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Dynamical Responses

Given a linear time-invariant system

5 . {1(1‘) = A xz(t) + B u(t), =(t) € R",uft) € R™ AL

y(t) = C x(t) + D ult), yt) €R”

The solution of the state variable or the state response, x(t), of ¥ with an initial
condition zg = x(0) can be uniquely expressed as

t

z(t) = eMrg + / A By(rydr, t>0, (3.2.1)

0

where the first term 1s the response due to the initial state, zy, and the second
term is the response excited by the external control force, u(t).

Lastly, 1t 1s simple to see that the corresponding output response of the system
(3.1.1) 1s given as:

o .
y(t) = Cetlay + / Cet'=7) Bu(r)dr + Du(t), t>0. (3.2.13)
Jo
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System Stability

A linear time-invariant system is said to be asymptotically stable if all its
closed-loop poles are located on the left-half complex plane (LHP), unstable

if at least of its poles are on the right-half plane (RHP)...
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Controllability and Observability

Theorem 3.4.2. The given system X of (3.1.1) is controllable it and only if

rank (Q).) = n, (3.4.11)

where
Qc:=[B AB .-- A"IB] (3.4.12)

is called the controllability matrix of Y.

Theorem 3.4.3. The given system Y. of (3.1.1) is controllable if and only if, for
every eigenvalueof A, \;,1 =1,2,...,n,

rank [\;] — A B]| =n. (3.4.21)

Definition 3.4.2. The given system Y of (3.1.1) 1s said to be stabilizable if all

its uncontrollable modes are asymptotically stable. Otherwise, Y. is said to be
unstabilizable.
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Theorem 3.4.6. The given system Y. of (3.1.1) is observable if and only if either
one of the following statements 1s true:

1. The observability matrix of X,

- o -
CA
ol = : (3.4.27)
L Ciil?l_l .
is of full rank, i.e., rank (Q,) = n.
2. Foreveryeigenvalueof A, \;,1 =1,2,...,n,
rank [)\JC—- A} = n. (3.4.28)

Definition 3.4.4. The given system X of (3.1.1) is said to be detectable if all its

unobservable modes are asymptotically stable. Otherwise, Y. is said to be unde-
tectable.
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System Invertibility

Recall the given system (3.1.1), which has a transfer function

H(s)=C(sI —A)™'B+D. (3.5.1)

Definition 3.5.1. Consider the linear time-invariant system Y. of (3.1.1). Then,

1. Y is said to be left invertible if there exists a rational matrix function of s,
say L(s), such that

L(s)H(s) = I,,. (3.5.2)

2. ¥ is said to be right invertible if there exists a rational matrix function of s,
say R(s), such that

H(s)R(s) = I,. (3.5.3)
3. X is said to be mvertible if it 1s both left and right invertible.

4. 3 1s said to be degenerate if it is neither left nor right invertible.
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A square system is not necessarily invertible...

Example 3.5.1. Consider a system X of (3.1.1) characterized by

1 0 1 0 0
A=1|1 1 1 B=10 1 (3.5.4)
1 1 1 1 ©
and
0 0 1 0 0O
(= [1 0 0]. 1) = [O O]' (355)

Note that both matrices B and C' are of full rank. It is controllable and observable.
and has a transfer function:

H(s) = ! [(” —1F s 1] . (3.5.6)

s3 — 352 “+ s s —1 1

Clearly, although square, it is a degenerate system as the determinant of H (s) is
identical to zero.
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Normal Rank and Invariant Zeros

Definition 3.6.1. Consider the given system Y. of (3.1.1). The normal rank of its
transfer function H(s) = C(sI — A)~'B + D, or in short, normrank{ H (s)}, is
defined as

normrank { H (s)} = max {rank [H(\)] | A € C} . (3.6.2)

Definition 3.6.2. Consider the given system Y. of (3.1.1). A scalar 5 € C is said
to be an invariant zero of Y if

rank { Px, ()} < n + normrank { H (s)}. (3.6.4)

Here |
!I_J _B
Ps(s) = [* . i ]

which is known as the so-called Rosenbrock system matrix.

Howard H. Rosenbrock
1920-2010
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System Invariant Structural Indices (Infinite Zeros, etc...)

In what follows. however, we will introduce the well-known Kronecker canon-

structure, invertibility structures and infinite zero structure of X altogether. Al-
though it is not a simple task (it is actually a pretty difficult task for systems with
a high dynamical order), it can be shown (see Gantmacher [56]) that there exist

nonsingular transformations U and V' such that Px(s) can be transformed into the

following form:

blkdiagd sl —J, Ly, ,..., Ly, Rpyy- .-, R, . I—sH, L, 0
UPs(s)V = {s “1 o7 ST e ’ 0}
0 0
(3.6.11)

where 0 1s a zero matrix corresponding to the redundant system inputs and outputs,
if any; .J is in Jordan canonical form, and s/ —.J has the following Zle 7; pencils
as 1ts diagonal blocks,

sl

nﬁi 2

(B;) = R | (3.6.12)
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=1 el = 1L2. .00 oF dnd L =10 e, po.isan (I; + 1) x [
bidiagonal pencil given by

- ?
by, 5= ' . (3.6.13)
o —1
— 'S -
Bt = 2 s me, is an 1; x (r; + 1) bidiagonal pencil given by
s —1
Ry, = ) (3.6.14)
s -1

H 1s nilpotent and in Jordan form, and I — sH has the following mq pencils as its
diagonal blocks,

1 g "

g1 — 8dg+1(0):= y gy L A =100 s e, (300157

and finally myg in I,;, is the rank of D, i.e., mo = rank (D).
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Definition 3.6.3. Consider the given system X of (3.1.1) whose system matrix
Ps:(s) has a Kronecker form as in (3.6.11) to (3.6.15). Then,

i

)

and an algebraic multiplicity of'Z;f:l nga, ;. It has a zero structure

S5,(X) :i={ng;,1,n6,2:- - - RE,r; I (3.6.16)
3; 1s said to be a simple invariant zero if ng, ; = -+ =ng, -, = 1.
The left invertibility structure of X is defined as
Sy =100, ... b} (3.6.17)
Thedizht Bl yetine g of 255 delimd et
B R = e o) o (3.6.18)

S BY = Dgr@nye5 5 Ora }- (3.6.19)

We say that X has mgq infinite zeros of order ¢y, qa, . . ., dmy» TESPectively.
Ifqg =---
the other hand, if mo > 0 and S*_(X) = (), then ¥ is said to be of uniform
rank 0.

= gmy, and mg = 0, then X is said to be of uniform rank ¢;. On
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Example 3.6.1. Consider a system X of (3.1.1) characterized by

-1 1 1.0 0 1 1 0 0 0 07
01 100110 00 0
00110 1 10 00 0
00100110 00 0
A=l 1111101 1] B5lo o1 (5620
1111 1 1 11 10 0
00000001 00 0
11 1 1 1 1 1 1. L0 1 0.
00000100 000]
C=100000010], D=0 0 0. (3.6.21)
[00100000J [oooJ

[t can be shown (using the technique to be given later in Section 5.6 of Chapter 5)

that with the following transformations

U=--- V=
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the Kronecker canonical form of X is given as follows:

Cs—1 -1 o ol0o 0]l0O 00 0 07
0 s—1] 0 0|0 O0/O0 OO0 0 O

0 0 | -1 O 0[O0 0 0 0 0
0 0 s —1/0 0|0 OO0 O O

0 0 0O s|0O 0|0 OO0 0 O
UPs(s)V = 0 0 0 0ls —1][0 0 0 0 O
0 0 0: 0|0 O0]T —s 0 0 O

0 0 0 0{0 0|0 1 0 0 O

0 0 0{ 0{0; 0[O0 ™O_1 —-s O
0 0 0. 0/0: 0|0 0 V. 1 -

|0 0 0 0/0; 0|0 O O ~0O_ 1]

v v \4

Thus, we have 5 {1}, S% () = {

i.e., X has a nonsimple invariant zero at s = 1, and two infinite zeros of order 1
and 2, respectively. ¥ is degenerate as both S (X)) and S} (X) are nonempty.

Leopold Kronecker Felix Gantmacher
1823-1891 1908-1964
German Mathematician Soviet Mathematician
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Geometric Subspaces

The weakly unobservable subspace

Definition 3.7.1. Consider the continuous-time system . of (3.1.1). An initial
state of ¥, g € R", is called weakly unobservable if there exists an input signal
u(t) such that the corresponding system output y(t) = 0 for all t > 0. The
subspace formed by the set of all weakly unobservable points of 3. is called the
weakly unobservable subspace of ¥ and is denoted by V* ().

The following lemma shows that any state trajectory of X starting from an
initial condition in V*(X) with a control input that produces an output y(t) = 0,
t > 0, will always stay inside the weakly unobservable subspace, V* ().

Lemma 3.7.1. Let iz be an initial state of ¥ with xq € V*(X) and u be an input
such that the corresponding system output y(t) = 0 for all t > 0. Then the
resulting state trajectory x:(t) € V*(X) forallt > 0.
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Theorem 3.7.1. The weakly unobservable subspace of 32, V*(X), is equivalent to
the largest subspace V that satisfies either one of the following conditions:

L [é]VC(VXO)wLim{[g]}.

2. Thereexistsan F € R™”" such that(A+BF)V C V and (C+DF)V = 0.

Using the result of Theorem 3.7.1, we can further define the stable and the
unstable weakly unobservable subspaces of X..

Definition 3.7.2. Consider a system X characterized by a quadruple (A, B, C., D).
Then we define V*(X) to be the largest subspace V that satisfies

(A+ BF)Y CV, (C+ DF)V=0, (3.7.8)

and the eigenvalues of (A+ BF)|V are contained in C* C C forsome F € R"*™,
Obviously, VX = V* if CX = C. We further define V~ := VX if C* = C~ U C°,
and V't .= VX ifC* =C™.
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The strongly controllable subspace

Next introduce the strongly controllable subspace of ¥, S(¥). & and V are dual
in the sense that V¥(X*) = S¥(X)+. where £* is characterized by the quadruple

(A", C',B’,D"). The physical interpretation of S is rather abstract and can be
found in Trentelman et al. [141].

Definition 3.7.4. Consider a system . characterized by a quadruple (A, B, C, D).

Then we define the strongly controllable subspace of ¥, S*(X), to be the smallest
subspace S that satisfies

(A+KC)Sc S, im(B+KD)CS, (3.7.9)

and the eigenvalues of the map that is induced by A + K C on the factor space
R/S are contained in C* C C for some K € RP*". We let S* := S* if C* = C,
ST =8XifC*=C UC’, and St := S*if C* =CT.
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[t can be verified that the various geometric subspaces of X are

l.

J7.1. Let us re-consider the system ¥ with (A, B, ', D) being given
3

Example 3
in Example

BEN M. CHEN, NUS ECE
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The controllable weakly unobservable subspace and the distributionally

weakly unobservable subspace

Intuitively, 1t is pretty clear from the definitions that the controllable weakly
unobservable subspace 1s a subspace of the weakly unobservable subspace that is
inside the strongly controllable subspace, i.e.,

R*(Z) =V*(X) nS* (). (3.7.10)

This indeed turns out to be the case (see, e.g., Trentelman et al. [141] for the
detailed proof). Another popular subspace (paired with R*) is called the distribu-
tionally weakly unobservable subspace (denoted by N'*) and is equivalent to the
sum of the weakly unobservable subspace and the strongly controllable subspace,
1.8,

N*(X) =V*(X) +S§*(2). (3.7.11)
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Finally, we define two more geometric subspaces of X, which were originally
introduced by Scherer [124,125] for tackling H .. almost disturbance decoupling
problems.

Definition 3.7.5. For the given system . of (3.1.1) and for any \ € C, we define

e o [E—BF B [
JweC .0_[ 5 D](w')}. (3.7.12)

g cCri® s (8) - !A;M g]w} (3.7.13)

Va(X) and Sx(X) are associated with the state zero directions of ¥ if \ is an
invariant zero of ¥.. Clearly, Sx(X) = V5 (X*)*.

Va(2) := {Q e C"

S)\(2) = {c e C"

Harry Trentelman Carsten Scherer
University of Groningen University of Stuttgart
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Theorem 3.8.1. Consider a given system X characterized by a matrix quadruple
(A, B,C, D). Also, consider a state feedback gain matrix F' € R™*". Then, X,
as characterized by the quadruple (A + BF, B,C + DF, D) has the following
properties:

1. Y is a controllable (stabilizable) system it and only if X is a controllable
(stabilizable) system:

19

The normal rank of ;. is equal to that of X;
3. The invariant zero structure of 2. is the same as that of X;
4. The infinite zero structure of X is the same as that of X;

5. Xy is (left or right) invertible or degenerate if and only if X is (left or right)

invertible or degenerate;
6. V*(Xe) = V*(X) and $*(X¢) = S*(X);
7. R*(X¢) = R*(X) and N* (X)) = N*(X); and
8. Va(Ze) = Va(2) and Sx (k) = Sa (D).
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Theorem 3.8.2. Consider a given system X characterized by a matrix quadruple
(A, B.C, D). Also, consider an output injection gain matrix ¥ € R™*?. Then,
Y« as characterized by the quadruple (A+KC, B+ K D, C. D) has the following

properties:

k

1o

Yk Is an observable (detectable) system it and only if ¥ is an observable

(detectable) system:

The normal rank of X is equal to that of X;

The invariant zero structure of X is the same as that of X;
The infinite zero structure of X is the same as that of X::

Yk 1is (left or right) invertible or degenerate if and only if X is (left or right)

invertible or degenerate:

VX(Ex) = VX(E) and S¥(Zx) = S¥(2);
R*(Zy) = R*(Z) and N*(Z¢) = N*(2); and

Va(Zk) = Va(%) and Sx(2k) = Sa(X).
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Exercise 3.1. Consider an electric network shown in the circuit below with its input,
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u, being a voltage source, and output, y, being the voltage across the 2 F
capacitor. Assume that the initial voltages across the | F and 2 F capacitors
are | V and 2 V, respectively, and that the inductor is initially uncharged.

10 ©2 10 ©2 0.1 H
L — — A %4
u \F— IOQU IOQH 2F — Y

. _;L *

Circuit for Exercise 3.1.

(a) Derive the state and output equations of the network.

(b) Find the unit step response of the network.

(c) Find the unit impulse response of the network.

(d) Determine the stability of the network.

(e) Determine the controllability and observability of the network.
(f) Determine the invertibility of the network.

(g) Determine the finite and infinite zero structures of the network.
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Exercise 3.2. Given

P S i PR
et = 3 B B _
et — Qe 2t et _ g2t

determine the values of the scalars «v and (3. and the matrices 4 and A'°9,

Exercise 3.5. Consider an uncontrollable system, & = Ax + Bu, with x € R" and
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u € R™. Assume that
rank (Q.) =rank (B AB --- A" lB])=r <n.

Let {q1,42,...,q,} be a basis for the range space of the controllability
matrix, Qc, and let {¢y+1....,qn} be any vectors such that

T=[qg @ - ¢ Gr41 - qn]

is nonsingular. Show that the state transformation

e]]

. & . . -
g=Tg=T ( ~C) , Tc€R", Tz R*™",
I
transforms the given system into the form

E(: _ Aee Ace T B
()= 1% a2l ()« 5]

where (Acc, B.) is controllable. Show that the uncontrollable modes of the
system are given by A\(Agz).
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Exercise 3.7. Verify the result of Exercise 3.5 for the following systems:

and
-3 -3 1
- [26 36 —3 -2
‘—[30 39 -2 —2J
30 43 -3 -3
Exercise 3.17. Given a linear system
1 0 1 0 0 0
g 1 1 1 0 0
all IR
g 4 1 1 0 1

u,

fo o 1 0]
YZ1lo 0o 0o 1"

show that it 1s invertible, controllable and observable. Also, show that it
has two infinite zeros of order 1 (and thus has a normal rank equal to 2),
and has one invariant zero at s = 1 with a geometric multiplicity of 2 and

an algebraic multiplicity of 2. Verify that such an invariant zero is also a

blocking zero of the system.
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