EE2010E Systems and Control Part 1 — Solutions to Tutorial Set 1

Q.1. Inthe following circuit (or electrical system), v(¢) is the system input and i(¢) is the system

output.

i(?) 20

v(?) T QD 20 % 2H é

(a) Derive a time-domain model for the circuit.
(b) Is the system is linear?

(c) Isthe system is time invariant?

(d) Is that the system is causal?

(e) Is that the system is BIBO stable?

Solutions: (a) Refer to the voltages and currents marked in the figure below.

foo-9)

4—
2 "
. () o V(D)
2 0

v(t) dl(t) dv(t)
o1l E Tasfio-0)- o

Applying KVL to the outer loop, we obtain the following equation:

5 dit) di(t) dv(t)

o T 20(0) (D) = v(0)

which gives a time-domain model of the circuit:

dv (t)

+i(t)=05—=

d;ft) (1)

dav(t)
» +2i(t) =——= 7

dl(t)
’ +2v(t) < g7
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(b) Let #,(¢) be the output produced by v,(¢) and i,(¢) be the output produced by v,(¢) , i.e.

+i,(t)=0.5

diy () dv,(t)
“ar “a ()

o & —diczlf’) +i2(t)=0.5—dvét(t)

We check if i(#) = iy (¢) + a,i, (¢) is an output produced by v(f) = v, (¢) + a,v,(¢) . Observing that

D)4 i6) = i 1)+ o 0) + 1)+ i ()

dljlgt)"'ll(f)]"azl: lé(t) Z(Z)i|

{ dvl(’) (t)}az[osdvé(‘) vz(t)}
5

=0. j (v (6) + vy () + (g (1) + v, (1))
_05 d:’(t) ()

i(t) = iy (t) + a0, (¢) is indeed an output produced by v(z) = ;v (¢) + a,v,(¢) . By definition, the

circuit (or the system) is linear.

(c) To see if the system is time invariant, let us do it by following the procedure given in the notes.
Step One: Suppose i1(7) is a solution corresponding to a voltage input vy(7).

dil_(z) () = dvl(t) diy (t —t,) ) = dv,(t—t,) o (f—
+i(t)=05——= —d(z—to) +i(t—1,) O'S—d(z—to) +w(t—1,)

+v(7)

Step Two: Let v, (¢) =v (¢ —1,) . Verify if i,(¢) =i, (t —t,) is a solution to the circuit (system):

dip(t) . _dif(t=t,) .. . \_dit—1t) Sl
#‘Hz(t) —1Tt()+l1(t to) _—dl(t—too) +i(—1,)
e dv(t—ty) B
_O'S—d(t—to(; +v(t—1y)
dv, (1)

05 dv,(t—1t,)
dt

+w(t—-1)=05 +v,(t)

which shows that i, (¢) is indeed a solution corresponding to v, () . By definition, the system is time-

invariant.

Exercise: Show that in general, the following system is linear and time-invariant:

d"y(t) d "_1y(t) dy(t) d"u(t) dm (t) du(t)
a +a +a,—>+y(t)=b +b -+b t
"odr" gt a7 (1)=b, dr" gt +ul®)
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(d) Yes. The system is causal as the output at time ¢, is depended only on the input for ¢ < #,.

(e) Yes. The circuit is BIBO stable, which can be judged either from the physical properties of the

circuit or from mathematical derivations.

Physically, for any bounded voltage source, v(¢), the resulting current, i(z), is always bounded. Why?

Exercise: Let v(7) be a bounded DC source, prove mathematically that i(¢) is bounded.
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Q.2.  Consider a ball and beam balancing mechanical system below. Let 8 be the system input and
let x, the displacement of the ball, be the system output. Assume that there is no friction on

the surfaces.

(@) Derive a time-domain model for the mechanical system.
(b) Is the system is linear?

(c) Isthe system is time invariant?

(d) Is that the system is causal?

(e) Is that the system is BIBO stable?

Solution: (a) Since there is no friction on the surfaces, the only force acts on the system is the weight
of the ball, i.e.

. X : e E;
mg sin 6 , = |
P — —— o o E— Em = E
e
—
Y‘%f 3 '

By Newton’s law of motion, we have
F=ma = mgsinf@=ma=mi¢ = X=gsind
where g is the gravity constant, i.e., g = 9.8. Thus, the time-domain model of the system is

2
$=98sin0 o ddx(’) —9.8sin0(1)

2
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(b) Assume that the ball is initially stationary, i.e. x(0) = 0 and x(0) =0. Let #,=10° and let x,(¢) be

the corresponding solution, i.e.,

2
‘ dle—z(t) ~9.85in10°=1.7018 = x,(f) = 0.85097’

Let 8= 6; =3 x 10° = 30°. However, it can be verified that the corresponding solution x(¢) # a x1(f),

i.e.,

2
ddxgt ) _9.8sin30°=49 = x(t) = 2.450% # 3x, (1) = 2.5527¢*
t

Thus, the system is nonlinear.

(c) The system is time-invariant. This can be verified by the following steps.

Step One: Suppose x;(7) is a solution corresponding to 6,(z).

2 2 _
50 ggsing ) = Ll —gssing-1)

[d(e~10)f
Step Two: Let 6,(t) =6,(t —1t,) . Verify if x,(¢t) = x,(¢ —t,) is a solution to the system:

d?x, (1) dPx(t—t,)  dPx(t—1,)
dt’® dt’® [d(t—1,)f

=9.8siné, (1 —¢,) =9.8sin ,(r)

which shows that x,(¢) is indeed a solution corresponding to 6,(¢) . By definition, the system is time-

invariant.

(d) It is obvious that the system is causal.

(e) The system is not BIBO stable. We show this by a specific example. Let the ball be initially
stationary, i.e. x(0) =0 and x(0) =0, and let 8 = 1°, which is bounded.

2
t

Clearly, x(z) is unbounded. Thus, the system is BIBO unstable.
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Q.3. Inthe electrical circuit given below, the switch has been in the position shown for a long time

and is thrown to the other position for time # > 0.

120
. S
6Q
— W
3Q 4Q io
6Q
10VTC> i 2H

1H

(a) Determine the currents for both inductors for ¢ < 0.

(b) Determine the currents and voltages for both inductors just right after the switch is closed.
(c) Derive the differential equation governing the circuit in terms of i;.

(d) Compute the roots of its characteristic polynomial.

(e) Is the circuit over damped, under damped or critically damped?

Solution: (a) for ¢ < 0, the inductors are of short-circuit. The total resistance connected to the voltage
source is 10 Q and thus the current drawn from the source is 1 A, which will be equally distributed to

the two parallel branches. Hence, iy =i, = 0.5 A.

6Q

W—aaw W

30 4Q

6Q

1O T

1H
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(b) Right after the switch is thrown to its final position, the inductor currents have to be continuous.

Thus, i1 =i, = 0.5 A, which implies the current passing the 3 Q resistor is 1 A.

3V 3V
1A D

4—
W
30 6Q =05
3VT 60

1OVT C) =05 2H Tvz
i T 1H

From the circuit above, it is clear that vy = v, =4 V.

(c) Refer to the figure below.

3(ir+ia) 61,
«— «—
30 . 60 i
61 T 6Q

- di
10 VT C> N 2H TZEZ
diy

Applying KVL to the left loop, we obtain

%+6i1+3(i1+i2)=10 = dl;—gl)+9i1(t)+3i2(z):10 = 6i2(t):20—2dll—(t)—18il(z)

dt
2. . . . 2. .
d llz(t) +9dll(l) +3d12(t) 0 = 2d12(t) :_gd llz(t) _6dll(t)
dt dt dt dt 3 dt dt

Applying KVL to the right loop, we obtain

. . 2. . .
—d’clzy) +6iy(t) = 2—d12§t) v6iy(1) = 2900 _gdh(0) | 5 2—d’;§t) ~18i,(1)

3 dr? dt

Thus, we have

Zdzil(t)
3 dr?

+9 dl;gt) 1 24i,(r) = 20
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(d) The characteristic polynomial is given by
%zz +92+24=0

and its roots are —9.8423, —3.6577.

(e) The circuit is over damped as its characteristic polynomial has two distinct real roots.
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Q.4.  Aninput-output relationship of a thermometer can be modeled by the following differential

equation:
de—(t)+ y(t) =0.99u(z)
dt
where u(¢) is the temperature of the environment in which the thermometer is placed, and y()

is the measured temperature.

The thermometer is inserted into a heat bath and the temperature reading is allowed to be
stabilized before the temperature of the water in the heat bath is increased at a steady rate of

1°C/second. Assume that ¢ = 0 at the instant when the hot bath temperature starts to increase.

(a) Suppose the measured temperature is 24.75°C when t = 0, i.e. y(0) = 24.75°C. What is the

temperature of the heat bath?

(b) Write a mathematical expression to represent the temperature in the heat bath, u(¢). Then
solve the differential equation to obtain the time-domain expression of the measured

temperature, y(¢).

Solution:

(a) The input-output relationship of the thermometer is

5<iy(tJ

= 0.99u
T +y(t) = 0.99u(t)

When the temperature reading stabilises, = 0 so the differential equation reduces
to

y(t) = 0.99u(t)
Given that y = 24.75, the temperature of the heat bath is

Yy
w=-2_ —o5°C,
“= 009
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(b) Imitial heat bath temperature is 25°C and it increases at a steady rate of 1°C/second.

u(t) = [25 +1]

Substituting u(t) into the differential equation, the time-domain expression for the mea-

sured temperature can be found by solving

5dy(fJ
dt

+ y(t) = 0.99u(t) where y(0) = 24.75

We are looking for both the steady-state solution and the transient response. For the steady-state, we

test a solution
Vi () =ky +kyt

Substituting it into the differential equation, we have
deZZ;t(t)'f‘ V() =5k, + ky + kyt =0.99u(r) = 0.99(25 +¢)

Thus, we have k; =19.8and k, =0.99. Hence, y (¢) =19.8+0.99¢.

The characteristic polynomial of the differential equation is given by

5z41=0 = z=-0.2

-0.2¢

Thus, the transient response is given by y, (¢) = ke and the complete response is

y(t) = v, (t) + y,.(£) =19.8 + 0.99¢ + ke %

The initial condition

y(0)=198+k=2475 = k=495
The final solution is then given by

y(f) =19.8 4+ 0.99¢ + 4.95¢ %%
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Q.5.  Consider a two-mass-spring flexible mechanical system given below.

r

k

k13
— Mass 1 W Mass 2

In the system, u(¢) is the input force, k£ = 1 is the spring constant, x; and x; are, respectively,
the displacements of Mass 1 and Mass 2, which have masses of m; = m, = 1. Assume that

there is no friction on the surfaces.

(@) Drive a differential equation of the mechanical system in terms of the displacement of

Mass 2, i.e. x,.

(b) Assuming that «(7) = 1 and the masses are initially stationary, show that x, (¢) = 0.25¢% is

solution to the differential equation obtained in (a).

(c) Isthe system BIBO stable?

Solution: (a) Applying Newton’s Law of motion to Mass 1 and Mass 2, we obtain

m¥, =k(x,—x))+u = mX +ky—kx,=u

my¥, = k(x, —x,)

The second equation implies

d*x mm, d”x
ke, =myX, +hkx, & kij=m 2 vk, = mi, =—1-2 2+ mx
1 2X2 2 1 2 e 2 141 kit 1X2
Substituting these into the first equation, we obtain
.. mym, d*x, .. ..
mx, +ky —kx, =u = 1T7+mlx2+m2x2+kx2—kxz=u
t
or
4 4 2
mym, d"x, .. d"x, d*x,
—S——=+mtmy)X, =u = —==u
PR et " dr?

d*(0.25t°) . d?(0.25¢%)
+2 =
- -

1 g
dt dt?

(b) It is simple to verify that

(c) Obviously, the system is not BIBO stable.
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EE2010E Systems and Control Part 1 — Solutions to Tutorial Set 2

Q.1.  Consider the square pulse f{¢) show in figure below. If we compress the pulse by a factor ¢ > 1
and at the same time amplify its amplitude by the same factor c, we get a new function g(¢) as

shown in the figure (¢ = 2 for the given figure).

&

g(f)fore=2

f @

(@) Find the Laplace transform of the function g(¢) from the transform of £z).

(b) Comment on what happens if ¢ gets very large.

Solution:

(a). SO =u())—u(t-1). g Laplace transform is

- —s
Fls)—+_¢
A) h)

g(t) =cf (ct). 1s Laplace transform (by time-frequency scaling) is

'd

R R ]
clsic sic s

Thus for a time-compression factor ¢ = 2,

G@):%ﬁeﬂ“)
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(b). As c gets larger and larger, () approaches the unit impulse function s(r)
[ Its area 1s always 1 for any ¢, and g(r) goes to zero for any non-zero 7 .

To evaluate the transform G(s) as ¢ gets very large. we may apply the
Well-known Taylor series expansion of the exponential function,

. x2 x3
e :l+x+—1+—+

3! ’

with x=—s/¢ . we get

,
5 s |

ol
§ 5
- Tt =l
¢ 2l e ) 2le 3le”

Gs)=S1-{1-2+
5 | .

As ¢ gets very large, G(s) —1.

This 1s consistent with the transform of the function that ¢(r) is approaching,
since we know that z[s5(n)]=1.

Prepared by Ben M. Chen @ National University of Singapore



Q.2.  Consider the ball and beam balancing mechanical system again as in Tutorial Set 1. Let 8 be
the system input and let x, the displacement of the ball, be the system output. Assume that 9 is

changing in a very small range, i.e. sin 6 ~ 6.

(a) Find the transfer function of the system from the input 6 to the output x.

(b) Find the unit impulse response of the system.

(c) Find the unit step response of the system.

Solution: (a) It was derived in Tutorial Set 1 that

d x(t)

=9.8sind(r) = 9.80

Thus, we have

s°X(s)=9.80(s) = H(s)= ;f((;)) _ %

(b) For the unit impulse input, we have
X(s) ——6’(s) =% = x(t)= L_l{g 8} 9.8¢
S N
(c) For the unit step input, we have

3
N

X(s )——9(s) S—8 N x(t)=L_1{9—'§}:4.9t2
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Q.3.  Use Laplace transform to solve the response y(¢) in the following integrodifferential equation:

DU 4550 +6f y(e)dr =u(), ¥(0)=2
0

Solution:

Taking the Laplace transform of each term, we get

[sY(s)—y(0 )]+5Y(s) -o-E Y(s) = l
s Ky

Substituting y(0)=2 and multiplying throughout by s, we get

Y(s)(s* +55+6) =1+2s

Or
Y(s) = 25 +1 _ A N B
(s+2)(s+3) s+2 s+3
where
2s+1
A= (s+2)¥(s)| _ == S
§=—2 + 3 2
25 +1
B=(s+3)Y(s)| =22 =5
T s+ 2|
Thus,
-3 5
Y(s)= +
(s) s+2 s+3

Its inverse transform is

y(f) = (=3¢ +5¢7")
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Q.4.  Figure below shows a heat exchanger (a device for transferring heat from one fluid to another,
where the fluids are separated by a solid wall so that they never mix). The temperature of the
outgoing fluid, 8,(¢), needs to be maintained at a desired value, 6,(f). Factors which influence

the exit temperature are:
e The valve position, u(#), which adjusts the flow of steam into the system.

e unmeasurable disturbances in the temperature of the incoming fluid stream, 6,(¢).

Temperature Sensor

Valve position, u(t)

Steam inlet

- Heat
Sz(t)=Tempe1l'atm'e gi Exclfz:uger - Bl(r)=lTempe.1'arure _of
outcoming fluid = incoming fluid
Steam |
frap Condensate
The dynamic behavior of the heat exchanger may be modeled by the following equation:
0,(s) = GaD? ) U(s)+ —9 1 (5)

Let the valve position u(f) = 2 [6:(£) — 62(£)], i.e. it is proportional to the error of the desired

value and the actual outgoing temperature.

(@) If 6(z) is a unit step function and 6,(f) = 0, determine the transfer function ,(s)/ ,(s) and
then use it to calculate 6,(¢). Identify the transient and steady-state components in the step

response.

(b) Given that 6,(¢) is a unit step function and 6,(¢) = 0, find the transfer function 8,(s)/ 61(s)
and 6,().

(c) Use superposition to obtain ,(¢) given that both 6,(¢) and 6.(¢) are unit step functions.
Find ().

(d) Use the final value theorem instead to find 8,(cc) and compare it with the answer obtained
in Part (c).

Solution:
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(a) Assume that 8, = 0. Hence, the temperature of the outgoing liquid is governed by

o 2x%x2 oo
2(8) - (S‘f’l)zki_ 2)
1 : f 4 f
{ + (s + 1)2} 2(s) = m ()
O 4
Transfer function, 2(5) = — .
0,.(s) (s+1)2+ 4
B 4
2425+ 1+ 4
B 4
. §2425+5
When 6,.(t) is a unit step function,
_ Ba(s)
fa(s) = 5.(5) x 6,.(s)
B 4
~ s(s2+2s+5)
08 —08s—1.6
= —+t—F-
s s242s5+5
0.8 —08(s+1)—0.8
= 4 —
s (s+1)"+4
0. 5+ ] 2
_ 08 g sl gy 2
s (s+1)"+4 (s+1)"+4
By(t) = 0.8—0.8¢""cos2t —0.4e " sin 2t
Transient component of solution is 8, ,, = —0.8¢ " cos 2t — 0.4e ™" sin 2t

Steady-state component is #; s = 0.8
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(b) For 6, = 0, The s-domain expression of the temperature of the fluid leaving the heat exchanger is

Ba(s)

ba2(s)
91(3)

Transfer function,

When #,(t) is a unit step function,

92(8)
91 (8)

9—2(8)

1
E
s+1 () +

1
6, (s
s+1 1()
1 1
s 1 1+4/(s+1)

m({] —6h)

s+ 1
s2+4+2s+5

X 91(8)

s+ 1

s(s2+2s+5)

0.2
5
0.2
S

o (t)

(¢) Using the principle of superposition,

—0.25 4+ 0.6

s2+2s5s+5

—0.2(s+ 1)+ 0.8
(s+1)2+4

0.2 —0.2¢ " cos2t + 0.4¢ " sin 2t

the temperature of the outgoing fluid when 0, (t)

and 6, (f) are both unit step functions,

92 (t) '9'2 (t) |I9r~(f.)=unit. step,f1 (£)=0 + 92 (t) |I9r~(f.)=|).191 (t)=unit step
0.8 — 0.8¢7 cos 2t — 0.4e F sin 2t
+0.2 —0.2¢ tcos2t 4+ 0.4e tsin 2t

1 — e teos2t

Steady-state value of the temperature of the outgoing fluid is f]im B2(t) =1

(d) The final theorem states that t]im_ y(t) = 1111% sY (s). Hence, the steady-state temperature

of the fluid exiting the heat exchanger is

f]i_}nﬂ_ Ba(t) = llil% 565(5)
L T6as) 6 (s)
= [9.,.(3)9“'(3) oo
. 4 1 s+1 1
= lims - -
i [32—1—23—1—5 s T s2+2s+5 S:|

08+02=1
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Q.5.  Consider the first order system

Gs)=T8) .1
U(s) 7s+1

(a) Find the step response, ysep(?).
(b) Find the impulse response, yimpuise(?)-

(c) Verify that

t
.)"'step (Z) = yimpulse (t) and gyimpulse (T)dT :ystep (t)

Solution:

(a) Step response is the output of the system, G(s) = :T when the input is a step function
e, U(s)=1.

}fstep[sj = G(Q){Y(g)

_ 1
~ s(rs+1)
1 T
s Ts4+1
1 1
s s + %
ystep(m = K’_l{}’step(s)}
I3
= J_ _— e_.:
(b) Impulse response is the output of the system when the input is an impulse function i.e.
Us) =1
};mpuiss(s) = G[SJ ET(SJ
1
— Uls) =1
Ts+1 (5)
1

y(t) = [-“71 {}/—a‘mpu!se (S)JL
1

(c) Differentiating the step response gives

dyste‘.p(ﬂ — it’_':
dt T
= Yimpulse (t)

Integrating the impulse response gives

t
—=
/ytmpufse(i:)d:r = —€e T
0
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1+ jw/10
jo(l+ jw/100)

10(jw +10)
jo (jw+100)

10x10(1+ jw/10)

j@100(1+ jw/100)

Y(jo)
U(jw)

G(jo)
10(jw +10)
jo(jo+100)

U(jw)

5 cos(307 +30°), find the corresponding output y(¢) using the Bode plots obtained
Y(jo)

20

10*

Frequency (rad/sec)

EE2010E Systems and Control Part 1 — Solutions to Tutorial Set 3

Obtain the Bode plots for the following transfer function:

Q.1

Given u(f)

above.

Solution:

G(jo)
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The magnitude response at @ =30 rad/sec is about — 20 dB = 0.1.
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Frequency (rad/sec)

=30 rad/sec is about — 45°.

The phase response at @

=5 cos(30z +30°) is roughly given by

Thus, the output y(#) produced by u(z)

0.5 cos(30¢ — 15°)

0.1 x 5 cos(30¢ +30° — 45°) =

»(?)

21
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The actual Bode plots of the system generated by MATLAB is given by

Bode Diagram

1

10

Frequency (radisec)

5 cos(30r +30°) is given by

Thus, the actual output y(¢) produced by u(f)

0.5 cos(30¢ — 5°)

0.1 x 5 cos(30¢ +30° — 35°) =

(0

22

Prepared by Ben M. Chen @ National University of Singapore



Q.2. A Bode plot of H(jw) is given in the figure below. Obtain the transfer function H(s).

H A
40dB [-------— : ~20 dB/decade
X ! f
+20 dB/decade :
—;lI()dB/dcca
0 “ - >
0.1 ] 5 10 20 100'w

Solution:

To obtain H(») from the Bode plot, we keep in mind that a zero always cause an

upward turn at a corner frequency, while a pole causes a downward turn. We notice
from Fig.4 that there 1s a zero je at the origin which should have intersected the
frequency axis at @ =1. This 1s indicated by the straight line with slope
+20dB/decade. The fact that this straight line is shifted by 40dB indicates that there
is a 40-dB gain; that is

40 =20log,, K = log,, K =2

K=10"=100.

In addition to the zero j@ at the origin, we notice that there are three factors with
corner frequencies at @ =1,5, and 20 rad/s. Thus, we have:

1. A pole at p = 1 with slope —20dB/decade to cause a downward turn and counteract

the pole at the origin. The pole at p = 1 is determined as 1/(1+ j@/1) .

Another pole at p = 5 with slope —20dB/decade causing a downward turn. The

po]_e 18 1(1 + j(!)/ﬁ) .

3. A third pole at p =20 with a slope of —20dB/decade causing a further downturn.
The pole is 1/(1+ j/20) .

2

Putting all these together gives the corresponding transfer function as

100 — H(s) = 10%s
A+ jol/)A+ jo!5)(1+ jol20) - (s +D(s+5)(s+20)

H(jw)=
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Q.3.  For the circuit below, obtain the transfer function I,(s)/fi(s) and its poles and zeros.

1,(1)
sa b

i (1) D L 05F

2H
Solution: By current division,
I(@) = ——* 2{” I(@)
4+*’72a)+/j’0.5(0
or
Iy(@)  jOSw(4+ j2m) s(s+2) ]
= = S =]wo

1. (w) l+j20)+(j0))2 242541

The system zeros are at
s(s+2)=0=2z,=0,z, =-2

The system poles

sT42s5+1=(s+1)* =0=p,.p, =-1
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Q.4.

A car suspension system and a very simplified version of the system are shown in Figures (a)
and (b), respectively.

\‘-/ - b r

m
|

ih ¢
k b
Center of mass

N

L

Auto body

ik L

(b)
The transfer function of the simplified car suspension system is

bs+k
G(s)=
(5) ms? +bs +k

Suppose atoy car (m =1kg, k=1 N/mand b =1.414 N s/ m) is traveling on a road that has
speed reducing stripes and the input to the simplified car suspension system, x;, may be

modeled by the periodic square wave, of frequency @ = 1 rad/s, shown in Figure below.

x,(1)

Determine the steady-state displacement of the car body, x, (7).

Hint : The Fourier Series representation of the periodic square wave shown in Figure above is

x, (1) =i{sint+lsin 3t+lsin 5t+-~1
V4 3 5

Prepared by Ben M. Chen @ National University of Singapore

25



Solution:

Question states that the input signal due to the speed reducing strips on the road, z;(t),
may be approximated by the following Fourier Series representation

4. 1. 1.
z(t) = — [sinwt + — sin 3wt + —sindHwt + ...
T 3 5
where w = 1 rad/s.

Since the input consists of 3 sinuosoidal waveforms (sint, sin 3¢ and sin 5?) and system is
linear, principle of superposition may be used to determine the solution i.e.

e Find the outputs when the inputs are the sinusoidal waveforms sin(w;t) when w, = 1,3,5
rad/s

e The output when the input is the periodic square wave is the sum of the output due to
the 3 sinusoidal waveforms

Given that m =1 kg, k =13 and b = V22X the magnitude and phase of

m/s’

JV2w; + 1
(jwn)? + 7V 2w + 1

G(jw) =

when wy =1 rad/s, 3 rad/s and 5 rad/s are tabulated in the following table

w1 (rad/s) | |GGwn)] | ZG(jwr) (rad)
1 1.2247 -0.6155
3 0.4814 “1.3147
5 0.2854 -1.42483

Hence, the steady-state output is

Toss(t) = % 1.2247 sin(t — 0.6155) + 0‘43814 sin(3t — 1.3147) +
285-
02558 (5t — 1.4248) + ...
8]

4 , ,
= Z[1.2247sin(t — 0.6155) 4 0.1605 sin(3t — 1.3147) +
}

0.005708 sin(5t — 1.4248) + .. ]
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Q.5.  Consider the second order system

2
a

G(s) = s
(%) s*+ 20w, + o

whose unit step response has a transient behavior described by the following parameters:
e Risetime, ¢, =1.8/w,
o 2% settling time, ¢, = 4/(¢w,)

» Overshoot peak, M, = e‘”¢/ g2

Sketch and shade the allowable region in the s-plane for the system poles if the step response

requirements are

t. <0.9seconds, ¢, <3seconds, M, <10%

Solution:
Desired step response specification are

e t. < 0.9 seconds
e t, < 3 seconds

o M, < 10%

[a]

i—ﬂ Hence,

Rise time, ¢, is given by

1.8

‘o
iy

[}

< 0.9 — w,, >

Line of constant w,, is a semi-circle of radius w,, centred at the origin with the two end-
points on the imaginary axis. For w, > 2, the poles must lie in the LHP and outside a
semi-circle of radius 2.
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Since 2% settling time ¢, = Li the constrain
v W

i<3 = (o, >i
Cw 3

n

As the poles of a prototype 2nd order system are s = —Cw,, £ w,+/1 — (?, the constraint
Cwp > % 1s satisfied only if the real part of the poles is less than —3,

Finally, the maximum overshoot should be less than 10% i.e.

eV Z < 01
™ - 1n01

n0.1+1-¢
¢ (In0.1)*(1 — ¢%)
[7*+ (In0.1)*] ¢ > (In0.1)?

[ (In0.1)2
\/?‘TQ + (In0.1)?

¢ > 059

|
o~ 3
[T
M

\\/"

L
\

Poles with the same damping ratio lie on a ray that is rotated cos™' ¢ from the negative
real axis.

Combining the three constraints, the region in the s-plane where the poles may lie in order
to satisfy the design specification is found and shown in Figure below.

| O S 0 S NG e S 1

Imaginary
=]
H \
i

— to =413
- n
05 _—~ _________ N . SR - S RO I TR 1
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