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This lecture is to focus on the structural decomposition of the following

systems...

[. An autonomous system characterized by a constant matrix A, i.e.,
= Ax, xeR". (4.2.1)
2. An unforced system characterized by a matrix pair (C', A), i.e.,

F=dAr. 34=0 (4.3.1)

3. An unsensed system characterized by a matrix pair (A, ), i.e.,

T = Ax + Bu. (4.4.1)

Note that the systems in (4.3.1) and (4.4.1) are dual to each other.
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Autonomous Systems

In this section, we present two structural decompositions for such an autonomous
system, i.e., the stability structural decomposition (SSD) and the real Jordan de-
composition (RID).

Theorem 4.2.1 (SSD). Consider the autonomous system Y. of (4.2.1) character-
ized by a constant matrix A. There exists a nonsingular transformationT € R™*"
and nonnegative integers n_, ng and n_. such that

) I'A_ 0 0 1
TIAT=A=]0 A4, 0 |, 4.2.2)
[ 0 0 A+J

where A_ € R™*"~ with A\(A_) c C~, Ag € R™*™ with A\(Ag) c C°, and
Ay € R™™ ™ with \(Ay) C C*. The SSD totally decouples the stable and
unstable dynamics as well as those dynamics associated with the imaginary axis
eigenvalues.
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Example 4.2.1. Consider an autonomous system X of (4.2.1) characterized by

[ —1
0

A= 0

1
|

S -
14

..
0 0
1 1.

(4.2.18)

which has eigenvalues at 0, —1, 1, —2j and 2j. Following the SSD algorithm of
Theorem 4.2.1, which has been implemented with an m-function, ssd . m, in [87],

we obtain

Ty =

0.47385
—0.81277
0.33892

0
0

0.66493 0
0.07790 0
—0.74283 0
0 0.70711
0 —0.70711

—0.57735

0.577357

0.

which gives the following stability structural decomposition of A,
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T{TAT, =

| = 0 0 00
0] 0.21932 3.44308 00
0| —1.17572 —0.21932 0|0
0 0 0 00

|0 0 0 0]1

57735

0

0
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Theorem 4.2.2 (RJD). Consider the autonomous system X of (4.2.1), character-
ized by A € R™"*"™. There exists a nonsingular transformation T’ € R™*™ and an

integer k such that

_.]1 —
. Jo
T AN =J= (4.2.19)
L Jg
where each block .J;,i = 1,2, ..., k, has the following form:
_A‘l 1 -
A1
i Ai
it \; € AM(A) is real, or
A, I i
]L — f A-,; = [ fi uji] 3
A; .[2 —Wi [
L A;
if \i = pi + jws, A = p; — jw; € M(A) with w; > 0. Camille Jordan
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1838-1922
French Mathematician
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Example 4.2.2. Consider an autonomous system X of (4.2.1) characterized by

* &
3
4
4
4
L —20

2 2
1 2
0 2
0 2
0 3
—4 12

—_ D

0
-9

SR S}

=

4

—16

NN
]

I
—_
-

(4.2.39)

Using the m-function rjd.m of [87], we obtain a real Jordan canonical decom-

position of A with

and the required state transformation,
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0
—0.63824
—0.13207
—0.13207
—0.13207

1.03444

0 1] 1 0] 0 0

-1 0| 0 1] 0 0

,_| oo oI 00

| 0 0|-1 0] 0 0

0 0] 00[ 01

| 0 0] 0 0|-1 0
0  —0.12251 0.04504 —0.07311
~0.50617  0.26812  0.09233  0.24639
~1.14440  0.22084  0.48295 —0.15290
~1.14440 —0.41740 —0.02322 —0.15290
~1.14440  0.08877 —0.66145 —0.15290
3.93938  0.00090 —0.01943  0.58813

(4.2.40)

—0.53231 1
—0.13302
0.18649

0.18649
0.18649

0.33547 _
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Two canonical forms are presented in this section for the unforced system
(4.3.1), namely the observability structural decomposition (OSD) and the block
diagonal observable structural decomposition (BDOSD). These canonical forms
require both state and output transformations. The following theorem character-
izes the properties of the OSD.

Theorem 4.3.1 (OSD). Consider the unforced system of (4.3.1) with C' being of

full rank. Then, there exist nonsingular state transformation Ty, € R"*™ and

SUIIISAS padaoju()

nonsingular output transformation T, € RP”*? such that, in the transformed state

and output,
r=T1.2% vy=1T,9, (4.3.2)
where
r'o j'ai,l {ll
i 1 i i 2 _ _ ~ Yo
= s = = [ . B = (4.3.3)
Tp ik, ll)p
we have
To = AoZo + Loy, 4.3.4)
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¥; = Aid; + Lig, §;=[1 0], (4.3.5)

where L;, i = 1,2, ..., p, are some constant matrices of appropriate dimensions
and
b Iy, 3
A = | I 4.3.6
The matrix Ag is of dimensions ng X ng, where ng := n — ?:1 ki, and A\(Ap)

contains all the unobservable modes of the matrix pair, (C', A). Moreover, the set
O :={ ki1, ko, ..., kp} is the observability index of (C, A).

The result of Theorem 4.3.1 can be summarized in a more compact form as

follows:
Ag  * 0 cee ok 0 7
0 *x Ip,—1 - % 0
i 0 % 0 cee ok 0
T AT = : : : . : : . (4.3.7)
0 * 0 il o Ikp—l
L 0 % 0 cee %k 0
and
0 1 0 e 0 0
TO_ICTS = | = : : R : . (4.3.8)
0 0 0 LTI | 0

where x represents a matrix of less interest.
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Unobservable
dynamics

Integration
chains

Note: the signals indicated by double-edged arrows are some linear combinations of y;.

Figure 4.3.1: Interpretation of the observability structural decomposition.
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Example 4.3.1. Consider an unforced system (4.3.1) characterized by

-1 0 0 0 -1 0

2 -1 4 -2 3 0

2 -1 3 -1 3 O
A=l 1 1 2 3 -2 o0 o 00)

2 1 -2 2 -3 0

11 -1 11 -1

and

c_[ 110 0o .

-1 0 1 -1 1 0f°

The complete required state and output transformations are then given by
the following matrices:

To=(MaM;WS) ™' =

and
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-0 2 2

0 0 -2

0 -2 -1

0 -7 -3

0 -2 0
1 -2 0
TD — [..I,'O—l — l:

-1
2
3
3
0
0.3333
0 1
I 1

—0.6667
0.3333

1

()

0.2333
0.6667

—0.55567
0.4444
0.3333

1
0.1111

(.|
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and the resulting transformed system is characterized by

—1 (0 o 0 O

0 -2 1 = 0 0

ol 0 R 0 = 0 0

he e = 0 —0 0 5 1 0

0 14 0 = 0 1
0 6 0 E 0 0 |

and

e | 0] L 0| 0 0 0

te Cls= 0 | 0 0 ‘ 1 0 0

_ " —l 0 0 0 0 0

The essential 0 0 1 0 0 0
priffe‘iifﬁﬁi . 0 0 0 00 0
All the rest are 0 00 0 10
. 0 0 0 0 0 1
rubbish! ) .

| 0 0 0 0O 0 0
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after cleaning
an
> appropriate
output
injection
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Block diagonal observable structural decomposition (BDOSD)...

Theorem 4.3.2 (BDOSD). Consider the unforced system of (4.3.1) with (C', A) —_
being observable. Then, there exist an integer k < p, a set of k integers k1, K2,

. . . Kk, and nonsingular transformations 15 and T, such that

A1 0 oo 0T
g 0 Ay -+ 0
1, Als—=| , . s 15 (4.3.48) .y
: : . Identifying
L0 0 - Al minimal
and number of
rCy 0 --o 07 - output
x Cg -0 0 variables to
T =l : = % = 1. (4.3.49)
: ' (_'1 completely
o k observe the
[ * * ek

: . ; system...
where the symbols x represent some matrices of less interest, and A; and C},

i =1.2.....k, are in the OSD form

=
(22
N
S
=

A,-:[* ]"f‘ll. C;=[1 0 ... 0].

: k
Obviously, Y ;| k; = n.
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Example 4.3.2. Consider an unforced system (4.3.1) characterized by

00 01
o9 1 —1 1| @380
11.985440 20.334987 1

—15.621333 —44.080817

0 —6.419075
0 9.202258
2.783182 8.349547 4

i |

01
0
0
1

0]

= 3 0 0 0 -—-117
-2 -1 4 -2 3
1 1 =2 3 -2
. 2 1 =2 2 =gl
Using bdosd.mof [87], we obtain
- 9.202258 9.202258 0.202258
—18.404516 0 0
T, = | —27.606773 —9.202258 0
—27.606773 —18.404516 —9.202258
L 0 0 0
—2.783182 —0.302446
1s = .
T
-3 0 1
T AT.=| 1 0 O
0O 0 0
L0 0 0
and
1 0 0

T;1CT, =

0

The 2nd output is
redundant in
0 observing the
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system state...
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FRANUS

c Theorem 4.4.1 (CSD). Consider the unsensed system of (4.4.1) with I3 being of D oy
a full rank. Then, there exist nonsingular state and input transformations T, € R™*"
(e°) and T; € R™™™ such that, in the transformed input and state,
a N
o) ¥ =T.8, =18, (4.4.2)
=B
9! where
<
7, . - i
—r I Tiil uq
w ~ .7’1 ) .f‘,‘jQ ' ~ 1_12
B = T = ) . - m, U= ; , (44.3)
7, : :
Tm -;'i.ki Um
we have Controllability
&g = Aoy, (4.4.4) > structural
andfordi=1.2,..:; m decomposmon
whete ;. i=1,2,... m, are some row vectors ot appropriate dimensions, and
b Bz 0
A; = : o Be= |l s 4.4.6
. [() 0 Tt (540)
The matrix Ao is of dimensions no X no, where no =n—>3_ .- ki, and X\(Ao)

contains all the uncontrollable modes of the matrix pair, (A, B). Moreover, the —
integer set, C:={kq, ka, .. ., k. }. is called the controllability index of (A, B).
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Uncontrollable
dynamics

Integration
chains

Note: signals indicated by double-edged arrows are linear combinations of the states.

Figure 4.4.1: Interpretation of the controllability structural decomposition.
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Theorem 4.4.1 follows dually from the result of Theorem 4.3.1. The CSD, i.e.,
the controllability structural decomposition, can be summarized in a matrix form,

(A, B) := (T 1AT,, T-1BT;), with

T Ag O 0 S ) 0 7 LT | 8
0 0 Ik1—1 e ) 0 0O --- 0
. *x % * cee % * - 1 --- 0
0 0 0 TN | Ikm_l 0O --- 0
[ x x * * * 0 1
tA4 0 0 -0 0 T 0 07 )
0 0 g - 0 O ) o
0 0 0 e 0 0 1 - 0
: , : T : ] s M
0 0 0 S Ikm—l 0o --- 0

\_() 0 0 - 0 0 o .- 1_/
The essential structural properties left for the unsensed system!
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The next theorem deals with the block diagonal controllable structural decom-
position (BDCSD).

Theorem 4.4.2 (BDCSD). Consider the unsensed system of (4.4.1) with (A, B)
being controllable. Then, there exist an integer k < m, a set of k integers K1,
K9, ..., ki, and nonsingular transformations Ty and T; such that the transformed
system, (A, B) := (T AT., T BT}). has the following form:

Identifying
minimal
number of
input

>' variables
to
completely
control the

system...

- Ay I . i "By o x --- % %]
- 0 AQ ) 88 0 - 0 B2 6 @i & * *
A=| . . . B=| . . 5 (4.4.9)
L0 0 Ak_ L 0 0 Bk *.J
where A; and B;, 1 = 1,2, ...k, are in the CSD form
[0 1 === 07 (07
dg=l= & = ]| BEp=|l=], (4.4.10)
0 0 ..- 1 0
Lk & FeE gk L]
and x represents a matrix of less interest. Obviously, Zle Ki = M. —
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Example 4.4.2. Consider the unsensed system (4.4.1) characterized by matrices

A and B with

Using the MATLAB function bdcsd . mof [87], we obtain the following necessary

1
0
0
0
0

L0

0

0 0
0 0
L
0 0
0 0
0 -1

transformations and transformed system:

- —2.10371 0 —4.20741
—2.31866 0 —4.63731
;o |-021495 010545 3.17845
ST | -5.71205  2.53360  3.82330
3.17845 —0.21405  0.21495
| 296350  6.14195 —6.14195
—0.48477
Ti= | Zo oo
—0.26982
and
0 1.0 0 0[0]
0 01 0 00
im0 00 1 0]0
ITAL =109 90 0 10
1 -1 2 -2 1]0
0 00 0 0|1
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07
0
0
|
|

0.

0 -2.10371

0 —2.31866

—3.17845 —2.53360

2.10371 —2.74855

—0.21495 —-2.96350

6.14195 —3.17845
0
0.97828

T-1BT, =

TR W N

6

LW o= U OO

—_ D

0.78529 7
—0.71249

—0.56147
—0.29865
—0.32323
—0.76184
—1.20895

0
0
0

0.

Ol=O0O O O O

1
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Exercise 4.10.

Exercise 4.11.

Exercise 4.12.
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Given an unforced system
S| 2

5= % r, y=[a x --- x|z,

Al
A

where A € R and o € R, show that the system is observable if and only if

a # 0.
Given an unsensed system

A [ 1 Ea

where

A= l # “’] eR2X2 y£0, B= ("ﬁ) e R?,
—w [ ‘;‘,‘}2
show that the system is controllable if and only if 3 # 0.

Given a controllable pair (A, B) with A € R"*" and B € R™*™, show
that if A has an eigenvalue with a geometric multiplicity of 7, i.e., it has a
total number of 7 Jordan blocks associated with it, then m > 7.
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