac { 1 } { 2 } (e ^ { x } - e ^ { - x }) \operatorname { s i n } y = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\cos y=0 \\
\left(e^{x}-e^{-x}\right) \sin y=2
\end{array}\right.\right. \\
& \cos y=0 \quad \Rightarrow \quad y=2 k \pi \pm \frac{\pi}{2}, \quad k=0, \pm 1, \pm 2, \cdots \\
& \Rightarrow \sin y= \pm 1 \\
& \therefore \quad e^{x}-e^{-x}= \pm 2 \\
& \left(e^{x}\right)^{2}-1= \pm 2 e^{x} \\
& \text { Let } u=e^{x} \\
& \therefore u^{2} \pm 2 u-1=0 \\
& u_{1}=0.618 \quad \Rightarrow \quad x_{1}=-0.481 \\
& u_{2}=1.618 \quad \Rightarrow \quad x_{2}=0.481 \\
& \therefore \quad z_{1}=\left(-0.481,2 k \pi+\frac{\pi}{2}\right) \\
& Z_{2}=\left(0.4 .81, \quad 2 k \pi+\frac{\pi}{2}\right), \quad k=0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

14. SHOW THAT $\overline{\sin z}=\sin \bar{z}$

According to Homework \#8. Problem 12. $\quad\left(\overline{e^{z}}\right)=e^{\bar{z}}$,

$$
\left.\begin{array}{rl}
\overline{\sin z} & \left.=\overline{\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right.}\right)=\overline{\frac{1}{2 i}} \cdot\left(\overline{e^{i z}}-\overline{e^{-i z}}\right) \\
& \left.=\overline{\left(-\frac{1}{2} i\right.}\right) \cdot\left(e^{\bar{i} \cdot \bar{z}}-e^{-i} \cdot \bar{z}\right.
\end{array}\right)
$$

IN EXERCISES 16-21, PROVE THE IDENTITIES.
16. $\quad \sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2}$

$$
\begin{aligned}
& \sin z_{1} \cos z_{2} \pm \cos z_{1} \cdot \sin z_{2}=\frac{1}{2 i}\left(e^{i z_{1}}-e^{-i z_{1}}\right) \cdot \frac{1}{2}\left(e^{i z_{2}}+e^{-i z_{2}}\right) \\
& \pm \frac{1}{2}\left(e^{i z_{1}}+e^{-i z_{1}}\right) \cdot \frac{1}{2 i}\left(e^{i z_{2}}-e^{-i z_{2}}\right) \\
&=\frac{1}{2 i} {\left[\frac{1}{2}\left(e^{i\left(z_{1}+z_{2}\right)}+e^{i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}\right)\right.} \\
&\left. \pm \frac{1}{2}\left(e^{i\left(z_{1}+z_{2}\right)}-e^{i\left(z_{1}-z_{2}\right)}+e^{-i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}\right)\right] \\
& \therefore \sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}=\frac{1}{2 i}\left[e^{i\left(z_{1}+z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}\right]=\sin \left(z_{1}+z_{2}\right) \\
& \sin z_{1} \cos z_{2}-\cos z_{2} \sin z_{1}=\frac{1}{2 i}\left[e^{i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}-z_{2}\right)}\right]=\sin \left(z_{1}-z_{2}\right)
\end{aligned}
$$

so, $\sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2}$.
18. $\sin (-z)=-\sin z, \quad \cos (-z)=\cos z$

$$
\begin{aligned}
\sin (-z) & =\frac{1}{2 i}\left(e^{i(-z)}-e^{-i(-z)}\right)=\frac{1}{2 i}\left(e^{-i z}-e^{i z}\right) \\
& =-\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)=-\sin z \\
\cos (-z) & =\frac{1}{2}\left(e^{i(-z)}+e^{-i(-z)}\right)=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \\
& =\cos z
\end{aligned}
$$

IN EXERCISES $1-6$, FIND ALL THE VALUES OF THE GIVEN ExpressIons.
2. $\log (1+i)=\log |1+i|+i \cdot \arg (1+i)$

$$
=\log \sqrt{2}+i \cdot\left(\frac{\pi}{4}+2 k \pi\right) \quad, \quad k=0, \pm 1, \pm 2, \cdots
$$

4. $\quad^{i}=e^{i \log 1}=e^{i \cdot(\log 1+i \cdot \arg (1))}=e^{i \cdot i \cdot(2 k \pi)}=e^{-2 k \pi}, k=0, \pm 1, \pm 2, \ldots$
5. $(1+i)^{1+i}=e^{(1+i) \log (1+i)}=e^{(1+i)\left(\log \sqrt{2}+i\left(\frac{\pi}{4}+2 k \pi\right)\right)} \quad k=0, \pm 1, \pm 2, \ldots$

$$
=e^{\log _{\sqrt{2}}-\left(\frac{\pi}{4}+2 k \pi\right)} \cdot \cos \left(\log \sqrt{2}+\frac{\pi}{4}\right)+i \cdot e^{\log \sqrt{2}-\left(\frac{\pi}{4}+2 k \pi\right)} \cdot \sin \left(\log _{\sqrt{2}}+\frac{\pi}{4}\right)
$$

IN exercIses 7^{-10}, FIND THE PRINCIPAL VALUES OF THE GIVEN EXPRESSIONS
8. $\log (1+i)$

$$
\log (1+i)=\log |1+i|+i \operatorname{Arg}(1+i)=\log \sqrt{2}+i \frac{\pi}{4}
$$

10. $(1+i)^{1+i}=e^{(1+i) \log (1+i)}$

$$
\begin{aligned}
& =e^{(1+i)\left(\log \sqrt{2}+i \cdot \frac{\pi}{4}\right)} \\
& =e^{\log \sqrt{2}-\frac{\pi}{4}} \cdot \cos \left(\log \sqrt{2}+\frac{\pi}{4}\right)+i \cdot e^{\log \sqrt{2}-\frac{\pi}{4}} \cdot \sin \left(\log \sqrt{2}+\frac{\pi}{4}\right)
\end{aligned}
$$

18 SHOW THAT $\log \left(i^{3}\right) \neq 3 \log i$

$$
\text { SHOW: } \begin{aligned}
& \log \left(i^{3}\right)=\log (-i)=\log |-i|+i\left(-\frac{\pi}{2}\right)=i\left(\frac{\pi}{2}\right) \\
& 3 \cdot \log i=3 \cdot\left(\log |i|+i \cdot \frac{\pi}{2}\right)=i \cdot \frac{3 \pi}{2} \quad \text { Why } \\
\therefore & \log \left(i^{3}\right) \neq 3 \log i \quad-\frac{\pi}{2}+\frac{3 \pi}{4} \text { an are nat }
\end{aligned}
$$

20. Is 1 raised to any power always equal to 1 ?

NO.
SEE PROBLEM \# $4,1^{i}=e^{-2 k \pi}, \quad k=0, \pm 1, \pm 2, \ldots$
WHEN $k=-2, \quad e^{-2 k \pi}=e^{4 \pi}=286751.3148$.

IN EXERCISES 2-5, DETERMINE PWS PARAMETRIZATIONS FOR THE INDICATED ARCS OR CURVES.
2. SEMICIRCLE FROM 1 to -1

3. TRIANGLE

$$
r=z(t)=\cos t+i \sin t \quad 0 \leqslant t \leqslant \pi
$$

$$
\gamma=z(t)= \begin{cases}i \cdot(1-t) & 0 \leqslant t \leqslant 1 \\ t-1 & 1 \leqslant t \leqslant 2 \\ (3-t)+i(t-2) & 2 \leqslant t \leqslant 3\end{cases}
$$

4. Square

$$
\gamma=z(t)=\left\{\begin{array}{l}
i(1-t) \\
t-1 \\
1+i(t-z) \\
4-t+i
\end{array}\right.
$$

$$
0 \leqslant t \leqslant 1
$$

$$
1 \leqslant t \leqslant 2
$$

$$
2 \leqslant t \leqslant 3
$$

$$
3 \leqslant t \leqslant 4
$$

5. BARBELL BEGINNING AT 1

6. EVALUATE $\int_{r} y d z$, where r is the STRAIGHT LINE JOINING 1 To i

$$
\begin{aligned}
& r: z(t)=(1-t)+i \cdot t \quad 0 \leqslant t \leqslant 1 \\
& d z(t)=-1+i \\
& \int_{r} y d z=\int_{0}^{1} t \cdot(-1+i) d t=-\left.\frac{1}{2} t^{2}\right|_{0} ^{1}+\left.i \cdot \frac{1}{2} t^{2}\right|_{0} ^{1}=-\frac{1}{2}+i \cdot \frac{1}{2}
\end{aligned}
$$

11. EUALUATE $\int_{r} y d z$, wHERE r is THE ARC INTHE FRST QUADRANT ALONG $|z|=1$ JOINING 1 TO

$$
\begin{array}{rl}
\gamma= & z(t)=\cos t+i \sin t \\
d z(t)=-\sin t+i \cos t & 0 \leqslant t \leqslant \frac{\pi}{2} \\
&
\end{array}
$$

$$
\int_{r} y d z=\int_{0}^{\frac{\pi}{2}} \sin t(-\sin t+i \cos t) d t
$$

$$
=\int_{0}^{\frac{\pi}{2}}-\sin ^{2} t d t+i \cdot \int_{0}^{\frac{\pi}{2}} \sin t \cdot \cos t d t
$$

$$
=-\frac{1}{2} \cdot \int_{0}^{\frac{\pi}{2}}(1-\cos 2 t) d t+i-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2 t d t
$$

$$
=-\left.\frac{1}{2}\left(t-\frac{1}{2} \sin 2 t\right)\right|_{0} ^{\frac{\pi}{2}}+\left.\frac{1}{2} i \cdot\left(-\frac{1}{2} \cos 2 t\right)\right|_{0} ^{\frac{\pi}{2}}
$$

$$
=-\frac{\pi}{4}+i \cdot \frac{1}{2}
$$

12. EVALUATE $\int_{r} y d z$, WHERE r is THE ARC ALONG THE COORDINATE AXES JOINING 1 TO i.

$$
\begin{aligned}
& \gamma=z(t)= \begin{cases}1-t & 0 \leqslant t \leqslant 1 \\
i(t-1) & 1 \leqslant t \leqslant 2\end{cases} \\
& d z(t)= \begin{cases}-1 & 0 \leqslant t \leqslant 1 \\
i & 1 \leqslant t \leqslant 2\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\int_{r} y d z & =\int_{r^{\prime}} y d z+\int_{r^{\prime \prime}} y d z \\
& =\int_{0}^{1} 0 \cdot(-1) d t+\int_{1}^{2}(t-1) \cdot i d t \\
& =i \int_{1}^{2}(t-1) d t \\
& =\left.i\left(\frac{t^{2}}{2}-t\right)\right|_{1} ^{2}=i \cdot \frac{1}{2}
\end{aligned}
$$

14. Evaluate THE INTEgral $\int(z-a)^{n} d z, n$ an integer, around the circle $|z-a|=R$.

$$
\begin{aligned}
& F(z)=\frac{1}{n+1}(z-a)^{n+1} \quad n \neq-1 \\
& F^{\prime}(z)=(z-a)^{n}
\end{aligned}
$$

$F(Z)$ is AN ANALYTIC FUNCTION WITH A CONTINUOUS DERIVATIUE $F^{\prime}(Z)$

$$
(z-a)^{n} d z=0
$$

put the of oi vo $\int_{|z-a|=R}$
c

P86. USE GReen's THeorem for Exercises 2-4, wHeRe\& A equals THE EREA OF G AND ∂G IS THE BOUNDARY OF G.
2. SHOW THAT $\int_{\partial G} x d z=i A$

$$
f(z)=x \quad ; \quad u(x, y)=x, v(x, y)=0, \frac{\partial u}{\partial x}=1, \frac{\partial u}{\partial y}=0, \frac{\partial v}{\partial x}=0, \frac{\partial v}{\partial y}=0
$$

2
ALL ARE CONTINUOUS ON THE COMPLEX PLANE.

$$
\begin{aligned}
\int_{\partial G} x d z & =-\iint_{G}\left(\frac{\partial V}{\partial x}+\frac{\partial u}{\partial y}\right) d x d y+i \iint_{G}\left(\frac{\partial U}{\partial x}-\frac{\partial V}{\partial y}\right) d x d y \\
& =i \iint_{G} d x d y=i A
\end{aligned}
$$

3. SHOW THAT $\int_{\partial G} y d z=-A$

$$
u(x, y)=y, \quad v(x, y)=0, \quad \frac{\partial u}{\partial x}=0, \quad \frac{\partial u}{\partial y}=1, \quad \frac{\partial v}{\partial x}=0, \quad \frac{\partial v}{\partial y}=0
$$

ALL ARE CONTINUOUS ON THE COMPLEX PLANE.
2

$$
\begin{aligned}
\int_{\partial G} y d z & =-\iint_{G}\left(\frac{\partial V}{\partial x}+\frac{\partial u}{\partial y}\right) d x d y+i \iint_{G}\left(\frac{\partial u}{\partial x}-\frac{\partial V}{\partial y}\right) d x d y \\
& =-\iint_{G}(0+1) d x d y=-\mathrm{A}
\end{aligned}
$$

P96. 15. Without computing the integral, show that

$$
\left|\int_{|z|=2} \frac{d z}{z^{2}+1}\right| \leqslant \frac{4 \pi}{3}
$$

2

$$
\begin{aligned}
& \left|z^{2}+1\right| \leqslant\left|z^{2}\right|+1 \leqslant|z|^{2}+1 \leqslant 5 \\
& \therefore\left|\frac{1}{z^{2}+1}\right| \geqslant \frac{1}{5} \bar{\emptyset} \\
& \quad|d z|=2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \left|\int_{|z|=2} d z /\left(z^{2}+1\right)\right| \leqslant \int_{|z|=2}\left|\frac{1}{z^{2}+1}\right| \cdot|d z| \\
& \quad \leqslant \frac{1}{5} \cdot 2 \pi=\frac{2 \pi}{5}<\frac{4 \pi}{3}
\end{aligned}
$$

N EXERCISES $1-3$, EVALUATE THE INTEGRAL

$$
\int_{r} \frac{d z}{(z-a)(z-b)}
$$

BY DECOMPOSING THE INTEGRAND INTO PARTIAL FRACTIONS.

$$
\int_{r} \frac{d z}{(z-a)(z-b)}=\frac{1}{a-b} \int_{r} \frac{d z}{z-a}-\frac{1}{a-b} \int_{r} \frac{d z}{z-b}
$$

1. IF a AND b lie inside r.

$$
\int_{r} \frac{d z}{(z-a)(z-b)}=\frac{1}{a-b} \cdot 2 \pi i-\frac{1}{a-b} \cdot 2 \pi i=0
$$

2. IF a Lies inside and b outside r.

$$
\int_{r} \frac{d z}{(z-a)(z-b)}=\frac{1}{a-b} \cdot 2 \pi i
$$

3. IF b lies inside and a outside r.

$$
\int_{r} \frac{d z}{(z-a)(z-b)}=0-\frac{2 \pi i}{a-b}=\frac{2 \pi i}{b-a}
$$

LET $\quad r: \quad z(t)=2 e^{i t}+1, \quad 0 \leqslant t \leqslant 2 \pi$, EVALUATE THE $\mathbb{N T E G R A L S ~} \mathbb{N}$ \& $\quad .4-7$.

4. $\int_{r} \frac{e^{x}}{z} d z=2 \pi i \cdot e^{0}=2 \pi i$
5. $\int_{r} \frac{\cos z}{z-1} d z=\cos 1 \cdot 2 \pi i=2 \pi i \cdot \cos 1$

$$
\begin{aligned}
& \left.-\frac{1}{2 i} \text { or } \frac{1}{2 i} \int_{r} \cdot \frac{\sin z}{z-i} d z-\int_{r} \frac{\sin z}{z+i} d z\right] \\
& =2 \pi i \\
& 2 \pi i \\
& \sin i-\sin (-i)]=2 \pi i \cdot e^{-1}-
\end{aligned}
$$

$$
\left.=\frac{2 \pi i}{2 i} \sin i-\sin (-i)\right]=2 \pi i \cdot \frac{e^{-1}-e^{1}}{i-2 i}=\pi i\left(e-e^{-1}\right.
$$

$$
\frac{2 \pi(i)(i)}{\not a}+\pi \cdot \int_{r} \frac{\sin z}{z^{2}-z} d z=\int_{r} \cdot \frac{\sin z}{z(z-1)} d x
$$

$$
=\int_{r} \frac{\sin z}{z-1} d z-\int_{r} \frac{\sin z}{z} d z
$$

$$
=2 \pi i \cdot \sin 1-2 \pi i \cdot \sin 0
$$

$$
=2 \pi i \cdot \sin \uparrow
$$

Let $r^{\prime}: z(t)=2 e^{i t}+1, \quad 0 \leqslant t \leqslant 2 \pi$. Evaluate the integrals in Exercises $8-11$
8. $\quad \int_{r} \frac{e^{z}}{z^{2}} d z=\left.\frac{2 \pi i}{1!}\left(e^{z}\right)^{\prime}\right|_{z=0}=2 \pi i$

9. $\left.\int_{\gamma} \frac{\cos z}{(z-1)^{2}} d z=\left.\frac{2 \pi i}{1!}(\cos z)^{\prime}\right|_{z=1}=2 \pi i \cdot(-\sin z)\right] z=1=-2 \pi \sin 1 \cdot i$
18. Let $f(z)$ be analytic and bounded by M in $|Z| \leqslant R$. Prove that

$$
\left|f^{(n)}(z)\right| \leqslant \frac{M R n!}{(R-|z|)^{n+1}}, \quad|z|<R
$$

PROOF: By Cauchy's theorem for derivatives:

$$
\begin{aligned}
& f^{(n)}(z)=\frac{n!}{2 \pi i} \cdot \int_{r} \frac{f(\omega)}{(\omega-z)^{n+1} d \omega} \\
&\left|f^{(n)}(z)\right|=\frac{n!}{2 \pi}\left|\int_{r} \frac{f(\omega)}{(\omega-z)^{n+i}} d \omega\right| \\
& \leqslant \frac{n!}{2 \pi} \int_{r} \cdot \frac{|f(\omega)|}{\left|(\omega-z)^{n+1}\right|}|d \omega| \\
&=\frac{n!}{2 \pi} \cdot \int_{r} \cdot \frac{|f(\omega)|}{|\omega-z|^{n+1}} \cdot|d \omega| \\
&|\omega-z| \geqslant||\omega|-|z|| \\
& \therefore \frac{1}{|\omega-z|} \leqslant \frac{1}{||\omega|-|z||}, \frac{1}{|\omega-z|^{n+1}} \leqslant \frac{1}{\left||\omega|-|z|^{n+1}\right.} \\
& \therefore\left|f^{n}(z)\right| \leqslant \frac{n!}{2 \pi} \cdot \frac{M \cdot 2 \pi R}{(R-|z|)^{n+1}}=\frac{M R n!}{(R-|z|)^{n+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { *. } \frac{i}{(z+i)^{2}}+\frac{i}{(z-i)^{2}}+\frac{1}{z+i}-\frac{1}{z-i}=\frac{i\left(z^{2}-2 i z+1+z^{2}+2 i z-1\right)-2 i\left(z^{2}+1\right)}{\left(z^{2}+1\right)^{2}} \\
& \quad=\frac{2 i z^{2}-2 i z^{2}-2 i}{\left(z^{2}+1\right)^{2}}=\frac{-2 i}{\left(z^{2}+1\right)^{2}}
\end{aligned}
$$

PRORLEM SET \#6
(2) $\quad C(t)=(\cos t, \sin t) \quad 0 \leqslant t \leqslant \pi \quad F=(x, y)$ Compute $\int_{C} F \cdot N d s$

$$
\begin{aligned}
& N(t)=\left(\frac{d y}{d s}\right.\left.=-\frac{d x}{d s}\right) \\
& \begin{aligned}
\int_{C} F \cdot N d s & =\int_{C}(x, y)\left(\frac{d y}{d s},-\frac{d x}{d s}\right) d s \\
& =\int_{c}(x, y)(d y,-d x) \\
& =\int_{c}-y d x+x d y \\
& =\int_{0}^{\pi}-\sin t \cdot(-\sin t) d t+\cos t \cdot \cos t d t \\
& =\int_{0}^{\pi} d t=\pi
\end{aligned}
\end{aligned}
$$

(3) $\quad c(t)=(\cos t, \sin t) \quad 0 \leqslant t \leqslant \pi \quad F=(-y, x) \quad$ Compute $\int_{c} F \cdot N d s$

$$
\begin{aligned}
\int_{c} F \cdot N d s & =\int_{c}(-y, x)(d y,-d x) \\
& =\int_{c}-x d x-y d y \\
& =-\frac{1}{2} \int_{c} d x^{2}+d y^{2} \\
& =-\frac{1}{2} \int_{c} d\left(x^{2}+y^{2}\right) \\
& =-\frac{1}{2} \int_{c} d(1)=0
\end{aligned}
$$

PROBLEM SET \# 7
(1)

$$
\text { LET } \quad F(x, y)=(P(x, y), Q(x, y))
$$

$$
\begin{aligned}
N(t) & =\left(\frac{d y}{d s},-\frac{d x}{d s}\right) \\
\int_{C} F \cdot N d s & =\int_{C}(P, Q) \cdot(d y,-d x) \\
& =\int_{C} P d y-Q d x \\
& =\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d x d y \\
& =\iint_{R} d i v F d x d y
\end{aligned}
$$

$$
=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d x d y \quad \text { (Green's Thm) }
$$

PROBLEM SET \# 7

$$
\begin{aligned}
& \text { Curl } F \triangleq \lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}} \frac{1}{\Delta x \cdot \Delta y} \int_{C} F \cdot T d S \\
&= \lim _{\substack{\Delta y \rightarrow 0 \\
\Delta x \rightarrow 0}} \frac{\left.\left.\left.\left.-\left[P\left(x, y-\frac{\Delta y}{2}\right)\right)-P(x, y+\Delta y / 2)\right)\right] \Delta x+\left[Q\left(x-\frac{\Delta x}{2}, y\right)\right)-Q\left(x+\frac{\Delta x}{2}, y\right)\right)\right] \Delta y}{\Delta x \Delta y} \\
&= \lim _{\Delta y \rightarrow 0}-\frac{\left.\left.P\left(x, y-\frac{\Delta y}{2}\right)\right)-P\left(x, y+\frac{\Delta y}{2}\right)\right)}{\Delta y}+\lim _{\Delta x \rightarrow 0} \frac{\left.\left.Q\left(x-\frac{\Delta x}{2}, y\right)\right)-Q\left(x+\frac{\Delta x}{2}, y\right)\right)}{\Delta x} \\
&=-\frac{\partial P(x, y)}{\partial y}+\frac{\partial Q(x, y)}{\partial x} \\
&= \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
\end{aligned}
$$

(3)

$$
\int_{c} F \cdot T d s
$$

$$
\begin{aligned}
& =\int_{C}(P, Q)(d x, d y) \\
& =\int_{C} P d x+Q d y \\
& =\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \quad \text { (Green's Thm) } \\
& =\iint_{R} \text { Curl } F d x d y
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{1}=\frac{1}{4}\left(0+0+20+P_{2}\right) \\
P_{2}=\frac{1}{4}\left(P_{3}+P_{1}+20+10\right) \\
P_{3}=\frac{1}{4}\left(0+0+P_{2}+10\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
P_{1}-0.25 P_{2}+0 \cdot P_{3}=5 \\
-P_{1}+4 \cdot P_{2}-P_{3}=30 \\
0 P_{1}-P_{2}+4 P_{3}=10
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
P_{1}=7.6786 \mathrm{~V} \\
P_{2}=10.7143 \mathrm{~V} \\
P_{3}=5.1786 \mathrm{~V}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
4 a=100+100+d+50 \\
4 b=100+g+e+d \\
4 c=g+0-30+e \\
4 d=a+b+f+50 \\
4 e=b+c-30+f \\
4 f=d+e-30+50 \\
4 g=100+0+c+b
\end{array}\right.
$$

$$
P_{112}, 2
$$

$$
\text { SHow } \quad \int_{0}^{\pi / 2} \cos ^{2 n} \theta d \theta=(2 n)!\pi / 2 \cdot\left(2^{n} n!\right)^{2}
$$

$$
\text { LET } \quad f(z)=(z+1 / z)^{2 n} / z \quad, \quad z=(\cos \theta, \sin \theta)
$$

$$
\therefore f(z) d z=(z+1 / z)^{2 n} / z=\left(z^{2}+1\right)^{2 n} / z^{2 n+1}=\cos ^{2 n} \theta d \theta / i
$$

$$
\int_{|z|=1} f(z) d z=\int_{|z|=1} \frac{\left(z^{2}+1\right)^{2 n}}{z^{2 n+1}} d z=\int_{|z|=1} \frac{\left(z^{2}+1\right)^{2 n}}{(z-0)^{2 n+1}} d z
$$

$$
=2 \pi i \cdot g^{(2 n)}(0) /(2 n)!
$$

Where $g(z)=\left(z^{2}+1\right)^{2 n} \stackrel{\Delta}{=}(h(z))^{2 n}$
B By USING THE EQUATION, IF $f(z)=x(y(z))$

$$
\begin{aligned}
f^{(2 n)}(z)= & x^{(2 n)}(y(z)) \cdot y^{\prime}(z)+C_{2 n}^{2} x^{(2 n-1)}(y(z)) \cdot y^{\prime \prime}(z)+C_{2 n}^{3} x^{(2 n-2)}(y(z)) y^{(3)}(z \\
& +\cdots+x^{\prime}(y(z)) y^{(2 n)}(z)
\end{aligned}
$$

IN THIS PROBLEM. $\quad y(z)=z^{2}+1$

$$
\begin{aligned}
y^{\prime}(z) & =2 z \\
y^{\prime \prime}(z) & =2 \\
y^{\prime \prime \prime}(z) & =0
\end{aligned} \quad, \quad y^{\prime}(0)=0
$$

So, we HAVE $\quad g^{(2 n)}(0)=(2 n!)^{2} /\left(2^{n} \cdot n!\right)^{2}$

$$
\begin{aligned}
\therefore & \int_{|z|=1} f(z) d z=2 \pi i \cdot(2 n)!/\left(z^{n} \cdot n!\right)^{2} \\
& \int_{0}^{\pi / 2} \cos ^{2 n} \theta d \theta=\frac{1}{4 i} \int_{|z|=1} f(z) d z=\frac{(2 n)!}{\left(2^{n} \cdot n!\right)^{2}} \cdot \frac{\pi}{2}
\end{aligned}
$$

Ex. 2, p. 83 ?

MAT4IT H.W. \# HASF GRD Complex Vax.
Obtain the Maclaurin series given in Exercises 3-7
3. $\sin z=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{2 n-1}}{\left(z^{n}-1\right)!},|z|<\infty$

$$
\begin{array}{ll}
(\sin z)^{\prime}=\left.\cos z\right|_{z=0}=1 & (\sin z)^{\prime \prime}=-\left.\sin z\right|_{z=0}=0 \\
(\sin z)^{\prime \prime \prime}=-\left.\cos z\right|_{z=0}=-1 & \sin z=\left.\sin z\right|_{z=0}=0 \\
\left.\sin ^{(k)} z\right|_{z=0} \begin{cases}1 & k=4 n+1 \\
0 & k=4 n+2 \\
-1 & k=4 n+3 \\
0 & k=4 n+4\end{cases} & n=0,1,2, \cdots \\
\therefore \sin z=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{2 n-1}}{(2 n-1)!} \quad, \quad|z|<\infty
\end{array}
$$

4. $\cos z=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{z^{2 n}}{(2 n)!},|z|<\infty$
5. $\quad \sinh z=\sum_{n=1}^{\infty} \frac{z^{2 n-1}}{\left(z^{n-1)!}\right.}, \quad|z|<\infty$

$$
\begin{aligned}
& \sinh ^{\prime} z=\left(\frac{e^{z}-e^{-z}}{2}\right)^{\prime}=\left.\cosh z\right|_{z=0}=1 \quad \quad \sinh ^{\prime \prime} z=\left.\sinh z\right|_{z=0}=0 \\
& \therefore \quad \sinh \\
& \left.\therefore k\right|_{z=0} ^{(k)} \begin{cases}1 & k=2 n+1 \\
0 & k=2 n\end{cases}
\end{aligned}
$$

$$
\sin h=\sum_{n=1}^{\infty} \frac{z^{2 n-1}}{(2 n-1)!}, \quad|z|<\infty
$$

6. $\cosh z=\sum_{n=0}^{\infty} z^{2 n} /(2 n)!, \quad|z|<\infty$

$$
\begin{aligned}
& \quad \infty s h^{\prime} z=\left.\sinh z\right|_{z=0}=0 \\
& \left.\quad \quad \sin h^{(k)} z\right|_{z=0}=\left\{\begin{array}{cl}
0 & k=2 n \\
1 & k=2 n+1
\end{array}\right. \\
& \therefore \quad \cosh z=\sum_{n=0}^{\infty} z^{2 n} /(2 n)!\quad, \quad|z|<\infty
\end{aligned}
$$

$$
\cosh ^{\prime \prime} z=\sinh ^{\prime} z=\left.\cosh z\right|_{z=0}=1
$$

$$
\begin{aligned}
& \cos ^{\prime} z=-\left.\sin z\right|_{z=0}=0 \quad \cos ^{\prime \prime} z=-\left.\cos z\right|_{z=0}=-1 \\
& \cos ^{\prime \prime \prime} z=\sin z\left|z=0=0 \quad \cos ^{(4)} z=\cos z\right| z=0=1 \\
& \left.\cos ^{(k)} z\right|_{z=0}\left\{\begin{array}{rl}
0 & k=4 n+1 \\
-1 & k=4 n+2 \\
0 & k=4 n+3 \\
1 & k=4 n+4
\end{array} \quad n=0,1,2, \ldots\right. \\
& \therefore \cos z=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{z^{2 n}}{(2 n)!} \quad|z|<\infty
\end{aligned}
$$

MAT 417 H．W．\＃LAST GRD Complex Vax．
7．$\frac{1}{1-z^{2}}=\sum_{n=0}^{\infty} z^{2 n}, \quad|z|<1$
USING THE RESULT IN ExpLE 2，WE HAVE

$$
\begin{aligned}
& \frac{1}{1-\omega}=\sum_{n=0}^{\infty} \omega^{n}, \quad|\omega|<1 \\
& \text { LET } \omega=z^{2}, \text { so } \\
& \frac{1}{1-z^{2}}=\sum_{n=0}^{\infty} z^{2 n}, \quad|z|<1
\end{aligned}
$$

9．$f(z)=\frac{1}{1-z}, \quad z_{0}=i$

$$
\begin{aligned}
f(z)= & \frac{1}{1-z_{0}-\left(z-z_{0}\right)}=\frac{1}{1-\left(\frac{z-i}{1-i}\right)} \cdot \frac{1}{1-i} \\
= & \frac{1}{1-i} \cdot\left(1+\frac{z-i}{1-i}+\frac{(z-i)^{2}}{(1-i)^{2}}+\cdots\right) \\
& \frac{|z-i|}{|1-i|<1 \quad} \quad
\end{aligned}
$$

10．$\quad f(z)=\cos z, \quad z_{0}=\frac{\pi}{2}$

$$
\begin{array}{ll}
f^{\prime}(z)=\cos ^{\prime} z=-\left.\sin z\right|_{z=\frac{\pi}{2}}=-1 & f^{\prime \prime}(z)=-\left.\cos z\right|_{z=\frac{\pi}{2}}=0 \\
f^{\prime \prime \prime}(z)=\sin z \left\lvert\, z=\frac{\pi}{2}=1\right. & f^{(a)}(z)=\left.\cos z\right|_{z=\frac{\pi}{2}=0} \\
f(z)=\cos z=-\left(z-\frac{\pi}{2}\right)+\frac{1}{3!}\left(z-\frac{\pi}{2}\right)^{3}-\frac{1}{5!}\left(z-\frac{\pi}{2}\right)^{5}+\frac{1}{7!}\left(z-\frac{\pi}{2}\right) 7-\cdots \\
\left|z-\frac{\pi}{2}\right|<\infty &
\end{array}
$$

FIND THE LAURENT SERIES OF THE FUNCTION $\left(z^{2}+z\right)^{-1}$ IN THE REGION\& GIVEN
IN EXERCISES 1-3

1. $\quad 0<|z|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}+z}=\frac{1}{z(z+1)}=\frac{1}{z}-\frac{1}{z+1}=\frac{1}{z}-\frac{1}{1-(-z)} \quad|-z|<1 \\
& =\frac{1}{z}-\left[1+(-z)+(-z)^{2}+(-z)^{3}+\cdots\right] \\
& =\frac{1}{z}-1+z-z^{2}+z^{3}-z^{4}+\cdots \cdots=\sum_{n=-1}^{\infty}(-1)^{n+1} \cdot z^{n}
\end{aligned}
$$

2. $0<|z-1|<1$

$$
\begin{aligned}
f(z)= & \frac{1}{z}-\frac{1}{1+z}=\frac{1}{1+(z-1)}-\frac{\frac{1}{2}}{1+\frac{z-1}{2}} \quad|z-1|<1 \\
= & 1-(z-1)+(z-1)^{2}-(z-1)^{3}+\cdots \\
& -\frac{1}{2}\left[1-\frac{z-1}{2}+\left(\frac{z-1}{2}\right)^{2}-\left(\frac{z-1}{2}\right)^{3}+\cdots\right] \\
= & \frac{1}{2}-\frac{3}{4}(z-1)+\frac{7}{8}(z-1)^{2}-\frac{15}{16}(z-1)^{3}+\cdots=\sum_{n=0}^{\infty} \frac{z^{n+1}-1}{2^{n+1}}(-1)^{n} \cdot(z-1)^{n}
\end{aligned}
$$

3. $1<|z-1|<2$

$$
\begin{aligned}
f(z) & =\frac{1}{z}-\frac{1}{1+z}=\frac{1}{1-(-(z-1))}-\frac{1}{2-(-(z-1))} \\
& =-\frac{1}{z-1}\left(\frac{1}{-1+\frac{-1}{z-1}}\right)-\frac{\frac{1}{2}}{1-\frac{[-(z-1)]}{2}} \\
& =\frac{1}{z-1}\left[\frac{1}{1-\frac{-1}{z-1}}\right]-\frac{1}{2}\left[\frac{1}{1-\frac{[-(z-1)]}{2}}\right] \\
& =\frac{1}{z-1}\left[1+\left(\frac{-1}{z-1}\right)+\left(\frac{-1}{z-1}\right)^{2}+\left(\frac{-1}{z-1}\right)^{3}+\cdots\right]-\frac{1}{2}\left[1-\frac{(z-1)}{2}+\frac{(z-1)^{2}}{4}+\cdots\right] \\
& =\frac{1}{z-1}-\frac{1}{(z-1)^{2}}+\frac{1}{(z-1)^{3}}+\cdots \cdots-\frac{1}{2}+\frac{1}{4}(z-1)-\frac{1}{8}(z-1)^{2}+\frac{1}{16}(z-1)^{3}+\cdots
\end{aligned}
$$

Represent the function $\left(z^{3}-z\right)^{-1}$ as a Laurent series in the regions given in Exereises $4-7$
4. $0<|z|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z^{3}-z}=\frac{1}{z(z+1)(z-1)}=-\frac{1}{z}+\frac{1 / 2}{z+1}+\frac{1 / 2}{z-1} \\
& =-\frac{1}{z}+\frac{1}{2} \frac{1}{1-(-z)}-\frac{1}{2} \frac{1}{1-z} \\
& =-\frac{1}{z}+\frac{1}{2}\left[1-z+z^{2}-z^{3}+\cdots\right]-\frac{1}{2}\left[1+z+z^{2}+z^{3}+\cdots\right] \\
& =-\frac{1}{z}-z-z^{3}-z^{3}-\cdots=\sum_{n=1}^{\infty}-z^{2 n-1}
\end{aligned}
$$

5. $\quad 1<|z|$

$$
\begin{aligned}
f(z) & =-\frac{1}{z}+\frac{1}{2} \cdot \frac{1}{z} \cdot \frac{1}{1+\frac{1}{z}}+\frac{1}{2} \cdot \frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} \\
& =-\frac{1}{z}+\frac{1}{2 z}\left[1-\frac{1}{z}+\frac{1}{z^{2}}-\frac{1}{z^{3}}+\cdots\right]+\frac{1}{2 z}\left[1+\frac{1}{z}+\frac{1}{z^{2}}+\cdots\right] \\
& =-\frac{1}{z}+\frac{1}{z}+\frac{1}{z^{3}}+\frac{1}{z^{5}}+\cdots \\
& =\frac{1}{z^{3}}+\frac{1}{z^{5}}+\frac{1}{z^{7}}+\cdots=\sum_{n=1}^{\infty} z^{-2 n-1}
\end{aligned}
$$

6. $0<|z-1|<1$

$$
\begin{aligned}
f(z) & =-\frac{1}{z-1+1}+\frac{1}{2} \cdot \frac{1}{z-1+2}+\frac{1}{2} \frac{1}{z-1} \\
& =-\left[1-(z-1)+(z-1)^{2}-(z-1)^{3}+\cdots\right]+\frac{1}{4}\left[1-\frac{z-1}{2}+\left(\frac{z-1}{2}\right)^{2}-\left(\frac{z-1}{2}\right)^{2}+\cdots\right]+\frac{1}{2} \frac{1}{z-1} \\
& =\frac{1}{2} \cdot \frac{1}{z-1}-\frac{3}{4}+\frac{7}{8}(z-1)-\frac{15}{16}(z-1)^{2}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{2^{n+1}-1}{2^{n+1}} \cdot(z-1)^{n-1}
\end{aligned}
$$

$$
\text { 7: } \quad \begin{aligned}
& 1<|z-1|<2 \\
& f(z)=\frac{1}{2} \cdot \frac{1}{z-1}+\frac{1}{4} \cdot \frac{1}{1-\frac{-(z-1)}{2}}-\frac{1}{z-1} \cdot \frac{1}{1-\frac{-1}{z-1}} \\
&=\frac{1}{2} \cdot \frac{1}{z-1}+\frac{1}{4}\left[1-\frac{z-1}{2}+\left(\frac{z-1}{2}\right)^{2}-\left(\frac{z-1}{2}\right)^{5}+\cdots\right]-\frac{1}{z-1}\left[1-\frac{1}{z-1}+\frac{1}{(z-1)^{2}}-\cdots\right. \\
&=\frac{1}{4}-\frac{1}{8}(z-1)+\frac{1}{16}(z-1)^{2}+\cdots-\frac{1}{2} \cdot \frac{1}{z-1}+\frac{1}{(z-1)^{2}}-\frac{1}{(z-1)^{3}}+\frac{1}{(z-1)^{5}} \cdots \cdots
\end{aligned}
$$

