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Course Outlines
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Topics to be covered in Part 1...

1.

Introduction to systems

Properties of dynamic systems — causality, stability, time invariance, linearity.

Time domain models of linear time invariant systems
Differential equation models of linear systems, Dynamic responses (natural,
force and complete responses), First order transients — RC and RL circuits,

Second order RLC circuits, State representation.

Frequency domain description of systems
Review of Laplace transforms, transfer functions — poles and zeros, Response

to sinusoidal inputs, Frequency response, Bode and polar plots.

Properties of linear time invariant systems
Steady state versus transient response, impulse response, step response,
convolution, Relationship between poles and natural response, Input-output

stability, Stability analysis via poles. .
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Textbook

A. B. Carlson, Circuits, PWS Publishing Company, New York, 1999.

References

T. S. EIAli and M. A. Karim, Continuous Signals and Systems with MATLAB, CRC
Press, New York, 2001.

C. W. de Silva, Modeling and Control of Engineering Systems, CRC Press, 2009

L. Qiu and K. Zhou, Introduction to Feedback Control, Pearson, 2010

Online Materials

e Control Tutorials at http://www.ece.ualberta.ca/~tchen/ctm/index.htmi

e Lecture Notes of 2nd Reference: http://www.mech.ubc.ca/~ial/ialweb/courses.htm
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L_ectures

Attendance is essential.

Ask any question at any time during the lecture.
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Tutorials

There will be a total of 6 tutorial hours for this part. Another 6 more for the second

part.
You should make an effort to attempt each question before the tutorial.

Some of the questions are straightforward, but quite a few are difficult and meant

to serve as a platform for the introduction of new concepts.

Ask your tutor any question related to the tutorials and the course.
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L_abs and Final Examination

There will be two lab experiments for this module. Your two lab report

marks will be counted as 30%. Hence, your final grade for this module

will be computed as follows:

Your Final Grade

15% of Lab Experiment 1
+ 15% of Lab Experiment 2

+ 70% of Final Examination

/
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Introduction to Systems
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What is a system?

Definition 1 (from a dictionary):

A system is a functionally related group of elements.

Definition 2 (from a dictionary):

A system is a group of things working together as a whole.

Definition 3 (from the reference by EiAli and Karim):
A system is an assemblage of things that are combined to form a complex

whole.

Examples include educational systems such as NUS, financial systems such as
stock market, social systems such as government, weather, the human body,

electrical systems such as electric circuits, mechanical systems, etc...
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Examples on some systems of interest...

N
3Q 1
N v B 1_2H
. 7
1 —t>
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What is a control system?

. . . Information
INPUT aircraft, missiles,
Desired i to the T about the
Performance | | Difference systems, cars, etc system:
FRROR system -
REFERENCE UTPUT /

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Key Issues: 1) How to describe the system to be controlled? (IModeling)

2) How to design the controller? (Control)
11
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Some Control Systems Examples:

REFERENCE

|
+ L |

Desired Government

Economic System

Performance Policies
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An actual control system demo
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lllustration for the video demo of a flight control system...

1. standby 2. takeoff 3. hovering 4.slithering 5. head turning 6. pirouetting

7. wheeling 8. backward down spiraling 9. hovering 10. landing 11. standby
A
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National University
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Back to systems — block diagram representation of a system

t t
u(t) System Yo

A 4

u(t) is a signal or certain information injected into the system, which is called the
system input, whereas y(t) is a signal or certain information produced by the
system with respect to the input signal u(t). y(t) is called the system output. For

example,

input: voltage source

output: voltage across R,

R,
y(t) = R +R, u(t)

16
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Linear systems

t t
u(t) System Yo

A 4

Let y,(t) be the output produced by an input signal u,(t) and y,(t) be the output

produced by another input signal u,(t). Then, the system is said to be linear if
a) the input is « u,(t), the output is a y,(t), where «is a scalar; and
b) the input is u,(t) + u,(t), the output is y,(t) + y,(t).

Or equivalently, the input is o u,(t) + gu,(t), the outputis ay,(t) + Sy,(t). Such a

property is called superposition. For the circuit example on the previous page,

R R R
t)=——=2—|au, (t)+ Lu,(t)]|= 2__u,(t)+ 2
y(t) R +R, loeu, (©) + Bu, ()] aR1+R2 10) 'BR1+R2

u,(t) =a y,(t) + By, (t)

It is a linear system! We will mainly focus on linear systems in this course.
17

Copyrighted by Ben M. Chen



Example for nonlinear systems

Example: Consider a system characterized by

y(t) =100u?(t)

Step One:
Yy (t) =100u; (t) & y,(t) =100-u;(t)

Step Two: Let u(t) =u, (t) +u,(t), we have

y(t) =100u(t) = 100[u, (t) +u, (t)]* =100[u, (t) + us (t) + 2u, (t)u, (t)]

=y, (t) + Y, (t) + 200u, (t)u, (t) # v, (1) + Y, (1)
The system is nonlinear.

Exercise: Verify that the following system

y(t) = cos(u(t))

IS a nonlinear system. Give some examples in our daily life, which are nonlinear.
18
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Time invariant systems

t t
u(t) System Yo

A 4

A system is said to be time-invariant if for a shift input signal u(t-t;), the output of

the system is y(t—t,). To see if a system is time-invariant or not, we test
a) Find the output y,(t) that corresponds to the input u,(t).
b) Let u,(t) = u,(t-t,) and then find the corresponding output v, (t).
c) If y,(t) = y,(t-1,), then the system is time-invariant. Otherwise, it is not!
In common words, if a system is time-invariant, then for the same input signal, the

output produced by the system today will be exactly the same as that produced

by the system tomorrow or any other time.

19
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Example for time invariant systems

Consider the same circulit, i.e.,

R, |
y(t) = R +R, u(t)

Obviously, whenever you apply a same voltage to the circuit, its output will always

be the same. Let us verify this mathematically.

Step One:

R R
Y1(t): +2R 'ul(t) — yl(t_to):R +2R 'ul(t_to)

Rl 2 1 2

Step Two: Let y,(t) =u,(t -t ), We have

R R
t) = 2 __.u,(t) = 2 __.u(t=t)=v,(t—t
Y, (t) R +R, , (1) R +R, (t=t) =y, (t-t,)

By definition, it is time-invariant!
20
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Example for time variant systems

Example 1: Consider a system characterized by

y(t) = cos(t)u(t)

Step One:
V(B = Cos(t) Uy (1) =y, (t—ty) = COS(t —t,) U (t—t,)
Step Two: Let u,(t) =u,(t-t,), we have
Y, () = COS(t) U, (t) = COS(t) U, (t ~t,) # Y, (t —t,)

The system is not time-invariant. It is time-variant!

Example 2: Consider a financial system such as a stock market. Assume that you

invest $10,000 today in the market and make $2000. Is it guaranteed that you will
make exactly another $2000 tomorrow if you invest the same amount of money? Is

such a system time-invariant? You know the answer, don’t you?
21
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Systems with memory and without memory

1 System iy .

\ 4

A system is said to have memory if the value of y(t) at any particular time t, depends

on the time from — « to t;. For example,

J_ y dy(t) 1
ut) C um=C== = y(t)—EJ;u(t)dt

—!— y(t)

On the other hand, a system is said to have no memory if the value of y(t) at any

particular time t; depends only on the time t,. For example,

R, |
y(t) = R R, u(t)

22
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Causal systems

1 System iy .

\ 4

A causal system is a system where the output y(t) at a particular time t, depends on

the input for t <t,. For example,

+ t
u(t) C J‘ U(t)=C¥ = y(t)=é£u(r)dr

—!— y(t)

On the other hand, a system is said to be non-causal if the value of y(t) at a particular

time t, depends on the input u(t) for some t > t,. For example,

y(t)=u(t+1)

in which the value of y(t) at t = 0 depends on the input at t = 1.

23
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System stability

1 System iy .

\ 4

The signal u(t) is said to be bounded if |u(t)| < <« for all t, where gis real scalar. A
system is said to be BIBO (bounded-input bounded-output) stable if its output y(t)
produced by any bounded input is bounded.

A BIBO stable system:

YO =¢0 = [yol=[e

S‘eﬂ‘:eﬂ<oo

A BIBO unstable system:

t t t
y(t) = ju(r)dr Let u(t) =1, which is bounded. Then, y(t) = ju(r)dr = Idr =0

—00 —00

24
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Some Preliminary Materials
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Operations of complex numbers

Coordinates: Cartesian Coordinate and Polar Coordinate

l / -y
1245 - 13608 - JIF r 5 & e
_— ” o
real part  imaginary part magnitude  argument

Euler's Formula: | el = cos(@) + j sin(6)

Additions: It is easy to do additions (subtractions) in Cartesian coordinate.

(@+ jb)+(v+ w)=(a+Vv)+ j(b+w)

Multiplication's: It is easy to do multiplication's (divisions) in Polar coordinate.

|6
re’ . ue'” = (ru)e!” e _ T gie-o)
ue™ U
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Symbols of voltage and current sources

The circuit symbols of voltage and current sources (either DC or AC) used in this part

of the course are:

1O 10

Basically, the arrow and the value in the voltage source signifies that the top terminal
has a potential of v (could be either positive or negative) with respect to the bottom
terminal regardless of what has been connected to it. Similarly, the arrow and the
value of the current source signifies that there is a current i (could be either positive

or negative) flowing upwards.

27
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Remark: The following symbols for the voltage source are identical:

O O Wl O

Note that on its own, the arrow does not correspond to the positive terminal.
Instead, the positive terminal depends on both the arrow and the sign of the

voltage which may be negative.

28
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Capacitor

A capacitor consists of parallel metal For dc circuits:

plates for storing electric charges. The

circuit symbol for an ideal capacitor is: v(t) = constant = d\éit) =0 = i(t)=0

I
1(t) and the capacitor is equivalent to an
open circuit:
v (1) T — C | |
i(t)=0 Vi()=0

Provided that the voltage and current

| v(t) = constantT _|_ C
|
|

arrows are in opposite directions, the

voltage-current relationship is: . _
This is why we don’t consider the

_ dv(t) capacitor in DC circuits.

29
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Inductor

- e~

An inductor consists of a coil of wires for
establishing a magnetic field. The circuit
symbol for an ideal inductor is:

I (t)

v(t)T L

Provided that the voltage and current

D_

arrows are in opposite directions, the

voltage-current relationship is:

v(t)= L 90

T dt

For dc circuits:
i(t) = constant = d:j—(tt) =0=v(t)=0

and the inductor is equivalent to a short

circuit;

I (t) = constant

v(t):OT L

H
<
~—~
—t
N
I
o

That is why there is nothing
interesting about the inductor in DC

circuits.

30
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Basic laws for electrical systems

resistor capacitor inductor

! i (t) \‘/ (1)
: : dv di
vT v(t)TTc | Cdt V()T B

Kirchhoff’'s Voltage Law (KVL): Kirchhoff’'s Current Law (KCL):
The sum of voltage drops around any The sum of currents entering/leaving a
close loop in a circuit is 0. node/closed surface is 0.

VAV, V4,4V =0

L+, +1;+1, +1;=0

31

Copyrighted by Ben M. Chen



Basic mechanical systems

"~ ~— —~ o~ x n~—

Ciniiim ~Acce ovota
OPIHTIY-ITIAdSS SyolElll

Animation courtesy of Dr.

Dan Russell, Kettering

position
=

-1f ] University

t 10 1t 20 25
time.
B LAaE L Spanew
modified by DR ussd ], 1397

Newton’s law of motion

Mass-spring-damper system

B f
> —» m
ff:ii
T m
~ —

f =ma=mx
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Linear differential equations

General solution:

nth order linear d"x(t d" x(t

differential equation T“() +a,, dt—”l() +---+ agx(t)=u(t)
General solution X(t) = x (t) + x, (t)

Steady state response X, (t) = particular integral obtained from assuming
with no arbitrary solution to have the same form as u(t)
constant

Transient response with | x, (t) = general solution of homogeneous equation
n arbitrary constants d"x, () d"x, (t)

dt—”+ 1T g + o+ agX, (t)=0

33
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—i
:
]
)
z
)
s
)
)
)
)
!
)
3
]
)

nth order linear
homogeneous equation

%00, d"n (0

dtn n-1 dtn_]_ +oeeet aOth’(t):O

Roots of polynomial
from homogeneous
equation

roots:z,,--,z,

givenby (z-z,)---(z-z,)=z" +a,_, 2"+ --- + a,

General solution
(distinct roots)

X, (t) =k,e? +...+k e™

General solution
(non-distinct roots)

X (t) = (ke + Kot + Kot )& + (K, + ket) €2t + kee™ + k,e*®
If roots are 13,13,13, 22, 22,31, 41

34

Copyrighted by Ben M. Chen



Particular integral:

X, (t) Any specific solution (with no arbitrary constant)
of

d"x(t) d"*x(t)

cor A +---+ayX(t)=u(t)
Method to determine Trial and error approach: assume x(t) to have
X () the same form as u(t) and substitute into

differential equation

Example to find x_(t) for | Try a solution of he®

dx_(t)+2X(t):e3t dx(t) + 2x(t) = e*=3he™ +2he*=e* =h=0.2
dt dt
X (t) = 0.2e*
Standard trial solutions u(t) trial solution for x(t)
e he”
t ht

te”  (h+h,t)e”
acos(wt)+bsin(wt) h, cos(wt)+h, sin(wt)

35
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Time-domain System Models
&

Dynamic Responses
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RL circuit and governing differential equation

Consider determining i(t) in the following series RL circuit:

)V V- i (t)

t=0 50

40T T e

where the switch is open for t <0 and is closed for t > 0.

Since i(t) and v(t) will not be equal to constants or sinusoids for all time, these
cannot be represented as constants or phasors. Instead, the basic general

voltage-current relationships for the resistor and inductor have to be used:

37
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Fort<O

51(t)

10O

i(t)=0

voltage cross

over the switch

5i(t) =0
/ <—
/ ///
5

[ =780

i1(t)=0

T v(t) = 7 d(j?) -0

38
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@ s
<— <—
5
1O
Applying KVL:

7w+5i(t):37 t>0
dt

and i(t) can be found from determining the
general solution to this first order linear
differential equation (d.e.) which governs

the behavior of the circuit for t > 0.

Mathematically, the above d.e. is often

written as
79$Q+5K0:u@)t20

where the r.h.s. is u(t):B, t>0

and corresponds to the dc source or

excitation in this example.
39

Copyrighted by Ben M. Chen



Steady state response

Since the r.h.s. of the governing d.e.
7%(:)+5i(t)=u(t)=3, t>0

Let us try a steady state solution of
iSS (t) = k’

which has the same form as u(t), as a
possible solution.

t>0

7—diss(t)+5iss(t)=3
dt
= 7(0)+5(k)=3

:>sz
5

<

o
—

N
Il

ol w

<

7M 5i (t)=7 d

+5I —§+5§:3, t>0
dt dt\ 5 5

and is a solution of the governing d.e.

In mathematics, the above solution is
called the particular integral or solution
and is found from letting the answer to
have the same form as u(t). The word
"particular" is used as the solution is only
one possible function that satisfy the d.e.

40

Copyrighted by Ben M. Chen



In circuit analysis, the derivation of i(t) by letting the answer to have the same form

as U(t) can be shown to glve the steady state response of the circuit as t — oo,

{ > oo

W Using KVL, the steady state
° response is
1O 3w
3=0+5k +0 =5k
L_b =
5i(t) =5k 53
% -
= It)=—, 1o
W i (1) = k ) 5
5
d di(t) _

3l

v(t) =

at -9  Thisis the same as i(t).

41
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Transient response

To determine i(t) for all t, it is necessary to find the complete solution of the
governing d.e.

dit)  ciy_ iy a 1
7dt+5|(t)—u(t)—3, t>0

From mathematics, the complete solution can be obtained from summing a
particular solution, say, is(t), with i, (t): i(t)=i,(t)+i,(t), t=0

where i,(t) is the general solution of the homogeneous equation

. _ 54
7d:j—(tt)+5i(t)=0, (>0 > i () =ke ke 7, t=0
: where k; is a constant (unknown now).
7dlgt(t)+5itr(t) di, (t)
b

replaced by z 5
i, (t)=ke 7 —>0,t—o0
=77'+52°=72+5

5 Thus, it is called transient response.
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Complete response

To see that summing i(t) and i,(t) gives the general solution of the governing ODE

7910, it)=3, t=0

note that dt

: 3 d(3 3
i (1) = 5’ t>0 satisfies 7d—(gj + 5(gj =3, 120

. _§t . g d _§t —§t
i (t)=ke 7, t20  satisfies 7d[k1e 7 ]Jr 5[k1e 7 J: 0, t>0
t

v

- 3 ) (3
ss(t)+|tr(t)_ tke 7, 120 satisfies 7£5+k1e ! ]+5{5+k19 ! }_3

5
=P |i(t) =i (t)+i,(t)= §+k1e7t, t>0 | isthe general solution of the ODE

43
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A\
\%

response

t<0 t>0

Switch
close

transient response

Kk, is to be
determined later

4= completeresponse

0~ 44
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Note that the time it takes for the transient or zero-input response i.(t) to decay to

W T/ Nationa
hle f Sing;

1/e of its initial value is

Time taken for i, (t) to decay to 1/e of initial value :%

and is called the time constant of the response or system. We can take the

transient response to have died out after a few time constants. For the RC circuit,

Magnitude in Percentage

At the time equal to 3 time

4 constants, the magnitude is
" | about 5% of the peak.

| At the time equal to 4 time
_ -~ | constants, the magnitude is
e about 1.83% of the peak.

| At the time equal to 5 time
.-~ | constants, the magnitude is
about 0.68% of the peak

45
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Current continuity for inductor

To determine the constant k; in the
transient response of the RL circuit,
the concept of current continuity

for an inductor has to be used.

Consider the following example for

an inductor:

I
JORV

V(t)T B L =7/

di, (t
v (1) =7 st( )
7

|iL(t)vL(t) =Instantaneous power supplied|

46
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Niia tn th
L/uc W i

m
wn

3

to the inductor at t = 2 will go to infinity. Since it is impossible for any syste
deliver an infinite amount of power at any time, it is impossible for i (t) to

change in the manner shown.

In general, the current through an inductor must be a continuous function

of time and cannot change in a step manner.
*

Generally speaking, the properties of the current continuity for inductors
and the voltage continuity for capacitors (to be covered later) are used to
determine, respectively, the initial currents charged to inductors and

initial voltages charged to capacitors. These initial voltages and currents

are then used to find solutions to transient responses of electric circuits.

47
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Now back to our RL Circuit;

16)

7H Tvm

T—W
t=0 50

3
kl + 5
3 I
5
0,,
hm=aumsmm (1) = i (1) + iy (1)
close =2+ kle_%t, t>0

Using current continuity for an

inductor att = 0:

. 3 3
(t=0)=—+k, =0 = k, =—-
t=0)=2+1, =
0, t<O
AN 5
= i(t)= 3—38_7t, >0
5 b
1(t)=0,t<0 SV\‘litCh I(t) = i (t) + itrs(t)
close - % _ %e‘7t, >0
48
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RC circuit

Consider finding v(t) in the following RC

circuit:

A0 L Ol

where the switch is in the position
shown for t < 0 and is in the other

position for t > 0.

t<0

Taking the switch to be in this
position starting from t = —oo, the
voltages and currents will have
settled down to constant values for

practically all t < O.

i(t)=7 dv(t) _ _d (constant)

=0, t<0
dt dt

49

Copyrighted by Ben M. Chen



5 500
—A/N— af —A/N—
oy - dv(t)
\! '(t):7_dt
=0
v(t)T::?
5001 (t) =0
5 S
AN—s AV
500
i1(t)=0
lz
[v(t) :—2|T—— 7

5i(t) = 35d\(;_(tt)

< 500

_/\5/;\, AN—

i) = 7940

3T<> V(t)T::7 ’ <>l/2

Applying KVL:

35d\(;—£t)+v(t):u(t)=3, 20

which has a solution

V(t) = Vs (t) + Vi (1), 120
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(1) Steady state response

u(t)=3, t>0

v

v (t)=k, t>0
v

35m’a—st(t) fv (t)=3= 0+k=3=k=3

(2) Transient response

74\
359%$¥l+v“(0::0,t20

35 dvi (1) +V,, (1)

dt

dvgt(t) replaced by z

=3572' +72°=352+1

= v, (t)=ke? =ke 3, t>0

t>0

€= Completeresponse
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Voltage continuity for capacitor

To determine k; in the transient response of the RC circuit, the concept of

voltage continuity for a capacitor has to be used.

Similar to current continuity for an inductor, the voltage v(t) across a capacitor C

must be continuous and cannot change in a step manner.

Thus, for the RC circuit we consider, the complete solution was derived as:

2 t<0 -2, t<0
v@)z{ ’ = _t
L\'Iss(t)+\'ltr(t)’ t=0 3+ ke B 1>0
Att=0,
-2, t<0
v(0)=3+k =-2 = k,=-5 = V()= ot
3-5e %, t>0

52
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Second order RLC circuit

\

I'\V'\f\IAI\IF A nvm IIIIIII

NN W\
30 SH va 500 Q)

O ektm QI

Both switches are in the position shown for t < 0 & are in the other positions for t > 0.

=g
Fort<O . ,V\I()> N . AN
3

5 500
dv (t)

1O =l OF
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Taking the switches to be in the positions shown starting from t = — oo, the voltages
and currents will have settled down to constant values for practically all t <0 and the

important voltages and currents are given by:

— s
3 5 500
2O g,

O " L OF

Mathematically:

o4
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dv (t d2v(t :
Fort>0 21 dg) 35 dtg)l VL(t)_Lgl_de(
t t

2
- dv(t)j _ed vgt)
dt dt

10 "Ly, O

Applying KVL:

615,60

35—
dt dt

+v(t)=u(t)=11, t>0

Due to the presence of 2 energy storage elements, the governing d.e. is a second
order one and the general solution is

V(t)=vg(t)+v,(t), t=0 N
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(1) Steady state response

u(t)=11, t>0 = v (t)=k, t20 =p

2
35%5;@+21m/;—5t(t)+v53(t):0+0+k:11 —p | v (t)=11, t=>0

(2) Transient response

2
35d"—“2(t) 218 v,()=0, t>0 =P
dt dt
2 |
359 V"'Z(t) 218l v, (t) = 35224217'+2° = 3522421241
dt dt dv, (t)

—T > replaced by z
dt p y

—21+,/212-4(35)1) -21+17

= 7,2-= = = —0.548, —0.052
fr 2 2(35) 2(35)

v, (t) = ke + ke? =ke 1 ke % t>0 | € 56
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Complete solution (response) to be determined

ft) 2, t<0 (2 t<0
v () +v, (), t=0 |11+ ke "™ 4 ke t>0

(070 _ [0 t<0
g dt | 7(-0.548k,e %™ —0.052 ke °%%), t>0

To determine k; and k,, voltage continuity for the capacitor and current continuity

for the inductor have to be used.

The voltage across the capacitor att = 0:

v(0)=11+k, +k, =2 = Kk +k,=-9 O
k, =0.95

The current passing through the inductor at t = O: k, =-9.95

i(0) = —0.548k, —0.052k, =0 = 0.548k, +0.052k, =0 ~
57
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General RLC circuit

T dve (D] | ~dPve (D)
ot '.‘C dt2
Fort>0 < m
AN ] dv, (t
R L \ [i(t)=C (t:lrt()

(O =L fem

2
By KVL. Lcd Vt;(t) +RC dvi(t) +v, (t)=0, t=0
dt d
2
Lcd Vt;(t) cre M)y g = LCz%+RCZ41=0
dt dt dv,, (t)

—" X replaced by z
dt p y

~RC ++/(RC)%-4LC
E> 2,2, = SLC 58
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Recall that for RLC circuit, the Q factor is defined as

o AL 2 1 L _JLC
R R 2zJLC RJLC RC

LC
_ —RC+/(RC)y-4LC _ (RC)’ -R=*Ry1-4Q’
v 2LC - 2LC - 2L

—RC + RC\/1—4

two real distinct roots if 1-4Q%?>00rQ?<1/40rQ<1/2

= < two complex conjugate roots if 1-4Q2< 0 or Q > 1/2

. two identical roots if 1-4Q?=00rQ =1/2

The behaviors of the about cases will be studied in details later...

59
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A cruise control system

L._-» ¥ acceleration
A cruise-control

system friction

] [ force b x

By the well-known Newton’s Law of motion: f = m a, where f is the total force applied

— X displacement

force u

to an object with a mass m and a is the acceleration, we have

. . . b . wu
U—bx = mx & X+—X=—
m m

This a 2nd order Ordinary Differential Equation with respect to displacement x. It can

be written as a 1st order ODE with respect to speed v = x:

: u : . :
V+—V =— [« model of the cruise control system, u is input force, v is output.
m m

60
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Assume a passenger car weights 1 ton, i.e., m =100

in situation b = 100 N-s/m. Assume that the i y
engine is u = 1000 N and the car is initially parked, i.e., x(0) = 0 and v(0) = 0. Find the

solutions for the car velocity v(t) and displacement x(t).

For the velocity model,

\'/+Ev:E — Vv+0.lv=1
m m

The steady state response: It is obvious that v.. = 10 m/s = 36 km/h

The transient response: Characteristic polynomial z + 0.1 = 0, which gives z, = -0.1.

v, (t) =ke ™ = v(t)=v, +V, (t) =10+ ke "

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

v(0) = 0 implies that k;, = —10 and hence

Velocity (m/s)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

v(t) =V, +V, (t) =10-10e™*"

What is the time constant for this system? 0 ‘ ‘ | ‘ ‘
; 0 20 40 60 80 100
Time (second)



For the dynamic model in terms of displacement,
U —bx = m¥X e X+0.1x=1

The steady state response: From the solution for the velocity, which is a constant, we

can conclude that the steady state solution for the displacement is x. = v .t = 10t.

The transient response: Characteristic polynomial z2 + 0.1z = 0, which gives z, =-0.1

and z, = 0. The transient solution is then given by

X () = ke " +ke” =ke™" +k,

X(t) = Xss X (t) =10t + kle_o'lt + k2 = v(t)=x(t)=10- 0.1kle_0'1t

X(0) = 0 implies k; + k, =0 and v(0) = 0 implies 10 — 0.1 k; = 0. Thus, k; = 100, k, = — 100.

x(t) =10t +100e " —100

62
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Complete response for the car displacement

800
700 - e e
1 1 S
600 - ------ R e e R SRR -
| | e
| | //
‘E 500------- e A RREEE R -
g l l y
é | e
400 ------- R b -
| e
o 1 e 1
L300 - A -
° : / :
: // :
700 [ / 777777777777777777777 -
| e |
| s |
100 -
| // |
\/_/ :
Ol_f/_//; | | | ; 1 | |
0 10 20 30 40 50 60 70 80

Time (second)

Exercise: Show that the car cruise control system is BIBO stable for its velocity model

and it BIBO unstable for its displacement model.
63
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Behaviors of a general 2nd order system

Consider a general 2nd order system (an RLC circuit or a mechanical system or

whatever) governed by an ODE

ay(t) +by(t) +cy(t) = u(t)

Ilts transient response (or natural response) is fully characterized the properties of

Its homogeneous equation or its characteristic polynomial, i.e.,

ay(t)+byt)+cy(t) =0 = az’+bz+c=0

The latter has two roots at

Z 9

— 2_
_ bin 4ac: 2

2a

/

N~

two real distinct roots if b> —4ac >0
two complex conjugate roots if b? — 4ac <0

two identical roots if b2 —4ac =0

These different types of roots give different natures of responses. 64
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Overdamped systems

Overdamped response is referred to the situation when the characteristic polynomial

has two distinct negative real roots, i.e., ab > 0 & b? — 4ac > 0. For example,

y(t)+6y(t)+5y(t) =0

which has a characteristic polynomial,

2°+62+45=0 =1z,=-1-5 = y{t)=ke " +k,e™, y(t)=-ke" —5ke™

Assume that y(0) =0, y(0) = 4, which implies

y(0) =k +k, =0
} k =Lk, =<1~ o
y(0) =k, -5k, =4 P

and thus, T e

./‘

What is the dominating time constant?

Time (second)



Underdamped systems

Underdamped response is referred to the situation when the characteristic polynomial
has two complex conjugated roots negative real part, i.e., ab >0 & b? — 4ac < 0. For

example,

y(t) +2y(t) +101y(t) =0

which has a characteristic polynomial,

7249274101=0 — Z,, = 1+ le — y(t) _ kle(—lﬂ'lo)t n kze(_l_jlo)t _pt (klejIOt n kze—jlot)

y(t) = e[k, (cos10t + jsin10t) +k,(cos10t — jsin10t)] = e '[(k, +k,)cos10t + j(k, —k,)sin10t]

Assume that y(0) =0, y(0) =10 which implies

y(0)=k, +k, =0
y(0) = —(k; +k;,) + J10(k,—k,) =10

} J(ki=ky) =1 = y(t) =etsin10t

The time constant for such a system is determined by the exponential term.
66
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Underdamped response

Magnitude

Time (second)

67
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Critically damped systems

Critically damped response is corresponding to the situation when the characteristic

polynomial has two identical negative real roots, i.e., ab > 0 & b? — 4ac = 0. For example,

y(t)+2y(t)+y(t) =0

which has a characteristic polynomial,

2°+27+1=0 =7,=-1 = y(t)=ke" +kte" =e"(k +ky)

Y(t) =e" (kz - kl - kzt)

Assume that y(0)=1, y(0) =1, which implies L.
0)=k, =1
| y(0) =k, } K =1k, =2
y(0) =k, —k; =1 Z
and thus ]

y(t)=e " (1+2t)




Never damped (unstable) systems

Never damped response is corresponding to the situation when the characteristic

polynomial has at least one root with a nonnegative real part. For example,

y(t)—y(t)=0

which has a characteristic polynomial,

2°-1=0 =7z,=1t1 = yt)=ke +ke' = y(t)=-ke" +kye'

Assume that y(0) = 2, y(0) = 0. Which implies

0)=k, +k, =2 pOS E 7
y( ) : i } kl — kZ :1 350’""”’””””"*"”fi fffffffffffffffffffff /J
y(O):kz_k1:O

and thus

Magnitude

y(t)=e" +¢

It is an unstable system. We'll study more onit.

Time (second)



Review of Laplace Transforms
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Introduction

Let us first examine the following time-domain functions:

l‘ ! | /‘\ |
\\ : / \ : //
\ / -/
| /
s R R R
s | | =
05 - N A GRS R
\\ *: //’/ \\ i :
-1‘ | :\‘ //‘ | | | ‘\\\ //‘ : _2\ L L L L L L : L L |
o 1 2 3 4 5 6 7 8 9 10 o 1r 2 s 4 5 6 7 &8 9 10
Time in Seconds Time in Seconds
A cosine function with a frequency f = 0.2 Hz. X(t) = cos(0.4xt)+sin(0.87t )cos(1.6t )
Note that it has a period T = 5 seconds. What are frequencies of this function?

Laplace transform is a tool to convert time-domain functions into a frequency-domain
ones in which information about frequencies of the function can be captured. It is
often much easier to solve problems in frequency-domain with the help of Laplace

transform. -
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Laplace Transform

Given a time-domain function f (t), the one-sided Laplace transform is defined as

follows:

F(s)=L{f ()= [f(edt, s=o+ jo

where the lower limit of integration is set to 0~ to include the origin (t = 0) and to capture

any discontinuities of the function at t=0.

The integration for the Laplace transform might not convert to a finite solution for
arbitrary time-domain function. In order for the integration to convert to a final value,

which implies that the Laplace transform for the given function is existent, we need

[F(S)|=

[ f (et ionqy
J

< J[F@)-e et =[] f0)]-e "'dt <oo
0 0

for some real scalar o= o . Clearly, the integration exists for all o> o, which is called

the region of convergence (ROC). Laplace transform is undefined outside of ROC.
72
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ANUS
NG
Example 1: Find the Laplace transform of a unit step function f(t) = 1(t) = 1, t > 0.

:_Ee_oo _(_Eeoj:_l.o_(_l.ljzl
0 S S S S S

Clearly, the about result is valid for s = o+ jo with o> 0.

F(s) = [1(t)edt = [e dt = — ¢
0 0 S

Example 2: Find the Laplace transform of an exponential function f (t) =e =2t t > 0.

o0 B 0 B B o0 B 1 B o8] 1
I:@):jf(oesﬂt:jea%sﬂtzje(“wﬂt:—u———e(“”t -

0 0 0 S+a o o+a
Again, the result is only valid for all s = o+ jo with > — a.
_,*/ imag axis "\._‘ _,-‘/‘ imag axis "\I
i A : | A
i L '
| : ' :
: . realaxis| | . real axis |
| 0 S —a
i . I
| : |
| N |
. ROC for Example 1 VAN ROC for Example 2 /13



Example 3: Find the Laplace transform of a unit impulse function ¢ (t), which has the

following properties:
1. §(t):0fort¢0 Nl _
2.0(0) >

3. [s(tdt=1 [f®)st)dt=f(0) forany f ()

4. o (t) is an even function, i.e., o (t) = 0 (-t) .

Its Laplace transform is significant to many system and control problems. By definition,

LSt} = [S(t)edt=e® =1

.
Its ROC is the whole complex plane.

Obviously, impulse functions are non-existent in real life. We will learn from a tutorial
guestion on how to approximate such a function.

74
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Inverse Laplace Transform

Given a frequency-domain function F(s), the inverse Laplace transform is to convert
it back to its original time-domain function f (t).

RQC

f(t)=L"[F(s)]= %q}jw F(s)e®ds 0'1

01— joo

v

This process is quite complex because it requires knowledge about complex analysis.
We use look-up table rather than evaluating these complex integrals.

The functions f(t) and F(s) are one-to-one pairing each other and are called Laplace

transform pair. Symbolically,

f(t) < F(s)

75
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Properties of Laplace transform:

1. Superposition or linearity:

L{al f,(D)+a,f, (t)} = alL{fl(t)}+ azL{fz (t)} =a,F(s) +a,F,(s)

Example: Find the Laplace transform of cos(wt). By Euler’s formula, we have
cos(at) = %[ej“" +e o]
By the superposition property, we have

Ir jot —jm7] 1 w1 1 jot
L[cos(a)t)]:L{E[e +e ]}_EL[e }LEL[e ]

21 1 N 1 _E.S+ja)+s—ja): S
2|\ s— jo S+ jo 2 (s—-jo)(s+ jo) s*+o°

76
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2. Scaling:

If F(s) is the Laplace transform of f(t), then

L[f (at)]:éF(ij

a

Example: It was shown in the previous example that

S
Llcos(at)|= ———
[cos(at)] = ——
By the scaling property, we have
S I S ]
1 9 1 2 S
L{cos(2at) [= — =— =
lcos(2et)] 2s*  , 2|s°+4w° | s*+4w’
— +tw
4 4

which may also be obtained by replacing o by 2w. -
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3. Time shift (delay): f(t)

If F(s) is the Laplace transform of f(t), then /\/\\/

f(t—a)

L[f(t—a)-1(t—a)]=e*F(s) _

For a function delayed by ‘a’ in time-domain, the equivalence in s-domain is

multiplying its original Laplace transform of the function by €7,

Example:

S
s% + @°

L[coswt]|= = Li{cos(w(t—a))-1(t—a)j=e™

s% + @?

78
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4. Frequency shift:

If F(s) is the Laplace transform of f(t), then

Lle®f(t)] = F(s + a)

Example: Given

S
cos(at) & ——— and sin(wt) < @
S tw s° + @’

Using the shift property, we obtain the Laplace transforms of the damped sine and

cosine functions as

L{e‘at cos(a)t)}: s +Z;i g~ and L{e‘at sin(a)t)}:

W
(s+a)’ +

79
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5. Differentiation:

{dzit)} L{f ()} =sL{f(t)}-f(0)=sF(s)—f(0)

{d d: (t)} L{f (t)}=s’L{f ()} —sf (07) = £'(0") =2 F(s)—sf (07) - £'(0")

6. Integration:
{jf }:—L {f(t)}= —F(S)

Example: The derivative of a unit step function 1(t) is a unit impulse function &t).

d
10 =50)

Lo}~ L G20} - sL0}-100) =52 -0-1] | Lb}=L Jotehc) =L Liow) -

0

|_\

S

80
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7. Periodic functions:

If f (t) is a periodic function, then it can be represented as the sum of time-shifted

functions as follows: )
<

—)

f(t)=f,(t)+ f,(t) + fy(t) +- |
= fl(t)+ fl(t—T)+ fl(t_ZT)+

Applying time-shift property, we obtain

F(s)=F,(s)+F(s)e™ +F,(s)e ...

o F(s) |- f(te™dt
=F(s)1+e ™ 4. )= 12220
l( )( ) 1_e_s'|' 1_e_sT

81
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8. Initial value theorem:

Examining the differentiation property of the Laplace transform, i.e.,

{d; it)} L{E @)= sL{F @)1= £(07) = sF(s)— F(0°)
we have

SF(s)— f(07) = L{d‘;f)} w%eﬁdt:?e-“df () >0, as 5 —>

Thus,

f(07) >sF(s), as s—wo or| f(0)=Ilim[sF(s)]

S—0

This is called the initial value theorem of Laplace transform. For example, recall that

f(t)=e ™ cos(at) < F(s)= S+2a 2
(s+a) +w
s(s+a s® +as
f(0)=e’cos(0) =) < !lm[SF(S)]—!Im (a)2+)a)2:!imsz+2as+(a2+a)2)@

82
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9. Final value theorem:

Examining again the differentiation property of the Laplace transform, i.e.,

{dfd ?)} L @)= sL{f (O} F(0) = sF(s)— £ (0)

we have

lim[sF (s) = f(07)] = lim L{df (t)} |imwif)eStdt:w%emdt:f(t)\j — f(c0)— f(07)

s—0 s—0 dt $s—0 - d 0~
Thus,
The result is only valid for a function whose
f () = lim[sF (s)] F(s) has all its poles in the open left-half
50 plane (a simple pole at s = 0 permitted)!

This is called the final value theorem of Laplace transform. For example,

f)=e*cos(wt) < F(s)= s+2a 5
(s+a) +w
fo)=ecos(0) =0 < limIsF()]=lim-—Ct 2 = lim S

550 2 +2as+(a% + ®?)
83
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Summary of Laplace transform properties

Property f (1) F (s)

Linearity a1f1(t) +acfa(t) |a1F1(s) 4+ axFa(s)
Scaling f(at) LF(%)

Time shift f(t —a)u(t —a) e W5 F(s)
Frequency shift e~ () F(s+a)

Time derivative %Sf) sPE(s)—s""1f(07)—s"2f (07)—...—s0f(n=1)(0™)
Time integration i f(&)dg %F(s)

Time periodicity f(t) = f(t+nT) 12(;’;

Initial value f(0) Jim [sF(s)]

Final value £(0) lim [s(s)]
Convolution f1(t) ® fo(t) F1(s)F>(s)

24
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Some commonly used Laplace transform pairs

85
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Why Laplace transform?

Allows us to work with algebraic

equations rather than differential

equations.
Provides an easy way
to solve system
Applicable to a Laplace transform is oroblems involving
wider variety of significant for many initial conditions.
inputs than phasor reasons

analysis

Capable of giving us the total response (natural

and forced) of the circuit in one single operation.

86
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Frequency-domain Descriptions

of Linear Systems
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Reconsider the series RLC circuit

dv| [vo=L— =5

/ \ 2
58 (o)
3|—21a dt dt t dt
(t) )
A AN

|0

dv
Tv(t) 1(0) = COIt

t=0

Applying KVL:

dd\t/()JerddEt) v(t)=u(t)=11 t=0

It was solved earlier by finding solutions directly on the time domain. The problem
can be solved in the frequency domain. From this point onwards, we will make use

of the Laplace transform to solve circuit and system problems.

88
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Taking Laplace transform on the both sides of the ODE, i.e.,

L{35d;\t’§t) + 21d(‘;§t) + v(t)} = L{u()}=L{11}=U(s)

Recall that

L{%} —sF(s)— (0), L{d zd‘;z(t)} — s2F(s)—sf (07) = £'(0")

we have

35-[s2 V (s) — sv(0) —V'(0)] + 21-[sV (s) = v(0)] + V (5) =U (s) = 131

=P  35.[s2V(s)-25]+ 21-[sV(s)—2]+V(s) =U(s)

—»  (3552+215+1)V(s)=U 70s+42) =p|V(s) =~ |

-~

'~ -
L P

frequency domain model of the circuit

due to external force due to initial conditions
89

i.e., force response l.e., natural response
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Examining

11/a) ZNe | A9 11 ZNe | N9
U \S fUS+ 4. 11 fUS + 42
V(s)= =7

3557 + 215 +1 " 3552+ 21s+1 5(35s% +21s +1) 3557 + 215 +1

s o 2+

s(s +0.052)(s+0.548) (s+0.052)(s+0.548)

Partial Fraction

A B C D E
=|—+ — — —
[s s+0.052 s+0.548} L+0.052 s+0.548}

The next step is to obtain these coefficients. Take the first term first...

1
Vi(S) = %5 é+ 5 + ¢

S(s+0.052)(s+0.548) s s+0.052 s+0.548

Multiplying both sides by s and let s = 0, we obtain

1 11/ ¢
%5 - %5 :ASJr Bs N Cs Ay B-0 s C-0
(0+0.052)(0+0.548)  s(s+0.052)(s+0.548) s s+0.052 s+0.548 0+0.052 0+0.548

and

A=sV,(s)_, =11

90
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Similarly, multiplying both sides by s + 0.052 and let s = — 0.052, we obtain

112c(s+0.052)  A(s+0.052) , B(5+0.052) C(s+0.052) N
5(5+0.052)(s + 0.548) s s+0052 510548
B = (s+0.052)V, (s
1l A(S+0052) . C(s+0.052) S ( M8 o
= +B+ =-12.185
s(s+0.548) S s+0.548 '
11/ A(-0.052+0.052) _ C(-0.052+0.052) -
12185 _ A0.05210052) 5 C(20.052+0.052) 7y
~0.052(~0.052 + 0.548) ~0.052 ~0.052+0.548

Lastly, multiplying both sides by s + 0.548 and let s = — 0.548, we obtain

110:(s+0548)  A(s+0.548) . B(s+0548) C(s+0.548) \
s(s+0.052)(s +0.548) S s+0.052 s+0.548
C =(s+0.548)V,(s)
1le A(5+0548) B(s+0548) > 195t
= + +C =1.156
s(s+0.052) S s+0.052 '
1
156 1 _ A(-0548+0.548) B(-0.548+0548) . .
—0.548(~0.548+ 0.052) 0.548 s +0.052
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Thus, we obtain

11 A B CcC 11 12185 1.156

5(s+0.052)(s +0.548) s

- - = -
$+0.052 s+0548 s s+0.052 s+0.548

The above method is called the residual method. Let us derive D and E for the 2nd

term of V(s) using a so-called coefficient matching method...

25 —|—4%5 B D n E B @
(s+0.052)(s+0.548) s+0.052 s+0.548

D(s+0.548) + E(s+0.052) (D+E)s+(0.548D +0.052E)
(s+0.052)(s+0.548) (s+0.052)(s +0.548)

which implies
D+E=2 D=221 @
—
0.548D + 0.052E =1.2 E=-021

254425 21 o2
(s+0.052)(s+0.548) s+0.052 s+0.548

92
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Finally, we get

V(s)= 11 . 70s + 42 1112185 1156 221 021
- S(s+0.052)(s+0.548) (s+0.052)(s+0.548) s $+0.052 $+0.548 s+0.052 s+0.548
and force r/eiponse naturaljr\esponse
4 A . A
V(t) — L—l {V (S)} _ L_l E_ 12185 n 1156 n L_l 221 B 021
s s+0.052 s+0.548 s+0.052 s+0.548

=11-12.185e %" +1.156e ***" +2.21e "% —0.21e *** =11-9.975¢*®* +0.946e ***

N J \ J N Y
NS Y N
force response natural response transient response

which is ‘almost’ the same as that obtained directly from ODE, i.e.,

V(t):{z, t<0 :{2, t<0

Vi (t)+v, (t)) t>0  [11-9.95e7%%" +0.95e % t>0

The difference is some computational errors.

What have we learnt? The same circuit problem can be solved using a totally

different approach! 93
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Summary of partial fraction technique

simple real poles

repeated real poles

I
!
v

) 4

T
!
v

complex poles pairs
|

|
v

A g

residual method or coefficient matching

| "7 LT TOTTAT
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Reconsider the cruise control dynamic model for displacement

U —bX =mX — X+0.1x=1

with x(0) = 0 and x'(0) = 0. Taking Laplace transform on both sides, we have

1
$*X(S) +0.1sX (3) «— L{x+0.1x} = L{1} > =
(5) (5) —Lix+0lj=Lilj> - g
X(8)=— ! =— ! :é+l32+ ¢
(s“+0.1s)s s°(s+0.1) s s s+0.1

Using the coefficient matching method, we obtain

1 A B C A+C=0 A=-100
X(s)=— =—+—+
s°(s+0.1) s s° s+0.1 0.1A+B=0 B=10
) 0.1B=1 C =100
_ As(s+0.1)+B(s+0.1)+Cs
— > )
s°(s+0.1) X (s) = 1OO+12)+ 100

S s° s+0.1
_ (A+C)s*+(0.1A+B)s+0.1B

s°(s+0.1) X(t) =10t +100e %% —100 | 9
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Frequency domain model of linear systems — transfer functions

Y Y Py || PR R [y IR | PR - NP [y
ODE is called a model in the time domain.

al

_ . . £
|

A linear system expressed in terms o
what follows, we will learn that the same system can be expressed in terms of a

rational function of s, the Laplace transform variable. Recall the cruise control system

U —bXx =mx & mX +bx =u

Assume that the initial conditions are zero. Taking Laplace transform on its both sides,

(ms” +hs) X (s) = ms*X () +hsX(s) < L{mx +bx} = L{u} ->U(s)

we obtain a rational function of s, i.e.,

H(g) =) > XO=HEUE -5 U
U(s) ms?+bs s +bs

H(s) is the ratio of the system output (displacement) and input (force) in frequency

domain. Such a function is called the transfer function of the system, which fully

characterizes the system properties. 96
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More example: the series RLC circuit

The ODE for the general series RLC circuit was derived earlier as the following:

d?v,(t) dv(t)
LC—5—2+ RC—=2 + v (t)=v(t
- R AURT0
Assume that all initial conditions are zero (note that for deriving transfer functions, we

always assume initial conditions are zero!).

(LCs? + RCs + 1)V, (5) « L{LC d (;’tcz( )+ RC d"gt(t) v, (t)} = L{v(t)} >V (s)

V. (5) 1 1
H(s) = —-C — % > V. (s)=H (s (s) = V (s)
5) V(s) LCs®+RCs+1 A T cs2 v RCs 41

H(s) is the ratio of the system output (capacitor voltage) and input (voltage source) in
frequency domain. The circuit (or the system) is fully characterized by the transfer

function. If the H(s) and V(s) are known, we can compute the system output. As such,

it is important to study the properties of H(s)! o7
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System poles and zeros

As we have seen from the previous examples, a general linear time-invariant system

can be expressed in a frequency-domain model or transfer function:

U(s)

\ 4

with

H(s)

Y(s)‘

~N(s) b,s"+b, ,s"+-+bs+b,

H(s)= D(s)

n n-1
s'+a,,S +--+aS+4a,

n is called the order of the system. The roots of the numerator of H(s), i.e., N(s), are

called the system zeros (because the transfer function is equal to O at these points),

and the roots of the denominator of H(s), i.e., D(s), are called the system poles (the

transfer function is singular at these points). It turns out that the system properties are

fully captured by the locations of these poles and zeros...

98
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Examples:

1 _

ms? +bs - s(s+%)

The cruise control system has a transfer function H (s) =

It has no zero at all and two poles at s=0, s= —%]

1
LCs? + RCs +1

The RLC circuit has a transfer function H (s) =

It has no zero and two poles at

: ~ —RC —/(RC)?-4LC : _ —RC +/(RC)*-4LC
b 2LC L 2LC

which are precisely the same as the roots of the characteristic polynomial of its ODE.

5s*-10s+5 5(s—1)°

— has two zeros (repeated)
s®+65°+11s+6 (s+1)(s+2)(s+3)

The system H (s) =

ats =1 and three polesat s=-1 s=-2, s=-3, respectively.
99
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Response to sinusoidal inputs

Let us consider the series RL circuit whose current governed by the following ODE

di(t) ...\ I(s) 0.2
5T+5|(t)—v(t) = (Bs+5)I(s)=V(s) = H()_V(S) i

Let the voltage source be a sinusoidal v(t) = cos (2t), which has a Laplace transform

S S A Bs+C
V(s) = = (s ——V =
s’ +4 (5) (8)= s+1 5 +4 s+1 s’ +4

Using the coefficient matching method, we have to match

(A+B)s*+(B+C)s+(4A+C)=0.2s 1 (s) = 0.04s+0.16 0.04 0.04s +0.08><2_0.04
ALB<0 __0.04 s° +4 s+1 s°+2° s°+2° s+l
—~ { B+C=02 = |B=004 D<
4A+C =0 C=0.16 L i(t) =0.04[cos(2t) + 2sin(2t) —e']

The steady state response is the given by

I (t) = 0.04[cos(2t) + 2sin(2t)] = 0.0894 cos(2t — 63.4349°). 100
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Let us solve the problem using another approach. Noting that v(t) = cos (2t), which® =
has an angular frequency of o = 2 rad/sec, and noting that the transfer function

I(s) 0.2

|_I(S):V(s) s+l

IS nothing more than the ratio or gain between the system input and output in the
frequency domain. Let us calculate the ‘gain’ of H(s) at the particular frequency

coinciding with the input signal, i.e., at s = jo with @ = 2.

H(j2)=H(jow) = 0.2 0.2 _ .0894¢ 1M1 _0.0894./ — 63.4349°

*=2  jp+1 - j2+1

w=2

It simply means that at o = 2 rad/sec, the input signal is amplified by 0.0894 and its
phase is shifted by — 63.4349 degrees. It is obvious then the system output, i.e., the

current in the circuit at the steady state is given by

I (t) =0.0894 cos(2t — 63.4349°).
which is identical to what we have obtained earlier. Actually, by letting s = jw, the

above approach is the same as the phasor technique for AC circuits. 101
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Frequency response — amplitude and phase responses

It can be seen from the previous example that for an AC circuits or for a system with a
sinusoidal input, the system steady state output can be easily evaluated once the
amplitude and phase of its transfer function are known. Thus, it is useful to ‘compute’

the amplitude and phase of the transfer function, i.e.,

H(io)=H ()|, =/H (i) £H(jo)

It is obvious that both magnitude and phase of H(jw) are functions of . The plot of
|[H(jw)| is called the magnitude (amplitude) response of H(jw) and the plot of ZH(jw) is
called the phase response of H(jw). Together they are called the frequency response
of the transfer function. In particularly, |H(0)| is called the DC gain of the system (DC is

equivalent to k cos(wt) with @ = 0).

The frequency response of a circuit or a system is an important concept in system
theory. It can be used to characterize the properties of the circuit or system, and used

to evaluated the system output response. 102
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Example:

Let us reconsider the series RL circuit with the foliowing transfer function:

I(s) 0.2 . 0.2 . . .
— H — % _|H . /H —_ % ,_tan
V(s) s+l = H(jo) 041 H(jw) (jo) N w

Thus, it is straightforward, but very tedious, to compute its amplitude and phase.

H(s) =

®=001 = \H(ja))\zO.Z, /H(jw)=-0.57" \ 02

015 i

w=0.1 H(jo) =0.199, ZH(jo)=-5.71

U

Magnitude
o
H

0=02 = |H(jw)=0.196, ZH(jw)=-11.31

w=05 = |H(jw)=0.179, ZH(jw)=-26.57

10° 10" 10° 10" 10° 10°

Frequency (rad/sec)

0=1 = [H(jo)=0141 LH(jo)=-45 >
0

= |H(je) =0.089, ZH(jow)=-63.43

e
Il
N

0=5 = |H(jw)=0.039, ZH(jw)=-78.69

=10 = |H(jw)=0.020, ZH(jow)=-84.29"

Phase (degrees)
S

®=100 = [H(jo)|=0.002, ZH(jo)=-89.43 P DU B | AR D
/ 10° 10° 10° 10 10 10

Frequency (rad/sec) 103

©=1000 = |H(jo)=0.0002, £H(jw)=-89.94]
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Note that in the plots of the magnitude and phase responses, we use a log scale =~

directly draw both

There is another way to draw the frequency response. i.e.

magnitude and phase on a complex plane, which is called the polar plot. For the

example considered, its polar plot is given as follows:

Frequency (rad/sec)
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|
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The red-line curves are more accurate plots using MATLAB.
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Thus, the corresponding output

At low frequencies, magnitude
will be large.

response is relatively a large.

What can we observe from the frequency response?



Lowpass systems

Lowpass System

o =0.1rad/sec

Lowpass System

w =10 rad/sec
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Bode plot

The plots of the magnitude and phase responses of a transfer function are called the
Bode plot. The easiest way to draw Bode plot is to use MATLAB (i.e., bode function).
However, there are some tricks that can help us to sketch Bode plots (approximation)
without computing detailed values. To do this, we need to introduce a scale called dB

(decibel). Given a positive scalar a, its decibel is defined as 20. log,, (a)- For example,

a=1 = 20-log,y,(a)=0 = a=0dB
a=10 = 20-log,,(a)=20 = a=20dB
a=100 = 20-log,(a)=40 = a=40dB

a=a-f = 20-logy(a-p)=20-log,(ax)+20-log,(f) = a=caindB+FIindB

a:% = 20-Ioglo(0/ﬂ):20-I0g10(a)—20-loglo(,3) — a=qindB-BindB

In the dB scale, the product of two scalars becomes an addition and the division of

two scalars becomes a subtraction. 107
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Bode plot — an integrator
We start with finding the Bode plot asymptotes for a simple system characterized by

H(s):% = H(ja)):jia):\H(ja))\AH(ja)):ié—%"

o
Examining the amplitude in dB scale, i.e.,
: 1
20-logy,|H (jew)| = 20-log,, 5= —20-log,y|w| dB

it is simple to see that
w=1 = 20-log,|H(j1)|=-20-log,,1=0dB
»=10 = 20-log,|H (j10)|=-20-log,,10=-20dB

w=w,=100, = 20-logy|H(jw,)|=-20-log,, @, =—20-log,, 10,
= —-20-log,,10-20-log,, ®, =—20—-20-log,, @, dB

Thus, the above expressions clearly indicate that the magnitude is reduced by — 20 dB

when the frequency is increased by 10 times. It is equivalent to say that the magnitude

is rolling off 20 dB per decade. 108
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The phase response of an integrator is — 90 degrees, a constant. The Bode plot of an

integrator is given by

Magnitude (dB)

Phase (deg)

Bode Diagram

***** - r- T rTTT17. - T rToaag- - T oo oo . T oo
| | [ | | | | |

rolling off
=7 20 dB per

decade
895 - e e T -
i constant
-90 < —| phase
2905 ~== o - - response
-91 S P g A e e Rl e e e e e Rl ;*ﬁ*;*\*i*i fffff e f bt
-1 0 1 2 3
10 10 10 10 10
Frequency (rad/sec) 109
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Bode plot — an differentiator

The Bode plot of H(S) = s can be done similarly...

Bode Diagram

g rolling up
()
g 20 dB per
% |
= | j decade
| |
\ i i
S A T T constant
m | |
=) | | |
B e S e - response
89 b [ e i 777777777777777777 4: 77777777777777777 +
10 10 10" 10 10
Frequency (rad/sec) 110
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Bode plot —a general first order system

The Bode plot of a first order system characterized by a simple pole, i.e.,

He) =% =1 = H(jo)=— + = * 4—tan1(%lj

S+ @, 1+%)1 1+j(%l) \/1+(%1)2

Let us examine the following situations.

wo=w, = H(jo)= L Zé—tan_l(%1)=0.7074—45° (0.707 = -3 dB)
(%)
2
: 1 .
w<<w, = H(jw)= —tan~ (//) 1,0

fofen)”
\/1+(%j Z—tan" (%J <L Z-90

These give us the approximation (asymptotes) of the Bode curves...

>0, = H(jo)=

111
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Example

10 rad/sec is called the corner

where @,

Consider a 1st order system H

frequency.
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blue: actual curves
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Bode plot — putting all together
Assume a given system has oniy simpie poies and zeros, i.e.,

b,s" +b, "+ +bs+b, b, (s+2z)-(S+2,)

H(S): Sn+an_15n_1+"’+als+ao B (S-i— pl)...(3_|_ pm)
or
k(1+ S/ )---(1+ S
H(S):bm(s+zl)°"(s+zm): ( +Al) ( +/3m1)
(S+P)(s+Pn) s+ S )Lt 9 )

In the dB scale, we have

\H(ja))\dsz\k\indm{u Jo/ {in B+ + in dB —|/ in deq—{1+ j”p {in 0B —f1+ ja’p in dB
1 1 N

jo
1+ %ml

Similarly,

/H(jw) = Lk+4(1+ j7j+---+4 1+ Jo —90°xq—4(1+ 17)—---—4 1+ Jo
Zl Zml pl pnl

Thus, the Bode plot of a complex system can be broken down to the additions and
114

subtractions of some simple systems...
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Example

0.7
adb

510

s(1+

s(s+10)

10(s+0.1) 0.1(1+°

H(s)

We consider a system characterized by

(gp) apnuuben

Frequency (rad/sec)

(soa1bop) aseyd
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Frequency (rad/sec)
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Bode plot of a typical 2nd order system with complex poles

So far, we haven't touched the case when the system has complex poles. Consider

H(s) =

> > 1

i 2as @l (s+ca)+al(1-C) :1+24(7 j{y )2
W, Wy,

When {< 1, it has two complex conjugated poles at

¢'is called the damping ratio of the system

@, Is called the natural frequency

This 2nd order prototype is the most
important system for classical control,

=, \[1- 2 which is to be covered in Part 2.

117
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Examining

: 1 1
H(jo) = _ = :
Jo | @
w212, )+ (07, ) {1 (%%,) } [, )
we have

_ 1 ] 0 dB in magnitude

w<<w, = H (Ja)) = > —1=1/0" & and O degree phase

{1—(0)(0 ) }+ jzg(ww ) at low frequencies

. 21 / a)/ 180°
()L_(a)%wﬂﬂ(m%) ( ) ( )\ roll off 40 dB

_ 1 1 1 ] per decade
rH(jo) = - =——=—-/-90 at high

o {1_(% ) }F j2§(% ) Jee 20 frequencies
W=, n n

“|H(jo)| indB=20log,, (%) =20log,, (%) +20log,, (é} =-6 dB-20log,, ¢

118
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. . FRNUS
Bode plot of the 2nd order prototype H(jo,)| peak indB=-6 dB—20log,, ¢ &

peak magnitudes:
¢=0.05, peak = 20 dB
/ £=0.1, peak =14dB
$=0.2, peak =8dB
£=0.3, peak =4.5dB

$=04, peak =2dB

$=0.5, peak =0dB

rolling off
40 dB per

decade
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Polar plot

As mentioned earlier, the polar plot is another form to draw the frequency response
of a system transfer function, which is general a complex function of . The Bode
plot is to draw the magnitude and phase responses in a separate form. If we draw
the magnitude and phase as a whole directly on a complex plane, it is called polar

plot.

The easiest way to draw a polar plot for a system, especially for a complicated

system, is to use a computer. This is true for the Bode plots as well.

By the way, polar plots will be again in the second part in the topic related to
Nyquist plots and Nyquist stability criterion of control systems. Bode plots will be

heavily used in the second part as well.

In what follows, we will show the polar plots of some systems studied earlier. Once

again, they are done using MATLAB...
120
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Polar plots of some examples
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Properties of Linear Time

Invariant Systems
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Impulse response

Given a linear time invariant system

~ e iR

U(s) Y(s)

\ 4

H(s)

its unit impulse response is defined as the resulting output response corresponding to
a unit impulse input, i.e., u(t) = t). Recall that the Laplace transform of At) is 1. Thus,

the unit impulse response is given by

h(t) =y =L[Y(s)]= L [H()U (s)]= L7 [H(s)]

which implies the unit impulse response characterizes the properties of the system as

well. In particular, we can characterize the given system in the time domain as

u(t) (O

\ 4

h(t

123
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What is the relationship among u, h and y?

et us take a small piece of the input signal u(t) att= 7, i.e

LR ]

When Az is sufficiently small, we can regard the shaded portion in the above figure as

an impulse function. Since 6(t) — h(t), by the properties of Laplace transform, we have

u(z)Arot—-7) — Ay(t)=u(r)Azh(t-1)

which is the output corresponding to the shaded portion of the input. The output

response corresponding to the whole input signal u(t) is then given by

y(t) = [dy(t) = [u(2)h(t—7)dz =u(t) ® h(t) = h(t) ®u(t) ~—| convolution
0 0 124
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Example

s [} - W \.n

Find the output response of the following system using the convolution integral

=10 [ 1 v
s+1

The unit impulse response is

-1 4| 1 —t
h(t)=L*[H(s)]=L [S J e

The output response

t
h(z)u(t—7)dz=[e"dr=—€"
0

y(t) = h(t) ®u(t) = [h(z)u(t — 7)d7 =

0
If we compute it using Laplace and inverse Laplace transforms, i.e.,

y(©) = LY ()] = L [H(s)U (5)] = Ll[ : 1} Ll[l—i}l—et

s+1 s S Ss+1

ol—_.r—l-

which yields the same solution! However, it is much easier to do it using by the latter.
125
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Consider the unit impulse response of the following two systems

1
HE- A H0)="7 & -

Amplitude

Time (sec)

Time (sec)

Observation: The farther the system pole is located to the left in the left-half plane

(LHP), the faster the output response is decaying to zero. 196
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Step response

Given a linear time invariant system

U(s) H(s) Y(s)=

\ 4

its unit step response is defined as the resulting output response corresponding to a
unit step input, i.e., u(t) = 1(t). Recall that the Laplace transform of 1(t) is 1/s. Thus, the

unit step response is given by

YO =L )= tH(s) |
s ]

It can also be evaluated by using the convolution integral, i.e.,

y(t) =1(t) ® h(t) = }u(r)h(t —7)d7 = }h(r)u(t —7)d7 = }h(f)df

127
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Unit step response for the 2nd order prototype

This is very important for

!"‘

he 2nd part of this course in designing a meaningful control

.—l N A LI " oEEn N LI LR A

system. We consider the 2nd order prototype

N of
(S) ) 2 2 2 2
S“+2lws+w;, (S+lw) +w;(1-¢°)
¢'Is the damping ratio of the system
@, Is the natural frequency
It can be shown that its unit step response
IS given as
o=Cw = w\1-¢° _
5 " y(t)=1-¢e" (COSC()dt-FiSln a)dtj
Wy
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Unit step response for the 2nd order prototype (cont.)

Graphically,

It can be observed that the smaller damping ratio yields larger overshoot.
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Unit step response for the 2nd order prototype (cont.)

The typical step response can be depicted as

+1or 2%

L
1
0.9
0.1
tl’
tS
70 =1—ef"[

o .

overshoot M =e ”47@
rise time t,
1% settling time t; = 4.0
2% settling time t, =

o \1-¢7

peak time t =

all in sec
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Effect of an additional system zero

1.4 S/z,+1 -

s> +2-.-0.55+1

§ 0.87777 7777777777777 :7777:77777\*:?7777>'f\ 7777777777777777777777777777777777777777777777 -
o) \'\\ S KN
@) - '\\.\ \~\ S
= RERSNY ! ~. ~\.\ . ZO:O_S
Q T~ - : TS ~ .\'\ =
*i 0.6 —- ,,,,,,,,,,,,,,,,,,f,,*i,: ,,,,,,,, '>,<,\ d Z0 r _
o $r - : RS - ~0 20:2
~.~'~"'~§- ~~~~~~~~~~ Tk Y 2025
o4a-S8r¢ i,,,,,,,,,,,j'f;: -» 2nd order prototype ____________________ _
o2y~~~ o e T T —
0 | |
0 5 10 15

Time (sec)

Clearly, the farther the system zero is located to the left on LHP, the lesser the system

output response is affected. However, settling time is about the same for all casgs.
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Effect of an additional system pole

1.4, — 1
H(s)= (s/ p, +1)(s® +2-0.55 +1)

12 —

System Output

L
T m—
o ——
T ——

2nd order prototype
WY | § ¥ A p yp

02 - T T C L R

Time (sec)

Again, the farther the additional system pole is located to the left on LHP, the lesser the

system output response is affected. For small p,, rise time & settling time are longer.
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System stability et o 1
S+a
Example 1: Consider a system with a transfer function, |
_ 0.5
U@s) = 1 1 Y(s) 05e” < —
» H (S) =— > 2
s -1
We have 056 o 0.51
S_
1 1

Y(s)=H(s)U(s) = .2

B 05 0.
1 (s+D(s-1) s@ s +1

From the Laplace transform table, we obtain

T S This system is said to be unstable because the
R R output response y(t) goes to infinity as time t is

y(t)] oo getting larger and large. This happens because
o the denominator of H(s) has one positive root at
A A s=1.

Time (second)
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Example 2: Consider a closed-loop system with,

UGs)=1 Y(s)

1
s> +3s+2

\ 4

H(s) =

A 4

We have
1 1 1 1

Y(S):H(S)U(S):sz+33+2: (s+D(s+2) T s+l s+2

From the Laplace transform table, we obtain y(t) = et gt

This system is said to be stable because

the output response y(t) goes to O as time t

y(t)

Is getting larger and large. This happens

because the denominator of H(s) has no

positive roots.
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(RHP). It is unstable if it has at least one pole on the RHP. In particular,

marginally
stable

stable

.| unstable

The above diagram also shows the relationship the locations of poles and natural

responses.
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Annex: some useful MATLAB commands

LAPLACE is to generate the Laplace transform of the scalar time-domain function,
ILAPLACE is to generate the inverse Laplace transform of the scalar s-domain function.
IMPULSE plots the impulse response of a linear system.

STEP plots the step response of a linear system.

BODE gives the Bode plot of a linear system.

ROOTS computes the roots of a polynomial (can be used to compute system poles & zeros).
PLOT is to generate a linear plot (there are many options available for plotting curves).
SEMILOGKX is to generate a semi-log scale plot (see those Bode plots).

POLAR is to generate a polar plot of a complex-valued function.

LOG10 computes common (base 10) logarithm. LOG is for the natural logarithm.
ANGLE is to compute the angular of a complex number.

ABS is to compute the magnitude of a complex number.

EXP is the exponential function.

SIN, COS, TAN, ASIN, ACOS, ATAN. To learn more about MATLAB functions, use HELP...
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i

That’s all, Folks!

K




