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Topics to be covered in Part 1…Topics to be covered in Part 1…

1 Introduction to systems1. Introduction to systems

Properties of dynamic systems – causality, stability, time invariance, linearity.

2. Time domain models of linear time invariant systems

Differential equation models of linear systems, Dynamic responses (natural, 

force and complete responses), First order transients – RC and RL circuits, 

Second order RLC circuits, State representation.

3. Frequency domain description of systems

Review of Laplace transforms, transfer functions – poles and zeros, Response 

to sinusoidal inputs, Frequency response, Bode and polar plots.

4. Properties of linear time invariant systems

Steady state versus transient response, impulse response, step response, 

convolution, Relationship between poles and natural response, Input-output 

3
stability, Stability analysis via poles. 
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T tb kT tb kTextbookTextbook
A. B. Carlson, Circuits, PWS Publishing Company, New York, 1999.

ReferencesReferences
T. S. ElAli and M. A. Karim, Continuous Signals and Systems with MATLAB, CRC 

Press, New York, 2001.

C. W. de Silva, Modeling and Control of Engineering Systems, CRC Press, 2009

L. Qiu and K. Zhou, Introduction to Feedback Control, Pearson, 2010

Online MaterialsOnline Materials
• Control Tutorials at http://www.ece.ualberta.ca/~tchen/ctm/index.html

• Lecture Notes of 2nd Reference: http://www.mech.ubc.ca/~ial/ialweb/courses.htm
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LecturesLectures

Attendance is essential.

Ask any question at any time during the lecture.Ask any question at any time during the lecture.

5
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TutorialsTutorials
There will be a total of 6 tutorial hours for this part. Another 6 more for the second 

partpart.

You should make an effort to attempt each question before the tutorial.

Some of the questions are straightforward, but quite a few are difficult and meant 

to serve as a platform for the introduction of new concepts.

Ask your tutor any question related to the tutorials and the course.Ask your tutor any question related to the tutorials and the course.
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Labs and Final ExaminationLabs and Final Examination

There will be two lab experiments for this module. Your two lab report 

marks will be counted as 30%. Hence, your final grade for this module y g

will be computed as follows:

Your Final Grade     =       15% of Lab Experiment 1Your Final Grade     =       15% of Lab Experiment 1

++ 15% of Lab Experiment 2% of Lab Experiment 2++ 15% of Lab Experiment 2% of Lab Experiment 2

+ 70% of Final Examination 70% of Final Examination 

7
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Introduction to SystemsIntroduction to SystemsIntroduction to SystemsIntroduction to Systems
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What is a system?What is a system?

Definition 1 (from a dictionary): 

A system is a functionally related group of elementsA system is a functionally related group of elements.

Definition 2 (from a dictionary):

A system is a group of things working together as a whole.

Definition 3 (from the reference by EiAli and Karim): 

A system is an assemblage of things that are combined to form a complex 

h lwhole.

Examples include educational systems such as NUS, financial systems such as 

stock market, social systems such as government, weather, the human body, 

electrical systems such as electric circuits, mechanical systems, etc…

9
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Examples on some systems of interest…Examples on some systems of interest…
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What is a control system?What is a control system?

Desired Desired 
IINPUTNPUT

to the to the 

Information 

about the 

DiffDiff

aircraft, missiles, aircraft, missiles, 
economic economic 

PerformancePerformance

RREFERENCEEFERENCE

to the to the 

systemsystem
system:

OUTPUT

DifferenceDifference

EERRORRROR
systems, cars, etcsystems, cars, etc

ControllerController System to be controlledSystem to be controlled
+

–

Objective:Objective: To make the system OUTPUT and the desired REFERENCE as close 

as possible, i.e., to make the ERROR as small as possible.

Key Issues:Key Issues: 1) How to describe the system to be controlled? (Modeling)

2) How to design the controller? (Control)

11

2) How to design the controller? (Control)
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Some Control Systems Examples:Some Control Systems Examples:

S t t b t ll dC t ll
OUTPUT

INPUTREFERENCE

System to be controlledController
+

–

Economic System
Desired 

Performance 
Government 

Policies

12

Copyrighted by Ben M. Chen



An actual control system demoAn actual control system demo

An NUS Made UAV Helicopter, HeLion

13
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Illustration for the video demo of a flight control system…Illustration for the video demo of a flight control system…

3. hovering 5. head turning4. slithering 6. pirouetting

7. wheeling 8. backward down spiraling

1. standby 2. takeoff

9. hovering 10. landing 11. standby

15 m

20 m

12 15 m

60 m20 m

BA 15 m

15 m

30 m

12 m
12 m

15 m
15 m

yh y

A

O
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Video demo of a fully automatic UAV flight control systemVideo demo of a fully automatic UAV flight control systemVideo demo of a fully automatic UAV flight control system  Video demo of a fully automatic UAV flight control system  

15
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Back to systems Back to systems –– block diagram representation of a systemblock diagram representation of a system

SystemSystem
u(t) y(t)

u(t) is a signal or certain information injected into the system, which is called the 

system input, whereas y(t) is a signal or certain information produced by the 

system with respect to the input signal u(t).  y(t) is called the system output. For 

example,

R1

+u(t) R
+
y(t)

input: voltage source

output: voltage across R2

u(t) R2 y(t)
─ )()(

21

2 tu
RR

Rty 




16
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Linear systemsLinear systems

SystemSystem
u(t) y(t)

Let y1(t) be the output produced by an input signal u1(t) and y2(t) be the output 

produced by another input signal u (t) Then the system is said to be linear ifproduced by another input signal u2(t). Then, the system is said to be linear if 

a) the input is  u1(t), the output is  y1(t), where  is a scalar; and

b) the input is u1(t) + u2(t), the output is y1(t) + y2(t).

Or equivalently the input is  u1(t) +  u2(t) the output is  y1(t) +  y2(t) Such aOr equivalently, the input is  u1(t) +  u2(t), the output is  y1(t) +  y2(t). Such a 

property is called superposition. For the circuit example on the previous page,

  )()()()()()()( 212
21

2
1

21

2
21

21

2 tytytu
RR

Rtu
RR

Rtutu
RR

Rty  










17
It is a linear system! We will mainly focus on linear systems in this course.
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Example for nonlinear systemsExample for nonlinear systems

E l C id t h t i d bExample: Consider a system characterized by

)(100)( 2 tuty 

Step One:
)(100)(&)(100)( 2

22
2
11 tutytuty 

Step Two: Let                           , we have

)]()(2)()([100)]()([100)(100)( 2222 tutututututututy 

)()()( 21 tututu 

The system is nonlinear.
)()()()(200)()(

)]()(2)()([100)]()([100)(100)(

212121

212121

tytytututyty

tutututututututy





y

Exercise: Verify that the following system

))(cos()( tuty 

18
is a nonlinear system. Give some examples in our daily life, which are nonlinear.
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Time invariant systemsTime invariant systems

SystemSystem
u(t) y(t)

A system is said to be time-invariant if for a shift input signal u( t t0), the output of 

the system is y( t t ) To see if a system is time invariant or not we testthe system is y( t t0). To see if a system is time-invariant or not, we test

a) Find the output y1(t) that corresponds to the input u1(t).

b) Let u2(t) = u1(tt0) and then find the corresponding output y2(t).

c) If y2(t) = y1(tt0) then the system is time-invariant Otherwise it is not!c) If y2(t)  y1(t t0), then the system is time invariant. Otherwise, it is not!

In common words, if a system is time-invariant, then for the same input signal, the 

output produced by the system today will be exactly the same as that produced 

by the system tomorrow or any other time.

19
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Example for time invariant systemsExample for time invariant systems

Consider the same circuit, i.e.,

)()( 2 tuRty 

Obviously, whenever you apply a same voltage to the circuit, its output will always 

)()(
21

tu
RR

ty 




y, y pp y g , p y

be the same. Let us verify this mathematically.

Step One:Step One:

)()()()( 01
21

2
011

21

2
1 ttu

RR
Rttytu

RR
Rty 







Step Two: Let                         , we have

RR

)()( 012 ttutu 

By definition it is time invariant!

)()()()( 0101
21

2
2

21

2
2 ttyttu

RR
Rtu

RR
Rty 






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By definition, it is time-invariant!
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Example for time variant systemsExample for time variant systems

E l 1 C id t h t i d bExample 1: Consider a system characterized by

)()cos()( tutty 

Step One:

)()cos()()()cos()( ttuttttytutty 

Step Two: Let                         , we have

)()cos()()()cos()( 0100111 ttuttttytutty 

)()( 012 ttutu 

The system is not time-invariant. It is time-variant!

)()()cos()()cos()( 010122 ttyttuttutty 

y

Example 2: Consider a financial system such as a stock market. Assume that you 

invest $10,000 today in the market and make $2000. Is it guaranteed that you will 

make exactly another $2000 tomorrow if you invest the same amount of money? Is 

21
such a system time-invariant? You know the answer, don’t you?
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Systems with memory and without memorySystems with memory and without memory

SystemSystem
u(t) y(t)

A system is said to have memory if the value of y(t) at any particular time t1 depends 

on the time from   to t1. For example, 

~u(t) C
+
y(t) 

t

dttu
C

ty
dt

tdyCtu )(1)()()(
─




Cdt

On the other hand, a system is said to have no memory if the value of y(t) at any y y y( ) y

particular time t1 depends only on the time t1. For example, 

+
u(t)

R1

R2

+
y(t) )()(

21

2 tu
RR

Rty 




22

─
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Causal systemsCausal systems

SystemSystem
u(t) y(t)

A causal system is a system where the output y(t) at a particular time t1 depends on 

the input for t  t1. For example, 

~u(t) C
+
y(t) 

t

du
C

ty
dt

tdyCtu  )(1)()()(
─




Cdt

On the other hand, a system is said to be non-causal if the value of y(t) at a particular y y( ) p

time t1 depends on the input u(t) for some t > t1. For example,

in which the value of y(t) at t = 0 depends on the input at t = 1. 

)1()(  tuty

23

y( ) p p
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System stabilitySystem stability

SystemSystem
u(t) y(t)

The signal u(t) is said to be bounded if |u(t)| <  <  for all t, where  is real scalar. A 

system is said to be BIBO (bounded-input bounded-output) stable if its output y(t)

produced by any bounded input is bounded.

A BIBO stable system: y

  eeetyety tutu )()( |)(|)(

A BIBO unstable system:





t

duty  )()( 



tt

ddutytu  )()( Then, bounded. iswhich ,1)(Let

24
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Some Preliminary MaterialsSome Preliminary MaterialsSome Preliminary MaterialsSome Preliminary Materials
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Operations of complex numbersOperations of complex numbers

Coordinates:  Cartesian Coordinate and Polar Coordinate









 12
5tan

2239.0
1

51213512
j

j eejj
real part       imaginary part          magnitude       argument

Euler’s Formula: )sin()cos(  je j 

Additi It i t d dditi ( bt ti ) i C t i di tAdditions: It is easy to do additions (subtractions) in Cartesian coordinate.

)()()()( wbjvajwvjba  )()()()( jjj

Multiplication's: It is easy to do multiplication's (divisions) in Polar coordinate.

)()(  
jjj eruuere )( 




 j

j

j

e
u
r

ue
re

26
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Symbols of voltage and current sourcesSymbols of voltage and current sources

The circuit symbols of voltage and current sources (either DC or AC) used in this part 

of the course are:

v i

Basically the arrow and the value in the voltage source signifies that the top terminalBasically, the arrow and the value in the voltage source signifies that the top terminal 

has a potential of v (could be either positive or negative) with respect to the bottom 

terminal regardless of what has been connected to it. Similarly, the arrow and theterminal regardless of what has been connected to it. Similarly, the arrow and the 

value of the current source signifies that there is a current i (could be either positive 

or negative) flowing upwards. 

27

g ) g p
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Remark: The following symbols for the voltage source are identical:

1 5 V 1 5 V

+

1 5 V
+

1.5 V 1.5 V 1.5 V


1.5 V


Note that on its own the arrow does not correspond to the positive terminalNote that on its own, the arrow does not correspond to the positive terminal. 

Instead, the positive terminal depends on both the arrow and the sign of the 

voltage which may be negative.voltage which may be negative.

28
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A capacitor consists of parallel metal For dc circuits:

CapacitorCapacitor

A capacitor consists of parallel metal 

plates for storing electric charges. The 

circuit symbol for an ideal capacitor is:

For dc circuits:

      00  ti
dt

tdvtv constantcircuit symbol for an ideal capacitor is:

i (t)

dt

and the capacitor is equivalent to an 

Cv (t)
open circuit:

Cv (t) = constant

i (t) = 0 i (t) = 0

Provided that the voltage and current 

arrows are in opposite directions, the 

voltage-current relationship is:

   tdvCi

This is why we don’t consider the 

capacitor in DC circuits.

29

   
dt

tdvCti 
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InductorInductor

An inductor consists of a coil of wires for
For dc circuits:

An inductor consists of a coil of wires for 

establishing a magnetic field. The circuit 

symbol for an ideal inductor is:
      00  tv

dt
tditi constant

symbol for an ideal inductor is:

i (t)
and the inductor is equivalent to a short 

circuit:

Lv (t)
i = constant(t)

Provided that the voltage and current
L= 0v (t)

constant( )

= 0v (t)

Provided that the voltage and current 

arrows are in opposite directions, the 

voltage-current relationship is: That is why there is nothingg p

   tdiLtv 

That is why there is nothing 

interesting about the inductor in DC 

circuits

30

 
dt

Ltv  circuits.
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Basic laws for electrical systemsBasic laws for electrical systems

i

resistor capacitor

i (t)

inductor

i (t)

v R Riv  Cv (t)

( )

dt
dvCi  Lv (t)

dt
diLv 

Kirchhoff’s Voltage Law (KVL):

The sum of voltage drops around any 

Kirchhoff’s Current Law (KCL):

The sum of currents entering/leaving a 
close loop in a circuit is 0.

v2

node/closed surface is 0.
i i1 5

i i1 5

v1 v3

054321  vvvvv
i

ii2
3

4 i
ii2

3

4

31
v5 v4 054321  iiiii
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Basic mechanical systemsBasic mechanical systems

Spring mass system

Animation courtesy of Dr

Spring-mass system

Animation courtesy of Dr. 

Dan Russell, Kettering 

University

Newton’s law of motion
Mass-spring-damper system

Newton’s law of motion

x

m
f

xmmaf 

32
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Linear differential equationsLinear differential equations

General solution:

n th order linear 
differential equation 

       tutxa
dt

txda
dt

txd
n

n

nn

n

 



 01

1

1   

General solution       txtxtx trss    

Steady state response  txss assuming from obtained integral particular
with no arbitrary 
constant  

 
 tu

ss

 as form same the have to solution
  

Transient response with 
n  arbitrary constants  

 
      001

1

1 







 txa
dt

txd
a

dt
txd

tx

trn
tr

n

nn
tr

n
tr

          

equation shomogeneou of solution general
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General solution of homogeneous equation:General solution of homogeneous equation:

n th order linear 
homogeneous equation

      001

1

1  



 txa
dt

txd
a

dt
txd

trn
tr

n

nn
tr

n

  

Roots of polynomial 
from homogeneous 
equation

     0
1

11

1 ,,

azazzzzz

zz
n

n
n

n

n

 
 



by  given

 :roots
 

equation 

General solution 
(distinct roots) 

  tz
n

tz
tr

nekektx  1
1  

General solution 
(non-distinct roots) 

      tttt
tr ekeketkketktkktx 41

7
31

6
22

54
132

321   
if roots are 13 13 13 22 22 31 41, , , , , ,  

34
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Particular integral:

 txss  Any specific solution (with no arbitrary constant) 
of 

       txdtxd nn 1       tutxa
dt

a
dt nnn   011 

Method to determine 
 tx

Trial and error approach: assume  txss  to have 
  txss  the same form as  tu and substitute into 

differential equation 

Example to find  txss for Try a solution of he t3  p  ss

    tetx
dt

tdx 32   

y

         2.0232 3333  heheheetx
dt

tdx tttt  

  tetx 32.0 ss etx 2.0

Standard trial solutions    
hee

txtu
tt

ss


 for solution trial

 
       ththtbta

ethhte

htt
tt





sincossincos 21

21




35

       ththtbta  sincossincos 21 
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d d ld d ld d ld d lTimeTime­­domain System Models domain System Models TimeTime­­domain System Models domain System Models 

& & & & 

Dynamic ResponsesDynamic ResponsesDynamic ResponsesDynamic Responses

36
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RL circuit and governing differential equationRL circuit and governing differential equation

Consider determining i(t) in the following series RL circuit:

3 V 7 H

5t = 0

v (t)

i (t)

3 V 7 H v (t)

where the switch is open for t < 0 and is closed for t  0.

Since i(t) and v(t) will not be equal to constants or sinusoids for all time, these 

cannot be represented as constants or phasors. Instead, the basic generalcannot be represented as constants or phasors. Instead, the basic general 

voltage-current relationships for the resistor and inductor have to be used:

37
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i (t)5For t < 0

3 7

5t = 0
i (t)

v(t) = 7 d i(t)
t < 0

i (t )53 7 v(t) = 7 d t

5
i (t) = 0

3 7 v (t ) = 7 d i(t)
d t

i (t)5 = 03

3 7

5
i (t) = 0

v (t) = 7 d i(t)
= 0

voltage cross
over the switch

KVL
38

3 7 v (t) = 7 d t = 0KVL
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i (t)5

t 0

0

5
i (t)

i (t)50

3 7

5

v (t) = 7 d i(t)
d t

Applying KVL: Mathematically the above d e is oftenApplying KVL:

    0,357  ttitdi

Mathematically, the above d.e. is often 

written as

   0,357  tti
dt

and i(t) can be found from determining the 

f

      0,57  ttuti
dt

tdi

h th h i  general solution to this first order linear 

differential equation (d.e.) which governs 

the behavior of the circuit for t  0

where the r.h.s. is   0,3  ttu
and corresponds to the dc source or 

it ti i thi l
39

the behavior of the circuit for t  0. excitation in this example.
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Steady state responseSteady state response

Since the r.h.s. of the governing d.e.

     tdi

  0,
5
3

 ttiss

      0,357  ttuti
dt

tdi

Let us try a steady state solution of     03353757 









dtdissLet us try a steady state solution of

  0,  tktiss

    0,3
5
35

5
3757 













 t

dt
dti

dt
tdi

ss
ss

and is a solution of the governing d e
which has the same form as u(t), as a 
possible solution.

and is a solution of the governing d.e.

In mathematics,  the above solution is 

   
    3507

357





k

ti
dt

tdi
ss

ss
called the particular integral or solution 

and is found from letting the answer to 

have the same form as (t) The word   

5
3

3507





k

k have the same form as u(t). The word 

"particular" is used as the solution is only 

one possible function that satisfy the d e

40

one possible function that satisfy the d.e.
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In circuit analysis, the derivation of iss(t) by letting the answer to have the same form 

(t) b h t i th t d t t f th i it tas u(t) can be shown to give the steady state response of the circuit as t  .

t  

5
i (t) = k Using KVL, the steady state 

response is
3 7 v(t) = 7 d i(t)

d t

response is

kk 003





k

kk

5
3

50503

i (t) = k

i (t)5 = k5

   tti ,
5
3

5

v(t) = 7 d i(t)
d t = 03 7

5
( ) 5

This is the same as iss(t).

41
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Transient responseTransient response

To determine i(t) for all t, it is necessary to find the complete solution of the 

governing d.e.
 tdi      0,357  ttuti

dt
tdi

From mathematics the complete solution can be obtained from summing aFrom mathematics, the complete solution can be obtained from summing a 

particular solution, say, iss(t), with itr(t):       0,  ttititi trss

h i ( ) i th l l ti f th h tiwhere itr(t) is the general solution of the homogeneous equation

    0057  ttitdi   0,7
5

11
1 


tekekti

ttz
tr  0,057  tti

dt

   57  titditr

  0,11 tekektitr

where k1 is a constant (unknown now).
 

 

5757

57

01 



zzz

ti
dt z

dt
tditr

tr  by replaced 
  


tekti

t
tr ,07

5

1

42
7
5

1 z
Thus, it is called transient response.
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Complete responseComplete response

T th t i i ( ) d i ( ) i th l l ti f th i ODETo see that summing iss(t) and itr(t) gives the general solution of the governing ODE

    0,357  tti
dt

tdi  
dtnote that

  0,
5
3

 ttiss 0,3
5
35

5
37 













 t

d
d

satisfies  ,
5ss 55 









dtsatisfies

  07
5




tekti
t

satisfies 0057 7
5

7
5















 

tekekd tt  0,1  tektitr satisfies 0,057 7
1

7
1 
















tekek
dt

5 55     0,
5
3 7

5

1 


tektiti
t

trss 3
5
35

5
37 7

5

1
7
5

1 






















 tt
ekek

dt
d

satisfies

      0,
5
3 7

5

1 


tektititi
t

trss is the general solution of the ODE

43
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i )( tss

5
3

steady statesteady state

t < 0 t 0

0

Switch
l

steady state steady state 
responseresponse

close

k1

e
5
7 t t 0,k1)( t =i tr

0

e
k1

transient responsetransient response

k1 is to be 
determined later

t = 0 t = 5
7 (Time constant)

i )( ttri )( tss +
+ 5

3k1

5
3 complete responsecomplete response

440
Complete response

Copyrighted by Ben M. Chen



Note that the time it takes for the transient or zero-input response itr(t) to decay to

1/ f it i iti l l i1/e of its initial value is

Time taken for itr(t) to decay to 1/e of initial value
5
7



and is called the time constant of the response or system. We can take the 

transient response to have died out after a few time constants. For the RC circuit, 

90

100 At the time equal to 3 time 
constants, the magnitude is 

70

80

90

nt
ag

e

At the time equal to 4 time 

about 5% of the peak.

40

50

60

gn
itu

de
 in

 P
er

ce
n q

constants, the magnitude is 
about 1.83% of the peak.

x 100/e

10

20

30M
ag

At the time equal to 5 time 
constants, the magnitude is 
about 0.68% of the peak

x 100/e
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Current continuity for inductorCurrent continuity for inductor i )( tL

To determine the constant k1 in the 

transient response of the RL circuit, 
0 1 2 4 t

1

2

the concept of current continuity 

for an inductor has to be used.

0 1 2 4 t

= 7
d

d t
i )( tLv )( tL

T

Consider the following example for 

an inductor:
7

To 

t
7

i (t)
i )( tL v )( tL =Instantaneous power supplied

To Lv (t)

i (t)

= 7

t

7

46
14
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Due to the step change or discontinuity in i (t) at t = 2 and the power suppliedDue to the step change or discontinuity in iL(t) at t = 2,  and the power supplied 

to the inductor at t = 2 will go to infinity. Since it is impossible for any system to 

deliver an infinite amount of power at any time, it is impossible for iL(t) to p y , p L( )

change in the manner shown.

In general the current through an inductor must be a continuous functionIn general, the current through an inductor must be a continuous function 
of time and cannot change in a step manner.

*

Generally speaking, the properties of the current continuity for inductors 

and the voltage continuity for capacitors (to be covered later) are used toand the voltage continuity for capacitors (to be covered later) are used to 

determine, respectively, the initial currents charged to inductors and 

initial voltages charged to capacitors These initial voltages and currentsinitial voltages charged to capacitors. These initial voltages and currents 

are then used to find solutions to transient responses of electric circuits.

47
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Now back to our RL Circuit: Using current continuity for an 

0

5t = 0
i )( t

inductor at t = 0:

  3030 11  kkti

3 V 7 H

5t 0

v(t)

 
55 11

  

 0,0

5
t

33k

 






 

0,
5
3

5
3 7

5

te
ti t

3

+ 5
3+ 5
3k1

5
3

0

5
3

0

5

0

Switch
close e

5
7 t t 0

i )( t =

= 3 +

t < 0,i )( t = 0 i )( ttri )( tss +

k1

Switch
close

i )( t =

= 3 

t < 0,i )( t = 0
3

i )( ttri )( tss +

e
5
7 t t 0

48

c ose e t 0,5 + k1 close
5 5 e t 0,
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RC circuitRC circuit 5 500
t < 0

Consider finding v(t) in the following RC 

circuit:

5 500

dv (t)
d t= 7i (t)

circuit:

t = 0

3
7v (t )

2

3 V

5

( )
2 V

500
i (t)

Taking the switch to be in this 
7 F v (t) position starting from t = , the 

voltages and currents will have 

l d d l f

where the switch is in the position 

shown for t < 0 and is in the other

settled down to constant values for 

practically all t < 0. 
shown for t < 0 and is in the other 

position for t  0.       0,077  t
dt

d
dt

tdvti constant

49
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t < 0
t 0

5 500

dv (t)
= 7i (t)

500
5 i (t) d

d t= 35
v (t)

3
7

2
d t= 7i (t)

v(t)

= 0

3
7

5

2

dv (t)
d t= 7i (t)

v (t) 7v (t)

5

500

=500 i (t) 0 Applying KVL:

3
7

2

500

i (t)

v(t) 2

= 0
      0,335  ttutv

dt
tdv

7v(t) = 2

      0 ttvtvtv

which has a solution

50

      0,  ttvtvtv trss
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(1) Steady state response

 

(2) Transient response

 td  0,3  ttu     0,035  ttv
dt

tdv
tr

tr

  0,  tktvss    
 

35  tv
dt

tdv
tdvtr

tr

tr breplaced

 td

 

13535 01  zzz

dt z
dt
tr byreplaced

    330335  kktv
dt

tdv
ss

ss

35
1

1 z

  0,3  ttvss   0,35
11

1 


tekektv
t

tz
tr

  

 


  0,20,2 tt

tv t C l t
51

      






 

 
0,30, 35

1 tekttvtv
tv t

trss
Complete response
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Voltage continuity for capacitorVoltage continuity for capacitor

To determine k1 in the transient response of the RC circuit, the concept of 

voltage continuity for a capacitor has to be used.

Similar to current continuity for an inductor, the voltage v(t) across a capacitor C

must be continuous and cannot change in a step manner.

Thus, for the RC circuit we consider, the complete solution was derived as:

      

















 
03

0,2

0
0,2

35 tk

t

ttvtv
t

tv t
       0,30, 35

1 tekttvtv trss

At t = 0,At t  0,

  5230 11  kkv  









 

0,53

0,2

35 te

t
tv t

52

 ,
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Second order RLC circuitSecond order RLC circuit

Consider determining v(t) in the following series RLC circuit:Consider determining v(t) in the following series RLC circuit:

i (t) t = 0
t = 0

11 V 2 V

5003 5 H

7 F v (t)

Both switches are in the position shown for t < 0 & are in the other positions for t  0.

i ( ) 0

5003 5

dv (t)

i (t)  0
For t < 0

11
7 v(t)

2

dv (t)
d t7

53
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Taking the switches to be in the positions shown starting from t =  , the voltages 

and currents will have settled down to constant values for practically all t < 0 and the 

important voltages and currents are given by:

5003 5

0

dv (t)
d t7  0

v (t)  2
11

7
2

5003 5

v (t)  27

Mathematically:

  0,2  ttv &   0,0  tti

54
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d v (t)
d t35 2

2dv (t)
d t21For t  0 2 )()()( tvdLCtdvCdLdiLtvL 





005

d td t 2)(
dt

LC
dt

C
dt

L
dt

LtvL 







dv (t)
d t7

11 2

5003 5

11
7 v(t)

2

Applying KVL:
   2 dd         0,112135 2

2

 ttutv
dt

tdv
dt

tvd

Due to the presence of 2 energy storage elements the governing d e is a secondDue to the presence of 2 energy storage elements, the governing d.e. is a second 

order one and the general solution is

55
      0,  ttvtvtv trss
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(1) Steady state response

  0,11  ttu   0,  tktvss

   2 tdvtvd       11002135 2  ktv
dt

tdv
dt

tvd
ss

ssss   0,11  ttvss

(2) Transient response

     
2 tdvtvd

   2 tdtd

      0,02135 2  ttv
dt

tdv
dt

tvd
tr

trtr

     
 

1213521352135 2012
2

2

 zzzzztv
dt

tdv
dt

tvd

z
dt

tdv
tr

trtr

tr by   replaced 

  
    052.0,548.0

352
1721

352
13542121

,
2

21 





zz

56  0,052.0
2

548.0
121

21   tekekekektv tttztz
tr
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Complete solution (response) to be determined

      














  0,11
0,2

0,
0,2

052.0
2

548.0
1 tekek

t
ttvtv
t

tv tt
trss     


 


0,0)(7)( 05205480

ttdvti tt

To determine k1 and k2, voltage continuity for the capacitor and current continuity 


   0),052.0548.0(7

)( 052.0
2

548.0
1 tekekdt tt

1 2 g y p y

for the inductor have to be used.

The voltage across the capacitor at t = 0:The voltage across the capacitor at t  0:

9211)0( 2121  kkkkv
950k

The current passing through the inductor at t = 0:
95.01 k

95.92 k

57
0052.0548.00052.0548.0)0( 2121  kkkki
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t 0
d35

2 )( tvtrd21
)( tvtrRC LC

General RLC circuitGeneral RLC circuit

For t  0

d t35 2d t21

tdv )(

RC LC

5003 5R L dt
tdvCti tr )()( 

7
2

)( tvtr

0
C

By KVL:       00
2

tttdvRCtvdLC trtrBy KVL:       0,02  ttv
dt

RC
dt

LC tr
trtr

      12
2 tdvtvd      

 
0112

2  RCzLCztv
dt

tdvRC
dt

tvdLC
z

dt
tdv

tr
trtr

tr  by replaced 

58LC
LCRCRCzz

2
4)(,

2

21



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Recall that for RLC circuit, the Q factor is defined as

RC
LC

LCR
L

LCR
L

R
LfQ 




2
122 0

LC

Thus,

L
QRR

LC
RC
LCRCRC

LC
LCRCRC

zz
2

41
2

)(
41

2
4)(

,
222

21










two real distinct roots if 1 4Q2 > 0 or Q2 < 1/4 or Q < 1/2

=

two identical roots if 1 4Q2 = 0 or Q = 1/2

two complex conjugate roots if 1 4Q2 < 0 or Q > 1/2

two identical roots if 1 4Q  0 or Q  1/2

The behaviors of the about cases will be studied in details later… 
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A cruise control system A cruise control system 

A cruise-control 
system friction 

x displacement

accelerationx

force uforce b x mass
m

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied 

to an object with a mass m and a is the acceleration we haveto an object with a mass m and a is the acceleration, we have

m
ux

m
bxxmxbu  

mm
This a 2nd order Ordinary Differential Equation with respect to displacement x. It can 

be written as a 1st order ODE with respect to speed v =    :xbe e as a s o de O espec o speed v x

m
uv

m
bv   model of the cruise control system, u is input force, v is output.

60
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Assume a passenger car weights 1 ton, i.e., m = 1000 kg, and the friction coefficient 

of a certain situation b = 100 N·s/m Assume that the input force generated by the carof a certain situation b = 100 N s/m. Assume that the input force generated by the car 

engine is u = 1000 N and the car is initially parked, i.e., x(0) = 0 and v(0) = 0. Find the 

solutions for the car velocity v(t) and displacement x(t)solutions for the car velocity v(t) and displacement x(t).

For the velocity modelFor the velocity model,

The steady state response: It is obvious that v = 10 m/s = 36 km/h

11.0  vv
m
uv

m
bv 

The steady state response: It is obvious that vss = 10 m/s = 36 km/h

The transient response: Characteristic polynomial z + 0.1 = 0, which gives z1 = 0.1.

tt ektvvtvektv 1.0
1trss

1.0
1tr 10)()()(  

8

10

v(0) = 0 implies that k1 = 10 and hence

tetvvtv 1.0
trss 1010)()( 

4

6

V
el

oc
ity

 (
m

/s
)

61What is the time constant for this system?
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For the dynamic model in terms of displacementFor the dynamic model in terms of displacement,,

The steady state response: From the solution for the velocity which is a constant we

11.0  xxxmxbu 

The steady state response: From the solution for the velocity, which is a constant, we 

can conclude that the steady state solution for the displacement is xss = vsst = 10t. 

Th t i t Ch t i ti l i l 2 + 0 1 0 hi h i 0 1The transient response: Characteristic polynomial z2 + 0.1z = 0, which gives z1 = 0.1

and z2 = 0. The transient solution is then given by

and hence the complete solution

2
1.0

1
0

2
1.0

1tr )( kekekektx ttt  

and hence the complete solution

tt ektxtvkekttxxtx 1.0
12

1.0
1trss 1.010)()(10)()(   

x(0) = 0 implies k1 + k2 = 0 and v(0) = 0 implies 10  0.1 k1 = 0. Thus, k1 = 100, k2 =  100.

10 t
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10010010)( 1.0   tettx
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Complete response for the car displacementComplete response for the car displacement
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Exercise: Exercise: Show that the car cruise control system is BIBO stable for its velocity model 

and it BIBO unstable for its displacement model
63
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and it BIBO unstable for its displacement model. 



Behaviors of a general 2nd order systemBehaviors of a general 2nd order system

Consider a general 2nd order system (an RLC circuit or a mechanical system or 

whatever) governed by an ODE

Its transient response (or natural response) is fully characterized the properties of

)()()()( tutcytybtya  

Its transient response (or natural response) is fully characterized the properties of 

its homogeneous equation or its characteristic polynomial, i.e.,

The latter has two roots at

00)()()( 2  cbzaztcytybtya 

acbb 42 
two real distinct roots if b2  4ac > 0

f 2

a
z

22,1  =
two identical roots if b2  4ac = 0

two complex conjugate roots if b2  4ac < 0

64These different types of roots give different natures of responses.
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Overdamped systemsOverdamped systems

Overdamped response is referred to the situation when the characteristic polynomial 

has two distinct negative real roots, i.e., ab > 0 & b2  4ac > 0. For example,

which has a characteristic polynomial,

0)(5)(6)(  tytyty 

p y

tttt ekektyekektyzzz 5
21

5
212,1

2 5)(,)(5,1056   

Assume that                            , which implies4)0(,0)0(  yy 

0)0( 21  kky 0.6

0.8

1

d th

0)0( 21  kky

45)0( 21  kky
1,1 21  kk

0

0.2

0.4

gn
itu

de

and thus, 
tt eety 5)(  

-0.6

-0.4

-0.2M
ag

65What is the dominating time constant?
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Underdamped systemsUnderdamped systems

Underdamped response is referred to the situation when the characteristic polynomial 

has two complex conjugated roots negative real part, i.e., ab > 0 & b2  4ac < 0. For 

lexample,

0)(101)(2)(  tytyty 

which has a characteristic polynomial,

)()(10101012 10
2

10
1

)101(
2

)101(
121

2 ekekeekektyjzzz tjtjttjtj  

]10sin)(10cos)[()]10sin10(cos)10sin10(cos[)(

)()(

212121

21212,1

tkkjtkketjtktjtkety

yj
tt  

Assume that                             , which implies10)0(,0)0(  yy 

0)0( 21  kky )( 21y

10)(10)()0( 2121  kkjkky
tety t 10sin)(  1)( 21 kkj

66
The time constant for such a system is determined by the exponential term.
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1

Underdamped responseUnderdamped response
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Critically damped systemsCritically damped systems

Critically damped response is corresponding to the situation when the characteristic 

polynomial has two identical negative real roots, i.e., ab > 0 & b2  4ac = 0. For example,

which has a characteristic polynomial,

0)()(2)(  tytyty 

p y

)()(1012 21212,1
2 tkketekektyzzz

t

ttt  

Assume that                            , which implies

)()( 212 tkkkety t  

1)0(,1)0(  yy  1.4

1)0( 1  ky

1)0( kk
2,1 21  kk 1

1.2

e
and thus

1)0( 12  kky

0.4

0.6

0.8

M
ag

ni
tu

de
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Never damped (unstable) systemsNever damped (unstable) systems

Never damped response is corresponding to the situation when the characteristic 

polynomial has at least one root with a nonnegative real part. For example,

which has a characteristic polynomial,

0)()(  tyty

p y

tttt ekektyekektyzz 21212,1
2 )()(101   

Assume that                            , which implies0)0(,2)0(  yy 

2)0(  kky
400

450

d th

2)0( 21  kky

0)0( 12  kky
121  kk

250

300

350

itu
de

and thus

tt eety  )(
100

150

200
M

ag
n

69It is an unstable system. We’ll study more on it.
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Review of Laplace TransformsReview of Laplace TransformsReview of Laplace TransformsReview of Laplace Transforms

70

Copyrighted by Ben M. Chen



IntroductionIntroduction

L t fi t i th f ll i ti d i f tiLet us first examine the following time-domain functions:

1

1 5

2

0

0.5

ni
tu

de

0

0.5

1

1.5

ni
tu

de

-0.5

0

M
ag

n

-1.5

-1

-0.5

M
ag

n

A cosine function with a frequency f = 0.2 Hz.      ttttx  6.1cos8.0sin4.0cos)( 

0 1 2 3 4 5 6 7 8 9 10
-1

Time in Seconds

0 1 2 3 4 5 6 7 8 9 10
-2

Time in Seconds

Note that it has a period T = 5 seconds.
     

What are frequencies of this function?

Laplace transform is a tool to convert time-domain functions into a frequency-domainp q y

ones in which information about frequencies of the function can be captured. It is 

often much easier to solve problems in frequency-domain with the help of Laplace 

71

y

transform.
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Laplace TransformLaplace Transform

Given a time-domain function f (t), the one-sided Laplace transform is defined as 

follows:

 


h th l li it f i t ti i t t 0 t i l d th i i (t 0) d t t

   jsdtetftfLsF st   


,)()()(

0

where the lower limit of integration is set to 0 to include the origin (t = 0) and to capture 

any discontinuities of the function at  t = 0.

The integration for the Laplace transform might not convert to a finite solution for 

arbitrary time-domain function. In order for the integration to convert to a final value, 

which implies that the Laplace transform for the given function is existent, we need










  )( )()()(|)(| dtetfdteetfdtetfsF ttjttj 

for some real scalar  = c . Clearly, the integration exists for all   c, which is called 





000

)()()(|)(| dtetfdteetfdtetfsF

72
the region of convergence (ROC). Laplace transform is undefined outside of ROC.
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Example 1: Find the Laplace transform of a unit step function f(t) = 1(t) = 1, t  0.



sss
e

s
e

s
e

s
dtedtetsF ststst 11101111)(1)( 0

000







 






 








 

Clearly, the about result is valid for s =  + j with  > 0. 

Example 2: Find the Laplace transform of an exponential function f (t) = e – a t, t  0.

   

as
e

as
dtedteedtetfsF tastasstatst

















 

11)()(
0000

Again, the result is only valid for all s =  + j with  >  a. 

asas  0000

imag axis imag axis

real axis real axis
0  a

73ROC for Example 1 ROC for Example 2
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Example 3: Find the Laplace transform of a unit impulse function  (t), which has the 

following properties:

1.  (t) = 0 for t  0

2.  (0) 

3 for any f (t)


 )0()()(1)( fdtttfdtt 3.                                                 for any f (t)

4.  (t) is an even function, i.e.,  (t) =  (t)




 )0()()(,1)( fdtttfdtt 

Its Laplace transform is significant to many system and control problems. By definition,

  1)()( 0  


 edtettL st

Its ROC is the whole complex plane.

  1)()(
0

 


edtettL 

Obviously, impulse functions are non-existent in real life. We will learn from a tutorial 

question on how to approximate such a function. 

74
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Inverse Laplace TransformInverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to convert 

it back to its original time-domain function f (t).

  


 
j

stdsesF
j

sFLtf
1

)(
2

1)()( 1


1

ROCROC

  
 jj

f
1

)(
2

)()(
 1

This process is quite complex because it requires knowledge about complex analysis. 

We use look-up table rather than evaluating these complex integrals. e use oo up tab e at e t a e a uat g t ese co p e teg a s

The functions f(t) and F(s) are one-to-one pairing each other and are called Laplace 

transform pair Symbolically

)()( sFtf 

transform pair. Symbolically, 

75
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Properties of Laplace transform:Properties of Laplace transform:

      )()()()()()( sFasFatfLatfLatfatfaL 

1. Superposition or linearity:

      )()()()()()( 221122112211 sFasFatfLatfLatfatfaL 

Example: Find the Laplace transform of cos(t). By Euler’s formula, we have

 tjtj eet  
2
1)cos(

By the superposition property, we have

1 1 1   1 1 1cos( )
2 2 2

j t j t j t j tL t L e e L e L e                     


  22)(2

111
2
1




 


































s

s
jsjs
jsjs

jsjs
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2. Scaling:

  



 sFtfL 1)(

If F(s) is the Laplace transform of f(t), then

  






a

F
a

atfL )(

Example: It was shown in the previous example that

  22)cos( 
stL

Example: It was shown in the previous example that

  22)(
s

By the scaling property, we have

  2121)2cos(  








s

ss

tL  2222
2

2 4
4
42

4
2

)2cos(


















sss

tL

77
which may also be obtained by replacing  by 2.
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3. Time shift (delay): f(t)( y)

If F(s) is the Laplace transform of f(t), then

  )()(1)( sFeatatfL as
f(ta)

For a function delayed by ‘a’ in time-domain, the equivalence in s-domain is 

a

y y q

multiplying its original Laplace transform of the function by eas.

Example: 

  


 22cos



s

stL   22)(1))(cos(





 

s
seatatL as
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4. Frequency shift:

If F(s) is the Laplace transform of f(t), then

E l GiExample: Given 

22)cos( 
st )sin(  tand

Using the shift property, we obtain the Laplace transforms of the damped sine and 

22)cos(






s

t
22)sin(







s
tand

g p p y p p

cosine functions as

  22)(
)cos(









as
asteL at   22)(

)sin(







as
teL atand
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5. Differentiation:

    )0()()0()()()(  






 fssFftfsLtfL

dt
tdfL 

    )0()0()()0()0()()()( 22
2

2
 









fsfsFsfsftfLstfL
dt

tfdL 

6. Integration:

    )(1)(1 FtfLdfL
t






     )()(
0

sF
s

tfL
s

dfL 




 

Example: The derivative of a unit step function 1(t) is a unit impulse function (t).( ) ( )

)()(1 tt
dt
d 
dt

    101)0(1)(1)(1)( 






 

s
stsLt

dt
dLtL       

s
tL

s
dLtL

t 1)(1)(1
0










 



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7. Periodic functions:

If f (t) is a periodic function, then it can be represented as the sum of time-shifted 

functions as follows:

 )()()()( tftftftf









)2()()(

)()()()(

111

321

TtfTtftf

tftftftf

Applying time-shift property, we obtain

T st
TssT

TssT

dtetfsFeesF

esFesFsFsF










  )()()1)((

)()()()(

012

2
111




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



11

)1)((1 
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8. Initial value theorem:

Examining the differentiation property of the Laplace transform, i.e.,

    )0()()0()()()(  



 fssFftfsLtfLtdfL 

we have

    )0()()0()()(




 fssFftfsLtfL

dt
L

  tdftdf )()(

Thus,








 








stdfedte

dt
tdf

dt
tdfLfssF stst   as,0)()()()0()(

00

)]([)0(or  as),()0( lim ssFfsssFf
s 

 

This is called the initial value theorem of Laplace transform. For example, recall that

22)()cos()(  
  assFtetf at

22)(
)()cos()(







as
sFtetf

1
)(2)(

)()]([1)0cos()0( 222

2

22
0 limlimlim 







assassssFef

82
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9. Final value theorem:

Examining again the differentiation property of the Laplace transform, i.e.,

    )0()()0()()()(  



 fssFftfsLtfLtdfL 

we have

    )0()()0()()(




 fssFftfsLtfL

dt
L



Thus

)0()()()()()()]0()([ 0
0

0

0000
limlimlim 



















 


 fftfdte

dt
tdfdte

dt
tdf

dt
tdfLfssF tst

sss

Thus,

)]([)( lim
0

ssFf
s


The result is only valid for a function whose 
F(s) has all its poles in the open left-half 
plane (a simple pole at s = 0 permitted)!

This is called the final value theorem of Laplace transform. For example,

)()cos()(  
 assFtetf at

22)(
)()cos()(







as
sFtetf

0
)(2)(

)()]([0)cos()( 222

2

22 limlimlim 





  assassssFef
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Summary of Laplace transform propertiesSummary of Laplace transform properties

Property f (t) F (s)

Linearity

Scaling

Time shiftTime shift

Frequency shift

Time derivative

Time integration  
t

df
0



Time periodicity

Initial value

0

sTe
sF
1
)(1

)0( fInitial value

Final value

)0(f

84
Convolution

Courtesy of Dr Melissa Tao



Some commonly used Laplace transform pairsSome commonly used Laplace transform pairs
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Why Laplace transform?Why Laplace transform?

Allows us to work with algebraic 

equations rather than differential 

tiequations.

Provides an easy way 

to solve system 
Laplace transform isA li bl t problems involving 

initial conditions.

Laplace transform is 

significant for many 

reasons

Applicable to a 

wider variety of 

inputs than phasor reasonsinputs than phasor 

analysis

Capable of giving us the total response (natural 

and forced) of the circuit in one single operation.
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FrequencyFrequency­­domain Descriptions domain Descriptions FrequencyFrequency­­domain Descriptions domain Descriptions FrequencyFrequency domain Descriptions domain Descriptions 

of Linear Systemsof Linear Systems

FrequencyFrequency domain Descriptions domain Descriptions 

of Linear Systemsof Linear Systemsof Linear Systemsof Linear Systemsof Linear Systemsof Linear Systems
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2ddddi 

Reconsider the series RLC circuitReconsider the series RLC circuit

i (t) t = 0
t = 0

2

2

355
dt

vd
dt
dvC

dt
d

dt
diLvL 








dt
dvi 213 

5003 5 H 
















0
2

)0(
)0(

i
v

11 V
7 F v (t)

2 V
)0(

0




dt

dvCi
t

Applying KVL:
       

2 tdvtvd

0)0()0(' 
C

iv

        0,112135 2  ttutv
dt

tdv
dt

tvd

It was solved earlier by finding solutions directly on the time domain. The problemIt was solved earlier by finding solutions directly on the time domain. The problem 

can be solved in the frequency domain. From this point onwards, we will make use 

of the Laplace transform to solve circuit and system problems.
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Taking Laplace transform on the both sides of the ODE, i.e.,

   2 

Recall that

          )(11)(2135 2

2

sULtuLtv
dt

tdv
dt

tvdL 










Recall that

),0()()( 






 fssF

dt
tdfL )0()0()()( 2

2

2
 









fsfsFs
dt

tfdL

we have

sUsVvssVvsvsVs 11)()()]0()([21)]0()0()([35 2 

 dt  dt

s
)()()]()([)]()()([

)()(]2)([21]2)([35 2 sUsVssVssVs 

  )4270()()(12135 2  ssUsVss
12135

4270
12135

)()( 22 






ss

s
ss

sUsV

frequency domain model of the circuit
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due to external force

i.e., force responseforce response

due to initial conditions

i.e., natural responsenatural response
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Examining

 4270114270)( sssU


















35
42235

11
12135

4270
)12135(

11
12135

4270
12135

)()( 2222

s

ss
s

sssss
s

ss
sUsV





 



 







)548.0)(052.0(
35

)548.0)(052.0(
35

EDCBA

sssss
Partial Fraction

 



 





548.0052.0548.0052.0 sssss

The next step is to obtain these coefficients. Take the first term first…

548.0052.0)548.0)(052.0(
35

11
)(1 








s

C
s

B
s
A

sss
sV

Multiplying both sides by s and let s = 0, we obtain

0035
11

35
11 





CBACsBsAss

and

548.00052.00548.0052.0)548.0)(052.0(
35

)548.00)(052.00(
35

















A

ssssss
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11)( 01 

sssVA
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Similarly, multiplying both sides by s + 0.052 and let s =  0.052, we obtain

548.0
)052.0(

052.0
)052.0()052.0(

)548.0)(052.0(

)052.0(35
11
















s
sC

s
sB

s
sA

sss

s

)()0520( VB

548.0
)052.0()052.0(

)548.0(
35

11








 s

sCB
s

sA
ss 185.12

)()052.0( 052.01




ssVsB

BCBA














548.0052.0
)052.0052.0(

052.0
)052.0052.0(

)548.0052.0(052.0
35

11
185.12

Lastly, multiplying both sides by s + 0.548 and let s =  0.548, we obtain

)548.0()548.0()548.0()548.0(35
11  sCsBsAs

548.0
)(

052.0
)()(

)548.0)(052.0(
35







 ssssss

1561

)()548.0( 548.01 ssVsC
CsBsA








)548.0()548.0(35

11
156.1C

ssss





 052.0)052.0(

CCBA








0520
)548.0548.0(

5480
)548.0548.0(

)05205480(5480
35

11
156.1
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Thus, we obtain

548.0
156.1

052.0
185.1211

548.0052.0)548.0)(052.0(
11













 ssss
C

s
B

s
A

sss

The above method is called the residual method. Let us derive D and E for the 2nd 

term of V(s) using a so-called coefficient matching method…












548.0052.0)548.0)(052.0(
35

422

s
E

s
D

ss

s

)548.0)(052.0(
)052.0548.0()(

)548.0)(052.0(
)052.0()548.0(








ss

EDsED
ss

sEsD

which implies


 


 21.22 DED


 



 21.02.1052.0548.0 EED

5480
21.0

0520
21.2

)5480)(0520(
35

422











ssss

s
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Finally, we get

548.0
21.0

052.0
21.2

548.0
156.1

052.0
185.1211

)548.0)(052.0(
4270

)548.0)(052.0(
11)(




















sssssss

s
sss

sV

f t land

 1 1 111 12.185 1.156 2.21 0.21( ) ( )v t L V s L L             
   

force response natural response

 
0.052 0.548 0.052 0.5480.052 0.548

( ) ( )
0.052 0.548 0.052 0.548

11 2.21 0.212.185 1. 1 9.975 0.15 1 66 1 94t t t tt t

v t V s
s s s s s

e ee e e e    

         
      

which is ‘almost’ the same as that obtained directly from ODE, i.e.,

force response natural response transient response

      














  0,95.095.911
0,2

0,
0,2

052.0548.0 tee
t

ttvtv
t

tv tt
trss

The difference is some computational errors. 

What have we learnt? The same circuit problem can be solved using a totally What have we learnt? The same circuit problem can be solved using a totally 
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different approach! different approach! 
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Summary of partial fraction techniqueSummary of partial fraction technique

simple real polessimple real poles repeated real polesrepeated real poles complex poles pairscomplex poles pairs

residual method or coefficient matchingresidual method or coefficient matching

94

Courtesy of Dr Melissa Tao



Reconsider the cruise control dynamic model for displacementReconsider the cruise control dynamic model for displacement

with x(0) = 0 and x'(0) = 0. Taking Laplace transform on both sides, we have

11.0  xxxmxbu 

( ) ( ) g p ,

   
s

LxxLssXsXs 111.0)(1.0)(2  
s

1.0)1.0(
1

)1.0(
1)( 222 








s

C
s
B

s
A

sssss
sX

1.0)1.0()1.0(  ssssssss

Using the coefficient matching method, we obtain

1.0)1.0(
1)(

2

22 





s
C

s
B

s
A

ss
sX

11.0
01.0
0





B
BA
CA

100
10

100





C
B
A

10)10()(

)1.0(
)1.0()1.0(

2

2

2






BBACA

ss
CssBsAs

1.0
10010100)( 2 





sss

sX

95)1.0(
1.0)1.0()(

2

2





ss

BsBAsCA

10010010)( 1.0   tettx
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Frequency domain model of linear systems Frequency domain model of linear systems –– transfer functionstransfer functions

A linear system expressed in terms of an ODE is called a model in the time domain InA linear system expressed in terms of an ODE is called a model in the time domain. In 

what follows, we will learn that the same system can be expressed in terms of a 

rational function of s the Laplace transform variable Recall the cruise control systemrational function of s, the Laplace transform variable. Recall the cruise control system

uxbxmxmxbu  

Assume that the initial conditions are zero. Taking Laplace transform on its both sides,

    )()()()()( 22 sUuLxbxmLsbsXsXmssXbsms  

we obtain a rational function of s, i.e., 

    )()()()()( sUuLxbxmLsbsXsXmssXbsms 

bsmssU
sXsH


 2

1
)(
)()( )(1)()()( 2 sU

bsms
sUsHsX




H(s) is the ratio of the system output (displacement) and input (force) in frequency 

domain Such a function is called the transfer function of the system which fully

96

domain. Such a function is called the transfer function of the system, which fully 

characterizes the system properties.
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More example: the series RLC circuitMore example: the series RLC circuit

The ODE for the general series RLC circuit was derived earlier as the following:

      )(
2

tvtvtdvRCtvdLC CC 

Assume that all initial conditions are zero (note that for deriving transfer functions, we 

  )(2 tvtv
dt

RC
dt

LC C 

always assume initial conditions are zero!).

        )()()()1(
2

2 sVtvLtvtdvRCtvdLCLsVRCsLCs CC 






        )()()()1( 2 sVtvLtv

dt
RC

dt
LCLsVRCsLCs C

CC
C 





 

1)()( 
sVsH C )(1)()()( sVsVsHsV 

1)(
)( 2 


RCsLCssV

sH )(
1

)()()( 2 sV
RCsLCs

sVsHsVC 


H(s) is the ratio of the system output (capacitor voltage) and input (voltage source) in 

frequency domain. The circuit (or the system) is fully characterized by the transfer 

function. If the H(s) and V(s) are known, we can compute the system output. As such, 

97
it is important to study the properties of H(s)!
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System poles and zerosSystem poles and zeros

As we have seen from the previous examples, a general linear time-invariant system 

can be expressed in a frequency-domain model or transfer function:

HH((ss))
U(s) Y(s)

with

bbbbN mm  )( 1

nm
asasas

bsbsbsb
sD
sNsH n

n
n

m
m

m
m 




 


 ,
)(
)()(

01
1

1

01
1

1





n is called the order of the system. The roots of the numerator of H(s), i.e., N(s), are 

called the system zeros (because the transfer function is equal to 0 at these points), 

and the roots of the denominator of H(s), i.e., D(s), are called the system poles (the 

transfer function is singular at these points). It turns out that the system properties are 

98
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Examples: Examples: 
1

The cruise control system has a transfer function

It has no zero at all and two poles at
)(

11)( 2

m
bss

m
bsms

sH







m
bss  ,0p

The RLC circuit has a transfer function

m,

1)( 2sH

It has no zero and two poles at
1

)( 2  RCsLCs

hi h i l th th t f th h t i ti l i l f it ODE

LC
LCRCRC

s
LC

LCRCRC
s

2
4)(

,
2

4)( 2

2

2

1







which are precisely the same as the roots of the characteristic polynomial of its ODE.

)1(55105 22  sssThe system                                                                             has two zeros (repeated)

t 1 d th l t ti l

)3)(2)(1(
)1(5

6116
5105)( 23 








sss

s
sss

sssH
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Response to sinusoidal inputsResponse to sinusoidal inputs

Let us consider the series RL circuit whose current governed by the following ODE

      2.0)()()()()55(55 
sIsHsVsIstvtitdi

Let the voltage source be a sinusoidal v(t) = cos (2t), which has a Laplace transform

   
1)(

)()()()55(55



ssV

sHsVsIstvti
dt





4

)( 2s
ssV

4141
2.0)(

1
2.0)( 22 
















s
CBs

s
A

s
s

s
sV

s
sI

Using the coefficient matching method, we have to match

 20)4()()( 2 sCAsCBsBA 0402080040040160040  ss



















04.0
04.0

2.0
0

2.0)4()()(

B
A

CB
BA

sCAsCBsBA
1

04.0
2

208.0
2

04.0
1

04.0
4

16.004.0)( 22222 
















sss

s
ss

ssI

The steady state response is the given by







 16.004 CCA ])2sin(2)2[cos(04.0)( tettti 
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Let us solve the problem using another approach. Noting that v(t) = cos (2t), which 

has an angular frequency of  = 2 rad/sec, and noting that the transfer functiong q y , g

1
2.0

)(
)()(




ssV
sIsH

is nothing more than the ratio or gain between the system input and output in the 

frequency domain. Let us calculate the ‘gain’ of H(s) at the particular frequency 

coinciding with the input signal, i.e., at s = j with  = 2.

2020

It simply means that at  = 2 rad/sec, the input signal is amplified by 0.0894 and its 

4349.630894.00894.0
12

2.0
1

2.0)()2( 1071.1

2
2 





 




je
jj

jHjH


 


p y , p g p y

phase is shifted by  63.4349 degrees. It is obvious then the system output, i.e., the 

current in the circuit at the steady state is given byy g y

which is identical to what we have obtained earlier Actually by letting s = j the

).4349.632cos(0894.0)(  ttiss
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which is identical to what we have obtained earlier. Actually, by letting s = j, the 

above approach is the same as the phasor technique for AC circuits.
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Frequency response Frequency response –– amplitude and phase responses amplitude and phase responses 

It b f th i l th t f AC i it f t ithIt can be seen from the previous example that for an AC circuits or for a system with a 

sinusoidal input, the system steady state output can be easily evaluated once the 

amplitude and phase of its transfer function are known Thus it is useful to ‘compute’amplitude and phase of its transfer function are known. Thus, it is useful to ‘compute’ 

the amplitude and phase of the transfer function, i.e.,

It is obvious that both magnitude and phase of H(j) are functions of . The plot of 

)()()()(   jHjHsHjH js 


|H(j)| is called the magnitude (amplitude) response of H(j) and the plot of  H(j) is 

called the phase response of H(j). Together they are called the frequency response 

of the transfer function. In particularly, |H(0)| is called the DC gain of the system (DC is 

equivalent to k cos(t) with  = 0).

The frequency response of a circuit or a system is an important concept in system 

theory. It can be used to characterize the properties of the circuit or system, and used 

102to evaluated the system output response.
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Example:Example:

L t id th i RL i it ith th f ll i t f f tiLet us reconsider the series RL circuit with the following transfer function:





1

2.0
)(
)()(

ssV
sIsH 





 1

2
tan

1
2.0)()(

1
2.0)( 





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Thus, it is straightforward, but very tedious, to compute its amplitude and phase.  
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Note that in the plots of the magnitude and phase responses, we use a log scale 

for the frequency axis If we draw in a normal scale the responses will look awfulfor the frequency axis. If we draw in a normal scale, the responses will look awful.

There is another way to draw the frequency response. i.e., directly draw both 

i d d h l l hi h i ll d h l l F hmagnitude and phase on a complex plane, which is called the polar plot. For the 

example considered, its polar plot is given as follows:   
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What can we observe from the frequency response?
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f fAt low frequencies, magnitude 
response is relatively a large. 
Thus, the corresponding output 

For large frequencies, the magnitude 
response is small and thus signals 
with large frequencies is attenuated 
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will be large. or blocked.
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Lowpass systemsLowpass systems
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Bode plot Bode plot 

The plots of the magnitude and phase responses of a transfer function are called the 

Bode plot. The easiest way to draw Bode plot is to use MATLAB (i.e., bode function). 

H th t i k th t h l t k t h B d l t ( i ti )However, there are some tricks that can help us to sketch Bode plots (approximation) 

without computing detailed values. To do this, we need to introduce a scale called dB 

(decibel) Given a positive scalar its decibel is defined as For example)(l20(decibel). Given a positive scalar a, its decibel is defined as                   . For example,)(log20 10 a

dB 00)(log201 10  aaa

dB 2020)(log2010 10  aaa

dB4040)(log20100 10  aaa )(g10

dBin  dBin  )(log20)(log20)(log20 101010   aa

dBin dBin )(log20)(log20)(log20 101010 



  aa

In the dB scale, the product of two scalars becomes an addition and the division of 

107
two scalars becomes a subtraction.
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Bode plot Bode plot –– an integratoran integrator

We start with finding the Bode plot asymptotes for a simple system characterized by 

901)()(1)(1)( 
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 jHjH
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Examining the amplitude in dB scale, i.e.,
js
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it is simple to see that
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Thus, the above expressions clearly indicate that the magnitude is reduced by  20 dB20 dB

108
when the frequency is increased by 10 times10 times. It is equivalent to say that the magnitude 

is rolling off 20 dB20 dB per decade.
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The phase response of an integrator is  9090 degrees, a constant. The Bode plot of an 

integrator is given by
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Bode plot Bode plot –– an differentiatoran differentiator

( )The Bode plot of               can be done similarly…( )H s s
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Bode plot Bode plot –– a general first order systema general first order system

The Bode plot of a first order system characterized by a simple pole, i.e.,
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These give us the approximation (asymptotes) of the Bode curves…



ExampleExample

Consider a 1st order system where 10 rad/sec is called the corner1)(HConsider a 1st order system                         where 1 = 10 rad/sec is called the corner 
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Bode plot Bode plot –– a simple zero factora simple zero factor

The Bode plot of                         can be done similarly…
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Bode plot Bode plot –– putting all togetherputting all together

A i t h l i l l d iAssume a given system has only simple poles and zeros, i.e.,
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Thus, the Bode plot of a complex system can be broken down to the additions and 

subtractions of some simple systems…
Copyrighted by Ben M. Chen



ExampleExample
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The actual Bode plot

Bode Diagram
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Bode plot of a typical 2nd order system with complex polesBode plot of a typical 2nd order system with complex poles

So far, we haven’t touched the case when the system has complex poles. Consider
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When  < 1, it has two complex conjugated poles at

 is called the damping ratio of the system

n is called the natural frequency

This 2nd order prototype is the most This 2nd order prototype is the most 

21   nn 

important system for classical control, important system for classical control, 

which is to be covered in Part 2.which is to be covered in Part 2.
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Examining
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Bode plot of the 2nd order prototype
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Polar plot Polar plot 

As mentioned earlier, the polar plot is another form to draw the frequency response 

of a system transfer function, which is general a complex function of . The Bode 

plot is to draw the magnitude and phase responses in a separate form. If we draw 

the magnitude and phase as a whole directly on a complex plane, it is called polar polar 

plotplot. 

The easiest way to draw a polar plot for a system, especially for a complicated y y y

system, is to use a computer. This is true for the Bode plots as well. 

By the way polar plots will be again in the second part in the topic related toBy the way, polar plots will be again in the second part in the topic related to 

Nyquist plots and Nyquist stability criterion of control systems. Bode plots will be 

heavily used in the second part as well.heavily used in the second part as well.

In what follows, we will show the polar plots of some systems studied earlier. Once 

i th d i MATLAB
120

again, they are done using MATLAB…
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Polar plots of some examplesPolar plots of some examples
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Impulse responseImpulse response

Given a linear time invariant systemGiven a linear time invariant system

HH((ss))
U(s) Y(s)

its unit impulse response is defined as the resulting output response corresponding to 

HH((ss))

p p g p p p g

a unit impulse input, i.e., u(t) = (t). Recall that the Laplace transform of (t) is 1. Thus, 

the unit impulse response is given by

     )()()()()()( 111 sHLsUsHLsYLtyth  

which implies the unit impulse response characterizes the properties of the system as 

well. In particular, we can characterize the given system in the time domain asp , g y

hh((tt))
u(t) y(t)

123

Copyrighted by Ben M. Chen

hh((tt))



What is the relationship among What is the relationship among uu, , hh and and yy??

Let us take a small piece of the input signal u(t) at t =  i eLet us take a small piece of the input signal u(t) at t  , i.e.,

 u ( t)  

t

u ( )  

   

   tu )(

When  is sufficiently small, we can regard the shaded portion in the above figure as 

t
0    

an impulse function. Since                 , by the properties of Laplace transform, we have)()( tht 

    )()()(  h

which is the output corresponding to the shaded portion of the input. The output 

    )()()(   thutytu

p p g p p p

response corresponding to the whole input signal u(t) is then given by



124
)()()()()()()()(

00
tuththtudthutdyty   
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ExampleExample

Find the output response of the following system using the convolution integralFind the output response of the following system using the convolution integral

u(t) = 1(t) y(t)1)( sH

The unit impulse response is

1
)(




s
sH

p p

  te
s

LsHLth  







1

1)()( 11

The output response

tttt
eededtuhdtuhtuthty 


  1)()()()()()()(  

If we compute it using Laplace and inverse Laplace transforms, i.e.,

eededtuhdtuhtuthty   1)()()()()()()(
0000



which yields the same solution! However it is much easier to do it using by the latter

    te
ss

L
ss

LsUsHLsYLty  










 


 1
1

111
1

1)()()()( 1111
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which yields the same solution! However, it is much easier to do it using by the latter.



ExampleExample

Consider the unit impulse response of the following two systemsConsider the unit impulse response of the following two systems
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

s
sH 5s

  te
s

LsHLth 51
2

1
2 5

1)()(  








1s

  te
s

LsHLth  







1

1)()( 1
1

1
1

0.9

1
Impulse Response



0.9

1
Impulse Response

Im

0.5

0.6

0.7

0.8

m
pl

itu
de

0.5

0.6

0.7

0.8

A
m

pl
itu

de

Re


0.1

0.2

0.3

0.4

A
m

0.1

0.2

0.3

0.4

A

0 1 2 3 4 5 6
0

Time (sec)

0 1 2 3 4 5 6
0

Time (sec)

Observation:Observation: The farther the system pole is located to the left in the left-half plane 

126
(LHP), the faster the output response is decaying to zero.
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Step responseStep response

Gi li ti i i t tGiven a linear time invariant system

HH(( ))
U(s) Y(s)

its unit step response is defined as the resulting output response corresponding to a

HH((ss))
( ) ( )

its unit step response is defined as the resulting output response corresponding to a 

unit step input, i.e., u(t) = 1(t). Recall that the Laplace transform of 1(t) is 1/s. Thus, the 

unit step response is given byunit step response is given by

  



  )(1)()( 11 sHLsYLty

It can also be evaluated by using the convolution integral, i.e.,

  
)()()( sH

s
LsYLty

y g g

 
ttt

dhdtuhdthuthtty
000

)()()()()()()(1)( 
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Unit step response for the 2nd order prototypeUnit step response for the 2nd order prototype

This is very important for the 2nd part of this course in designing a meaningful controlThis is very important for the 2nd part of this course in designing a meaningful control 

system. We consider the 2nd order prototype

)1()(2
)( 222

2

22

2













nn

n

nn

n

sss
sH

 is the damping ratio of the system

n is the natural frequency

It can be shown that its unit step response 

is given as
21   nn 

is given as

( ) 1 cos sint
d d

d

y t e t t  


  
   

 
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Unit step response for the 2nd order prototype (cont.)Unit step response for the 2nd order prototype (cont.)

Graphically,

129
It can be observed that the smaller damping ratio yields larger overshoot.
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Unit step response for the 2nd order prototype (cont.)Unit step response for the 2nd order prototype (cont.)

The typical step response can be depicted as 
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Effect of an additional system zeroEffect of an additional system zero
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Clearly, the farther the system zero is located to the left on LHP, the lesser the system 
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output response is affected. However, settling time is about the same for all cases.

Copyrighted by Ben M. Chen



Effect of an additional system poleEffect of an additional system pole
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Again, the farther the additional system pole is located to the left on LHP, the lesser the 
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system output response is affected. For small p0, rise time & settling time are longer.



System stabilitySystem stability

E l 1 C id t ith t f f ti
as

e at


 1

Example 1: Consider a system with a transfer function,

1)( sH
U(s) = 1 Y(s)

1
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sUsHsY

From the Laplace transform table we obtain )(50)( ttt From the Laplace transform table, we obtain )(5.0)( tt eety 

This system is said to be unstable because the 
12000

This system is said to be unstable because the 

output response y(t) goes to infinity as time t is 

getting larger and large  This happens because )(ty 6000
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10000

getting larger and large. This happens because 

the denominator of H(s) has one positive root at    

s = 1

)(ty
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Example 2: Consider a closed-loop system with,

U(s) = 1 Y(s)

23
1)( 2 


ss

sH
U(s) = 1 Y(s)

We have

2
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1
1

)2)(1(
1
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1)()()( 2 
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
ssssss

sUsHsY

From the Laplace transform table, we obtain tt eety 2)(  

This system is said to be stable because 0.2

0.25

the output response y(t) goes to 0 as time t

is getting larger and large. This happens )(ty
0.1

0.15

because the denominator of H(s) has no 

positive roots.0.05
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A given system is stablestable if the system does not have poles on the right-half plane 

(RHP). It is unstableunstable if it has at least one pole on the RHP. In particular,

marginallymarginallymarginally marginally 
stablestable

t blt bl

stablestable

unstableunstable

The above diagram also shows the relationship the locations of poles and natural 

135

Copyrighted by Ben M. Chen

responses.



Annex: some useful MAnnex: some useful MATLABATLAB commandscommands

• LAPLACE is to generate the Laplace transform of the scalar time-domain function.LAPLACE is to generate the Laplace transform of the scalar time domain function.

• ILAPLACE is to generate the inverse Laplace transform of the scalar s-domain function.

• IMPULSE plots the impulse response of a linear system.p p p y

• STEP plots the step response of a linear system.

• BODE gives the Bode plot of a linear system.g p y

• ROOTS computes the roots of a polynomial (can be used to compute system poles & zeros).

• PLOT is to generate a linear plot (there are many options available for plotting curves).

• SEMILOGX is to generate a semi-log scale plot (see those Bode plots).

• POLAR is to generate a polar plot of a complex-valued function.

• LOG10 computes common (base 10) logarithm. LOG is for the natural logarithm.

• ANGLE is to compute the angular of a complex number. 

• ABS is to compute the magnitude of a complex number.

• EXP is the exponential function.

136
• SIN, COS, TAN, ASIN, ACOS, ATAN. To learn more about MATLAB functions, use HELP…
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That’s all, Folks!That’s all, Folks!That’s all, Folks!That’s all, Folks!That s all, Folks!That s all, Folks!That s all, Folks!That s all, Folks!

Thank YouThank You…
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