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What is a system?

A system is a set of integrated chains of things.

What is control?

Control is to regulate a system to desired performance.
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This course is aimed to answer the following questions:

>

vV VYV V V

Why is the commonly used PID a bad controller?

What control performance can one expect from a given system?
Why are system nonminimum phase zeros bad for control?
What else are bad to be controlled?

When an airplane passes through turbulences, why can it maintain its position

while its body is shaking badly?

When and how can disturbances, uncertainties and nonlinearities be attenuated

through proper control system design?

What is the best way to design a control system?
O to design a good control law? or

O to design a good system?
How to design a good system through sensor and actuator selection?

Why is PID not bad at all after all?

How to improve control performance?
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Course Outline

Introduction

Background Materials

Review of Basic Linear Systems Theory
Decompositions of Unforced and/or Unsensed Systems >~ Systems

Decompositions of Proper Systems

Structural Assignment via Sensor/Actuator Selection —

Time-Scale and Eigenstructure Assignment

J

H, and H_ Control
Disturbance Decoupling Control Problems

RPT Control

> Control

vV V V VYV V V VYV V VY VYV V

Flight Control Systems Design
CNF Control —

A\
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Classical Control System Structure

aircraft, missiles,

economic systems,
cars, etc
REFERENCE ERROR INPUT OuTPUT
\‘W/ Controller i System to be controlled \\TJ >
+

Objective: To make the system OUTPUT and the desired REFERENCE as close

as possible, i.e., to make the ERROR as small as possible.

Issues: (1) How to describe the system to be controlled? (Systems)

(2) How to design the controller? (Control)
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Model Uncertainties, Nonlinearities and Disturbances

There are many other factors of life have to be carefully considered when

dealing with real-life problems. These factors include:

uncertainties
disturbances noises
Reference v _
)(2 > Controller—Y—>{ Plant - —>
+ -

Input 2 Output

nonlinearities
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Modern Control System Structure

disturbances

Sensor noise

A 4

v

control input

Plant

»

Controller

a

»

response

measurements

commands

Controller Objective: To provide desired responses in face of

disturbances

O Uncertain plant dynamics + External inputs { Sensor noise
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Representation of Uncertain Plant Dynamics

Perturbation

y

disturbance

\ 4

Sensor noise

control inputs

v" Nominal Plant is an FDLTI System

\ 4

Nominal Plant

response

measurements

v

v' Perturbation is Member of Set of Possible Perturbations
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A General Control System Structure...

A e

Uncertainties
>
Disturbance > P
>
Control Input Controller
<

K

> Response

Measurement

Reference

It is aimed to design an appropriate control law such that the resulting overall

closed-loop system is stable in face of disturbance and uncertainties while

maintaining good response performance (settling time, overshoot, etc...).
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Classical vs Modern Control Structures

d
l PID control is a special
I . € u
= K G O > | case of the modern

control structure...

W

AN
What is the fundamental , ) 7
difference between the I : n > €
classical and modern u G —_'(13
Control System Structures?

N
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2.2 Vector Spaces and Subspaces

We assume that the reader is familiar with the basic definitions of scalar fields and
vector spaces.

Let A’ be a vector space over a certain scalar field K. A subset of X', say S,
is said to be a subspace of A’ if S itself is a vector space over K. The dimension

of a subspace S, denoted by dim S, is defined as the maximal possible number of

linearly independent vectors in S.
We say that vectors s1,52,...,5, € S, k = dim S, form a basis for S if
they are linearly independent, i.e., Ei”':l a;s; = 0 holds only if a; = 0. Two

subspaces V' and WV are said to be independent if V N W = {0}.

Throughout the book, we will focus our attention on two common vector
spaces, i.e., R™ (with a scalar field K=R) and C" (with a scalar field K=C), and

or C", is given by
(z,y) = 2"y = 2Ty1 + 23y2 + - - - + TLYn, (2.2.1)

where 1,22, ...,: rpand y1.ya, . . ., Yy, are respectively the entries of & and y, ="
is the conjugate transpose of x, and x is the complex conjugate of x;. Vectors x
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Definition 2.2.1 (Sums of subspaces). Let ) and WV be the subspaces of a vector
space X. Then, the sum of subspaces V and VV is defined as

S=V+W:={v+w

veV, we W}, (2.2.2)

If V and W are independent, then § is also called the direct sum of V and VW and
is denoted by S =V < VW. Obviously, in both cases, S is a subspace of X.

Definition 2.2.2 (Orthogonal complement subspace). Let V' be a subspace of a
vector space X. Then, the orthogonal complement of V is defined as

VL= {zec X|(z,v) =0, Vv e V}. (2.2.3)

Again, V* is a subspace of X.
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Definition 2.2.3 (Quotient space and codimension). Let V be a subspace of a
vector space X. The coset of an element x < X with respect to V, denoted by
x + V, is defined as

r+V ={w|lw=x+v,veV} (2.2.4)
Under the algebraic operations defined by
(w+WV)+(x+V)=(w+z)+V (2.2.5)

and
alw+V)=aw+V, (2.2.6)

it 1s straightforward to verify that all the cosets constitute the elements of a vector
space. The resulting space is called the quotient space or factor space of X’ by V

(or modulo V) and is denoted by X' /V. Its dimension is called the codimension of
V and is denoted by codim V,

codimV =dim X' /V = dim A" — dim V. 2.2.7)
Note that X' /V is not a subspace of X’ unless V = {0}.
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Definition 2.2.4 (Kernel and image of a matrix). Given A € C"™"" (orR™""),
a linear map from X =C" (orR") to Y =C™ (or R™ ), the kernel or null space of
A is defined as

ker(A) :={x e X | Az = 0}, (2.2.8)

and the image or range space of A is defined as
im(A) = AX :={Ax |z € X'}. (2.2.9)
Obviously, ker (A) is a subspace of X', and im (A) is a subspace of ).

Definition 2.2.5 (Inverse image of a subspace). Given A € C™*" (or R™""),
a linear map from X' = C" (orR™)to ) = C™ (or R™), and V. a subspace of ),
the inverse image of V' associated with the linear map is defined as

AY V) :={z c X | Az € V}, (2.2.10)
which clearly is a subspace of X.

Definition 2.2.6 (Invariant subspace). Given A<C"”" (orR"*"), a linear map
from X = C" (or R") to X, a subspace V of X is said to be A-invariant if

AY C V. 2011

Such a V is also called an invariant subspace of A.
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2.4 Norms

Norms measure the length or size of a vector or a matrix. Norms are also defined
for signals and rational transfer functions.

Given a linear space A’ over a scalar field K, any real-valued scalar function
of x € X (usually denoted by ||z||) is said to be a norm on A" if it satisfies the

following properties:

l. ||z|| >0ifz # 0and ||z|| =0 if z = 0;
2. ||az|| = |af - ||z]|, Vo € K, Vz € X; and
3. |lz+z2|| < ||z|| + [|2]], Yz, 2z € X.

2.4.1 Norms of Vectors

The following p-norms are the most commonly used norms on the vector space

: g
n 1/p
lzllp:= D |=lP] . 1<p<oo, (2.4.1)
i=1
and
|zl := max A (2.4.2)
where x1, 29, .. ., : r,, are the elements of x € C". In particular, ||z|2 is also called

the Euclidean norm of x and is denoted by || for simplicity.
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2.4.2 Norms of Matrices

: g X - - : =
Given a matrix A = [a;;] € C™"" | its Frobenius norm is defined as

m n 12 min{m,n} 132
| Al := Z Z \“@j|2 = Z ci(A) (2.4.3)
The p-norm of A is a norm induced from the vector p-norm, i.e.,
Ax
|Al[p := sup Azl = sup |[Az|p. (2.4.4)
z#0 ||Z||p lz|lp=1
In particular, for p = 1,2, oc, we have
m
|A|l: = 11-1}1}{2; laijl, (2.4.5)
1=

|All2 = \/ )‘maX(AHA) = Omax(A4), (2.4.6)

which is also called the spectral norm of A, and

|A]|loo = 1’11;_1.\{2 |aij]- (2.4.7)
i o
[t can be shown that
|All > p(A), (2.4.8)

where || A|| is any norm of A and p(A) is the spectral radius of A. Also note that

all these matrix norms are invariant under unitary transformations.
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2.4.3 Norms of Continuous-time Signals

For any p € [1,), let L'g‘ denote the linear space formed by all measurable
signals g : Ry — R™ such that

/ |g(t)|Pdt < oc.
JO

Forany g € L', p € [1,5¢),its Ly-norm is defined as

oo 1/p
lgllp := (/ |_q(t)\p(h‘) , 1< p< 00; (2.4.9)
Jo

Let L denote the linear space formed by all signals g : Ry — R™ such that
lg(t)| < 00, VteR,.
The Lo.-normof a g € L is defined as

9|0 :=sup |g(t)]. (2.4.10)
t>0

The following Holder inequality of signal norms is useful,

I falls < 1 fllp - llgllq: (2.4.11)

where 1 < p < ocand 1/p+1/¢q = 1. It can also be shown that if g(7) € L1NL .,
then g(t) € Lo.

BEN M. CHEN, NUS ECE



2.4.5 Norms of Continuous-time Systems

Given a stable and proper continuous-time system with a transfer matrix G(s), its
Ho-norm is defined as

| - 1/2
|Gl|2 := (‘trace {/ G(jw)G(jw)”de) ; (2.4.14)
27 " A
and its H-norm is defined as
h
|Glloo := SUp Omax[G(jw)] = sup P : (2.4.15)
wel0,00) lwll2=1 ||w]|2

where w(?) and h(f) are respectively the input and output of G(s).

Let (A, B.C, D) be a state space realization of the stable transfer matrix,
G(s), ie. G(s) = C(sI — A)™'B + D. Tt is straightforward to verify that
|Gll2 < oo if and only if D = 0. In the case of D = 0, ||G||2 can be exactly

computed by solving either one of the following Lyapunov equations:
A'P+PA=-C'C, AQ+ QA"'=-BD, (2.4.16)

for unique solution P > 0 or ) > 0. More specifically,

|G||2 = v/trace (B’ PB) = \/trace (CQC"). (2.4.17)
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