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Verified Purchase (What's this?)

This review is from: Linear Systems Theory: A Structural Decomposition Approach (Control
Engineering) (Hardcover)

This book is part of an advanced and innovative presentation of certain topics in
system theory and control system design that are very rarely addressed elsewhere
(I actually do not know of another source that addresses some of these issues).
One might use this book to ask questions like "How do I select actuators/sensors
so that transmission zeros are favorable to control design?". Those who have
reached a level of knowledge and maturity in systems and control know that this is
vital.

This book is not an introductory text into linear system theory. One might read this
text alongside other "introductory” linear system theory books by C.T. Chen,
Antsaklis and Michel, or Callier and Desoer, etc. This book is mathematically
rigorous and there are many special definitions and symbols. The author makes an
effort to extend the presentation to engineers with computer codes and numerical
examples, which are helpful. Nonetheless, I still feel as though my head is about to
explode when I read this book. It is difficult.
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Theorem 5.2.1. Consider the SISO system of (5.2.1). There exist nonsingular

state, input and output transformations I'y € R"*" . T'; € Rand I', € R, which

decompose the state space of ¥ into two subspaces, x, and x4. These two sub- =
spaces correspond to the finite zero and infinite zero structures of X, respectively.

The new state space, input and output space of the decomposed system are de-

scribed by the following set of equations:

x=T:% y=TC:i u=TL;i, (5.2.2)
(o)
N ra
- (,) T €R™, za €R™, za=| 2 |, (5.2.3)
rd :
Bix :
and 0 000 01 0
& £ ES ES % Sz 1
ta = Ajata + Laqy (5.2.4) =
= et T Sy : 4 08 00
.I"1 = I9, f/ = I1, (525)
.i'2 = I3, (526) = |
-i"nd—l = Tng: (527) S RE=
Fny = Faata + E121 + Egzo + -+ - + By 2y, + 1. (5.2.8)
0 e (]
Furthermore, \(A,,) contains all the system invariant zeros and nq is the relative 8 000 L

degree of X..
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Invariant zero
dynamics

Infinite zero
structure

Note: the signal given by the double-edged arrow is a linear combination of the states.

Figure 5.2.1: Interpretation of structural decomposition of a SISO system.
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Example 5.2.1. Consider a SISO system X characterized by (5.2.1) with

1 2 @ 4 1
2 3 4 5 2
— — ’,
A 15 6 7 B NE (5.2.36)
5 6 7 8 4
and
= [O 3 =2 0] : (5,237)

The structural decomposition of ¥ proceeds as follows:

|. Differentiating the system output.

[t involves the following sub-steps.

(a) First, we have

y=Ci=CAxr+CBu=[-2 -1 0 1]z+0-uw.
(b) Since C'B = 0, we compute
ij=CA2z4+CABu=[1 -1 -3 1]z+0-u.
(¢) Since CAB = 0, we continue on computing
y®) =CA%c + CA?2Bu=—[8 10 12 17]z—6-u.

We move to the next step as C'A%2B # 0.
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2. Constructing a preliminary state transformation.

Let Zg be a vector such that

is nonsingular. Then, define a new set of state variables T,

To
1

~|

Ir9
Ir3

It is simple to verify that Z with Zp = |1

matrix. Furthermore.

1()

11
o

13
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8rg+ 1+ =T — §;173 + u,

Ia,
T3,
—T72x9 — 921 — 2719 + 10223 — 61

8 5

3

T
£
5.2.38
C'A ( :
| CA? ]
i By T Zox
i )
T 5.2.39
cA |” i P
g o i
0 0 0] is a nonsingular

(5.2.40)

—
o n
o o
B - -
[ T
T

—
)
)
e

S
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3. Eliminating u in (5.2.40).

Equation (5.2.43) implies that

3 9 L |
u=—12x9 — 3;1‘1 — 3;1?2 + %;1?3 — E.i.‘3. (5.2.44)

Substituting this into (5.2.40), we obtain

;ifg = —4.’1‘-0 — %;1?1 = %.’ITQ == %13 (5245)

We have eliminated u in #g. Unfortunately, we have also introduced an
additional 3 1n (5.2.45).

4. Eliminating &3 in (5.2.45).

Define a new variable 1 as

To :=To+ %.‘1‘3. (5.2.46)
We have
% i 1 11 2
ro = —4rg — 5;1‘1 — g-’l’? <t §41’3s (5.2.47)
and
r3 = —T72r0 — 911 — 272 + 2213 — 6u. (5.2.48)

LINEAR SYSTEMS & CONTROL ~ PAGE 71 BEN M. CHEN, NUS ECE



5. Eliminating x9 and x5 in (5.2.47).

This step involves two sub-steps.

(a) Letting

R . 2
ro,1 := T — 72
we have ! 9
;f'()’l = —4.?‘0’1 == §;I'1 = —2';1‘2.
and

T3 = —72;%0,1 — 921 — TH5a9 + 2213 — 6u.

(b) Letting

- - 9
Zo,2 = To,1 + 3‘171.
we have
- : 35
ro2 = —4;170’2 . 5 7;1‘1.
and
Ty = —725‘0’2 + 31521 — THhro + 2213 — bu.
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(5.2.49)

(5.2.50)

(2.2.31)

(3.2.32)

(5.2.53)

(5.2.54)
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Let

or equivalently let

with
(1 9/2
0 1
=310 o
Lo o
Also, let
U
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515 18

0 0
1 0
0 L
1
Fi’& — _6&

07
0

A
1o
i
N

(5.2.56)

(2.57)

(5.2.58)
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Finally, we obtain the dynamic equations of the transformed system,

35
Ly — ——.Ll'a - T.I'l.
$y =9, §=21,
To — &g,
rg = —T72x, + 31511 — Threo + 2213 + u,
702, + 31521 — 7522 +22
{ {\/ ! o [ K”\\\ Lo = Iy
T - e
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(5.2.59)

(5.2.60)
(5:2.61)
(5.:2.62)

An invariant
zero at — 4

An infinite zero
of order 3 =
relative degree
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5.3 Strictly Proper Systems

Next, we consider a general strictly proper linear system Y characterized by

{.i'zA x + B u,

5.3.1
4 = &, ( )

where € R", u € R™ and y € R? are the state, input and output. Without loss of
generality, we assume that both B and (' are of full rank. We have the following
structural or special coordinate basis decomposition of X,

Theorem 5.3.1. Consider the strictly proper system X characterized by (5.3.1).
There exist a nonsingular state transtormation, I's € R"”*™, a nonsingular output
transformation, I', € RP”P, and a nonsingular input transformation, I'; € R™*™,
that will reveal all the structural properties ot X. More specifically, we have

g =Tyl =Tz sa=T4 (3.3.2)

with the new state variables
Ta

N T
T = - T ER™. gycR™,. z.cR™. zacBR™, (5.3.3)

T

Irq
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the new output variables

~ Ya
U= , yag € R™, 1, € RPP, (5.3.4)
Yb
and the new input variables
= g : md Me
a=|( °). uac R™ 4. € R™-, (5:3.5)
C
Further, the state variable xq can be decomposed as:
Id1 Yd,1 Ud,1
Id,2 Yd,2 uqd,2
Tq = Ya = : s Ug =
I'd,mg Yd,mg Ud, mg
rd,qin
. rd,i 1 '
sagc B®, zge— , c3=1,2.....mq,
'Fd,i,q,‘
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withq1 < q2 < - -+ < @my- The state variable xy, can be decomposed as

I'p,1 Ub,1
I'b,2 Yb,2
Ty = . . Y = . ; (5.3.8)
'rbapb yb,Pb
I'bi,1
Ty ;
. Lo b i = 45 , 573
rpi € RY, xp; = , N S (N — (5.3.9)
Ib,i,li

withly <ly <--- <, . And finally, the state variable x. can be decomposed as

.I'c’]_ “C.l
Te2 Ue 2 |
s = , T — . . (5.3.10)
Leom, Ue,m.
{-I'c,i,l \
Tc.i
- . c R"i B o= Sid i=1.2 5311
i € s Tei = . g 2= L, Ay vy T (3.2.11)
Le,i,r;

withry <1 < -+ < Ty
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The decomposed system can be expressed in the
following dynamical equations:

_ invariant
Ta = ApaTa + Labyb + Laqyg. (5.3.12)
Z€ero
for each subsystem xy, ;, i = 1,2, ..., pp.
Thil = Tbi 2+ Lbdi1yb + Lbii1yd, Ybi = Tbi1, (5.3.13) ™
Tbi2 = Thi,3 + Lbd,i2ub + Lb.i2vd, (5.3.14) left
> invertibility
structure
Th,il; = Lbd,il;Yb + Lbd,i1; Y4, (5.3.15)
for each subsystem x. ;,i =1,2,.. ., 1.
-i.c,i,l = Tcq,2 3 I ch,i,l?/b + Lcd,i,lyd- (5316) T
right
_ > invertibility
-rc,i,»ri—l = -rc,i,ri =+ ch,i,ri—lyb . L’cd,i,ri—l.{/d- (5317) structure
?i'c,i:ri — Ac,i,a-ra -+ Ac.i,c-rc +ch,'i,'ri Ub +Lcd.i,rt’ Yd + Ue 4 (5318) %
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and finally, for each subsystem rq;,1 = 1,2,...,maq,

N
2
O

T3:1 = @A+ Lasiivdy Pai= Tdsds (

A
o
)
o
N—

Td:2 = Td i3+ Ld:i2Yd,

-i'd,i,qi Ad!i,a.ra + Ad,i,c-l'c i Ad,i,b-"b - = Ad’i!d.rd + Uq 4, (321

where A,a. Lab. - . .. Aq..q are constant matrices of appropriate dimensions.

\ J
Y

infinite zero structure

Ali Saberi
Washington State University

Pedda Sannuti
Rutgers University
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T, — the subsystem without direct input and output:

invariant zero

Tp.; — the chain of integrators without a direct input:

Th,il; 1 Iy 3.9 u Lbi,1 = Yb,i
H >—»ao——| >——oﬁ—| p

Te 4 — the chain of integrators without a direct output:

rq,; — the chain of integrators with direct input and output:

left invertibility
structure

right invertibility
structure

infinite zero
structure

~£ -“ 4,2 J\l} ‘||>1.:1.1 = Yd.i
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Example 5.3.1. Consider a strictly proper system ¥ characterized by (5.3.1) with

-3 7 -3 -1 4 -3 -1

—1
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0
0
—1

—1
0
1
1

- O — O
- O - O
o O OO
I
|
ﬂL
I
o OO O~ = - o O
o OO O~ —~ N~ o O
— OO O ™ o~ o O
— oo oo oo o O
L
I
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The required state, input and output transformations...

-3 0 0 O

3
10
—4

—1

3
0
0
0

0
0
0
0

0O 0 0 O

10

0
0
0

0 0 O
0 0 O
0 0 0 O

0 —1

—2

—1

|

—1

2

1
4 0 0 O
4 0 0 O

0 0 O

10

0
0

0
0
2

0
0
0

2 0 0 O

ﬂ

are non-unique!

These transformation

L

0O 0 1 0

1
1
1

0 0 O
0
0

0
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o O

- o o

0O 0|0 O
0O 0|0 O
0O 0|0 O
0O 0[]0 O
0O 0|0 O
0O 0|0 O

o e J

o o o

0[]0 O
0O 0|0 O
0 0|0 O

NS

<

S
©
s
qu
SR

)

o

ipr..T

S

-1 0 O

—1
—1

= e

i A D
it e

0
0
0
0

0
1
0
0

0
0
0

1AT..T

S

=(T

)

0 0 O

Y

@
00 O O

B,

A,

0

1
g 0|0 O O

0

0

0

sl

O0(0 O O

0/{0 O O
0[]0 O O
00 0 O
00 0 O

0
0
0

0
0
0
0

0
0
1
0

The transformed system (

I
Q0
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OOOOOOOOA_mi_OOOO
ocojlocococofflooclooco oo
oo o)t o = N=N-N
o = [~ N [ ] o oo
L ]
I
Q
1
= = == ol o
- - = - =
= =) —B—=R=1l=2 = =) = @ =
e T oo | (oo B = A s [ e o e o O o
oo o SO0 D
oo o === =
oo o = B
=) o oo o o
oo o 588 5
= =R ==
o o000
& & cooO
& co o o

The essential structures of the system...

I
<t
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infinite zero
structure
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5.4 Nonstrictly Proper Systems

We now present in this section the structural decomposition or the special co-
ordinate basis of general nonstrictly proper multivariable systems. We will also
present all the structural properties of such a decomposition with rigorous proofs.
To be specific, we consider the following nonstrictly proper system X character-
1ized by

{.r = Az + Bu, (5.4.1)

y=Cux+ D u,
where € R", u € R™ and y € RP are the state, input and output of 2. Without
loss of generality, we assume that both [ B D" and [C' D] are of full rank.
The structural decomposition or the special coordinate basis of nonstrictly
proper systems follows fairly closely from that of strictly proper systems given

in Section 5.3. However, in many applications, it is not necessary to decompose

the subsystems x}, and x. into chains of integrators. On the other hand, in many

situations, it i1s necessary to further separate x,, the subsystem related to the in-

variant zero dynamics of the given system, into subspaces corresponding to the

stable, marginally stable (or marginally unstable) and unstable zero dynamics.
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National University
of Singapore

For future use, we rewrite the structural decomposition of X in a more compact
form:

A =T71AT, = As + BoCo + BoCo

B=T7'BIy=[By B.|=
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National University
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Note: In the compact SCB form...
Aga = A}y + BaEaa + LaaCly,
for some constant matrices Lagq and Egq of appropriate dimensions, and

A%y = blkdiag{Aql Ay A

qmd ?

By = blkdiag{ By, By, -, By, }» Ca = blkdiag{Cq,, Czs -, Ci, |

' Y qmy

Moreover, \(AZ,) c C~, A\(A2,) c C°

and \(A1,) CC™. Also, (Ace, B.) is controllable and (Ay,,, Cy,) is observable.
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For a strictly proper system, it has the following form...

AL, 0 0 L3O 0 L4Ca |
0 A9, 0 Ly 0 Lg4Ca
i=r-tar, = | 0 AL LLG 0 LG
s 0 0 0 Ap 0 L bdCda
Bbn Bl BEL LaCh e LaCh

| BaEy, BaEj, BaEg, BaEa, BaFac Au -

t
o O O O O

oY

I

- F_IC‘FS [ 0 0 0 0 0 Cd}
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What can we do with a state feedback gain?...

[ A, 0
0 AY
-~ 0 0
A+BF =
0 0
0
L0 |
~ O 0O
£ =
[ 0 0

0 LGy
0 LY Cy,
A+ LE Gy
0 Apb,
0 0
‘05 (o
0 )
0

0
0
0

L ,Cq]
LgdC'd
L:df'd
Ly,aCq
LcaCq

X) @ X @ X, isabad subspace for the state feedback control...

How about observer design?...

..duality...

'0 '-+- » . .
A, © AL AL is a bad subspace for observer design...
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Property 5.4.1. The given system X is observable (detectable) if and only if the
pair (Agbs, Cobs) Is observable (detectable), where

. Aaa 0 . COa COc o)
Aobs . [ BcEca, Acc :| s CWO]:)S. o7 [ Eda Edc :| s (54&8)
and where
A, O 0
Ry = 0 Aga 0 e — [C(;1 Cga Cg;], (5.4.29)
0 0 A;‘a
O — [Ed_a Ega EL By = [EC’a Ega E;';] (5.4.30)
Also, define
Aaa Labe BOa Lad
b, T — N ; S ; 5.4.31
[ 0 Awm ] [ Bon Lba ] ( )
By, L, Log
Ba = Bga v T b= Lgb T Lgd . (5.4.32)
By, L}, L7,

Similarly, ¥ is controllable (stabilizable) if and only if the pair (Acons Beon) 18
controllable (stabilizable).
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5.4.4. ¥ has mo = rank(D) infinite zeros of order 0. 1

ler greater than 0) of X is given by

That is, each q; corresponds to an infinite zero of order g;. In particular, for a
strictly proper SISO system X, we have S_(X) = {q1}, where q is the relative
degree of X. The given system X is said to be of uniform rank if either mg = 0

\‘qul = (2 =+ = qm,, 0ormp # 0 and S5 (X) = 0.

3. The givensystem X is right invertible if and ©

tent, and invertible if and only if both xy, and z. are nonexistent. Moreover, ¥ is

degenerate if and only if both xy, and z.. are present.

< =
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The structural decomposition decomposes the state space of X into several
distinct parts. In fact, the state space A’ is decomposed as

X = (’Ya_ e, )()z? e (Y:_ e fo e /YC o ("L)d. (5.4.37)

Here X is related to the stable invariant zeros, 1.e., the eigenvalues of A_ are the
stable invariant zeros of ¥. Similarly, XY and X’ are respectively related to the
invariant zeros of X located in the marginally stable and unstable regions. On the
other hand, A3, 1s related to the right invertibility, 1.e., the system is right invertible
if and only if X}, = {0}, while X, is related to left invertibility, i.e., the system
is left invertible if and only if X. = {0}. Finally, X} is related to zeros of ¥ at
infinity.

There are interconnections between the subsystems generated by the structural
decomposition and various invariant geometric subspaces. The following proper-
ties show these interconnections.
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Property 5.4.7. The geometric subspaces defined in Definition 3.7.5, i.e., Sx(X)
and V), (X). can be computed as follows:

Al —A,., O 0 0
0 Yo O 0

Sa(X) =im { I'g 0 0 I 0 " (5.4.38)
0 0 0 I,
where
im {Ypa} = ker [Cb(Apb + KpCh — AI) 7], (5.4.39)

and where K, is any matrix of appropriate dimensions and subject to the con-
straint that Ay, + K, Cy, has no eigenvalue at A\. We note that such a K, always
exists as (App, Chy) is observable.

N 0
Va(Z)=im (T y 0 (5.4.40)
(X)) =im 4 0 X, (5.4.
0 0
where X, is a matrix whose columns form a basis for the subspace,
{ca e C™ | (AT = Apa)Ca = 0}, (5.4.41)
and
-3
Kig i (Acc + B = )\I) B, (5.4.42)

with F. being any matrix of appropriate dimensions and subject to the constraint
that A.. + B.F. has no eigenvalue at \. Again, we note that the existence of such
an F. is guaranteed by the controllability of (Acc, Bc).
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Example 5.4.1. Let us reconsider the system X of Example 5.3.1, i.e., consider
a matrix quadruple (A, B, C, D) with (A, B, C) being the same as those given in
Example 5.3.1 and D = 0. All the necessary transformations required to trans-
form the given system into the special coordinate basis have already been obtained
in Example 5.3.1.

i -3 08 0 (r 1 0 0 07)
-3 00 0 00 0 0
1 0 0 0 1 00 0
0 0 0 0 00 0 0
0 0 0 0 00 0 0
4 1 0 1 1 1 0 1

V7 (X) = im < 2 11 1|3, VI(Z)=im { 2 1 1 1|3,
6 1 1 2 2 1 1 4
2 9 1 1 3 @ 1 1
4 0 0 1 1 0 0 1
2 0 0 0 -1 0 0 0
2 0 0 0 -1 0 0 0

(L 0 0 0 0]) (L 00 0 o],

([ -2 1 0 0 07) rro 0 a7
-3 0O 0 0 O 0 0 0
1 1 0 0 O 0 0 O
0 0O 0 0 O 0 0 O
0 0O 0 0 O 0 0 O
1 1 1 0 1 A | O |
V*(E):im< 2 2 1 1 1 > ’R*(E):im{ : 1 1 >
6 3 1 1 2 1 1 2
2 2 ' 1 i 0 1 1
4 1 0 0 1 0 0 1
2 -1 0 0 O 0 0 0
2 -1 0 0 O 0 0 O
LL D 0 0 0 0J4) \LO 0 0 1)
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We note that A = —2 and A = 1 correspond respectively to the stable and the

unstable invariant zeros of X..
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Exercise 5.1.

Exercise 5.2.
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Compute a special coordinate basis for the SISO system

x + u, y=[(1 -1 1 -1]=.

bk (D et
—_— O O -

O O =t
= = O

Identify the invariant zeros and the relative degree of the given system.

Utilize the properties of the special coordinate basis to construct a fourth
order controllable and observable SISO system, X, for each of the follow-
ing five cases:

(a) X has no invariant zeros and has a relative degree of 4.

(b) X has one invariant zero at {1} and has a relative degree of 3.

(c) X has two invariant zeros at {1, 2}, and has a relative degree of 2.

(d) X has three invariant zeros at {1, 2, 3}, and has a relative degree of 1.

(e) X has four invariant zeros at {7, =1}, and has a relative degree of 0.
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Exercise 5.5. Utilize the properties of the special coordinate basis to construct a fourth
order invertible, controllable and observable MIMO system, X, for each of
the following cases:

(a) X is strictly proper, and has an infinite zero structure S%_ = {1, 3},
which implies that X is free of invariant zeros.

(b) X is strictly proper, and has an infinite zero structure S* = {2,2},
which implies that X is free of invariant zeros.

(c) X is strictly proper, and has one invariant zero at {1} and an infinite
zero structure S*_ = {1, 2}.

(d) X isstrictly proper, and has two invariant zeros at {43 } and an infinite
zero structure S%_ = {1, 1}.

(e) X is nonstrictly proper, and has three invariant zeros at {1, +;} and
an infinite zero structure S5, = {1}.

(f) X is nonstrictly proper, and has four invariant zeros at {+1, +75} and
no infinite zero of order higher than 0.
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Exercise 5.6.

Exercise 5.7.

Exercise 5.8.
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Construct a third order strictly proper and right invertible system, X, with
two inputs and one output, for each of the following cases:

(a) X has an infinite zero of order 2, and has no invariant zeros.

(b) X has an infinite zero of order 1, and has one invariant zero at {—1}.
Moreover, the obtained systems must be controllable and unobservable.

Construct a third order strictly proper and left invertible system, X, with
one input and two outputs, for each of the following cases:

(a) X has an infinite zero of order 2. and has no invariant zeros.

(b) X has an infinite zero of order 1, and has one invariant zero at {—1}.
Furthermore, the obtained systems must be uncontrollable and observable.

Construct a second order system, X, which has the following properties: (1)
3’ 1s neither left nor right invertible; (i1) X 1s uncontrollable and unobserv-
able: (i1) X is free of finite zeros and is free of infinite zeros of order higher
than 0: and (iv) X is nonstrictly proper with both [C' D] and [B" D’]
being of full rank.
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Exercise 5.11. Consider a SISO system, ¥, which is already in the SCB form as given in
Theorem 5.2.1, i.e.,

i‘a = Aaaxa + Ladya
T =2x2, Y =21,
T2 =23, ..., Tpy—1= Tny,

a.:n‘i = Edaa:a T E1$1 T E2$2 Y Thadeiis: » Endxnd + U,

or in the matrix form:

A, Dea O s 0T 2 Fil
0 0 1 --- 0 1 0
p=AvtBu=| i i i o i@+l
o 0 0 --- 1 : 0
| Bas E1 By v Bgl Ny Ay
and
y=Cz=[0 1 0 0]
Let
FK, K,
0 0
B:=B+| : | =
0 0
.0 i

Construct the special coordinate basis for the new system, X, characterized
by z = Az + Bu, and y = Cxz. Show that ¥ and ¥ have the same
relative degree. Also, show that the invariant zeros of S are given by the
eigenvalues of A=A, —K,E,..
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