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SI UNITS 

1.1  Important Quantities and Base SI Units 

Length metre m 

Mass, m kilogram kg 

Time, t  second s  

Electric current, i  ampere A  

Thermodynamic temperature kelvin K  

Plane angle radian rad
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1.2  Important Derived Quantities and SI Units 

Force, f  f ma=  newton N kg m s2=  

Energy, e  e fd mgh mu
= = =

2

2
 joule J N m=  

Power, p p de
dt

= , ∫= dtpe  watt W J s=  

Electric charge, q  ∫= dtiq , i dq
dt

=  coulomb C A s=  

Electric potential, v  
v de

dq
de
dt

dt
dq

p
i

= = =  

p vi= , ∫= dtvie  
volt V J C W A= =

Resistance, R  v iR= , p i R v
R

= =2
2

 ohm Ω = V A  

Inductance, L  v L di
dt

= , e Li
=

2

2
 henry Η = Vs A  

Capacitance, C  i C dv
dt

= , q Cv= , e Cv
=

2

2
 farad F A s V=  

Magnetic flux, Φ  v N d
dt

=
Φ  weber Wb Vs=  

Magnetic flux density, Β B
A

=
Φ  tesla T Wb m2=  
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1.3  Important Decimal Multiples and Sub-Multiples 

1012  tera T 

109  giga G 

106 mega M 

103 kilo k 

10 1−  deci d 

10 2−  centi c 

10 3−  milli m 

10 6−  micro μ  

10 9−  nano n 

10 12−  pico p 

10 15−  femto f 

1.4  References 

[1] ISO Standard 31 (13 parts), International Organisation for Standardisation (ISO). 

[2] Symbols and Abbreviations for use in Electrical and Electronic Engineering 
Courses, Institution of Electrical Engineers, London. 
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DC CIRCUIT ANALYSIS 

 

2.1  Voltage Source 

Two common dc (direct current) voltage sources are: 

Dry battery (AA, D, C, etc.) 1 5. V 

Lead acid battery in car 12 V 

Regardless of the load connected and the current drawn, the above sources have 
the characteristic that the supply voltage will not change very much. 

The definition for an ideal voltage source is thus one whose output voltage does 
not depend on what has been connected to it.  

The circuit symbol is 
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v

 

Basically, the arrow and the value v  signifies that the top terminal has a potential of 
v  with respect to the bottom terminal regardless of what has been connected and 
the current being drawn. 

Note that the current being drawn is not defined but depends on the load connected.  
For example, a battery (which approximates an ideal voltage source) will give no 
current if nothing is connected to it, but may be supplying a lot of current if a 
powerful motor is connected across its terminals.  However, in both cases, the 
terminal voltages will be roughly the same. 

Using the above and other common circuit symbol, the following sources are 
identical: 

1.5 V

  

1.5 V−

  

1.5 V

+

−

1.5 V
+

−

 

Note that on its own, the arrow does not correspond to the positive terminal.  
Instead, the positive terminal depends on both the arrow and the sign of the voltage 
v  which may be negative. 
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2.2  Current Source 

In the same way that the output voltage of an ideal voltage source does not depend 
on the load and the current drawn,  the current delivers by an ideal current source 
does not depend on what has been connected and the voltage across its terminals. 

Its circuit symbol is 

i

 

Note that ideal voltage and current sources are idealisations and do not exist in 
practice.  Many practical electrical sources, however, behave like ideal 
voltage/current sources. 

One practical source that approximates an ideal current source is the optical 
detector in an infra red remote control unit.  The amount of current that the detector 
supply depends mainly on the intensity of light (number of photons) falling on the 
detector, but is quite independent on the voltage across the device. 
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2.3  Power and Energy 

Consider the following device with a current of i : 

v

i

Device
Power Consumed

by Device = vip

   

In 1s, there are i charges passing through the device.  Their electric potential will 
decrease by v  and their electric potential energy will decrease by iv .  This energy 
will have been absorbed or consumed by the device. 

The power or the rate of energy consumed by the device is thus iv . 

Note that p vi=  gives the power consumed by the device if the voltage and current 
arrows are opposite to one another.  The following examples illustrate this point: 

 

1.5 V

2 A

Energy absorbed = 300 W hr
= 0.3 kW hr

0.3 unit= in PUB bill

absorbed by source = 3 W
Power consumed/

in 100 hr

 

 

1.5 V

2 A

Power supplied = 3 W
by source

1.5 V

2 A−

by source = 3 W
Power absorbed

−
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2.4  Resistor 

The symbol for an ideal resistor is 

 

v

i

R

 

Provided that the voltage and current arrows are in opposite directions, the voltage-
current relationship follows Ohm's law: 

 v iR=  

The power consumed is 

 p vi i R v
R

= = =2
2

 

Common practical resistors are made of carbon film, wires, etc. 
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2.5  Relative Power 

Powers, voltages and currents are often measured in relative terms with respect to 
certain convenient reference values.  Thus, taking 

 pref = 1mW 

as the reference, the power 

 p = 2W 

will have a relative value of 

 p
pref

= = =
2 2 2000W

1mW
W

10 W-3  

The log  of this relative power or power ratio is usually taken and given a 
dimensionless unit of bel .  The power p = 2W is equivalent to 

 ( ) ( ) ( ) bel3.32log1000log2000loglog =+==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refp
p  

As bel  is a large unit, the finer sub-unit, decibel  or dB  (one-tenth of a Bel), is more 
commonly used.  In dB, p = 2W is the same as 

 ( ) dB332000log10log10 ==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refp
p  



10 Chapter 2  DC Circuit Analysis 
 

As an example:  

Reference Actual power Relative power  

pref  p p pref  ( )refpplog10  

1mW 1mW 1  0dB 

1mW 2 mW 2  3dB 

1mW 10mW 10  10dB  

1mW 20mW  20 10 2= ×  13 10 3dB dB dB= +  

1mW 100mW 100 20dB 

1mW 200mW  200 100 2= ×  23 20 3dB dB dB= +  

Although dB measures relative power, it can also be used to measure relative 
voltage or current which are indirectly related to power. 

For instance, taking 

 vref = 0 1. V  

as the reference voltage, the power consumed by applying vref  to a resistor R  will be 

 p
v
Rref
ref=

2

 

Similarly, the voltage 

 v = 1V 

will lead to a power consumption of 

 p v
R

=
2

 

The voltage v  relative to vref  will then give rise to a relative power of 

 100
1.0

1 22

2

2

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

refrefref v
v

R
v
R
v

p
p  

or in dB: 
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 dB20dB
1.0

1log20dBlog20dBlog10dBlog10
2

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

refrefref v
v

v
v

p
p  

This is often used as a measure of the relative voltage v vref . 

As an example:  

Reference Actual voltage Relative voltage  

vref  v  v vref  ( )refvvlog20  

0 1. V  0 1. V  1  0dB 

0 1. V  0 1 2. V 2  3dB 

0 1. V  0 2. V  2 2 2= ×  6 3 3dB dB dB= +  

0 1. V  0 1 10. V 10  10dB  

0 1. V  0 1 20. V  20 10 2= ×  13 10 3dB dB dB= +  

0 1. V  1V 10 10 10= ×  20 10 10dB dB dB= +  

The measure of relative current is the same as that of relative voltage and can be 
done in dB as well. 

The advantage of measuring relative power, voltage and current in dB can be seen 
from considering the following voltage amplifier: 

 

Amplifier

v v2Voltage
gain

2 = 6 dB
 

The voltage gain of the amplifier is given in terms of the output voltage relative to 
the input voltage or, more conveniently, in dB:   

 ( ) dB6dB2log2022
====

v
vg  

If we cascade 3  such amplifiers with different voltage gains together: 
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v v2 v28v2.8

Amplifier

Voltage
gain

2 = 6 dB

Amplifier

Voltage
gain

1.4 = 3 dB

Amplifier

Voltage
gain

10 = 20 dB
 

the overall voltage gain will be 

 gtotal = × × =2 1 4 10 28.  

However, in dB, it is simply: 

 gtotal = + + =6 3 20 29dB dB dB dB 

Under dB which is log  based, multiplications become additions. 
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2.6  Kirchhoff's Current Law (KCL) 

As demonstrated by the following examples, this states that the algebraic sum of the 
currents entering/leaving a node/closed surface is 0. 

 

i i

i
ii

1

2
3

4

5
i i

i
ii

1

2
3

4

5

 

 i i i i i1 2 3 4 5 0+ + + + =  for both cases 

Since current is equal to the rate of flow of charges, KCL actually corresponds to the 
conservation of charges. 
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2.7  Kirchhoff's Voltage Law (KVL) 

As illustrated below, this states that the algebraic sum of the voltage drops around 
any close loop in a circuit is 0. 

 v5

v1

v4

v3

v2

 

 v v v v v1 2 3 4 5 0+ + + + =  

Since a charge q  will have its electric potential changed by qv1, qv2 , qv3, qv4 , qv5 as 
it passes through each of the components, the total energy change in one full loop 
is ( )54321 vvvvvq ++++ .  Thus, from the conservation of energy: 

 v v v v v1 2 3 4 5 0+ + + + = . 
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2.8  Series Circuit 

Consider 2 resistors connected in series: 

 

v

i

R

1

R

2v

21

v

 

From 

 v iR1 1= , v iR2 2=  and v v v= +1 2  

the voltage-current relationship is 

 ( )21 RRiv +=  

Now consider 

 

v

i

R1 R2+  

The voltage/current relationship is 

 ( )21 RRiv +=  

Since the voltage/current relationships are the same for both circuits, they are 
equivalent from an electrical point of view.  In general, for n  resistors R1, , Rn  
connected in series, the equivalent resistance R  is 

 R R Rn= + +1  

Clearly, the resistances of resistors connected in series add. 
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2.9  Parallel Circuit 

Consider 2 resistors connected in parallel: 

 

v

R

R2

1

i

i

i

1

2

 

From 

 i v
R1

1

= , i v
R2

2

=  and i i i= +1 2  

we have 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

21

11
RR

vi  

Clearly, the parallel circuit is equivalent to a resistor R  with voltage/current 
relationship 

 i v
R

=  

with 

 1 1 1

1 2R R R
= +  

In general, for n  resistors R1, , Rn  connected in parallel, the equivalent resistance 
R  is given by 

 1 1 1

1R R Rn

= + +  

Note that 1 R  is often called the conductance of the resistor R .  Thus, the 
conductances of resistors connected in parallel add. 
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2.10  Voltage Division 

Consider 2 resistors connected in series: 

 

v

i

R1

R2

v1

v2

 

The total resistance of the circuit is R R1 2+ .  Thus: 

 i v
R R

=
+1 2

 

 v
RR

RiRv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
21

1
11  

 v
RR

RiRv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
21

2
22  

 v
v

R
R

1

2

1

2

=  
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2.11  Current Division 

Consider 2 resistors connected in parallel: 

 

v

i

R1 R2

i1
i2

 

The total conductance of the circuit is 

 1 1 1

1 2R R R
= +  

while the equivalent resistance is 

 R

R R

=
+

1
1 1

1 2

 

Thus: 

 v iR i

R R

= =
+

1 1
1 2

  

 i
RR

Ri

RR

R
R
vi ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
==

21

2

21

1

1
1 11

1

 

 i
RR

Ri

RR

R
R
vi ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
==

21

1

21

2

2
2 11

1

 

 i
i

R
R

1

2

2

1

=  
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2.12  Ladder Circuit 

Consider the following ladder circuit: 

 

2

3

4

5

 

The equivalent resistance can be determined as follows: 

 

3

4

5 ||||2

 

 

5 4+(3 ||||2)

 

 

||||5 [4+(3||||2)]

 

The network is equivalent to a resistor with resistance 

 ( )[ ]
( )

2
1

3
1

14

1
5
1

1

234
1

5
1

12345

+
+

+
=

+
+

=+=

||

||||R  
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2.13  Branch Current Analysis 

Consider the problem of determining the equivalent resistance of the following 
bridge circuit: 

 

4

2 4

2
3

 

Since the components are not connected in straightforward series or parallel 
manner, it is not possible to use the series or parallel connection rules to simplify 
the circuit.  However, the voltage-current relationship can be determined and this 
will enables the equivalent resistance to be calculated. 

One method to determine the voltage-current relationship is to use the branch 
current method. 

Firstly, we arbitrarily assign 3 branch currents (so that all other branch currents can 
be obtained from these using KCL): 
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4

2

2
3

4

v

i i 1

i 2

4

2

2
3

4

v

i i 1

i 2

i 1+i 2

i - i 1

i 2i - i 1-

 

Secondly, we determine the voltage drops across the various components: 

 

4

2

2
3

4

i i 1

i 2
2 i 1

4(i 1+i 2)

4(i - i 1)

i 2)2(i - i 1- 3 i 2

v

 

Thirdly, we apply KVL to 3 independent loops of the circuit: 

 ( ) iiiiiii 436432 21121 =−⇒−+=  

 ( ) ( ) iiiiiiiii 296234 2121221 =+⇒−−=++  

 ( ) 21211 4642 iiiiiv +=++=  

Fourthly, we try to eliminate i1  and i2  so as to obtain the relationship between v  and 
i : 

 12 2
62 2i i i i

= − ⇒ = −  
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 24 14 7
121 1i i i i

= ⇒ =  

 iiiiv
6

17
3
2

2
7

6
4

12
76 =⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=  

Thus, the circuit is equivalent to a resistor of value 17 6. 

An another example, consider determining the currents/voltages in the circuit: 

  

2

3

4

12 A 1 V

 

Again, we assign branch currents, use KCL and KVL to determine the voltage 
drops, and formulate the necessary equations to be solved: 
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2

3

4

12 1

i 1 i 22

2

3

4

12 1

i 1 i 2

i 1- i 22- i 1

2

2

3

4

12 1

i 1 i 22

3(i 1- i 2)2- i 1

4 i 1 2 i 2

 

 ( ) 153321 21212 =−⇒−=+ iiiii  

 ( ) 238432 211211 =−⇒+−=− iiiiii  

  

  

1

2

3 5 1
8 3 2

i
i

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

1
1

2

3 5 1 71
8 3 2 231

i
i

−−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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2.14  Mesh (Loop Current) Analysis 

This is another common (probably more systematic) circuit analysis technique.  To 
illustrate this method, consider the bridge circuit again.  This time, we assign 3 
fictitious loop currents: 

 

4

2

2
3

4

v
i

ia

ib

 

We determine the branch currents: 

 

4

2

2
3

4

v

i ia

ib-ib ia-ib i
- iia

 

We calculate the branch voltages: 

 

4

2

2
3

4

i

v

2 ia

4 ib)2( -ib i

4( )- iia

3( -ib ia )

 

Applying KVL and simplifying: 

 v i ia b= +2 4  

 ( ) ( ) iiiiiiii baaaba 4390234 =−⇒=+−−−  

 ( ) ( ) iiiiiiii bababb 2930432 =+−⇒=+−+−  
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Expressing ia  and ib  in terms of i : 

 24 14 7
12

i i i i
a a= ⇒ =  

 24 10 5
12

i i i i
b b= ⇒ =  

Substituting into the equation involving v : 

 
6

17
12
54

12
7242 iiiiiv ba =⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+=  

The equivalent resistance is 17 6 again. 
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2.15  Nodal Analysis 

This is probably the most systematic circuit analysis technique based on KVL and 
KCL.  To illustrate this method, consider the bridge circuit again.   

Firstly, we choose a reference node and assign voltages to other nodes with respect 
to this reference node: 

 

4

2

2
3

4

i

v

vb
va

v

Reference Node  

Secondly, we determine the voltage drops across the various branches: 

 

4

2

2
3

4

i

v

vb
va

−vav −vbv

−vbva

 

Thirdly, we calculate the branch currents: 

 

4

2

2
3

4

v

i

4
vb

2
−vbv

4
−vav

3
−vbva

2
va

 

Fourthly, we apply KCL: 

 i
v v v v

i v v va b a b=
−

+
−

⇒ = − −
4 2

3
4 4 2
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 v v v v v
v v va a a b

a b
−

= +
−

⇒ − =
4 2 3

13 4 3  

 v v v v v
v v vb a b b

a b
−

+
−

= ⇒ − = −
2 3 4

4 13 6  

Expressing va  and vb  in terms of v : 

 ( ) ( )
17
7

153
6364313441313 vvvvv aa ==⇒×+×=×−×  

 ( ) ( )
17
10

153
9061334441313 vvvvv bb ==⇒×+×=×−×  

Substituting into the equation involving i : 

 i v v v v v v va b= − − = − = =
3
4 4 2

3
4

27
68

24
68

6
17

 

This implies that the equivalent resistance is 17 6. 

As another example, consider determining the currents/voltages in the circuit: 

  

2

3

4

12 A 1 V

 

Assigning nodal voltages: 

 

2

3

4

12 1vbva

 

Determining the other branch voltages: 
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2

3

4

12 1vbva

−vbva −vb1

 

Calculating branch currents: 

 

4
−vbva

2

3

4

12 1

va

2 2
−vb1

v
3
b

 

Applying KCL: 

 2
4

5 8= +
−

⇒ − =v v v v va
a b

a b  

 v v v v v va b b b
a b

−
+

−
= ⇒ − = −

4
1

2 3
3 13 6  

Solving: 

 va =
55
31

 

 vb =
27
31

 

The powers supplied by the sources are: 
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2

3

4

12 1

2

31
55

31
27

31
2

Power supplied = 31
110 Power supplied = 31

2
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2.16  Practical Voltage Source 

An ideal voltage source is one whose terminal voltage does not change with the 
current drawn.  However, the terminal voltages of practical sources usually 
decrease slightly as the currents drawn are increased. 

A commonly used model for a practical voltage source is: 

 

voc

R in

Model for voltage source

v

Practical voltage source

i

R load

R loadv

i

 

The relationship between the load current i and load voltage v  is: 

 v v iRoc in= +  

When Rload = 0 or when the source is short circuited so that v = 0: 
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voc

R in

v

i =
voc

R in

R load = 0= 0
Short circuit

 

When Rload = ∞ or when the source is open circuited so that i = 0: 

 

voc

R in

i = 0

v = voc R load = ∞
Open circuit

 

Graphically: 

 

voc

v

i
0

=Slope R in

 
Good practical voltage source should therefore have small internal resistance, Rin , 
so that its output voltage, v , will not deviate very much from voc , the open circuit 
voltage, under any operating condition. 

The internal resistance of an ideal voltage source is therefore zero so that v  does 
not change with i . 

To determine the two parameters voc and Rin  that characterise, say, a battery, we 
can measure the output voltage when the battery is open-circuited (nothing 
connected except the voltmeter).  This will give voc. 

Next, we can connect a load resistor and vary the load resistor such that the voltage 
across it is voc 2.  The load resistor is then equal to Rin : 
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voc

R in

R loadv

i

= R in=
voc

2

voc

2
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2.17  Maximum Power Transfer 

Consider the following circuit: 

 

voc

R in

Model for voltage source

R loadv

i

 

The current in the load resistor is 

 i
v

R R
oc

in load

=
+

 

The power absorbed by the load resistor is 

 
( )2

2
2

loadin

loadoc
loadload RR

RvRip
+

==  

This is always positive.  However, if Rload = 0  or Rload = ∞ , pload = 0.  Thus:  

 0 Rload

p
load

 
Differentiating: 

 
( ) ( ) ( ) ⎥⎦

⎤
⎢
⎣

⎡

+
−

=⎥
⎦

⎤
⎢
⎣

⎡

+
−

+
= 3

2
32

2 21

loadin

loadin
oc

loadin

load

loadin
oc

load

load

RR
RRv

RR
R

RR
v

dR
dp  

The load resistor will be absorbing the maximum power or the source will be 
transferring the maximum power if 
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 R Rin load=  

or when the load and source internal resistances are matched. 

Note that maximum power transfer may not be always desirable, although it is 
commonly used for, say, driving hi fi speakers. 

This is because the power absorbed by the source internal resistance is 

 
( )2

2
2

loadin

inoc
inin RR

RvRip
+

==  

and this increases as i or more current is drawn.  Practically, this power is wasted 
and the source will heat up as i  increases. 

To waste as little power as possible, it is desirable that i be as small as possible.  
Thus, in transmitting power to homes and industries, high voltages (kV ) are used so 
that for the same power, the current drawn is as small as possible.  The transmitted 
high tension voltages are transformed to lower values (230 V) by transformers 
located nearer to the customers. 

The maximum power transfer formula also gives the maximum amount of power 
that a practical source is capable of giving.  With R Rload in= , this is 

 p v
Rload
oc

in

=
2

4
 

Graphically: 

 0 Rload

p
load

Rin

voc
Rin4

 

The smaller the internal resistance, the larger the power the source is capable of 
delivering.  High power source, say, car battery, therefore has very little internal 
resistance.  If accidentally shorted by a piece of wire, the wire may be "melted" or 
the battery may be damaged due to the heat given out. 
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A voltage source with zero resistance, an ideal voltage source, is therefore an 
idealisation in that it is capable to deliver an infinite amount of power. 



36 Chapter 2  DC Circuit Analysis 
 

2.18  Practical Current Source 

An ideal current source is one which delivers a constant current regardless of its 
terminal voltage.  However, the current delivered by a practical current source 
usually changes slightly depending on the load and the terminal voltage. 

A commonly used model for a current source is: 

 

i sc R in

Model for current source

R loadv

i

 

The relationship between the load current i  and load voltage v  is: 

 i v
R

isc
in

= +  

When Rload = 0 or when the source is short-circuited so that v = 0: 

 

i sc R in

i = i sc

0

v = 0 R load = 0
Short circuit

 

Graphically: 
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v

i0

=Slope R in

isc
 

Good practical current source should therefore have large internal resistance Rin  so 
that the current i delivered does not deviate very much from isc , the short circuit 
current, under any operating condition. 

The internal resistance of an ideal current source is therefore infinity so that i does 
not change with v . 
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2.19  Thevenin's Equivalent Circuit 

Consider the circuit 

 

4

21 v

i

3

 

To find the relationship between i and v : 

  

4

21 v

i

3

4i
2 i

6 i−3
−

 

Applying KVL: 

 ( ) ivvii 774361 +=⇒+=−+  

The circuit is therefore equivalent to: 

 

v

i

7

7

7 i

 



Chapter 2  DC Circuit Analysis 39 
 

which has the same voltage-current relationship of 7 7= +v i . 

In general, since the voltage-current relationships of ideal resistors, voltage and 
current sources are linear in nature, any circuit comprising these elements will also 
be linear, has linear voltage-current relationship and will be equivalent to an ideal 
voltage source in series with a resistor, the Thevenin's  equivalent circuit: 

 

v

i
Complicated circuit

with linear elements

such as resistors,

voltage/current sources

voc R inv i= +

voc R inv i= +voc

R in

v

i

Thevenin's equivalent circuit  

The values of voc  and Rin  can be found by determining the relationship between v  
and i  from using KCL and KVL on the original circuit as demonstrated in the 
previous example. 

Alternatively, note that from the Thevenin's equivalent circuit: 
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voc

R in

Open circuit voltage voc=

R in Resistance seen with
=source replace by

internal resistance
R in

 

Thus, voc  and Rin  for the circuit analysed can also be calculated in the same 
manner: 

 

4

21

3

0
2

6
0

voc = 7

43

Rin = 7
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2.20  Norton's Equivalent Circuit 

Another commonly used equivalent circuit is the Norton's equivalent circuit, which 
can be considered to be the dual of the Thevenin's equivalent circuit: 

 

R inv i= +

voc R inv i= +voc

R in

v

i

Thevenin's equivalent circuit

i sc R in

Norton's equivalent circuit

i scR in

if voc iscR in= if voc iscR in=

v

i

R in

v i= +i sc

 

From the Norton's equivalent circuit, the two parameters isc  and Rin  can be obtained 
from: 
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Short circuit currenti sc R in

i

=v 0

= i sc

= i sc

R in

Resistance seen with
=source replace by

internal resistance
R in

 

Thus, the determination of the Norton's equivalent circuit for 

 

21

43

 

can proceed as follows: 



Chapter 2  DC Circuit Analysis 43 
 

 

21

3

2

0

isc

4

isc4
isc−

6−3isc

43

Rin = 7

1 6−3isc isc4+ = 1isc =or

 

The Norton's equivalent circuit is therefore: 

 

1 7

 

And the Thevenin's equivalent circuit is: 

 

7

7

 



44 Chapter 2  DC Circuit Analysis 
 

2.21  Superposition 

Consider finding isc  in the circuit: 

 

3

isc

4

1 2

 

By using the principle of superposition, this can be done by finding the components 
of  isc  due to the 2 independent sources on their own (with the other sources 
replaced by their internal resistances): 

 

1

43

1/7

2

3 4

2(3/7)2(4/7)
24/7 24/7

 

The actual value of isc  when both sources are present is given by the sum of these 
components: 

 

2(3/7) (1/7)

3 4

1 2

= + = 1isc
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Basically, the principle of superposition works because the circuit is linear in nature.  
For these circuits, the output/response is related to the inputs/excitations by a 
linear equation such as 

 ( ) ( )2211 inputinput=output kk +  

Therefore, if output1 is the output by using input1 on its own with input 2  removed so 
that: 

 ( ) ( ) ( )112111 input0input=output kkk =+  

while output 2  is the output by using input 2  on its own with input1 removed so that: 

 ( ) ( ) ( )222212 inputinput0=output kkk =+  

then the actual output with both inputs present will be 

 output output output1 2= +  
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2.22  Dependent Source 

Consider the following system: 

 

CD
Player Amplifier

 

This may be represented by 

 

1 v

300

CD Player Amplifier Loudspeaker

23 kvd 2vd

2

 

Note that the source in the Amplifier block is a dependent source.  Its value 
depends on vd , the voltage across the inputs of the amplifier.  Using KCL and KVL, 
the voltage v  can be easily found: 

 

3300
1

vd = 11
10 2vd = 11

201 v

300

23 k

2

11
5

= 11
10

 

However, if we use the principle of superposition treating the dependent source as 
an independent source (which is wrong !), the value of v  will be 0 : 
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0

vd = 0 20

300

23 k

2

0

0

3300
1

vd = 11
10 01

300

23 k

2

0

0

vd = 0

 

Dependent sources, which depend on other voltages/currents in the circuit and are 
therefore not independent excitations, cannot be removed when the principle of 
superposition is used.  They should be treated like other passive components such 
as resistors in circuit analysis. 
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2.23  Non-Linear Circuit 

The circuits analysed so far are linear in nature and a large number of techniques 
exist for analysing these circuits.  Non-linear circuits, with non-linear circuit 
elements, are much more difficult to be analysed. 

The currents and voltages in non-linear circuits are usually found from solving, 
usually using computers, the voltage-current relationships governing the non-linear 
element components and those obtained based on KVL and KCL. 

Consider using the following non-linear device 

 

vn

in

vnin = 2

0
vn

in

 

in the circuit 

 

2

1

v

i

 

The voltage v  and current i can be determined by using the voltage-current 
relationship for the device and KVL and solving the resulting non-linear equations: 

 2 = +i v  

 ( )
0
0

,0
,2

<
≥

⎩
⎨
⎧

==
v
vv

vfi  

which give 

 2 12= + ⇒ =v v v  

Graphically: 
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0

i

v

2= i +v

Solution

Solution

Load Line
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2.24  Delta Circuit 

Consider the following delta circuit: 

 

R2

R3

v 1
v 2

i 1 i 2

R1

 

Given v1 and v2 , the voltages across the various resistors are: 

 

R2

R3

v 1
v2R1

v2 v 1−

 

The currents through the various resistors are: 

 

R2

R3

v 1
v2

i 1 i 2

R1

v2 v 1−
R3

v1

R1

v2

R2

 

From KCL, the currents i1  and i2  are related to the voltages applied by 

 
3

2
1

313

12

1

1
1

11
R
vv

RRR
vv

R
vi −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

−
−=  
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 2
323

1

3

12

2

2
2

11 v
RRR

v
R

vv
R
vi ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−=

−
+=  

The delta circuit is a 2-port 3-terminal network, whose electrical characteristic is 
given by 2 equations relating the 2 applied voltages and the 2 resulting currents. 

For comparison, a resistor is a 1-port network whose electrical characteristic is 
given by a single equation, v iR= , on the applied voltage and the resulting current. 

The 2 voltage-current equations for the delta circuit is often written in matrix form: 

 ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

−+
=⎥
⎦

⎤
⎢
⎣

⎡

2

1

323

331

2

1

111

111

v
v

RRR

RRR
i
i

 

The matrix involved is called the conductance matrix. 
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2.25  Star Circuit 

Consider the following star circuit: 

 

r 2

r 3

v 1 v2

i1 i2

r 1

 

Given i1  and i2 , the voltages across the various resistors are: 

 

r 2

r 3

v1 v2

i1 i2

r 1

i1r3 i2r3+

i1r1i2r2

 

The voltage-current relationships are: 

 
( )
( )

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
=⎥
⎦

⎤
⎢
⎣

⎡
++
++

=⎥
⎦

⎤
⎢
⎣

⎡
++
++

=⎥
⎦

⎤
⎢
⎣

⎡

2

1

313

332

23113

23132

21321

21312

2

1

i
i

rrr
rrr

irrir
irirr

iirir
iirir

v
v

 

or 

 
( )( ) 133221

2

1

323

331

2
33132

2

1

323

331

2

1
1

313

332

2

1

rrrrrr
v
v

rrr
rrr

rrrrr
v
v

rrr
rrr

v
v

rrr
rrr

i
i

++

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−

−+

=
−++

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−

−+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
=⎥
⎦

⎤
⎢
⎣

⎡
−

 

Comparing this with 

 ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

−+
=⎥
⎦

⎤
⎢
⎣

⎡

2

1

323

331

2

1

111

111

v
v

RRR

RRR
i
i
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for the star circuit, the star and delta circuits are equivalent if 

 1

3

3

1 2 2 3 3 1R
r

r r r r r r
=

+ +
 

 1

1

1

1 2 2 3 3 1R
r

r r r r r r
=

+ +
  

 1

2

2

1 2 2 3 3 1R
r

r r r r r r
=

+ +
 

This is called the star-to-delta/delta-to-star transformation. 
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3 

AC CIRCUIT ANALYSIS 

3.1  Sources 

In dc circuits, the voltages and currents are constants and do not change with time.  
In ac (alternating current) circuits, the voltages and currents change with time in a 
sinusoidal manner. 

The most common ac voltage source is the mains: 

 

230 2

1
50

t

π2 50
0.4
( )

−
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Mathematically: 

 ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=+=+= θπθωθπ

T
trtrftrtv 2cos2cos22cos2  

        ( )4.0100cos2230 += tπ  

 θ = =phase 0 4. rad  

 f = =frequency 50 Hz  

 ω π π= = = =2 100 314f angular frequency rad s 

 T
f

= = = =
1 1

50
0 02period . s 

 2 230 2 324r = = =peak value V 

 r = =rms ( root mean square ) value 230 V 

Most ac voltage/current values are rms based as it is more convenient to use these 
values in the calculation of powers. 
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3.2  Phasor 

A sinusoidal voltage/current is usually represented using complex number format: 

 ( ) ( ) ( )[ ] ( )( )[ ]tjjtj ereertrtv ωθθωθω 2ReRe2cos2 ==+= +  

The advantage of this can be seen if, say, we have to add 2 sinusoidal voltages 
given by: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

6
cos231

πωttv  and ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

4
cos252

πωttv  

The addition can proceed as follows: 

 ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ += tjj

eettv ω
ππω 23Re

6
cos23 6

1  

 ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −=

− tjj
eetv ω

ππω 25Re
4

cos25 4
2  

 ( ) ( ) ( ) ( )( )[ ]tjjtjj
eeeeetvtv ωω

ππ

247.6Re253Re 32.046
21

−−
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=+  

          ( )32.0cos247.6 −= tω  

Note that the complex time factor 2e j tω  appears in all the expressions.  If we 
represent ( )tv1  and ( )tv2  by the complex numbers or phasors: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +==

6
cos233 1

6
1

πω
π

ttveV
j

ngrepresenti  

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −==

−

4
cos255 2

4
2

πω
π

ttveV
j

ngrepresenti  

then the phasor representation for ( ) ( )tvtv 21 +  will be 

 ngrepresenti32.046
21 47.653 jjj

eeeVV −−
=+=+

ππ

 

 ( ) ( ) ( )32.0cos247.621 −=+ ttvtv ω  

By using phasors, a time-varying ac voltage 
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 ( ) ( ) ( )( )[ ]tjj eretrtv ωθθω 2Recos2 =+=  

becomes a simple complex time-invariant number/voltage 

 θrV = r e jθ =  

with 

 ( )tvVVr  of value r.m.s. of modulusmagnitude/ ===  

 θ = =Arg V Vphase of  

Graphically, on a phasor diagram: 

 

V

Imag

Real0
θ

r

Complex Plane  

Using phasors, all time-varying ac quantities become complex dc quantities and all 
dc circuit analysis techniques can be employed for ac circuit with virtually no 
modification. 

As an example, the ac circuit 

 

4

6 3 2cos )+ 0.1( tω5 2cos )− 0.2( tω

i )( t

 

is usually represented by 
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4

65 j- 0.2e

I

3 j 0.1e

 

and finding ( )ti  in the actual circuit can be done by: 

 

46

30 j- 0.2e

I

3 j 0.1e

Thevenin's equivalent circuit
for current soure and 6Ω resistor  

 

46

30 j- 0.2e 3 j 0.1e

I 30 j- 0.2e 3 j 0.1e−
10

= = 2.64 − j0.63 = 2.71e j 0.23-

 

From the phasor I , ( )ti  is: 

 ( ) ( )23.0cos271.2 −= tti ω  

Note that since there is a one-to-one correspondence between the actual ac 
voltage/current and the associated phasor, most ac circuits are described in terms 
of phasors.  Thus, the answer to the above problem can be given in terms of 
I e j= −2 71 0 23. .  rather than ( ) ( )23.0cos271.2 −= tti ω . 
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3.3  Root Mean Square Value 

For the ac voltage 

 ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=+= θπθπ

T
trftrtv 2cos22cos2  

the square value, using ( ) ( ) 1cos22cos 2 −= xx , is 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ += θπθπ 24cos12cos2 2222

T
tr

T
trtv  

Graphically: 

 

2

T

r

t
π2

− Tθ

t

2r2

v )( t

v )( t2

 
The average or mean of the square value is 

 ( ) ( )∫∫ =
T

dttv
T

dttv
0

2

1

2 1
1

1
period period 

 

  2

0

2

0

2 124cos11 rdtr
T

dt
T

tr
T

TT
==⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++ ∫∫ θπ  

The square root of this or the rms (root mean square) value of ( )tv  is 

 ( ) rtr =+θωcos2 of value rms  
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3.4  Power 

Consider the ac device: 

 

Device

ri )( t = i 2cos )+( tω θi

rv )( t = v 2cos )+( tω θv

 

Using ( ) ( ) ( ) ( )212121 coscoscoscos2 xxxxxx ++−= , the instantaneous power consumed  is 

 ( ) ( ) ( ) ( ) ( )vivi ttrrtvtitp θωθω ++== coscos2  

         ( ) ( )[ ]vivivi trr θθωθθ +++−= 2coscos  

The average power consumed is 

 ( )∫=
period period 11

1 dttppav  

       ( ) dt
T

t
T
rr T

vivi
vi ∫ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++−=

0

4coscos θθπθθ  

       ( )vivirr θθ −= cos  

Graphically: 
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2

T

t

v )( t

t

−
π2
Tθv

rv

i )( tv )( t

rvri cos − θvθ i( )

2

t

i )( t ri

−
π2
Tθ i

 

In phasor notation: 

 V r ev
j v= θ  

 I rei
j i= θ  

 ( ) ( )[ ] [ ] [ ] [ ]VIIVerererrrrp vivi j
v

j
i

j
viviviav

∗∗−− ====−= ReReReRecos θθθθθθ  

In block diagram form: 

 

Devicee= rv
θ vjV

e= ri
θ ijI

Power consumed
=

I V*= IV *Re [ ] = Re [ ]
ri θ irv cos ( θv− )

 

Note that the formula p I Vav = ∗Re  is based on rms voltages and currents.  Also, 
this is valid for dc circuits, which is a special case of ac circuits with f = 0 and V  
and I  having real values. 
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As an example, consider the ac circuit: 

 

46

30 j- 0.2e 3 j 0.1e

2.7 e j 0.23-

 

The power consumed are: 

 ( ) ( )[ ] [ ] ( ) 7.733.0cos1.81.8Re37.2Re3 33.01.023.01.0 ===∗− jjjj eeee :source  

 ( ) ( )[ ] ( ) 8103.0cos81307.2Re30 2.023.02.0 −=−=− −∗−− jjj eee :source  

 ( ) ( )[ ] ( ) 447.267.267.2Re6 223.0*23.0 ==× −− jj ee:resistor  

  ( ) ( )[ ] ( ) 297.247.247.2Re4 223.0*23.0 ==× −− jj ee:resistor  
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3.5  Power Factor 

Consider the ac device: 

 

Devicee= rv
θ vjV

e= ri
θ ijI

 

Ignoring the phase difference between V  and I , the voltage-current rating or 
apparent power consumed is 

 Apparent power voltage- current rating= = =V I r rv i VA 

However, the actual power consumed is 

 [ ] ( )WcosRe viivrrIV θθ −== ∗power Actual  

The ratio of the these powers is the power factor of the device: 

 ( )vi θθ −== cos
power Apparent

power Actualfactor Power  

This has a maximum value of 1  when 

 Unity power factor and in phase⇔ ⇔ =I V i vθ θ  

The power factor is said to be leading or lagging if 

 Leading power factor leads in phase⇔ ⇔ >I V i vθ θ  

 Lagging power factor lags in phase⇔ ⇔ <I V i vθ θ  

Consider the following ac system: 

 

AC
Generator Electrical

Cables
Electrical Machine

0.1 Ω 230 V, 2300 VA

   

This can be represented by: 



64 Chapter 3  AC Circuit Analysis 
 

 
AC

Generator
Electrical
Cables

Electrical
Machine

e θ vj
e θ ij

0.1 e θ ij10

230

 

The power consumed by the machine and loss in the transmission system at 
different power factors are: 

Voltage-current rating 2300VA  2300VA  2300VA  

Voltage across machine 230V  230V  230V  

Current 10A  10A  10A  

Power factor 0 11. leading 1  0 11. lagging  

θ θi v−  ( )11.0cos 1−  
rad46.1=  

0  ( )11.0cos 1−−  
= − 1 46. rad 

Power consumed 
by machine 

( )( )11.02300  
= 232W  

( )( )12300  
= 2300W  

( )( )11.02300  
= 232W  

Power loss 
in cables 

( )( )2101.0  
= 10W 

( )( )2101.0  
= 10W 

( )( )2101.0  
= 10W 

Clearly, the larger the power factor, the more efficient the transmission system.  
However, the power factor depends on the load being connected and it may be 
impossible for this to be specified in advance. 
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3.6  Capacitor 

A capacitor consists of parallel plates for storing electric charges.  The circuit 
symbol for an ideal capacitor is: 

 

Cv (t)

i (t)

 

Provided that the voltage and current arrows are in opposite directions, the voltage-
current relationship is: 

 ( ) ( )
dt

tdvCti =  

For dc circuits: 

 ( ) ( ) ( ) 00 =⇒=⇒= ti
dt

tdvtv constant  

and the capacitor is equivalent to an open circuit: 

 

Cv (t) = constant

i (t) = 0 i (t) = 0
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Consider the change in voltage, current and power supplied to the capacitor as 
indicated below: 

 

0 t

v( t)

1

vf

0 t

i ( t)

1

vfC

0 t

v ( t)

1

i ( t)p( t) =

vfC 2
Area = Energy stored =

vfC 2

2

= Instantaneous power supplied

 

In general, the total energy stored in the electric field established by the charges 
on the capacitor plates at time t is 

 ( ) ( )
2

2 tCvte =  

if the voltage is ( )tv . 
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Now consider the operation of a capacitor in an ac circuit: 

  

Note that since differentiating a sinusoidal function will always result in another 
sinusoidal function, the current ( )ti  will be sinusoidal if the voltage ( )tv  is sinusoidal.  
In phasor format: 

 

Ce= rv
θ vjV

=I rvCω
π
2e θ vj e

j
= rvCω e θ vjj = Cωj V

 

The ac voltage-current relationship for a capacitor can therefore be summarised by 

 V
I j C

=
1
ω

 

or symbolically: 

 

V

I

Cωj
1

 

With phasor representation, the capacitor behaves as if it is a resistor with a 
"complex resistance" or an impedance of 

 Z
j CC =
1
ω

 

This impedance is purely imaginary and the average power absorbed is 

( ) 2 cos( )v vv t r tω θ= +

( )( ) 2 sin( )

2 cos( )
2

v v

v v

dv ti t C Cr t
dt

Cr t

ω ω θ

πω ω θ

= = − +

= + +
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 [ ] [ ] 0ReReRe
2

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=== ∗∗

Cj
I

IZIVIp Cav ω
 

which confirms that an ideal capacitor is a non-dissipative but energy-storing device. 

Since the phase of I  relative to that of V  is 

 [ ] [ ] [ ] 090Arg1ArgArgArgArg ==⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=− Cj

ZV
IVI

C

ω  

the ac current ( )ti  across the capacitor leads the voltage ( )tv  by 900.   

As an example, consider the following ac circuit: 

 

30
319

230 V
50 Hz

μF
Ω
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In phasor notation (taking the source to have a reference phase of 0 ): 

 

30

1
10-6j 2π(50)

= 10j−
(319)

30

230
j10

=10j−

230

30 −
7.3e j 0.32

230e j0 = 230

 

Total circuit impedance ( )−= 1030 jZ  

Total circuit reactance X Z j= = − = −Im Im 30 10 10Ω  

Total circuit resistance R Z j= = − =Re Re 30 10 30Ω  

Current (rms) I = 7 3. A  

Current (peak) 2 7 3 2 10I = =. A  

Source V-I phase relationship I leads by rad0 32.  

Power factor of entire circuit ( ) leading95.032.0cos =  

Power supplied by source ( ) ( )[ ] ( )( ) ( ) kW6.132.0cos3.72303.7230Re 32.0 ==∗ je  

Power consumed by resistor ( ) ( )[ ] ( ) kW6.1303.73.7303.7Re 232.032.0 ==×
∗ jj ee  
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3.7  Inductor 

An inductor consists of a coil of wires for establishing a magnetic field.  The circuit 
symbol for an ideal inductor is: 

 

Lv (t)

i (t)

 

Provided that the voltage and current arrows are in opposite directions, the voltage-
current relationship is: 

 ( ) ( )
dt

tdiLtv =  

For dc circuits: 

 ( ) ( ) ( ) 00 =⇒=⇒= tv
dt

tditi constant  

and the inductor is equivalent to a short circuit: 

 

L= 0v (t)

i = constant(t)

= 0v (t)
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Consider the change in voltage, current and power supplied to the inductor as 
indicated below: 

 

0 t

v( t)

1

i f

0 t

i ( t)

1

i fL

0 t

v ( t)

1

i ( t)p( t) =

i fL 2
Area = Energy stored =

i fL 2

2

= Instantaneous power supplied

 

In general, the total energy stored in the magnetic field established by the current 
( )ti  in the inductor at time t  is given by 

 ( ) ( )
2

2 tLite =  
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Now consider the operation of an inductor in an ac circuit: 

  

 

The ac voltage-current relationship for an inductor can therefore be summarised by 

 V
I

j L= ω  

or symbolically: 

 

V

I

Lωj

 

Thus, in ac circuits, the inductor has an impedance of 

 Z j LL = ω  

and will absorb an average power of 

 p I V I Z I j LI I j L Iav L= = = = =∗ ∗ ∗Re Re Re Reω ω 2 0 

which shows that an ideal inductor is a non-dissipative but energy-storing device. 

Lv (t)

i (t) ( ) 2 cos( )i ii t r tω θ= +

( )( ) 2 sin( )

2 cos( )
2

i i

i i

di tv t L Lr t
dt

Lr t

ω ω θ

πω ω θ

= = − +

= + +

Lv (t)

i (t) ij
iI re θ=

/ 2 ( )i ij jj
i iV Lre e j Lre j L Iθ θπω ω ω= = =
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Since the phase of I  relative to that of V  is 

 [ ] [ ] 0901Arg1ArgArgArgArg −=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=−

LjZV
IVI

L ω
 

the ac current ( )ti  lags the voltage ( )tv  by 900.   

Since most motors consist of coils of windings, most ac loads are inductive in 
nature. 

As an example, consider the following series ac circuit: 

 

319
230 V
50 Hz

μF
Ω

31.9 mH

3

 

Using phasors: 
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230
j10

=
3 − 77

10-3j 2π(50) =
10j−

230 (31.9)

3

10j

10j−
230

3

10j

10j+

773

10j230 770j

770j−
230

10j−

 

Total circuit impedance Z j j= − + =3 10 10 3Ω 

Total circuit reactance X Z= = =Im Im 3 0Ω  

Total circuit resistance R Z= = =Re Re 3 3Ω 

Current (rms) I = 77A  

Current (peak) 2 77 2 108I = = A  

Source voltage-current phase relationship ( )phasein 0  

Power factor of entire circuit ( ) 10cos =  

Power supplied by source ( ) ( )[ ] kW1823077Re =∗  

Power consumed by resistor ( ) ( )[ ] kW1877377Re =×∗  
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Note that the rms voltages across the inductor and capacitor are larger than the 
source voltage.  This is possible in ac circuits because the reactances of capacitors 
and inductors, and so the voltages developed across them, may cancel out one 
another: 

 
230

Source
=voltage

770

Voltage
across

capacitor
j−

+
230

Voltage
across
resistor +

770

Voltage
across

inductor
j  

In dc circuits, it is not possible for a passive resistor (with positive resistance) to 
cancel out the effect of another passive resistor (with positive resistance). 
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3.8  Power Factor Improvement 

Consider the following system: 

 Electrical Machine

230
230 V
2.3 kW

0.4 lagging power factor

50 Hz

Mains V =

I0

 

The current I0  can be found as follows: 

 ( )( ) ( )( ) 25
4.0230

23004.0
AV230

W2300
0

0

==⇒= I
I

 

 
[ ] [ ]{ }

[ ] [ ] [ ] ( ) 16.14.0cosArg
0ArgArg

4.0ArgArgcos 1
0

0

0 −=−=⇒
⎭
⎬
⎫

<−
=− −I

VI
VI

 

 [ ] 16.1Arg
00 250 jIj eeII −==  

Due to the small power factor, the machine cannot be connected to standard 13A  
outlets even though it consumes only 2 3. kW  of power. 
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To overcome this problem, a parallel capacitor can be used to improve the power 
factor: 

 New Electrical Machine

Mains

e j− 1.1625

Original
Machine

Zold = 230
e j− 1.1625

= e j1.169.2Cj2π
1=ZC (50) C

I

230V =

 

 ( )23230001023102300025 16.1 −+=−+=+= − CjjCje
Z
VI j

C

ππ  

Thus, if we choose 

 23000 23 0 32πC C= ⇒ = . mF 

then 

 I = 10A 

 ( ) ( )[ ] 1ArgArgcos =−= VImachinenew  of factor Power  

By changing the power factor, the improved machine can now be connected to 
standard 13A  outlets.  The price to pay is the use of an additional capacitor. 

To reduce cost, we may wish to use a capacitor which is as small as possible.  To 
find the smallest capacitor that will satisfy the 13A  requirement: 

 ( ) 2222 13237220010 =−+= CI  

 ( )222 23722001013 −+= C  

 ( ) ( ) 22222 3.82372200237220013100 −−=−+−= CC  

 ( )( )3.823722003.823722000 +−−−= CC  

 C = 0 2 0 44. .mF mFor  

There are 2 possible values for C , one giving a lagging overall power factor, the 
other giving a leading overall power factor.  To save cost, C  should be 

 C = 0 2. mF 
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4 

FREQUENCY RESPONSE 

4.1  RC Circuit 

Consider the series RC circuit: 

 

160 mF

Ω2

10-3j2π
=

(160) jf f
1 1ZC =

2

V

v(t) =
a 2cos )+ θ( t2π f

v (t)C

b 2cos )+ φ( t2π f
=

= a θe j V = b φe j
C
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Taking the input/excitation to be a sinusoid at frequency f  and represented by the 
phasor V , the output/response will be sinusoidal and can be represented by the 
phasor VC.  The ratio of the output phasor to the input phasor or voltage gain of the 
circuit is 

 ( ) ( )

fj
jf

jf
Z

Ze
a
b

ae
be

V
VfH

C

Cj
j

j
C

21
1

12

1

2 +
=

+
=

+
==== −θφ

θ

φ

 

This is a function of frequency and is called the frequency response of the circuit. 

The magnitude of ( )fH  is 

 

( )

( ) 22 41
1

21
1

ff

a
b

V
V

V
VfH CC

+
=

+
=

===

 

and is called the magnitude response. 

The phase of ( )fH  is 

 

( )[ ] [ ] [ ]

[ ] ( )ffj
fj

VV
V
VfH C

C

2tan21Arg
21

1Arg

ArgArg=ArgArg

1−−=+−=⎥
⎦

⎤
⎢
⎣

⎡
+

=

−=−⎥⎦
⎤

⎢⎣
⎡= θφ

 

and is called the phase response. 

The physical significance of these responses is that ( )fH  gives the ratio of output 
to input phasors, ( )fH  gives the ratio of output to input magnitudes, and ( )[ ]fHArg  
gives the output to input phase difference at a frequency f .  Thus, for the RC 
circuit:
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Input 
( ) ( )[ ]752cos23 += ttv π  

V e j= 3 7  

( ) ( )[ ] ( ) ⎥⎦
⎤

⎢⎣
⎡ −==

2
42cos42sin πππ trtrtv  

V r e j= −

2
2π  

Frequency f = 5 f = 4  

Frequency 
response 

( )
101

15
j

H
+

=  ( )
81

14
j

H
+

=  

Magnitude 
response 

( )
101
15 =H  ( )

65
14 =H  

Phase 
response 

( )[ ] ( )10tan5Arg 1−−=H  ( )[ ] ( )8tan4Arg 1−−=H  

Output 
( ) ( ) ( )[ ]10tan752cos

101
23 1−−+= ttvC π  

( )[ ]10tan7 1

101
3 −−= j

C eV  

( ) ( ) ( )[ ]

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −−=

−=

−

−

2
8tan42cos

65

8tan42sin
65

1

1

ππ

π

tr

trtvC

 

( )[ ]28tan 1

130
π−− −

= j
C erV  

Due to the presence of components such as capacitors and inductors with 
frequency-dependent impedances, ( )fH  is usually frequency-dependent and the 
characteristics of the circuit is often studied by finding how ( )fH  changes as f  is 
varied.  Numerically, for the series RC circuit: 

f  ( )
( )241

1
f

fH
+

=  ( )[ ] ( )ffH 2tanArg 1−−=  

0  ( ) dB01log201 ==  0 rad = 00 

0 5.  
( )

dB3
2

1log20
2

1

5.041

1
2

−=⎟
⎠

⎞
⎜
⎝

⎛==
+

 ( ) 01 45=rad
4

5.02tan −−=×− − π  

→∞  → = −∞0 dB  ( ) 01 90rad
2

tan −=−=∞− − π  
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Graphically: 

 

0 f0.5

H( f)

H( f)[ ]Arg

1 = 0 dB

0.7 =

0
f

0.5

90− o

45− o

t

 Input

 Output

Low
f

t

 Output

 Input

High
f

−3 dB
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At small f , the output approximates the input.  However, at high f , the output will 
become attenuated.  Thus, the circuit has a lowpass characteristic (low frequency 
input will be passed, high frequency input will be rejected). 

The frequency at which ( )fH  falls to −3dB of its maximum value is called the 
cutoff frequency.  For the above example, the cutoff frequency is 0 5. Hz . 

To see why the circuit has a lowpass characteristic, note that at low f , C  has large 
impedance (approximates an open circuit) when compare with R  (2  in the above 
example).  Thus, VC will be approximately equal to V : 

 

=f
1ZC VCfLow ∝ ∞ open circuit( ) ≈

R

V
V

 

However, at high f , C  has small impedance (approximates a short circuit) when 
compare with R .  Thus, VC will be small: 

 

R

V
fHigh VC 0≈ small( )=f

1ZC short circuit( )∝ 0
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4.2  RL Circuit 

Consider the series RL circuit: 

 

Ω5

VLHzf

5
V

10-3j 2π =(160) jf fZL =

160 mHHzf
v(t)

sinusoid
Hzf

sinusoid

v (t)L

 

With V  being the input and VL  being the output, the frequency response is 

 ( )
jf

jf
Z

ZfH
V
V

L

LL

+
=

+
==

55
 

The magnitude response is 

 ( ) 2

2

22

2

255 f
f

f
ffH

+
=

+
=  

The phase response is 

 ( )[ ] [ ] [ ] ⎟
⎠
⎞

⎜
⎝
⎛−=+−=⎥

⎦

⎤
⎢
⎣

⎡
+

= −

5
tan

2
5ArgArg

5
ArgArg 1 fjfjf

jf
jffH π  
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Numerically: 

f  ( ) 2

2

25 f
ffH
+

=  ( )[ ] ⎟
⎠
⎞

⎜
⎝
⎛−= −

5
tan

2
Arg 1 ffH π  

0  ( ) dB0log200 ∞−==  π
2

9rad = 00  

5  dB3
2

1log20
2

1
525

5
2

2

−=⎟
⎠

⎞
⎜
⎝

⎛==
+

 01 45=rad
45

5tan
2

ππ
=⎟
⎠
⎞

⎜
⎝
⎛− −  

→∞  → =1 0dB ( ) 01 0rad0tan
2

==∞− −π  

Graphically: 

 0 f5

H( f)

1 = 0 dB

0.7 = −3 dB
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Physically, at small f , L  has small impedance (approximates a short circuit) when 
compare with R  (5  in the above example).  Thus, VL  will be small: 

 

fLow
V

VL 0≈ small( )

R

0fZL∝ ≈ short circuit( )

 

However, at high f , L  has large impedance (approximates an open circuit) when 
compare with R .  Thus, VL  will approximates V : 

 

VL ≈V

R

V
fHigh fZL∝ ≈ (open circuit)∞

 

Due to these characteristics, the circuit is highpass in nature.
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4.3  Tune Circuit 

Consider the series tune circuit: 

 

1.4 F

Hzf
VC

I

V

j 2π =(0.64) jf fZL = 4

= jj2π (1.4)f
1 1ZC = f9

0.64 HL =

=C

Ω0.067R =

Hzf
v(t)

sinusoid
Hzf

sinusoid

v (t)C

2
30

 

The total circuit impedance is 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=++=++=

f
fj

fj
fjZZRZ CL 9

14
30
2

9
14

30
2  

At a frequency f f= 0  given by 

 
( )( ) ( )( ) LCCL

ff
πππ 2

1
22

1
6
1

94
1

00 ==⇔==  

Z j jL = =4 6 2 3 cancels with ( ) 32691 jjZC −== , Z = 2 30 becomes purely 
resistive, and the circuit is said to be in resonance. 

The ratio 

 Q f Q f L
R

= = = ⇔ =
Reactance of inductor at 

Resistance
0 02 3

2 30
10 2π  

is called the Q factor. 

With V  being the input and VC being the output, the frequency response is 
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 ( )
fjf

fj
fj

fj
Z
Z

V
VfH CC

6.0361
1

9
14

30
2

9
1

2 +−
=

++
===  

The magnitude response is 

 ( )
( ) ( ) ( ) ( ) 16.07236

1

6.0361

1
2222222 +−−

=
+−

=
ffff

fH  

            

( ) ( )
22222

222

72
6.011

72
6.01

72
6.0136236

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=

ff

 

            

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

72
6.02

72
6.0

72
6.0136

1
2222

2f

 

Since f  only appears in the • 2 term in the denominator and [ ] 02≥• , ( )fH  will 
increase if • 2 becomes smaller, and vice versa.  The maximum value for ( )fH  
corresponds to the situation of • =2 0 or at a frequency f f peak=  given by: 

 0

2
2

6
11

72
6.0136 ffff peakpeakpeak ≈⇔≈⇔≈−=  

When f  moves away from f peak , the value of • 2 will increase and ( )fH  will 
decrease. 

At f f peak= , • =2 0 and the maximum value for ( )fH  is 

 ( )
( )

( ) QfHfH peakpeak ≈⇔=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 10

2
72
6.0

1

72
6.02

72
6.0

1
222

 

Graphically: 
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H( f)

f0

QH( f )peak ≈ = 10

≈fpeak f0 = 1
6   

The series tuned circuit has a bandpass characteristic.  Low- and high-frequency 
inputs will get attenuated, while inputs close to the resonant frequency will get 
amplified by a factor of approximately Q. 

The cutoff frequencies, at which ( )fH  decrease by a factor of 2  or by 3dB from 
its peak value ( )peakfH , can be shown to be given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈

Q
fflower 2

110  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈

Q
ffupper 2

110  

Graphically: 

 

H( f)

f0

QH( f )peak ≈ = 10

≈fpeak f0 = 1
6

≈flower f0 = 0.95
6−

f0
2Q

≈fupper f0 = 1.05
6+

f0
2Q

2
H( f )peak ≈ = 7.07Q

2
fbandwidth ≈ = 0.1

6
f0
Q

  

Very roughly, the circuit will pass inputs with frequencies between f lower  and fupper .  
The bandwidth of the circuit is 
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 f f f f
Qbandwidth upper lower= − ≈ 0  

and the fractional bandwidth is 

 f
f Q

bandwidth

0

1
≈  

The larger the Q factor, the sharper the magnitude response, the bigger the 
amplification, and the narrower the fractional bandwidth: 

 

H( f)

f0

Large Q

Small Q

 

In practice, a series tune circuit usually consists of a practical inductor or coil 
connected in series with a practical capacitor.   Since a practical capacitor usually 
behaves quite closely to an ideal one but a coil will have winding resistance, such a 
circuit can be represented by: 
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Hzf

L

Equivalent circuit for coil or practical inductor

V

R

C VC

 

The main features are: 

Circuit impedance Z R j fL
j fC

= + +2 1
2

π
π

 

Resonance frequency f
LC0

1
2

=
π

 

Q factor Q f L
R

=
2 0π  

Frequency response ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
+−

=

0

2

0

22

1

1
241

1

f
f

Q
j

f
ffCRjLCf

fH
ππ

 

For the usual situation when Q is large: 

Magnitude response Bandpass with ( )fH  decreasing as f → 0 and f →∞  

Response peak ( )fH  peaks at f f fpeak= ≈ 0  with ( ) QfH peak ≈  

Cutoff frequencies ( )
( )

22
QfH

fH peak ≈=  at 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≈=

Q
f

Q
ffff upperlower 2

11,
2
11, 00   

Bandwidth f f f f
Qbandwidth upper lower= − ≈ 0   

Fractional bandwidth f
f Q

bandwidth

0

1
≈   

The Q factor is an important parameter of the circuit.  As defined above: 
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 Q f L
R

f
= =

2 0 0π Inductor reactance at 
Circuit resistance

 

However, since R  is usually the winding resistance of the practical coil making up 
the tune circuit: 

 Q
f

=
Reactance of practical coil at 

Resistance of practical coil
0  

As a good practical coil should have low winding resistance and high inductance, 
the Q factor is often taken to be a characteristic of the practical inductor or coil.  The 
higher the Q factor, the higher the quality of the coil. 

Due to its bandpass characteristic, tune circuits are used in radio and tv tuners for 
selecting the frequency channel of interest: 

 

L

C

Channel 5

f5

Channel 8

f8

Amplifier
and

Other
Circuits

VC
Practical inductor or coil

 

To tune in to channel 5 , C  has to be adjusted to a value of C5 so that the circuit 
resonates at a frequency given by 

 f
LC5

5

1
2

=
π

 

and has a magnitude response of: 
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 f0 f5 f8

H( f)

 

To tune in to channel 8 , C  has to be adjusted to a value of C8  so that the circuit 
resonates at a frequency given by 

 f
LC8

8

1
2

=
π

 

and has a magnitude response of: 

 f0 f5 f8

H( f)

 




