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We consider a continuous-time system Y characterized by

Z:{E.i':A.r-l—Bu.

(6.1.1)
y=Cux+ D u,

where © € R", u € R™ and y € RP are respectively the state, input and output
of the system, and E, A, B, C' and D are constant matrices of appropriate dimen-
sions. The system X is said to be singular if rank(E) < n. As usual, in order
to avoid any ambiguity in the solutions to the system, we assume throughout this
chapter that the given descriptor system X is regular, i.e., det(sE — A) # 0, for
all s € C.

We present the result of the structural decomposition of descriptor systems
for the single-input-and-single-output (SISO) case. Results for general multi-

input-and-multi-output (MIMO) case can be found in the reference...
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Theorem 6.2.1. Consider the descriptor system ¥ of (6.1.1) with p = m =1
satisfying the usual regularity assumption, i.e., det(sE — A) # 0 for s € C. There
exist nonsingular state, input and output transformations I's € R"*", T'; € R and
I', €R, and an n x n nonsingular matrix I'¢(s), whose elements are polynomials

of s, which together give a structural decomposition of ¥ described by the set of
equations

(6.2.1)
(6.2.2)
and T T static
input
derivative
> (6.2.4)
............................... proper
system

Here, v is a nonnegative integer, Aaa, Boa. C, D, Laq. Maa and Lqq, Iif existent,
are constant matrices of appropriate dimensions, and o 1s a nonzero scalar.
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Exercise 6.1.

Exercise 6.2.
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It is well known that the commonly used PID control law,

t
u(t) = Kpe(t) + Ki/ e(7)dr + Kqé(t),
0

cannot be expressed in a strictly proper or proper state-space form. But, it
can be represented by a descriptor system. Show that the following de-
scriptor system is a realization of the above PID control law:

10 0 01 0 0
00 0fi=1[0 1 0a+]|=1]e@),
0 1 0 0 0 1 0

and
u(t)=[Ky Kp Kale,

where the state variable 1s given by

£ t
d= 1 3g |, #15 / e(r)dr, xz = elt), xs =elt).
0

r3

Verify that the following descriptor system is another realization of the PID
control law given in Exercise 6.1:

1 0 0 0 0 0 1
0 0 0)lz=10 1 Ofx+4+[-1]c€(t)
0 1 0 0 0 1 0

and
u(ly =&y K, Kgle.
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Structural Mappings of Bilinear
Transformations
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In this chapter, we present a comprehensive study of how the structures, I1.e.,
the finite and infinite zero structures, invertibility structures, as well as the geomet-
ric subspaces of a general continuous-time (discrete-time) linear time-invariant
system are mapped to those of its discrete-time (continuous-time) counterpart un-
der the well-known bilinear (inverse bilinear) transformation

z—1 a-+ s
s =a ~ Zz=
z+1 a— S
5 {1 =Az+ Bu o %, {J'(A'—l—l) = /:l z(k) + B; u(k)
y=Cux+ Du y(k) = C x(k) + D u(k)

How are the structural properties of the continuous-time system and the

discrete-time counterpart mapped under the bilinear transformation?...
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Q(EC) = {710,1- N2y -+« Na,1q }

(Do) = (et Pt e s

(Za) = {na1,m6,2: - - > Tayra}

Si_'l(zd) — {Q1-(12- . .-de}
{q1:92, - -+ Qmy }

§ %

/
i ; \
N = h,
i "/

CONTINUQUS-TIME 5¥YSTEM DISCRETE-TIME SYSTEM
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igation of the transformati
¢ subspaces and Riccati equations
- the underlying system from a discrete-t
a continuous-time description. Although it is concep-
tually a bit unclear why the inherent symmetry is broken
and the corresponding Caley transformation and its in-
verse are treated separately, this chapter provides a very
complete and fully proved reference list of relations that
are useful for a variety of problems that involve the
translation of continuous- to discrete-time results. As an
impressive demonstration, it is revealed in Chapters 8-10
how these preparations render the proofs of H , -results
for discrete-time systems almost into a routine exercise.
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Structural Assignment via Sensor/
Actuator Selection
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The problem: Given a linear unsensed system characterized by

where = € R" is the system state and « € R™ is the control input. The problem
of structural assignments or sensor selection is to find a constant matrix, C', or

equivalently, a measurement output,
y=—~0Czr, (9.1.2)

such that the resulting system characterized by the matrix triple (A, B, C') would

have the pre-specified desired structural properties, including finite and infinite

zero structures and invertibility structures. We note that this technique can be

applied to solve the dual problem of actuator selection, i.e., to find a matrix B

provided that matrices A and C' are given such that the resulting system char-

acterized by the triple (A, B, C') would have the pre-specified desired structural

properties. Throughout this chapter, a set of complex scalars, say WV, is said to be

self-conjugated if for any w € WV, its complex conjugate w* € W.
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9.2 Simultaneous Finite and Infinite Zero Placement

9.2.1 SISO Systems

We consider 1n this subsection the finite and infinite zero assignment problem for
system (9.1.1) with m = 1. We first have the following theorem, the proof of
which is constructive and gives an explicit expression of a set of output matrices,
(2, such that for any element in €2, the corresponding system has the prescribed
finite zero and infinite zero structures.

Theorem 9.2.1. Consider the unsensed system (9.1.1) characterized by (A, B)
with A€R™* ™ and BER"*'. LetC:={k;} be the controllability index of (A, B)
and let the number of uncontrollable modes be n,. Also, let {vy,vs, ...,y } be
the uncontrollable modes of (A, B). Then for any given integer q1, 0 < q1 < ki,
and a set of self-conjugated scalars, {z1, z2, ..., 2k, —q, }. there exists a nonempty
set of output matrices 2 C R'*™ such that for any C' € () the resulting system
(A, B, C') has ny + k1 — ¢y invariant zeros at {vy,vs, . . ., Bl 9 By Ry 05 By —zs |
and has an infinite zero structure S*_, = {q1}, i.e., the relative degree of (A, B, C')
1s equal to q.
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Proof. It follows from Theorem 4.4.1 that there exist nonsingular state and in-
put transformations 73 and 7; such that (A, B) can be transformed into the con-

trollability structural decomposition form of (4.4.7). Next, we rewrite (4.4.7)as =
-~ uncontrollable

follows. - modes
A0 0 0 0 7 -0 ™
~ 0 0 Ig—g—1 O 0 i 0
A= 0 0 0 1 0 8= 19 9.2.1) >~ CSD
0 0 0 0 Iy -1 0
[ * % * * x [ 1
7
where x represents a matrix of less interest.
Let
. k1— k1—ag1—1 TN
(t(s) = TN g MmO T L (k) —q, (9.2.2)
new
be a polynomial having roots at z1. zo, . . .. 2k, —¢q, - Also, let us define > invariant
Z€eros
a = [(lkl_ql_l cee A9 (11]. D

Then the desired set of output matrices €2 is given by

Q:={CeR"

C=al@ ar,_q a 1 O]Ts“l.O;én-eR.r_leRlxn°}.
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Example 9.2.1. Consider a system characterized by

0O 1 0 0
t=Az+Bu=]10 0 1|z+ |0]| wu. (9.2.12)
0O 1 0 1

[t is simple to see that the pair (A, B) is already in the form of the controllability
structure decomposition with a controllability index ¢ = {3}. Then it follows
from Theorem 9.2.1 that one has freedom to choose output matrices such that the

resulting systems have: 1) infinite zero structure &° = {3} with no invariant zero,

2) 8% = {2} with one invariant zero, and 3) &% = {1} with two invariant zeros.

The systems with the following output matrices respectively have such properties:

(1 e PO . —1p Qv
Cl:O‘L_E_ 0 O] Hl(b) = Cl(-5IS_A) B = 5(52_1)
Cy=ala; @ 0], Hols) o= Oifals — ) LB = (1(5-2—{— ay) |

s(s? —1)
f e )
C3=alay a & Bl el )2 B Tt )

s(s?2 — 1)
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9.2.2 MIMO Systems

Theorem 9.2.2. Consider the unsensed system (9.1.1) characterized by (A, B)
with A R"*™ and B € R"*™. Assume that B is of full rank. Let the controlla-
bility index of (A, B) be given by C := {ky, ks, ..., km} and let the pair (A, B)
have n, uncontrollable modes. Also, let {1/1. Vo, . ... vn, } be the uncontrollable
modes of (A, B). Then for any given set of integers, S*_ := {q1,q2, - . ., gm } With
0<q <hkiyi=1,2,...,m,and a set of self-conjugated scalars, {z1, z2, ..., z¢}
where ( := """ (k; — q;), there exists a nonempty set @ C R™*"™ such that for
any C' € €, the corresponding system characterized by (A, B, C') has the follow-
ing properties:
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Key Idea... CSD
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Note that (A,,, Laq) is controllable and, in fact, is in the controllability structural

S
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0 0

* OO0 O -
&

decomposition form.
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Let us define

Fa::{ﬁaeR’”X‘-’|/\(Aaa— adF)_{ A, g}} (9.2.17)

For any F, € F,, we partition it in conformity with (9.2.16) as

_Flol Flll F{)m Fllm_
F,= . (9.2.18)
FT?zl F#zl T Fv?zm F#zm

and define a corresponding m X n matrix, in conformity with (9.2.13) and (9.2.14),

F{’l FL, 1 0 -.. F{’m Fllm 0 0]
(E5= - N > 3l; BRI
A F:;m F;,,m 10,
o — iarbitrary\?
The desired set of output matrices is give by -
Q= { C e RV™ | ¢ = PCT ! with , Fa € Fa, T € R™™ and det (T") # 0 }
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Example 9.2.2. Consider a two-input system characterized by

r—2 -5 —4
. 2 3 3
T = Az + Bu = 9 0 0
L 0 0

=i
3
—1

3]

T+

Using the software package of [87], we obtain that

il =& 1
o1 =2
=10 0o 1

0 0 0

0-
1
—2

il

M —2
1
0
L. B

0"
|
—2
1

u.

(9.2.22)

and the controllability structural decomposition form of (A, B) is given by

~ B O
—2

=14 _ |1
fa Wz = g 0
|1 |

‘

0
-

with a controllability index C = {2, 2}.
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We have

Ql _ {r [(1]_ 1 9 O] .T—l

a1 + a4 = ar1aq — asaz = 2,
as D (4 1

T € R**2 with det(T) # 0 }

such that for any C' € €2y the resulting system (A, B, (') has an infinite zero
structure S% = {1,1} and two invariant zeros at —1 + jl. The following is
another set of output matrices that we obtain,

B 1 @ 0 0],
QQ‘{F[G 0 1 OITS

[t 1s easy to verify that for any C € €25 the corresponding system (A, B, (') has

a R, T € R**? with det (T") # 0 }

an infinite zero structure &5 = | 1.2} and one invariant zero at — !.

We can work out as many different combinations as we want!
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9.3 Complete Structural Assignment

Having studied in the previous chapters all the structural properties of linear sys-
tems, i.e., the finite zero and infinite zero structures as well as the invertibility
structures, we are now ready to present in the following theorem the result of the
general system structural assignment.

1751
ll'-]_
(A, B) ks
A J A infinite zero
km Iy structure

Figure 9.3.1: Graphical summary of the general structural assignment.
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Example 9.3.2. We consider a benchmark problem for robust control of a flex-
ible mechanical system proposed by Wie and Bernstein [149]. Although simple
in nature, this problem will however provide an interesting example how sensor
selection can affect the design performance. The problem is to control the dis-
placement of the second mass by applying a force to the first mass as shown in
Figure 9.3.2. The dynamic model of the system is given by

mix1 = k(xe — x1) + u + wy, (9.3.20)
moto = k(x; — xa) + wa, (9.3.21)
e
""" : !1"*“* Mass 1 _/ A\\f,/\\f/ p\::“ Mass 2

Figure 9.3.2: A two-mass-spring flexible mechanical system.
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or in the state space representation,

5y T 0 1 0 07 /a4 F il 5 rly B

. _k o X 9 . i 8 19

l 1 _ mq mq rq n my g mi (U'l ) .
o o 0 0 1 L2 0 0 0 w2

T k k - 1

Lo L 5 3 — v () | L2 L 0 3 2 0 ™o -

where 1 and o are respectively the positions of Mass 1 (with a mass of m;) and
Mass 2 (with a mass of ms), & is the spring constant, « is the input force, and w;
and w3 are the frictions (disturbances). For simplicity, we choose m1 = mg = 1
and & = 1. It is natural to define an output to be controlled as h = o, 1e.,
the position of the second mass. Thus, the plant model used for robust control
synthesis is given by

01 0 0 T 0 0 0
& = Az+But+Fw = [_(1] 8 (1) (1).‘ i; 4 [é“ u-+ {(1) 8“ (ﬁ’;) .
1 0 -1 OJ Lo [OJ |_0 1J
(9.3.22)
and
h=Coxr=(0 0 1 O0]x. (9.3.23)
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[t is simple to verify that the subsystem (A, B, C'3) is of minimum-phase and
invertible. Hence, the disturbance w can be totally decoupled from the output
to be controlled, i.e., h, under the full state feedback. Our objective next is to
identify sets of measurement output or the locations of sensors that would yield
the same performance as that of the state feedback case. It follows from the results
of [22,147] that this can be made possible by choosing a measurement output,

such that the resulting subsystem (A, £, C'1) is left invertible and of minimum-
phase. Following the procedure given in the previous section, we first transform
the pair (A, E) into the controllability structural decomposition (CSD) form of
Theorem 4.4.1. This can be done by the state and input transformation

0.316228 0 0.707107 0

T, = 0 0.316228 0 0.707107
—0.316228 0 0.707107 0

0 —0.316228 0 0.707107

and
T — 0.316228 0.707107
1

[ —0.316228 0.707107 |
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The controllability structural decomposition form of the pair (A, E') is given by

EEE 0 0] 0 07
R 0 0 1 0

A= oamml Bi=|o m (9.3.25)
. 0 0 0 L0 &

with a controllability index of (A, E) being {2, 2}. Following the proof of Theo-
rem 9.3.1, we obtain the following set of measurement matrices,

0, = {ro [é 8 0 8] | To € R**2, det(Ts) # 0}. (9.3.26)

such that for any C'; € €24, the resulting subsystem (A, E', C'1) is square invertible
with two infinite zeros of order 2 and with no invariant zeros. Hence, it is of
minimum-phase. It is well-known that higher orders of infinite zeros would yield
higher controller gains, which is in general not desirable in practical situations.
In what follows, we will identify a set of measurement matrices, €2, such that
for any C'; € 2o, the resulting subsystem (A, E, C'1) is of minimum-phase and
square invertible with two infinite zeros of order | and two invariant zeros at —1.
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The following €25 is such a set obtained again using the procedure given in the
proof of Theorem 9.3.1:

[1 @ 0 0
QQZ{FO{O 0 1 z]

Thus, it 1s straightforward to verify that the & . almost disturbance decoupling is

Iy € R**2, det (T,) # 0} . (9.3.27)

achievable for the flexible mechanical system of (9.3.22)—(9.3.23) together with a
measurement output y = Cyx, where C'; € £ or C'; € . In fact, we can show

that the H .. almost disturbance decoupling for the system cannot be achieved if

there 1s only one sensor allowed to be placed in the system, i.e., one would have

to place two or more sensors in the system in order to decouple the disturbance

(the frictions) from the position of the second mass.
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Exercise 9.1. Consider a linear system characterized by

and

1 1 0 0 0

. O 0 1 0 0

T =Ax 4+ Bu = 00 0 1 T+ ol
1 1 X 1 1

y=Op=[0 1 0 D)=,

which has an unstable invariant zero at 1 and a relative degree of 3.

(a)

(b)
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Determine a new measurement matrix, C';, such that the resulting
new system characterized by (A, B, C'1) has an invariant zero at —1

and has the same relative degree as the original system characterized
by (4, B, C).

Determine a new measurement matrix, C'2, such that the resulting
new system characterized by (A, B, C'5) has two invariant zeros at
—1 and —2, and has a relative degree of 2.

Determine a new measurement matrix, C's, such that the resulting
new system characterized by (A, B.C3) has three invariant zeros
at —1, —2 and —3, and has a relative degree of 1.

Determine a new control matrix, B, such that the resulting new

system characterized by (A, B, C ) has an invariant zero at —1 and

has the same relative degree as the original system characterized by
(A, B,C).
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(e) Determine a new control matrix, Bg, such that the resulting new sys-
tem characterized by (A, B,. C') has two invariant zeros at —1 and
—2, and has a relative degree of 2.

(f) Determine a new control matrix, B3, such that the resulting new sys-
tem characterized by (A, Bz, C') has three invariant zero at —1, —2
and —3, and has a relative degree of 1.

Exercise 9.2. Consider an electric system given in the circuit below, in which the voltage
of the circuit load, i.e., the controlled output, £, cannot be measured, and
the disturbance input, w, is to be rejected.

10 © DISTURBANCE 10 2 0.1 H
gy +®_ — () (I S S, s
i L
| o |
u 1F —— 10 © U 10 2 2P =y i ke
i D |
—s + — =

Circuit for Exercise 9.2
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(a) Verify that the state-space realization of the system from the control

input, u, to the controlled output, &, can be expressed as follows:

t=Ax+ B u + F w,
h=Cyxr+ Dy u,

with
—0.25 —-0.5 0 0.1 0.15
&= 5 -50 —-10|, B=| 0|, E=| =5
0 0.5 0 0 0
and
L1
Co=[0 0 1], Dy=0, v = | a9
£'g

where «; is the voltage across the | F capacitor, o is the current
through the 0.1 H inductor, and finally 3 is the voltage across the

2 F capacitor.

(b) Show that if the inductor current is the only measurement available,
ie.,

y=Ciox+ Diyw = [U i | U]lif + 0 - w,

the resulting subsystem from the disturbance, w, to the measurement
output, y, is of nonminimum phase. In this case, it is not possible to
find a proper and stabilizing controller for the system that can achieve
H . almost disturbance decoupling from w to h.
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(c) Show that if the 1 F capacitor voltage can be measured, i.e.,
y=Ciz+Diyw=[1 0 0]z+0-w,

then the resulting subsystem from w to y is of minimum phase, and
thus, there exists a proper and stabilizing controller for the circuit
such that the disturbance, w, can be almost decoupled from the con-
trolled output, h.
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