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SERIES EDITORS' FOREWORD 

The series Advances in Industrial Contral aims to report and encourage 
technology transfer in control engineering. The rapid development of control 
technology has an impact on all areas of the control discipline. New theory, new 
controllers, actuators, sensors, new industrial processes, computer methods, new 
applications, new philosophies ... , new challenges. Much of this development 
work resides in industrial reports, feasibility study papers and the reports of 
advanced collaborative projects. The series offers an opportunity for researchers 
to present an extended exposition of such new work in all aspects of industrial 
control for wider and rapid dissemination. 

From time to time a particular practical control problem emerges as a 
challenge to the design capabilities of the control community. One example has 
been the activated sludge process in wastewater systems where the process is 
highly nonlinear and measurements are few. A second example is the hard disk 
drive servo system. These widely used systems are critical to the operation of 
modem computing devices. They are nonlinear and demand a high-precision 
control system for the operations of track seeking and track following. There are 
also alternative actuation systems available to achieve these objectives. In this 
Advances in Industrial Control monograph B.M. Chen, T.H. Lee and V. 
Venkataramanan at the National University of Singapore provide a thorough 
presentation of the technical background, the modelling and control solutions for 
this benchmark problem of hard disk drive servo control systems. It is a 
monograph which encompasses physical system descriptions, modelling, 
identification, linear control and nonlinear control. The issue of implementing 
discrete control solutions makes an important appearance. Professor Chen and his 
colleagues also describe the test facilities that they have used for assessing the 
performance of proposed control solutions. 

It would be difficult to find a better example of the fuH range of software and 
hardware tools used by the modem control engineer to solve achallenging 
advanced technical problem. The monograph should be an inspiration to many 
students studying control engineering today. There is much to learn from the 
monograph on the validity of advanced linear (H 2 and H 00) control and how 

nonlinear control can be applied. Thus the mono graph should be of considerable 
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interest to postgraduate students, academics and practising industrial engineers 
alike. 

M.l Grimble and M.A. Johnson 
Industrial Control Centre 
Glasgow, Scotland, D.K. 



PREFACE 

Nowadays, it is pretty hard for us to imagine what life would be like without 
computers and what computers would be like without hard disks. Hard disks 
provide an important data-storage medium for computers and other data­
processing systems. Many of us can still recall that the storage medium used 
on computers in the 1960s and 1970s was actually paper, which was later 
replaced by magnetic tapes. The key technological breakthrough that enabled 
the creation of the modern hard disks came in the 1950s, when a group of 
researchers and engineers in IBM made the very first production hard disk, 
IBM 305 RAMAC (Random Access Method of Accounting and Control). The 
first generation of hard disks used in personal computers in the early 1980s 
had a capacity of 10 megabytes and cost over $100 per megabyte. Modern 
hard disks have capacities approaching 100 gigabytes and cost less than 1 
cent per megabyte. 

In modern hard disk drives (HDDs), rotating disks coated with a thin mag­
netic layer or recording medium are written with data that are arranged 
in concentric circles or tracks. Data are read or written with a read/write 
(RjW) head, which consists of a small horseshoe-shaped electromagnet. The 
two main functions of the R/W head positioning servomechanism in disk 
drives are track seeking and track following. Track seeking moves the R/W 
head from the current track to a specified destination track in minimum time 
using a bounded control effort. Track following maintains the head as elose as 
possihle to the destination track centre while information is being read from 
or written to the disko Track density is the reciprocal of the track width. It is 
suggested that, on a disk surface, tracks should be written as closely spaced 
as possible so that we can maximise the usage of the disk surface. This means 
an increase in the track density, which subsequently means a more stringent 
requirement on the allowable variations of the position of the heads from the 
true track centre. The prevalent trend in hard disk design is towards smaller 
hard disks with increasingly larger capacities. This implies that the track 
width has to be smaller, leading to lower error tolerance in the positioning of 
the head. The controller for track following has to achieve tighter regulation 
in the control of the servomechanism. 
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The scope of this book is to provide a systematic treatment on the design of 
modern HDD servo systems. In particular, we will focus on the applications of 
some newly developed results in control theory, namely the robust and perfect 
tracking control, and the composite non linear feedback control. Emphasis will 
be made on HDD servo systems with either a single-stage voice-coil-motor 
actuator or a dual-stage actuator in which an additional micro-actuator is at­
tached to a conventional voice-coil-motor actuator to provide faster response 
and hence higher bandwidth in the track following stage. Most of the results 
presented in this book are from research carried out by the authors and their 
co-workers over the last few years. 

The intended audience of this book includes practising engineers in hard 
disk and CD-ROM drive in dust ries and researchers in areas related to servo 
systems and engineering. An appropriate background for this monograph 
would be some senior level and/or first year graduate level courses in linear 
systems and multivariable control. Some knowledge of control techniques for 
systems with actuator nonlinearities would certainly be helpful. 

We have the beneßt of the collaboration of several co-workers, from whom 
we have learnt a great deal. Many of the results presented in this monograph 
are the results of our collaboration. Among these co-workers are Professor 
Chang C. Hang ofthe National University ofSingapore, Dr Siri Weerasooriya 
of Quantum Corporation, Dr Tony Huang of Seagate Technology Colorado, 
and Dr Guoxiao Guo of the Data Storage Institute of Singapore. We are 
indebted to all of them for their contributions. 

We are grateful to Professor Zongli Lin of the University of Virginia, for his 
invaluable comments and discussions on the subject related to the composite 
nonlinear feedback control technique of Chapter 5. This technique, originally 
proposed by Zongli and his workers and later enhanced by us, has emerged 
as an effective tool in designing HDD servo systems. We are also indebted to 
Professor Iven Mareeis of the University of Melbourne, who is now visiting our 
department here at the National University of Singapore, for many beneficial 
discussions on related subjects, especially the issue on HDD servo systems 
with a dual actuator. 

The first two authors of this monograph would like to thank their current 
and former graduate students, especially Yi Guo, Xiaoping Hu, Lan Wang, 
Teck-Beng Goh, Kexiu Liu, Zhongming Li and Chen Lin, for their help and 
contributions. We are also indebted to Dr Kemao Peng, our Research Fellow, 
for various help throughout the preparation of this book, especially for his 
help in obtaining the experimental results of Chapters 7 and 9, and to Kavitha 
and the Copy-Editor of Springer for their kindly help in proof reading the 
whole monograph. 
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CHAPTER 1 

INTRODUCTION AND PREVIEW 

1.1 Introduction 

Hard disk drives (HDDs) provide an important data-storage medium for 
computers and other data-processing systems. In most HDDs, rotating disks 
coated with a thin magnetic layer or recording medium are written with data 
that are arranged in concentric circles or tracks. Data are read or written 
with a readjwrite (RjW) head, which consists of a small horseshoe-shaped 
electromagnet. Figure 1.1 shows a simple illustration of a typical hard disk 
servo system with a voice-coil-motor (VCM) actuator. 

The two main functions of the RjW head positioning servomechanism in disk 
drives are track seeking and track following. Track seeking moves the RjW 
head from the present track to a specified destination track in minimum time 
using a bounded control effort. Track following maintains the head as close as 
possible to the destination track cent re while information is being read from 
or written to the disko Track density is the reciprocal of the track width. It is 
suggested that, on a disk surface, tracks should be written as closely spaced 
as possible so that we can maximise the usage of the disk surface. This means 
an increase in the track density, which subsequently means a more stringent 
requirement on the allowable variations of the position of the heads from the 
true track centre. 

The prevalent trend in hard disk design is towards smaller hard disks with 
increasingly larger capacities. This implies that the track width has to be 
smaller, which leads to lower error tolerance in the positioning of the head. 
The controller for track following has to achieve tighter regulation in the 
control of the servomechanism. Basically, the servo system of an HDD can 
be divided into three stages, i.e., the track seeking, track settling and track 
following stages (see Figure 1.2 for a detailed illustration). Current HDDs 
use a combination of classical control techniques, such as the proximate time 
optimal control technique in the tracking seeking stage, and lead-lag com­
pensators, proportional-integral-derivative (PID) compensators in the track 
following stage, plus some notch filters to reduce the effects of high-frequency 
resonant modes (see e.g., [1-16] and references cited therein). These classical 
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VCM ACTUATOR 

Figure 1.1. A typical HDD with a VCM actuator servo system. 
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Figure 1.2. Track seeking and following of an HDD servo system. 

methods can no longer meet the demand for HDDs of higher performance. 
Thus, many control approaches have been tried, such as the linear quadratic 
Gaussian (LQG) with loop transfer Recovery (LTR) approach (see e.g., [17-
19]), Hoo control approach (see e.g., [20-25]), and adaptive control (see e.g., 
[26-29)) and so on. Although much work has been conducted to date, more 
studies need to be done to achieve better performance in HDDs. 

The scope of this book is to provide a systematic treatment on the design of 
modern HDD servo systems. In particular, we will focus on the applications 
of some newly developed results in control theory, i.e., robust and perfect 
tracking (RPT) control, which is suitable for track following, and composite 
nonlinear feedback (CNF) control, which is for track seeking and following. 
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The emphasis will be on HDD servo systems with either a single-stage VCM 
actuator or a dual-stage actuator in which an additional microactuator is 
attached to a conventional VCM actuator to provide faster response and 
hence higher bandwidth in the track following stage. Most of the results 
presented in this book are from research carried out by the authors and their 
co-workers over the last few years. The purpose of this book is to discuss 
various aspects of the subject under a single cover. 

1.2 Mechanical Structure of HDDs 

The mechanical structure of a typical modern hard disk drive is depicted in 
Figure 1.3. The authors of this book are thankful to Seagate Technology for 
granting permission to use this figure in our work. Abrief description (see 
also, e.g., [30]) is given below: 

1. DEVICE ENCLOSER. This is the most important component, as it deter­
mines the reliability of the disk drives. It helps to keep the contamination 
low. With the aid of recirculation and a breather filter, it keeps out dust 
and other contamination that could enter between the R/W heads and 
the platters over which they fioat, and reduces the possibility of head 
crashes. The two major parts, the base casting and top cover, are sealed 
with a gasket. The base casting provides supports for the spindie, actu­
ator, VCM yoke and electronics card. 

2. DISK. Every hard disk will have one or more Hat rotating disks, each with 
two magnetic surfaces, called platters. These are made of either an Al­
Mg alloy substrate material electro-Iess plated with Ni-P, or a mixture 
of glass and ceramic. The magnetic material, to allow data storage, is 
applied as a thin coating on both sides of each platter together with a 
carbon overcoat. The surfaces of each platter are precision machined and 
treated to remove any imperfections, and attention is paid during the 
manufacturing process to ensure a very smooth surface. 

3. ACTUATOR ASSEMBLY. This consists of a VCM, Hex cable or printed 
circuit cable, actuator arms and crash-stops at both ends of travel. The 
data are read/written from/to the platters using the R/W heads mounted 
on the top and bottom surfaces of each platter. The heads are supported 
by the actuator arm. The actuator in HDDs, i.e., the VCM actuator, is 
so named as it works like a loudspeaker. The electrical input to the VCM 
is supplied through a Hex cable. The coil of the VCM actuator extends 
between a yoke/magnets. The write-driver/pre-amplifier is often part of 
the actuator assembly, which is mounted on a Hex cable. 
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Figure 1.3. Mechanical structure of a typical HDD. 

4. HEADjSUSPENSION ASSEMBLY. The RjW heads are of ferrite, metal-in­
gap, thin film or magnetoresistive (MR) types. Older types, i.e., ferrite, 
metal-in-gap, and thin film, used the principle of electromagnetic in duc­
tion, whereas the modern disk drive heads use MR heads, which use 
the principle of change of magnetoresistance. Both read and write op­
erations in older disk drives were performed by a single head, but the 
modern HDDs use separate heads for read and write operations. These 
heads are positioned only micro-inches above the recording medium on 
an air bearing surface, which is often referred to as a slider. A gimbal 
attaches the slider to a stainless steel suspension to allow for pitch and 
roll, and the suspension is attached to the arm of the actuator by a ball 
swaging. 

5. SPINDLE AND MOTOR ASSEMBLY. These are responsible for turning the 
hard disk platters with stable, reliable and consistent turning power for 
thousands of hours of often continuous use. All hard disks use servo­
controlled DC spindie motors and are configured for direct connection, 
i.e., there are no belts or gears that are used to connect them to the hard 
disk platter spindie. The critical component of the hard disk's spindie 
motor is the set of spindie motor bearings at each end of the spin dIe 
shaft. These bearings are used to turn the platters smoothly. The disk 
clamper and spacers are other important parts of this assembly. 

6. ELECTRONICS CARD: This provides an interface to the host personal 
computer (PC) . The most common interfaces used are the integrated 
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drive electronics (IDE), the advanced technology attachment (ATA), and 
the small computer systems interface (SCSI), which all use integrated 
electronic circuits. These integrated circuits have a power driver for the 
spindIe motor, VCM, R/W electronics, servo demodulator, controller chip 
for timing control and control of interface, micro-controller / digital signal 
processor (DSP) for servo control and control interface, and ROM and 
RAM for micro-code and data transfer. 

Lastly, we note that a fairly complete report on the basic mechanical and 
electrical structures of hard and floppy disk drives can be found in a book by 
Zhang [31]. 

1.3 Historical Development of HDDs 

The first generation of hard disks used in PCs had a capacity of 10 megabytes 
(MB) and cost over $100 per MB. Modern hard disks have capacities ap­
proaching 100 gigabytes (GB) and cost less than 1 cent per MB. This rep­
resents an improvement of 1,000,000% in less than 20 years and now it is 
cumulatively improving at 70% per year. At the same time, the speed of the 
hard disk and its interfaces has also increased dramatically. 

Some of the very earliest computers had no storage at all. Each time a pro­
gram had to be run it would have to be entered manually. It was realised then 
that, to utilise the power of computers fully, there was a need for permanent 
storage. 

During the initial search for permanent storage, paper played a major role in 
human life. The computer scientists were also psychologically influenced by 
paper. This led to the use of paper as the first storage medium on comput­
ers, though magnetic storage had already gained momentum by that time. 
Programs and data were recorded using holes punched into paper tapes or 
punch cards to represent a "1", and paper blocks to represent a "0" (or 
vice versa). This type of storage was used for many years lintil the creation 
of magnetic tapes. However, these tapes also lost their place when random 
access to the data was needed for quick and efficient usage of data stored. 
Thus, an improvement needed to be sought. Disk drive development took an 
eventful spin, when IBM announced, in May 1955, a product that offered 
unprecedented random-access storage to 5 million characters each of 7-bit. 

These early prototypes had the heads of the hard disk in contact with the 
disk surface. This was done to allow the low-sensitivity electronics to be able 
to better read the magnetic fields on the disk surface. However, owing to 
the fact that manufacturing techniques were not nearly as sophisticated as 
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they are now, it was not possible to produce a disk surface that was smooth 
enough for the head to slide smoothly over it at high speed while in contact 
with the surface. As a result, the heads and the magnetic coating on the 
surface of the disk would wear out over time. Thus the problem of reliability 
was not addressed. 

IBM engineers working under R. Johnson at IBM in San Jose, California, be­
tween 1952 and 1954, realised that, with the proper design, the R/W heads 
could be suspended above the disk surface and read the bits as they passed 
underneath. This critical discovery, that contact with the surface of the disk 
was no longer necessary, was implemented as IBM 305 RAMAC (Random 
Access Method of Accounting and Control), introduced on September 13, 
1956. This early version stored 5 million characters on 50 disks, each 24" in 
diameter. The capacity was approximately 5 MB. Its bit density was about 
2,000 bits per square inch and the data transfer rate was an impressive 8,800 
bytes per second. Over the succeeding years, the technology improved incre­
mentallYi bit density, capacity and performance all increased. 

Next, we summarise the interesting history of the hard disko In what follows, 
we present lists of some historical "firsts" and new trends in the develop­
ment of HDDs. These lists are generated from the following sources on the 
net: www.pcguide.com, www.storage.ibm.com, www.storagerev-iew.com and 
www.mkdata.dk [32, 33). 

1.3.1 Chronological List of Developments in HDDs 

There have been a number of important "firsts" in the world of hard disks 
over their first 40 years or so. The following is a list, in chronological order, of 
some of the products developed during the past half-century that introduced 
key or important technologies in HDDs. 

• FIRST HARD DISK (1956): IBM 305 RAMAC was introduced. It had a 
capacity of about 5 MB, stored on fifty 24" disks. Its bit density was a 
mere 2,000 bits per square inch and its data throughput was ab out 8,800 
MB per second. 

• FIRST AIR BEARING HEADS (1962): IBM's model 1301lowered the flying 
height of the R/W heads to 250 micro-inches. It had a 28 MB capacity on 
half as many heads as the original RAMAC, and increased both bit density 
and throughput by about 1000%. 

• FIRST REMOVABLE DISK DRIVE (1965): IBM's model 2310 was the first 
disk drive with a removable disk pack. While many PC users think of 
removable hard disks as being a modern invention, in fact they were very 
popular in the 1960s and 1970s. 
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• FIRST FERRITE HEADS (1966): IBM's model 2314 was the first hard disk 
to use ferrite core heads, the first type later used on PC hard disks. 

• FIRST MODERN HARD DISK DESIGN (1973): IBM's model 3340, nicknamed 
the Winchester, was introduced. With a capacity of 60 MB, it introduced 
several key technologies that led to it being considered by many as the 
ancestor of the modern disk drives. 

• FIRST THIN FILM HEADS (1979): IBM's model 3370 was the first with 
thin film heads, which would for many years be the standard in the HDD 
industry. 

• FIRST 8" FORM FACTOR DISK DRIVE (1979): IBM's model 3310 was the 
first disk drive with 8" platters, greatly reduced in size from the 14" that 
had been the standard for over a decade. 

• FIRST 5.25" FORM FACTOR DISK DRIVE (1980): Seagate's ST-506 was the 
first drive in the 5.25" form factor, used in the earliest PCs. 

• FIRST 3.5" FORM FACTOR DISK DRIVE (1983): Rodime introduced R0352, 
the first disk drive to use the 3.5" form factor, which became one of the 
most important industry standards. 

• FIRST EXPANSION CARD DISK DRIVE (1985): Quantum introduced the 
Hardcard, a 10.5 MB hard disk mounted on an industry standard archi­
tecture (ISA) expansion card for PCs that were originally built without a 
hard disko This product put Quantum "on the map" so to speak. 

• FIRST VOICE-COIL-ACTUATOR 3.5" DRIVE (1986): Conner Peripherals in­
troduced CP340, the first disk drive to use a voice-coil actuator. 

• FIRST "LOW-PROFILE" 3.5" DISK DRIVE (1988): Conner Peripherals in­
troduced CP3022, which was the first 3.5" drive to use the reduced 1" 
height, now called low profile and the standard for modern 3.5" drives. 

• FIRST 2.5" FORM FACTOR DISK DRIVE (1988): PrairieTek introduced a 
drive using 2.5" platters. This size later became a standard for portable 
computing. 

• FIRST DRIVE WITH MR HEADS AND PARTIAL RESPONSE AND MAXIMUM 
LIKELIHOOD (PRML) DATA DECODING (1990): IBM's model 681 (Red­
wing) , an 857 MB drive, was the first to use MR heads and PRML data 
decoding. 

• FIRST THIN FILM DISKS (1991): IBM's Pacifica mainframe drive was the 
first to replace oxide media with thin film media on the platter surface. 
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• FIRST 1.8" FORM FACTOR DISK DRIVE (1991): Integral Peripherals' 1820 
was the first hard disk with 1.8" platters, later used for PC-card disk drives. 

• FIRST 1.3" FORM FACTOR DISK DRIVE (1992): Hewlett Packard's C3013A 
is the first 1.3" drive. 

• FIRST I" HIGH 1 GB DISK DRIVE (1993): IBM unveiled the world's first 
I" high 1 GB disk drive, storing 354 million bits per square inch. 

• FIRST 7,200 RPM ULTRA ATA-INTERFACE DISK DRIVE (1997): Industry's 
first of this kind for desktop computers from Seagate Technology. 

• FIRST 10,000 RPM DISK DRIVE (1998): Seagate Technology introduced the 
first 10,000 rpm drives, i.e., the 9.1 GB (STI9101) and 4.55 GB (ST34501) 
Cheetah family. 

• FIRST ULTRA ATA/I00 DISK DIVES (2000): Seagate announced the first 
Ultra ATA/1OO interface on its Barracuda ATA II disk drive, the industry's 
fastest desktop PC disk drive. 

• LARGEST HDD (2000): At the time ofthe preparation ofthis monograph, 
Seagate's Barracuda 180 is the largest single drive in the world. It has a 
capacity of 180 GB. 

1.3.2 Trends in the Development of HDD Systems 

In spite of a slow change in the basic design of hard disks over the years, 
accelerated improvements in terms of their capacity, storage, reliability and 
other characteristics have been made. In what follows, the various trends are 
highlighted. 

• BIT DENSITY: The bit density of hard disk platters continues to increase 
at an amazing rate, even exceeding some of the optimistic predictions of a 
few years ago. Densities in the laboratory are now exceeding 35 Gbits per 
square inch, and modern disks are now packing as much as 20 GB of data 
onto a single 3.5" platter. 

• CAPACITY: Hard disk capacity continues to increase at an accelerating 
rate. From 10 MB in 1981, the normal capacity is now weH over 20-30 GB. 
Consumer drives would most likely have a capacity of 100 GB within a 
couple of years. 

• SPINDLE SPEED: The move to faster and faster spindie speeds continues. 
Since increasing the spindie speed improves both random access and se­
quential performance, this is likely to continue. 7,200 rpm spindies are now 
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standard on mainstream IDEj ATA drives. A 15,000 rpm SCSI drive was 
announced by Seagate in early 2000. 

• FORM FACTOR: The trend in form factors is downward: to smaller and 
smaller drives. 5.25" drives have now all but disappeared from the main­
stream market, with 3.5" drives dominating the desktop and server seg­
ment. In the mobile world, 2.5" drives are the standard, with smaller sizes 
becoming more prevalent; IBM in 1999 announced its Microdrive, a tiny 
170 MB or 340 MB device, only I" in diameter and less than 0.25" thick. 
Over the next few years, desktop and server drives are likely to make a 
transition to the 2.5" form factor as weIl. The primary reasons for this 
"shrinking trend" include the enhanced rigidity of smaller platters, reduc­
tion of mass to enable faster spin speeds, and improved reliability due to 
enhanced ease of manufacturing. 

• PERFORMANCE: Both positioning and transfer performance factors are im­
proving. The speed with which data can be pulled from the disk is in­
creasing more rapidly than the improvement of positioning performance, 
suggesting that, over the next few years, addressing seek time and latency 
will be the areas of greatest value to hard disk engineers. 

• REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAID): In the province of 
only high-end servers, the use of multiple disk arrays to improve perfor­
mance and reliability is becoming increasingly common, and is now seen 
even in consumer desktop machines. 

• RELIABILITY: The reliability of hard disks is improving slowly as manufac­
turers refine their pro ces ses and add new reliability-enhancing features, but 
this characteristic is not changing nearly as rapidly as the others above. 
It is simply very hard to improve the reliability of a product when it is 
changing rapidly. 

• INTERFACES: Despite the introduction to the PC world of new interfaces, 
such as the IEEE-1394 and universal serial bus (USB), the mainstream in­
terfaces are the same as they were through the 1990s: IDEj ATA and SCSI. 
The interfaces themselves continue to create new and improved standards 
with higher maximum transfer rates, to match the increase in performance 
of the hard disks themselves. 

1.4 Implementation Setup 

To make our work more complete, we have implemented almost all of our 
designs on actual HDDs with some highly advanced and accurate equipment. 
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In what follows, we briefly summarise the key software and hardware tools 
used to obtain the simulation and implementation results. 

1. MATLAB AND SIMULINK. All off-line computation and simulation of the 
results in this book are done using the well-known products from Math 
Work, MATLAB 5.3 with its simulation package SIMULINK 3.0. 

2. LINEAR SYSTEMS AND CONTROL TOOLBOX. The linear systems and con­
trol toolbox [34], developed under a MATLAB environment by the first 
author of the book and his co-worker, Zongli Lin of the University of 
Virginia, collects a few tens of m-functions. These m-functions realise al­
gorithms for computing linear system structures (such as the finite and 
infinite zero structures, invertibility structures, and many other proper­
ties) and algorithms for computing H 2 and HrX! optimal controllers, as 
well as controllers that solve the H(X! almost disturbance decoupling prob­
lem, and robust and perfect tracking problem. The toolbox has been used 
intensively to carry out the design of the HDD servo systems throughout 
the book. 

3. THE dSPACE DSP SYSTEM. A dSPACE (DSP) system is used in the ac­
tual implementation throughout the book. The system has the following 
main components: 

• The dSPACE Add-on Card. The main component ofthe dSPACE DSP 
system is its add-on card, DSll02, which is built upon a Texas In­
struments TMS320C31 floating-point DSP. The DSP has been supple­
mented by a set of analog-to-digital (A/D) and digital-to-analog (D / A) 
converters, a DSP micro-controller-based digital 1/0 subsystem and in­
cremental sensor interfaces. Some major features of this add-on card 
are: 

a) a TMS320C31 floating-point DSP; 

b) two 16-bit 250 kHz and two 12-bit 800 kHz sampling A/D converters 
with input span of ±1O V; 

c) a quad 12-bit D/A converter with programmable output voltages; 

d) a 16-bit fixed point digital 1/0, a bit-selectable-parallel 1/0 port, 
four timers, six PWM circuits, and aserial interface . 

• Real-Time Interface (RTI) and Real-Time Workshop (RTW). The RTI 
acts as a link between SIMULINK and the dSPACE hardware. It has 
built-in hardware control functions and blocks for DSll02 add-on card 
based on SIMULINK. This, together with the RTW, automatically gen­
erates real-time codes from SIMULINK off-line models and implements 
these codes on the dSPACE real-time hardware. 
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• The dSPA CE Control Desk. This is a software platform that combines 
all the above tools of dSPACE for controlling, monitoring, and au­
tomating the implementation process on the actual HDDs. 

4. POLYTEC LASER DOPPLER VIBROMETER (LDV). The Polytec LDV is an 
optical instrument for accurately measuring velocity and displacement of 
vibrating surfaces completely without contact. The LDV system consists 
of two main components: (1) an optical sensor head or fibre optic unit 
(both are laser interferometers), which measures the dynamic Doppler 
shift from the vibrating object; and (2) a controller (processor), which 
provides power to the optics and demodulates the Doppler information 
using various types of Doppler signal decoder electronics, thereby produc­
ing an analog vibration signal (velocity andjor displacement) that can 
be viewedjmeasured by the customer using commercially available fast 
Fourier transform (FFT) analysers and oscilloscopes. This instrument 
is used to measure the displacement and velocity of the R/W heads of 
HDDs. 

5. DYNAMIC SIGNAL ANALYSER (DSA). The HP dynamic signal analyser, 
HP35670A, is a dynamic monitoring and measuring instrument that can 
be used for characterising the performan-ce and stability of a control 
system. Performance parameters, such as rise time, overshoot, and set­
tling time, are generally specified in the time domain. Stability criteria, 
gainjphase margins, are generally specified in the frequency domain. The 
HP35670A DSA is capable of measuring in both the time and frequency 
domains. The instrument can also be used for system identification. 

6. VIBRATION-FREE TABLE. Since the success of the actual implementation 
depends largely on the accurate measurement of very small displacements 
of less than IJLm, there is a need to isolate the HDD implementation 
setup from the external vibrations. A Vibraplane Model 9100j9200 series 
vibration-free workstation was used. These are designed and constructed 
to provide very effective isolation of vibrations at frequencies above 5 
Hz and low amplification at low frequencies of 2-3 Hz. Hence, the use 
of this vibration-free table shows significant improvements in resolution 
and repeat ability of the measurement. 

The overall hardware setup in our laboratory is depicted in Figure 1.4. 

1.5 Preview of Each Chapter 

A preview of each chapter is given next. Chapter 2 recalls some commonly 
used system identification and modelling techniques, such as the prediction 
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Figure 1.4. Implementation setup for HDD servo systems. 

error identification and least squares estimation methods, applicable in the 
frequency domain, and the impulse response analysis and step response anal­
ysis in the time domain, which will be employed to identify the models of 
VCM actuators and microactuators later in the book. Chapter 3 recalls some 
linear system tools such as bilinear transformation, Jordan canonical forms 
and several structural decompositions of linear systems, which have the dis­
tinct feature of displaying the finite and infinite zero structures as well as the 
invertibility structures of a given system. They playadominant role in the 
development of several control methods in Chapter 4, which will be utilised 
in the design of HDD servo systems. More precisely, Chapter 4 deals with 
linear control techniques, which include the well-known classical PID control, 
H 2 optimal control, H oo control and almost disturbance decoupling, robust 
and perfect tracking (RPT) control, and loop transfer recovery (LTR) tech­
nique. These methods are suitable for t rack following control and have been 
used extensively in designing HDD servo systems in the literature. Chapter 
5 focuses on nonlinear control techniques such as the proximate time opti­
mal servomechanism (PTOS), mode switching control (MSC) and composite 
nonlinear feedback (CNF) control. PTOS is generally used to design a control 
law in the track seeking stage of HDD servo systems, whereas the MSC and 
CNF design techniques can be used to find a controller that is applicable for 
both track seeking and track following. 

Chapters 6 and 7 focus on the design of HDD servo systems with a single­
stage VCM actuator. In particular, Chapter 6 deals with the modelling of 
the VCM actuator and design of track following controllers using both the 
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conventional PID control method and the recently developed RPT control 
method. The integrated single-stage actuator servo systems combining the 
track seeking and track following controllers will be given in Chapter 7. Three 
different approaches will be presented in this chapter and their results will 
be carefully compared. 

Likewise, Chapters 8 and 9 deal with the modelling and design of HDD servo 
systems with a dual-stage actuator. In particular, Chapter 8 considers a ro­
bust controller design for a piezoelectric bimorph nonlinear actuator using an 
Hoc almost disturbance decoupling approach. A complete HDD servo system 
with a dual-stage actuator will then be presented in Chapter 9. Conventional 
HDDs with a single-stage VCM actuator usually have resonances in the po­
sitioning arm and low-frequency bearing effects. It is believed that the per­
formances of such HDDs have been pushed almost to their limits. Dual-stage 
servo systems with high bandwidth and high accuracy control are a possible 
solution to overcome the problems associated with conventional HDDs. 

Finally, some issues on disturbance rejection, such as repeatable and non­
repeatable runout rejection, and resonance compensation will be discussed in 
Chapter 10. Concluding remarks and furt her discussions on some key issues 
related to HDD servo systems will also be addressed. This will conclude the 
whole monograph. 

1.6 Nomenclature 

Throughout this monograph, we adopt the following abbreviations and no­
tation, which are fairly standard. 

IR the set of real numbers 
C the entire complex plane 

C0 the set of complex numbers inside the unit circle 

O~ the set of complex numbers outside the unit circle 

CO the unit circle in the complex plane 

C- the open left-half complex plane 

C+ the open right-half complex plane 

CO the imaginary axis in the complex plane 

I an identity matrix 

I k an identity matrix of dimension k x k 

X' the transpose of X 

X H the complex conjugate transpose of X 
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Im (X) 

Ker(X) 
xt 
A(X) 

Amax(X) 

lTmax(X) 

lXI 
IIGII2 
IIgll2 
L2 

IIgllp 
Lp 

IIGlloc 
dirn (X) 
X..L 

ARE 
CNF 
DSP 
LDV 

LQG 
LQR 
LTR 
MSC 
NjRRO 
PES 

PID 
PTOS 
RPT 

TMR 
TOC 
TPI 

ZOH 

the range space of X 

the null space of X 

the Moore-Penrose {pseudo) inverse of X 

the set -of eigenvalues -of X 

the maximum eigenvalue of X 

the maximum singular value of X 

the usual 2-norm of a matrix X 

the H2-norm of a stable system G(s) or G(z) 

the h-norm oI a signal g(t) or g(k) 

the set oI all functions whose l2 norms are finite 
the lp-norm of a signal g(t) or g(k) 

the set of aU functions whose lp-norms are finite 

the Hoc-norm of a stable system G(s) or G(z) 

the dimension of a subspace X 

the orthogonal complement of a subspace X of IRn 
algebraic Riccati equation 
composite nonlinear feedback 
digital signal processor 
laser Doppler vibrometer 
linear quadratic Gaussian 
linear quadratic regulator 

loop transfer recovery 
mode switching control 
non-jrepeatable runouts 

position error signal 

proportional-integral-derivative 
proximate time optimal servomechanism 
robust and perfect tracking 
track mis-registration 
time optimal control 

track per inch (kTPI = kilo TPI) 

zero-order hold 

Also, C-1 {X} := {x j Cx EX}, where X is a subspace and C is a matrix. 
Finally, we append a 0 at the end of a proof or a result statement. 



CHAPTER2 

SYSTEM IDENTIFICATION TECHNIQUES 

2.1 Introduction 

The purpose of this chapter is to revisit some basic theories and solutions 
of system identification, which will be used later in the coming chapters to 
model various HDD systems. In general, the goal of system identification is 
to determine a mathematical model for a system or a process. Mathemati­
cal models may be developed either by use of "laws of nature", commonly 
known as modelling or based on experimentation, which is known as system 
identification [35]. In order to achieve a certain desirable performance for a 
given plant, it is necessary to derive a model for the plant that is adequate for 
controller design. The conventional design techniques in linear control sys­
tems require either parametrie or nonparametrie models. For example, design 
methods via root locus or robust control technique require a transfer function 
or astate space description of the plant to be controlled. The plant model is 
either described by the coefficients of certain polynomials or by the elements 
of state space matrices. In either case, we call these polynomial coefficients or 
matrix elements the parameters of the model. The category of such models 
is a parametrie description of the plant model. On the other hand, design 
based on Nyquist, Bode and Nichols methods requires curves of amplitude 
and phase of transfer function from input to the output as functions of real 
frequency w. If we have experimental data from a typical frequency response 
test, then we will be able to obtain certain functional curves for the plant. 
These curves are called nonparametrie models of the plant, as there is no 
finite set of numbers that describes it exactly (see e.g., [1]). 

Thus, for a given plant, the problem of system identification is to determine 
a system model from the relationship (either in the time or the frequency do­
main) between its input and output. The problem can be represented graph­
ically as shown in the Figure 2.1, in which u(t) is the known input signal, 
n(t) is the observation noise, and y(t) is the measured output. A large vari­
ety of methods have been developed for solving such a problem (see e.g., [36J 
and references cited therein). These methods include classical identification 
techniques (such as the impulse response analysis, step response analysis, 
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n(t) 

-U(-t-)----~.IL__u __ n_k_n_o_W_n __ sy_s_t_e_m __ ~------•• I~----y_(~t) 
Figure 2.1. The unknown system to be identified. 

frequency response identification) and equation error approaches and model 
adjustment techniques (such as the least squares estimation, maximum likeli­
hood, and stochastic approximation, to name a few). The detailed derivations 
of these techniques can be found in a number of advanced texts devoted to 
system identification, e.g., [35, 37-39]. 

2.2 Time Domain Methods 

In this section, we will restrict our attention to identifying both parametric 
and nonparametric models through some commonly used time domain tech­
niques. Interested readers are referred to [35, 36, 40] for detailed materials 
on the identification through impulse and step response characteristics. 

2.2.1 Impulse Response Analysis 

Parametrie Models. Parametric models are described by parameters of dif­
ferential equations or transfer functions. From these analytic representations, 
plots or values of interest of frequency response can in general be generated 
without much difficulty, whereas the reverse process of deriving parameters 
from nonparametric model descriptions is much more difficult. 

A fairly general parametric model of a single-input and single-output (8180) 
system can be described by the following differential equation (see e.g., [40]), 

anyCn) (t) + ... + aly(t) + aay(t) 

= bauet - Td) + b1u(t - Td) + ... + bmuCmJ(t - Td). (2.1) 

80lving the differential equation for the input signal 

u(t) = 8(t), (2.2) 
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with <>(t) being the unit impulse function, gives the impulse transfer function 
h(t), 

y(t) = h(t), (2.3) 

as the corresponding output function. Note that it is hard to generate an 
impulse input in the continuous-time domain, and hence this method is im­
practical. 

Nonparametric Models. Consider again a 5150 system as in Figure 2.1 
with a scalar input signal u(t) and a scalar output signal y(t). Assurne that 
the system is linear, time invariant and causal. 

It is weIl known that a linear, time-invariant causal system can be described 
by its impulse response g( r) as follows: 

y(t) = 100 g(r)u(t - r) dr + n(t). (2.4) 

Knowing {g(r)};;o=ü and knowing u(s) for s :::; t, we can consequently compute 
the corresponding output y(s), s :::; t for any input. The impulse response is 
thus a complete characterisation of the system. 

The discrete equivalent of the output y(t) can be written at the sampling 
instants tk = kT, k = 0,1,2, .. " as 

(2.5) 

where T is the sampling period. 5ince, the input U(tk) is kept constant be­
tween the sampling instants: 

kT :::; t < (k + l)T, (2.6) 

we can derive that 

00 

y(tk) = L g(i)U(tk - i) + n(tk), tk = kT, k = 0,1,2,'" (2.7) 
i=l 

Now, let G(z) be the transfer function of the system from input to output 
with z being the usual forward shift operator, i.e., 
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00 

G(z) = L g(k)Z-k. (2.8) 
k=l 

Then, Equation (2.7) can be written as 

(2.9) 

If the system Equation (2.9) is subjected to a pulse input 

(2.10) 

then the output will be 

(2.11) 

If the noise level is low, then the estimates of the coefficients of the impulse 
response {g(tk)} from an experiment will be 

(2.12) 

and the errors n(tk)ja. This simple analysis is called impulse response analy­
sis. Unfortunately, many physical processes do not allow the error n(tk)ja to 
be insignificant compared with the impulse response coefficients. Moreover, 
such an input could induce nonlinear effects that would disturb the linearised 
behaviour of the model. As such, identification methods depend on impulse 
inputs are rarely used in practical situations. 

2.2.2 Step Response Analysis 

Parametrie Models. Parametric models usually are described by their fre­
quency response function, 

G() bo + bdw + ... bm(jw)m (') 
w = . . ·exp -JWT, 

ao + aIJw + ... an(Jw)n 
(2.13) 

where ai, bi , m, n and T are parameters to be identified. 

Many researchers proposed methods for determining parameter values from 
time functions of the process output provided that the process input is a 
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well-determined signal. Of primary importance are step functions as input 
signals and step responses as output signals. 

Almost an methods for the evaluation of step response functions use a small 
number of characteristic values of the response function. A first-order lag 
model with time delay and a frequency response 

A K 
G(w) = 1 . . exp( -jWT) 

+ JWTl 
(2.14~ 

is widely used in step response analysis. In fact, there are quite a number of 
systems, especially in process control that can be approximated by a first­
order model with an appropriate delay. The parameters K, Tl and T can 
be derived from the step response shown in Figure 2.2 with Uo being the 
amplitude ofthe input step signal (see e.g., {40]). In short, ifthe system model 
is of the first order, one may need only obtain two pieces of information: (i) 
the steady-state response to the step input, and (ii) the time constant. The 
latter can be obtained either from the tangent with maximum slope of the 
step response or from the 10 to 90% rise time. 

y 
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Figure 2.2. A typical step response. 

For a second-order system model (with two poles and no zer<», there are two 
possible situations: (1) when the two poles are real and (2) when the poles are 
a complex conjugate pair. Formulae for finding these from measurements of 
the (a) steady-state response, (b) maximum overshoot, (c) time required to 
reach the first-peak, and (d) time required to reach 50% of the steady-state 
value (for overdamped systems) can be easily derived. For the general case of 
higher-order practicaf systems, it is perhaps best to use a gradient method 
to find the parameters of the model of a given order such that the integral of 
the square of the error is minimised (Bee e.g., [35]). 
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Nonparametric Models. Since the impulse response of a system is the 
derivative of the step response, the identification problem in this case may 
be regarded as the determination of the transfer function from the impulse 
response. Alternatively, a step function 

(2.15) 

when applied to Equation (2.9) gives the output 

k 

y(tk) = a Lg(i) + n(tk), tk = kT, k = 0,1,··· (2.16) 
i=l 

Then, the estimates can be obtained as 

(2.17) 

which has an error [n(td - n(tk-dJ/a. Hence, we would suffer again from 
large errors in most practical applications. But, if the goal is to determine 
some basic control-related characteristics, then the step responses from Equa­
tion (2.16) can very well furnish that information to a sufficient degree of 
accuracy. In fact, some well-known rules for tuning simple regulators, such 
as the Ziegler-Nichols rule, are based on model information reached in step 
responses. Based on plots of the step responses, some key characteristics of 
the system can be graphically constructed, which in turn can be used to 
determine system parameters. 

2.3 Frequency Domain Methods 

We recall in this section two identification methods in the frequency domain, 
namely, the predication error identification approach and the least squares es­
timation method, Both are particularly important to our studies in modelling 
the micro and VCM actuators in HDD servo systems in the coming chapters. 
The theories behind these techniques can be found in various references (see 
e.g., [35,41]). 

2.3.1 Prediction Error Identification Approach 

The prediction error approach is one of a black-box identification method. It 
includes the following three steps. 
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1. PARAMETER IDENTIFICATION. Suppose a system can be described as 

y(k) = G(z-l)u(k) + H(z-l)n(k), (2.18) 

where u(k) and y(k) are its process input and output; n(k) is noise input 
and supposed to be white; and 

G(Z-l) = B(Z-l)/ A(z-l) 

H(Z-l) = D(Z-l)/A(z-l) 

A(Z-l) = 1 + alz-1 + a2z-2 + ... + anaz-na 

B(Z-l) = b1z-1 + b2z-2 + ... + bnbz-nb 

D(Z-l) = d1z- 1 + d2z-2 + ... + dnbz- nd 

The predictor is: 

where 

al 

ana 
b1 

8= 
bnb 
d1 

dnd 

(2.19) 

(2.21) 

is the parameter vector of the system. Then, the prediction error given 
by a model is 

e(k,8) = y(k) - Y(kI8). (2.22) 

Next, we define a loss function as 

(2.23) 

where P(·) is a scalar-valued positive function, and 
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ZN = [Y(l), ... ,y(N),u(l), ... ,u(N)] (2.24) 

is a set of input and output data from the experiment test. The desired 
system parameters can then be obtained by the minimisation of this loss 
function, i.e., 

(2.25) 

2. DETERMINATION OF MODEL ORDER. The loss function VN(B, ZN) can 
also be used to determine the order of a system. If the order of a model 
is lower than that of the system, then the value of the loss function will 
decrease significantly with the increase of the order of the model. How­
ever, when the order of the model is higher than that of the system, the 
increase of model order will not provide any more innovation for param­
eter identification, thus the value of V N (B , ZN) will not decrease much. 
Therefore, the order of the system to be identified can be determined 
based on the decrease rate of VN(B, ZN). Figure 2.3 shows a typical plot 
of the 10ss function versus identified model orders. It is clear from the 
plot that the order of the corresponding system to be identified is four. 

0.12 ... ---.-----r--.----.----r-----,--.---,-----r-~ 

0.1 

0.04 

0.02 

°1L--~-~--2~.5-~====~~~-~--L--~-~ 
1.5 2 3 3 .5 4 4 .5 5 5.5 6 

Model Order 

Figure 2.3. Values of loss function versus identified model orders. 

3. MODEL VALIDATION. The third step of the prediction error identification 
method is to verify the correctness of the model obtained. It is clear that 
the residuals of the model can be obtained as 
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e(k,O) = y(k) - y(kIO) 

= iI-1(z-1,{}) [Y(k) -G(z-l,O)u(k)]. (2.26) 

Obviously, if the model is correct, i.e., 

(2.27) 

the residual will tend to a white noise sequence n(k). However, the non­
whiteness of the residuals does not necessarily mean that the model is 
incorrect. In that case, the cross-correlation of the input u and residuals 
e can be used to verify the model. If u and e are independent, this means 
that all information in the residuals is explained by the process model G, 
and we can condude that the estimate is correct. Otherwise the result is 
incorrect. 

The cross-correlation of u and e is 

Reu(T) = E{ e(t + T)U(t)} (2.28) 

where E{·} is the expected value. If the residuals and input are indepen­
dent, we have 

VNReu --7 N(O, P), as N --7 00, (2.29) 

where P = L~-oo Re(k)Ru(k), and N(O, P) denotes the normal ran­
dom distribution with zero mean and a variance P. Let Na be the et-Ievel 
of the N(O, P) such that 

(2.30) 

where P {.} is the probability. Define the following null hypothesis: 

(2.31) 

If Ho is accepted, then we can say that the model is acceptable with 
a probability of 1 - et. Figure 2.4 shows a typical plot of the values of 
cross-correlation function between the input and the errür residual. It 
can be seen that, für such a model, all the data are within the 95% 
confidence region. Hence, we can say that the corresponding identified 
model is acceptable with a probability of 95%. 
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Figure 2.4. Model validation test. 

2.3.2 Least Squares Estimation Method 

We will utilise the frequency response identification method (see e.g., [37]) to 
model our actuator. Such a method is applicable to minimum phase processes. 
We expect from the properties of the physical system that the VCM actuator 
should be of minimum phase. The detailed procedure proceeds as folIows: we 
first assurne that the transfer function of a minimum phase plant is given by 

C(S) = N(s) = bo + bIS + b2s2 + ... + bmsm , 
D(s) 1 + alS + a2s2 + ... + an sn 

(2.32) 

for some appropriate coefficients ak, k = 1,2,···,n, and bk , k = Ü,l,···,m, 
with n ::::: m. These parameters are to be identified. Then, its corresponding 
frequency response is given by 

C(jw) = a(w) + jwß(w) 
u(w) + jwr(w) 

where 

N(jw) 
D(jw) , (2.33) 
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a(Wi) = bo - b2w; + b4wt - .. . 

ß(Wi) = b1 - b3w; + b5wt - .. . 

a(wi) = 1 - a2w; + a4wt - .. . 

T(wd = al - a3w; + a5wt - .. . 
} (2.34) 

Let R( w) and I (w) be the real and imaginary parts of the measured frequency 
response of the actuator system. The frequency response error between the 
model and the actual measurement data is given by 

&(jw) = [R(w) + jI(w))- ~g~~. (2.35) 

Thus, the parameters of the system can be obtained by minimising the fol­
lowing index: 

L 

J = L 1&(jWiW, (2.36) 
i=l 

where L is the total number of points of the measured data. Unfortunately, 
this is a nonlinear optimisation problem, and it is difficult to solve. We then 
follow the results of (37) to modify the error norm as 

L 

J = L ID(jwi)&(jwi)1 2. (2.37) 
i=l 

The original problem now becomes a linear optimisation problem. Using 
Equations (2.33) and (2.35), we can rewrite Equation (2.37) as follows 

L 

J = L {[X(Wi))2 + [Y(wiW}, (2.38) 
i=l 

where 

(2.39) 

and 

(2.40) 

Therefore, J can be minimised by finding bo, b1 , ... , bm and ih, 0,2, "', o'n 

such that 
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Rearranging the above equations, we obtain 

(All 
A2l 

A 12) (b) = ( BI ) , 
A 22 a B 2 

(2.42) 

where 

Vo 0 -V2 0 V4 bo 
0 V2 0 -V4 0 bl 

V2 0 -V4 0 V6 b2 
All = 0 V4 0 -V6 0 ... , b= b3 

, (2.43) 

V4 0 -V6 0 VB b4 

Tl S2 -T3 -S4 T5 ih 
-S2 T3 S4 -T5 -S6 0,2 

T3 S4 -T5 -S6 T7 0,3 
(2.44) A l2 = -S4 T5 S6 -T7 -SB ... , a= 0,4 , 

T5 S6 -T7 -SB Tg 0,5 

Tl -S2 -T3 S4 T5 So 
S2 T3 -S4 -T5 S6 Tl 
T3 -S4 -T5 S6 T7 S2 

(2.45) A 21 = S4 T5 -S6 -T7 SB ... , BI = T3 
, 

T5 -S6 -T7 SB T9 S4 
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U2 0 -U4 0 U6 0 
0 U4 0 "':'U6 0 U2 

U4 0 -U6 0 U8 0 
A 22 = 0 U6 0 -U8 0 B 2 = U4 (2.46, 

U6 0 -U8 0 UlO 0 

and where 

L L 

Vk = LW~' Bk = Lw~R(Wi)' (2.47) 
i=ü i=ü 

L L 

Tk = L w~ I(wi), Uk = Lw~[R2(Wi) + 12(wi)]. (2.48) 
i=ü i=ü 

The desired parameters of the corresponding transfer function model can be 
obtained by solving the above equations. 

Finally, we note that the methods recalled above are merely for the iden­
tification of the HDD VCM and micro-actuators in the coming chapters. If 
systems to be identified are highly uncertain with disturbanees, it would be 
more appropriate to use the methods reported in a recent monograph by 
Chen and Gu [42] to yield more accurate results. 



CHAPTER3 

LINEAR SYSTEM TOOLS 

3.1 Introduction 

It is our belief that a good unambiguous understanding of linear system struc­
tures, i.e., the finite and infinite zero structures as weIl as the invertibility 
structures of linear systems, is essential for a meaningful control system de­
sign. As a matter of fact, the performance and limitation of an overall control 
system is primarily dependent on the structural properties of the given open­
loop system. In our opinion, a control system engineer should thoroughly 
study the properties of a given plant before carrying out any meaningful 
design. Many of the difficulties one might face in the design stage may be 
avoided if the designer has fully understood the system properties or limita­
tions. For example, it is weIl understood in the literat ure that a nonminimum 
phase zero would generally yield a bad overall performance no matter what 
design methodology is used. A good control engineer should try to avoid 
these kinds of problem at the initial stage by adding or adjusting sensors or 
actuators in the system. Sometimes, a simple rearrangement of existing sen­
sors and/or actuators could totally change the system properties. We refer 
interested readers to the recent work by Liu et a1. [43] for details. 

As such, we recall in this chapter several system decomposition techniques 
that can be utilised to display all the above-mentioned structural properties. 
More specifically, we will recall: (1) the Jordan and real Jordan canonical 
forms for a square constant matrix; (2) the controllability structural decom­
position (CSD) and block diagonal control canonical form for a constant 
matrix pair; and (3) the special coordinate basis of a linear time invariant 
system characterised by either a matrix tripie or a matrix quadrupie. These 
canonical forms and the special coordinate basis will form a transformer for 
linear systems. Once a linear system is touched by this transformer, all its 
structural properties become clear and transparent. Lastly, we will recall 
at the end of the chapter some key results of bilinear transformation and 
inverse bilinear transformation. Mappings of the structural properties of gen­
eral linear systems under bilinear and inverse bilinear transformations will 
also be identified. These results serve as a bridge between the continuous-
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and discrete-time systems. In fact, many results for discrete-time systems, 
such as discrete-time Hex; optimisation and Hex; almost disturbance decou­
pling problems, can be derived from their continuous-time counterparts by 
the bilinear transformation. 

3.2 Jordan Canonical Forms 

We recaH in this section the Jordan canonical form and the real Jordan canon­
ical form of a square constant matrix. We first have the following theorem. 

3.2.1 Jordan Canonical Form 

Theorem 3.2.1. Consider a constant matrix A E ~nxn. There exists a non­
singular transformation T E C" x n and an integer k such that 

(3.1) 

where Ji , i = 1,2,···, k, are some ni x ni Jordan blocks, i.e., 

[

AO 

J
i 

= t 

1 

(3.2) 

Obviously, Ai E A(A), i = 1,2,···, k, and I::=l ni = n. 

The result of Theorem 3.2.1 is very weH known. The realisation of this Jordan 
canonical form in MATLAB can be found in Lin and Chen [34} (see e.g., the m­
function jordan.rn). The following theorem is to find a real Jordan canonical 
form. 

3.2.2 Real Jordan Canonical Form 

Theorem 3.2.2. Consider a constant matrix A E ~n x n. There exists a non­
singular transformation P E ~n x n and an integer k such that 

(3.3) 
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where each block Ji, i = 1,2,···, k, has the following form: if Ai EA(A) is 
real, 

1 

(3.4) 

or if Ai = /-Li + jWi E A(A) and Xi = /-Li - jWi E A(A) with Wi :f::. 0, 

(3.5) 

The above structure of p-1 AP is called the real Jordan canonical form. <> 

Again, the above result can be found in many standard textbooks. An ID­

function, r _j ordan. m, realising the above real Jordan canonical form has been 
reported in Lin and Chen [34]. 

3.3 Structural Decompositions of Matrix Pairs 

In this section, two structural decompositions of a constant matrix pair, 
namely the so-caHed controllability structural decomposition (CSD) and the 
block diagonal control canonical form (see e.g., [44]), will be presented. We 
will first recall the CSD for a linear system characterised by a matrix pair 
(A, B), which was caHed a Brunovsky canonical form by many researchers in 
the literature (see e.g., [45]). However, it is noted that such a decomposition 
was actually first discovered by Luenberger 146] in 1967, which was 3 years 
earlier than the publication of Brunovsky's results [47] in 1970. We have the 
following theorems regarding the CSD and the block diagonal control canon­
icai form for a given constant matrix pair. 

3.3.1 Controllability Structural Decomposition 

Theorem 3.3.1. Consider a constant matrix pair (A,B) with A E lRnxn and 
B E lRnxm with B being of fuH rank. There exist nonsingular state and input 
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transformations Ts and Ti such that (A,13) .- (T;:l ATs , T;:l BTi) has the 
following form: 

Ao 0 0 0 0 0 0 
0 0 I k ,-l 0 0 0 0 

* * * * * 1 0 
(3.6) 

0 0 0 0 Ikm - 1 0 0 

* * * * * 0 1 

where ki > 0, i = 1,···, m, Ao is of dimension no := n - 2:::1 ki and 
its eigenvalues are the uncontrollable modes of (A, B). Moreover, the set of 
integers, C := {no, k1 , .•. , km}, is hereafter called the controllability index 
of (A, B). <> 

3.3.2 Block Diagonal Control Canonical Form 

Theorem 3.3.2. Consider a constant matrix pair (A, B) with A E IRnxn and 
B E IRnxm and with (A, B) being completely controllable. Then there ex-
ist an integer k :::; m, a set of K, integers k1 , k2 , .•• , kK, and non singular 
transformations Ts and Ti such that 

[1 

0 0 0 
A 2 0 0 

Ts- 1 ATs = 0 A 3 0 (3.7) 

0 0 AK 

[ B, 
* * * 

1 T,~' BT; = r B 2 * * 
0 B 3 * (3.8) 

0 0 BK 

where the * symbols represent some matrices of less interest, and matrices 
Ai and Bi, i = 1,2, ... ,K" have the following control canonical form: 

[J 
1 0 

11 !l 
0 1 

A i = B,= (3.9) 

0 0 
_ai -ai 

ki ki- 1 ki- 2 
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for some scalars at, a~, "', at. Obviously, 2:7=1 ki = n. We call the above 
structure of A and B a block diagonal contral canonical form. <> 

The software realisations of these canonical forms in MATLAB can be found 
in Lin and Chen [34]. 

3.4 Structural Decomposition of Linear Systems 

Consider a general proper linear time-invariant system E., which could be of 
either continuous-time or discrete-time, characterised by a matrix quadrupie 
(A.,B.,C.,D.) or in the state-space form 

{ 
8(x) = A. x + B. u, 

y = C. x + D. u, 
(3.10) 

where 8(x) = x(t) if E. is a continuous-time system, or 8(x) = x(k + 1) if 
E. is a discrete-time system. Similarly, x E lRn , u E lRm and y E W' are the 
state, input and output of E •. They represent respectively x(t), u(t) and y(t) 
if the given system is of continuous-time, or represent respectively x(k), u(k) 
and y(k) if E. is of discrete-time. Without loss of any generality, we assurne 
throughout this section that both [B~ D~] and [C. D.] are of fuH rank. 
The transfer function of E. is then given by 

(3.11) 

where c; = s, the Laplace transform operator, if E. is of continuous-time, or 
c; = z, the z-transform operator, if E. is of discrete-time. It is simple to verify 
that there exist nonsingular transformations U and V such that 

UD V = [Imo 0] 
• 0 0' 

(3.12) 

where mo is the rank ofmatrix D •. In fact, U can be chosen as an orthogonal 
matrix. Hence, hereafter, without loss of generality, it is assumed that the 
matrix D. has the form given on the right hand-side of Equation (3.12). One 
can now rewrite system E. of Equation (3.10) as 

{ 

8(x) 

(~~) = 

A. 

[ c.,o] 
C.,l 

B.,IJ (~~), 

~] (~~), 
(3.13) 
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where the matrices B*,o, B*,l, C*,o and C*,l have appropriate dimensions. 

Theorem 3.4.1 on the special coordinate basis (SeB) of linear systems (see 
also [48, 49]) is mainly due to the results of Sannuti and Saberi. The proofs 
of all its properties can be found in arecent monograph by ehen [44]. 

Theorem 3.4.1. Given the linear system E. of Equation (3.10), there exist 

1. coordinate-free nonnegative integers n;;, n~, n;t, nb, n c , nd, md ~ m-mo 
and qi, i = 1, ... ,md, and 

2. nonsingular state, output and input transformations rs , ro and r j that 
take the given E* into a special cooI'dinate basis that displays explicitly 
both the finite and infinite zero structures of E •. 

The special coordinate basis is described by the following set of equations: 

<5(x;;-) = A;;-ax ;;- + WJaYo + L;;dYd + L;;bYb, 

<5(x~) = A~ax~ + B8aYo + L~dYd + L~bYb, 

<5(x;t) = A;tax;t + Btayo + L~dYd + L~bYb, 

and for each i = 1"", md, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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+ Bq, [ni + Eiaxa + EibXb + Eiexe + ~ Eii Xi ] , (3.23) 
3=1 

(3.24) 

Here the states x;;, x~, xt, Xb, Xc and Xd are respectively of dimensions 
- 0 + d ",md d' f d' . J: h n a , n a, n a , nb, n e an nd = L..i=l qi, an Xi 18 olmensIOn qi lor eac 

i = 1, ... ,md. The control vectors uo, Ud and ne are respectively of dimensions 
mo, md and m e = m - mo - md, and the output vectors Yo, Yd and Yb are 
respectively of dimensions Po = mo, Pd = md and Pb = P - Po - Pd· The 
matrices A qi , Bq, and Cqi have the following form: 

(3.25) 

Assuming that Xi, i = 1,2,"', md, are arranged such that qi < qi+1, the 
matrix Lid has the particular form 

0] . (3.26) 

The last row of each Lid is identically zero. Moreover: 

1. If E* is a continuous-time system, then 

(3.27) 

2. If E* is a discrete-time system, then 

(3.28) 

Also, the pair (Ace, Be) is controllable and the pair (Abb, Cb) is observable. <:; 

Note that a procedure of constructing the original version of the above struc­
tural decomposition of a strictly proper linear system was given by Sannuti 
and Saberi [48]. The required modifications for non-strictly proper systems 
were given by the same authors in [49]. Here, in Theorem 3.4.1 by another 
change of basis, the variable X a is further decomposed into x;;, x~ and xt. 
For continuous-time systems, one can use the real Schur algorithm to obtain 
such a decomposition. For discrete-time systems, the algorithm of ehen [50} 
can be used. The realisation of this unified decomposition can be found in 
Lin and ehen [34}. Finally, the proofs of all properties ofthis decomposition 
listed below have been reported by ehen [44, 51}. 
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We can rewrite the special coordinate basis of the quadruple (A*, B*, C*, D*) 
given by Theorem 3.4.1 in a more compact form: 

o 
A~a 
o 
o 

BeE~a 
BdE~a 

o 
o 

~;;bCb 

~~bCb 

~~bCb 
Abb 

o 
o 
o 
o 

~ebCb Ace 

~;;dCd 

~~dCd 
~~dCd 
~bdCd 

~edCd 

A;ta 

o 
BeE-:-a 

BdEta BdEdb BdEde Add 

cga 
o 
o 

o 
o 
o 
o 

cta 
o 
o 

o 
o 
o 
o 

COe 

o 
o 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

A block diagram of the special coordinate basis of Theorem 3.4.1 is given 
in Figure 3.1. In this figure, a signal given by a double-edged arrow is some 
linear combination of outputs Yi, i = 0 to md, whereas a signal given by the 
double-edged arrow with asolid dot is some linear combination of all the 
states. Also, the block [> is either an integrator if E* is of continuous-time or 
a backward shifting operator if E* is of discrete-time. 

We note the following intuitive points regarding the special coordinate basis. 

1. The variable Ui controls the output Yi through a stack of qi integrators 
(or backward shifting operators), whereas Xi is the state associated with 
those integrators (or backward shifting operators) between Ui and Yi. 

Moreover, (Aq" BqJ and (Aqi , CqJ respectively form controllable and 
observable pairs. This implies that all the states Xi are both controllable 
and observable. 
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Xb ~ Output >---,---"cr-

r--r---'" Xc 

yo Output 

Note that a signal given by a double-edged arrow with asolid dot is same linear 
combination oE all the states, whereas a signal given bya simple double-edged arrow 
is same linear combination oE only output Yd. Also, matrices Boa, Lab, Lad and E ca 
are to be defined in Property 3.4.1. 

Figure 3.1. A block diagram representation of the special coordinate basis. 
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2. The output Yb and the state Xb are not directly influenced by any in­
puts; however, they could be indirectly controlled through the output Yd. 
Moreover, (AM, Cb) forms an observable pair. This implies that the state 
Xb is observable. 

3. The state Xc is directly controlled by the input uc , but it does nat directly 
affect any output. Moreover, (Ace, Be) forms a controllable pair. This 
implies that the state Xc is controllable. 

4. The state X a is neither directly controlled by any input nor does it directly 
affect any output. 

In what follows, we state some important properties of the above special 
coordinate basis that are pertinent to our present work. As mentioned earlier, 
the proofs of these properties can be found in ehen -{44]. 

Property 3.4.1. The given system E,. is observable (detectable) if and only if 
the pair (Aobs , Cobs) is observable (detectable), where 

C [Coa Coe] 
obs:= Eda Ede ' (3.33) 

and where 

(3.34) 

(3.35) 

Also, define 

B [ Boa Lad] 
eon:= BOb L bd ' (3.36) 

[ B
fu ] (L~l [L~l Boa := B~ , Lab := L~ , Lad:= L~ . 

BOa Lab Lad 

(3.37) 

Similarly, E* is controllable (stabilisable) if and only if the pair (Acon, Bcon ) 
is eontrollable (stabilisable). 0 
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The invariant zeros of a system E* characterised by (A*,B*,C*,D*) can be 
defined via the Smith canonical form of the (Rosenbrock) system matrix [52] 
of E*: 

(3.38) 

We have the following definition for the invariant zeros (see also [53]). 

Definition 3.4.1. (Invariant Zeros). A complex scalar a E C is said to be 
an invariant zero of E* if 

rank {PE.(a)} <n+normrank {H*(~)}, (3.39) 

where normrank{H*(~)} denotes the normal rank of H*(~), which is defined 
as its rank over the field of rational functions of ~ with real coefficients. <> 

The special coordinate basis of Theorem 3.4.1 shows explicitly the invariant 
zeros and the normal rank of E*. To be more specific, we have the following 
properties. 

Property 3.4.2. 

1. The normal rank of H*(~) is equal to mo + md. 

2. Invariant zeros of E* are the eigenvalues of A aa , which are the unions of 
the eigenvalues of A;;a, A~a and Ata. Moreover, the given system E* is of 
minimum phase if and only if Aaa has only stable eigenvalues, marginal 
minimum phase if and only if Aaa has no unstable eigenvalue but has 
at least one marginally stable eigenvalue, and nonminimum phase if and 
only if Aaa has at least one unstable eigenvalue. <> 

In order to display various multiplicities of invariant zeros, let X a be a nonsin­
gular transformation matrix such that Aaa can be transformed into a Jordan 
canonical form (see Theorem 3.2.1), i.e., 

(3.40) 

where Ji , i = 1,2,···, k, are some ni x ni Jordan blocks: 

(3.41) 
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For any given a E >'(Aaa ), let there be Ta Jordan blocks. of Aaa associated 
with a. Let na,l, n a,2, ... , na,ra be the dimensions of the corresponding 
Jordan blocks. Then we say a is an invariant zero of E* with multiplicity 
structure S~(E*), 

(3.42) 

The geometric multiplicity of a is then simply given by Ta, and the algebraic 
multiplicity of a is given by r:;;'l na,i. Here we should note that the invari­
ant zeros, together with their structures of E*, are related to the structural 
invariant indices list I 1 (E*) of Morse [54]. 

The special coordinate basis can also reveal the infinite zero structure of E*. 
We note that the infinite zero structure of E* can be either defined in as­
sociation with root-Iocus theory or as Smith-McMillan zeros of the transfer 
function at infinity. For the sake of simplicity, we only consider the infinite 
zeros from the point of view of Smith-McMillan theory here. To define the 
zero structure of H*(c;) at infinity, one can use the familiar Smith-McMillan 
description of the zero structure at finite frequencies of a general not neces­
sarily square but strictly proper transfer function matrix H*(c;). Namely, a 
rational matrix H*(c;) possesses an infinite zero of order k when H*(l/z) has 
a finite zero of precisely that order at z = 0 (see [52, 55-57]). The number 
of zeros at infinity, together with their orders, indeed defines an infinite zero 
structure. Owens [58] related the orders of the infinite zeros of the root-Ioci of 
a square system with a nonsingular transfer function matrix to the C* struc­
tural invariant indices list I 4 of Morse [54]. This connection reveals that, even 
for general not necessarily strictly proper systems, the structure at infinity is 
in fact the topology of inherent integrations between the input and the out­
put variables. The special coordinate basis of Theorem 3.4.1 explicitly shows 
this topology of inherent integrations. The following property pinpoints this. 

Properly 3.4.3. E* has mo = rank (D*) infinite zeros of order O. The infinite 
zero structure (of order greater than 0) of E* is given by 

(3.43) 

That is, each qi corresponds to an infinite zero of E* of order qi. Note that 
for an SISO system E*, we have S~(E*) = {qt}, where ql is the relative 
degree of E*. 0 

The special coordinate basis can also exhibit the invertibility structure of a 
given system E*. The formal definitions of right invertibility and left invert­
ibility of a linear system can be found in [59]. Basically, for the usual case 
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when [B: D:] and [C* D*] are of maximal rank, the system h*, or equiv­
alently H*(r;), is said to be left invertible if there exists a rational matrix 
function, say L*(r;), such that 

(3.44) 

h* or H*(r;) is said to be right invertible if there exists a rational matrix 
function, say R* (r;), such that 

(3.45) 

h* is invertible if it is both left and right invertible, and h* is degenerate if 
it is neither left nor right invertible. 

Property 3.4.4. The given system h* is right invertible if and only if xb (and 
hence Yb) are nonexistent, left invertible if and only if Xe (and hence ue ) are 
nonexistent, and invertible if and only if both Xb and Xe are nonexistent. 
Moreover, h* is degenerate if and only if both Xb and Xe are present. <> 

The special coordinate basis can also be modified to obtain the structural 
invariant indices lists I 2 and I 3 of Morse [54] of the given system h*. In order 
to display I 2 (h*), we let Xc and Xi be nonsingular matrices such that the 
controllable pair (Aee , Be) is transformed into the CSD (see Theorem 3.3.1), 
i.e., 

o 0 ... : Il_*Lj 
... * 

(3.46) 

* * 

(3.47) 

where the * symbols denote constant scalars or row vectors. Then we have 

(3.48) 

which is also called the controllability index of (Ace, Be). Similarly, we have 
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(3.49) 

where {/-tl'···' /-tPb} is the controllability index of the controllable pair 
(A~b' C/,). 

By now it is clear that the special coordinate basis decomposes the state­
space into several distinct parts. In fact, the state-space X is decomposed as 

(3.50) 

Here X,;- is related to the stable invariant zeros, i.e., the eigenvalues of A;a 
are the stable invariant zeros of E*. Similarly, xg and X: are respectively 
related to the invariant zeros of E* located in the marginally stable and 
unstable regions. On the other hand, Xb is related to the right invertibility, 
i.e., the system is right invertible if and only if Xb = {O}, whereas Xc is related 
to left invertibility, i.e., the system is left invertible if and only if Xc = {O}. 
Finally, Xd is related to zeros of E* at infinity. 

There are interconnections between the special coordinate basis and various 
invariant geometrie subspaces. To show these interconnections, we introduce 
the following geometrie subspaces. 

Definition 3.4.2. (Geometrie Subspaees VX and SX). The weakly unob­
servable subspaces of E*, VX, and the strongly controllable subspaces of E*, 
SX, are defined as folIows: 

1. VX(E*) is the maximal subspace of jRn that is (A*+B*F*)-invariant and 
contained in Ker (C* +D*F*) such that the eigenvalues of (A* +B*F*)IVX 
are contained in e x ~ e for some constant matrix F*. 

2. SX(E*) is the minimal (A* + K*C*)-invariant subspace of jRn containing 
Im (B* + K*D*) such that the eigenvalues of the map that is induced by 
(A* + K*C*) on the factor space jRn jSX are contained in e x ~ e for 
some constant matrix K *. 

Moreover, we let V-=Vx and S-=Sx, ifex=e- uCO; V+=Vx and S+=Sx, 
if e x = e+; V0 = VX and So = SX, if e x = e 0 u eo; V® = VX and S® = SX, if 
ex=e®; and finally V*= VX and S*=Sx, if ex=<C. <:; 

Property 3.4.5. 

if E* is of continuous-time, 

if E* is of discrete-time. 



+ {V+(17.), 
2. Xa EB Xc spans ®() 

V 17., 

6. Xc EB Xd spans S·(17.). 
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if 17* is of continuous-time, 

if 17. is of discrete-time. 

if 17. is of c-ontinuous-time, 

if 17. is of discret-e-time. 

if 17. is of continuous-time, 

if 17. is of discrete-time. 

Finally, for future development on deriving solvability conditions for H oo 

almost disturbance decoupling problems, we introduce two more subspaces 
of 17 •. The original definitions of these subspaces were given by Scherer [60]. 

Definition 3.4.3. (Geometrie Subspaees V.\ and S.\). For any A E C, we 
define 

and 

V.\(17.) and S.\(17.) are associated with the so-called state zero directioDS of 
17. if A is an invariant zero of 17.. 0 

These subspaces S.\(17.) and V.\(17*) can also be easily obtained using the 
special coordinate basis. We have the following new property of the special 
coordinate basis. 

Property 3.4.6. 

{ r AI - Aaa 

S,(1].) = Im r, 1 ~ (3.53) 

where 
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(3.54) 

and where K b is any appropriately dimensional matrix subject to the con­
straint that A bb + KbCb has no eigenvalue at A. We note that such a K b 

always exists, as (A bb , Cb) is completely observable. 

(3.55) 

where X a .\ is a matrix whose columns form a basis für the subspace, 

(3.56) 

and 

(3.57) 

with Fe being any appropriately dimensional matrix subject to the constraint 
that Ace + BeFe has no eigenvalue at A. Again, we note that the existence of 
such an Fe is guaranteed by the controllability of (Ace, Be). <) 

Clearly, if A tf- A(Aaa ), then we have 

(3.58) 

It is interesting to note that the subspaces VX(17.) and SX(.~.) are dual 
in the sense that VX(17;) = SX(17.)J.., where 17; is characterised by the 
quadruple (A~,C~,B:,D:). Also, S.\(17.) = V>..(17;)J... Finally, we conclude 
this section by summarising in Figure 3.2 some major properties of the tools 
of linear systems, which combines the mechanisms of the special coordinate 
basis, the Jordan canonical form and the CSD. Such tools have been used in 
the literature to solve many system and control problems (see Chen [44] for 
details). 

3.5 Bilinear Transformations 

We recall in this section the work of Chen and Weller [61] on bi linear and in­
verse bilinear transformations of linear time-invariant systems (see also Chen 
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Figure 3.2. Tools and structural properties of linear time-invariant systems. 

[44]). Their result presents a comprehensive picture of the mapping of struc­
tural properties associated with general linear multivariable systems under 
bi linear and inverse bilinear transformations. They have completely inves­
tigated the problem of how the finite and infinite zero structures, as weH 
as invertibility structures of a general continuous-time (discrete-time) linear 
time-invariant multivariable system, are mapped to those of its discrete-time 
(continuous-time) counterpart under the bilinear (inverse bilinear) transfor-
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mation. In what follows, we present a comprehensive study on the structural 
mappings of the well-known bilinear (inverse bilinear) transformations 

( z -1) s=a --
z+1 

respectively. 

and 
a+s 

z=-­
a-s 

3.5.1 Continuous to Discrete 

(3.59) 

In this subsection, we will consider a continuous-time linear time-invariant 
system Ec {:haracterised by 

{ ± = A x + B u, 
Ec : 

y = C x + D u, 
(3.60) 

where x E jRn, y E jRP, U E jRm and A, B, C and D are matrices of appropriate 
dimensions. Without loss of any generality, we assume that both matrices 
[C D land [B' D ' 1 are of full rank. E c has a transfer function 

Gc(s) = C(sI - A)-1 B + D. (3.61) 

Let us apply a bilinear transformation to the above continuous-time system, 
by replacing s in Equation (3.61) with 

_ 2 (z -1) _ (z - 1) s-- -- -a -- , 
T z+1 z+1 

(3.62) 

where T = 2/a is the sampling period. As presented in Equation (3.62), the 
bilinear transformation is often called Tustin's approximation [62], whereas 
the choice 

W1 
a=-----

tan(w1 T / 2) 
(3.63) 

yields the pre-warped Tustin approximation, in which the frequency responses 
of the continuous-time system and its discrete-time counterpart are matched 
at frequency W1. In this way, we obtain a discrete-time system 

( 
Z - 1 )-1 

Gd(z)=C a--I-A B+D. 
z+l 

(3.64) 

The following lemma provides a direct state-space realisation of Gd (z). 
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Lemma 3.5.1. A state-space realisation of Gd(z), the discrete-time counter­
part of the continuous-time system Ec of Equation (3.60) und€r the bilinear 
transformation of Equation (3.62), is given by 

Ed 
: {X(k+l} = ~ x(k) + ~ u(k), 

y(k) = C x(k) + D u(k), 
(3.65) 

where 

Ä = (al + A)(aI - A)-l, 

} iJ = J2ä (al - A)-l B, 

C = J2ä C(aI - A)-l, 

D = D + C(aI - A)-l B. 

(3.66) 

Here we clearly assume that matrix A has no eigenvalue at a. 

The following theorem establishes the interconnection of the structural prop­
erties of Ee and E d • 

Theorem 3.5.1. Consider the continuous-time system Ec of Equation (3.60) 
characterised by the quadruple (A, B, C, D) with matrix A having no eigen­
value at a, and its discrete-time counterpart under the bilinear transformation 
of Equation (3.62), i.e., E d of Equation (3.65) characterised by the quadruple 
(Ä, iJ, 6, D) of Equation (3.66). We have the following properties. 

1. Controllability (stabilisability ) and observability (detectability) of E d : 

a) the pair (Ä, iJ) is controllable (stabilisable) if and only if the pair 
(A, B) is controllable (stabilisable); 

b) the pair (Ä, 6) is observable (detectable) if and only ifthe pair (A, C) 
is observable (detectable). 

2. Effects of nonsingular state, output and input transformations, together 
with state feedback and output injection laws: 

a) for any given nonsingular state, output and input transformations 
Ts , To and Ti, the quadruple 

(3.67) 

is the discrete-time counterpart under the bilinear transformation of 
Equation (3.62), of the continuous-time system 

(3.68) 
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b) for any F E jRmxn with A + BF having no eigenvalue at a, define a 
nonsingular matrix 

Ti := 1+ F(aI - A - BF)-l B 

= [I - F(aI - A)-l Bj-l E jRmxm, (3.69) 

and a constant matrix 

P := ffa F(aI - A - BF)-l E jRmxn. (3.70) 

Then a continuous-time system ECF characterised by 

(A + BF,B,C + DF,D), (3.71) 

is mapped to a discrete-time system E dF , characterised by 

(A. + BP, BTi , (; + bP, bTi ), (3.72) 

under the bilinear transformation of Equation (3.62). Here we note 
that ECF is the closed-loop system comprising Ec and astate feedback 
law with gain matrix F, and E dF is the closed-loop system comprising 
Ed and astate feedback law with gain matrix P, together with a 
nonsingular input transformation Ti; 

c) for any K E jRnxp with A + KC having no eigenvalue at a, define a 
nonsingular matrix 

1'0 := [I + C(aI - A - KC)-l Kj-l E jRpx p , (3.73) 

and a constant matrix 

k:= ffa (al - A - KC)-l K. (3.74) 

Then a continuous-time system ECK characterised by 

(A+KC,B + KD,C,D), (3.75) 

is mapped to a discrete-time system E dK , characterised by 

~ ~ ~ ~ ~ ~ ~-l ~ ~-l ~ 

(A+KC,B+KD,To C,To D), (3.76) 

under the bilinear transformation of Equation (3.62). We note that 
ECK is the closed-loop system comprising E c and an output injection 
law with gain matrix K, and E dK is the closed-loop system compris­
ing Ed and an output injection law with gain matrix k, together 
with a nonsingular output transformation 1'0. 

3. Invertibility and structural invariant indices lists I 2 and I 3 of Ed: 
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b) L'd is left (right) invertible if and only if L'c is left (right) invertible. 

c) L'd is invertible (degenerate) if and only if L'c is invertible (degener­
ate). 

4. The invariant zeros of L'd and their associated structures consist of the 
following two parts. 

a) Let the infinite zero structure (of order greater than 0) of L'c be given 
by S~(L'c) = {ql, q2,···, qmd}. Then z = -1 is an invariant zero of 
L'd with the multiplicity structure S::'l(L'd) = {Ql,Q2,···,qmd}. 

b) Let s = 0: :I a be an invariant zero of L'c with the multiplicity struc­
ture S~(L'c) = {n"",l, n"",2, ... , n"",T,,}. Then z = ß = (a + o:)j(a - 0:) 
is an invariant zero of its discrete-time counterpart L'd with the mul­
tiplicity structure Sß(L'd) = {n"",1,n"",2,···,n"",T,,}. 

5. The infinite zero structure of L'd consists of the following two parts: 

a) Let mo = rank (D), and let md be the total number of infinite 
zeros of L'c of order greater than o. Also, let Ta be the geometric 
multiplicity of the invariant zero of L'c at s = a. Then we have 
rank (D) = mo + md - Ta. 

b) Let s = a be an invariant zero ofthe given continuous-time system L'c 
with a multiplicity structure S~(L'c) = {na,l, na,2,···, na,Ta }. Then 
the discrete-time counterpart L'd has an infinite zero (of order greater 
than 0) structure S~(L'd) = {na,1,na,2,·· ·,na,Ta }. 

6. The mappings of geometric subspaces: 

a) V+(L'c) = SO (L'd). 

b) S+(L'c) = V0(L'd). 

We have the following two interesting observations. The first is with regard 
to the minimum phase and nonminimum phase properties of L'd, and the 
second concerns the asymptotic behaviour of L'd as the sampling period T 
tends to zero (or, equivalently, as a -+ 00). 

Observation 3.5.1. Consider a general continuous-time system L'c and its 
discrete-time counterpart L'd under the bilinear transformation of Equation 
(3.62). Then it follows from 4(a) and 4(b) of Theorem 3.5.1 that 
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1. L'd has all its invariant zeros inside the unit circle if and only if L'c has 
all its invariant zeros in the open left-half plane and has no infinite zero 
of order greater than 0; 

2. L'd has invariant zeros on the unit circle if and only if L'c has invariant 
zeros on the imaginary axis, andjor L'c has at least one infinite zero of 
order greater than 0; 

3. L'd has invariant zeros outside the unit circle if and only if L'c has invari-
ant zeros in the open right-half plane. <; 

Observation 3.5.2. Consider a general continuous-time system L'c and its 
discrete-time counterpart L'd under the bi linear transformation of Equation 
(3.62). Then as a consequence of Theorem 3.5.1, L'd has the following asymp­
totic properties as the sampling period T tends to zero (but not equal to 
zero): 

1. L'd has no infinite zero of order greater than 0, i.e., no delays from the 
input to the output; 

2. L'd has one invariant zero at z = -1 with an appropriate multiplicity 
structure if L'c has any infinite zero of order greater than 0; and 

3. The remaining invariant zeros of L'd, if any, tend to the point z = 1. 
More interestingly, the invariant zeros of L'd corresponding to the stable 
invariant zeros of L'c are always stable, and approach the point z = 1 from 
inside the unit circle. Conversely, the invariant zeros of L'd corresponding 
to the unstable invariant zeros of L'c are always unstable, and approach 
the point z = 1 from outside the unit circle. Finally, those associated 
with the imaginary axis invariant zeros of L'c are always mapped onto 
the unit circle and move towards to the point z = 1. <; 

3.5.2 Discrete to Continuous 

We present in this subsection a similar result as in the previous section, but 
for the inverse bilinear transformation mapping a discrete-time system to a 
continuous-time system. We begin with a discrete-time linear time-invariant 
system Ed characterised by 

Ed : {X(k+1) = ~ x(k) + ~ u(k), 
y(k) = C x(k) + D u(k), 

(3.77) 
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where x E jRn, y E JRP, u E jRm and ..1, B, 6 and bare matrices of appropriate 
dimensions. Without loss of any generality, we assume that both matrices 
[6 bland [B' b ' ] are of full rank. Ed has a transfer function 

(3.78) 

The inverse bilinear transformation corresponding to (3.62) replaces z in 
Equation (3.78) with 

a+s 
Z ---- , 

a-s 
(3.79) 

to obtain the following continuous-time system: 

- a+s - - -( )
-1 

Hc(s) = C --I - A B + D. 
a-s 

(3.80) 

The following lemma is analogous to Lemma 3.5.1, and provides a state-space 
realisation of He ( S ) . 

Lemma 3.5.2. A state-space realisation of Hc(s), the continuous-time coun­
terpart of the discrete-time system Ed of Equation (3.77) under the inverse 
bilinear transformation of Equation (3.79), is given by 

- {i; = A x + B u, 
E c : 

y = C x + D u, 
(3.81) 

where 

A a(A + 1)-1 (..1 - 1), 

B y2a (..1 + 1)-1 B, 
C y2a 6(..1 + 1)-1, 

D = b - 6(..1 + 1)-1 B. 
} (3.82) 

Here we clearly assume that the matrix ..1 has no eigenvalue at -1. 

The following theorem is analogous to Theorem 3.5.1. 

Theorem 3.5.2. Consider the discrete-time system Ed of Equation (3.77) 
characterised by the quadrupie (..1, B, 6, b) with matrix ..1 having no eigen­
value at -1, and its continuous-time counterpart under the inverse bilinear 
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transformation of Equation (3.79), i.e., Ec of Equation (3.81) characterised 
by the quadruple (A, B, C, D) of Equation (3.82). We have the following 
properties. 

1. Controllability (stabilisability) and observability (detectability) of Ec : 

a) the pair (A, B) is controllable (stabilisable) if and only if the pair 
(A, B) is controllable (stabilisable). 

b) the pair (A, C) is observable (detectable) if and only if the pair (A, C) 
is observable (detectable). 

2. Effects of nonsingular state, output and input transformations, together 
with state feedback and output injection laws: 

a) for any given nonsingular state, output and input transformations 
Ts , To and Ti, the quadruple 

(3.83) 

is the continuous-time counterpart of the inverse bilinear transfor­
mation, i.e., (3.79), of the discrete-time system 

(3.84) 

b) for any F E jRmxn with A + BF having no eigenvalue at -1, define 
a nonsingular matrix 

Ti := I - F( I + A + B F) -1 B E jRm x m , (3.85) 

and a constant matrix 

(3.86) 

Then a discrete-time system EdF characterised by 

(A + BF, B, C + bF, b), (3.87) 

is mapped to a continuous-time counterpart ECF characterised by 

(A + BF, BIL C + DF, DTJ, (3.88) 

under the inverse bilinear transformation of Equation (3.79). Note 
that EdF is the closed-loop system comprising E d and astate feed­
back law with gain matrix F, and EdF is the closed-loop system 
comprising Ed and astate feedback law with gain matrix F, together 
with a nonsingular input transformation Ti; 



3. Linear System Tools 53 

c) for any k E ffi.nxp with A + kc having no eigenvalue at -1, define 
a nonsingular matrix 

To := [I - C(I + A + kC)-l kj-l E ffi.P xP , (3.89) 

and a constant matrix 

K := v'2ä (I + A + kC)-l K. (3.90) 

Then a discrete-time system EdK characterised by 

(3.91) 

is mapped to a continuous-time ECK, characterised by 

(3.92) 

under the inverse bilinear transformation of Equation (3.79). We note 
that EdK is the closed-loop system comprising Ed and an output in­
jection law with gain matrix k, and ECK is the closed-loop system 
comprising Ec and an output injection law with gain matrix K, to­
gether with a nonsingular output transformation To . 

3. Invertibility and structural invariant indices lists I 2 and I 3 of Ec : 

a) I 2 (Ec ) = I 2 (Ed) and I 3 (Ec ) = I 3 (Ed); 

b) Ec is left (right) invertible if and only if Ed is left (right) invertible; 

c) E c is invertible (degenerate) if and only if Ed is invertible (degener­
ate). 

4. Invariant zeros of Ec and their structures consist of the following two 
parts. 

a) Let the infinite zero structure (of order greater than 0) of Ed be given 
by S,;" (Ed) = {ql, q2," . , qmd}' Then s = a is an invariant zero of 
Ec with the multiplicity structure S~(Ec) = {ql,q2,'" ,qmd}' 

b) Let z = a f- -1 be an invariant zero of Ed with the multiplicity 
structure S~(Ed) = {na,1,na,2,"·,na,T,,}. Then s = ß = a~+i 
is an invariant zero of its continuous-time counterpart Ec with the 
multiplicity structure Sß(Ec) = {na,l, n a,2, ... , na,Ta }. 

5. The infinite zero structure of Ec consists of the following two parts. 

a) Let mo = rank (D), and let md be the total number of infinite 
zeros of Ed of order greater than O. Also, let LI be the geometrie 
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multiplicity of the invariant zero of Ed at z = -1. Then we have 
rank (D) = mo + md - 7-1. 

b) Let z = -1 be an invariant zero ofthe given discrete-time system Ed 

with the multiplicity structure S~l (Ed)= {n-1,b n-1,2,"', n-1,T-l}' 

Then Ec has an infinite zero (of order greater than 0) structure 
Stx,(Ec ) = {n-1,1,n-1,2,'" ,n-1,T_l}' 

6. The mappings of geometrie subspaces: 

a) V0(Ed) = S+(Ec ). 

b) S0(Ed ) = V+(Ec ). 

Lastly, we summarise in a graphical form in Figure 3.3 the detailed mappings 
associated with the bilinear and inverse bilinear transformations. 
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Figure 3.3. Structural mappings of bilinear transformations. 



CHAPTER4 

LINEAR CONTROL TECHNIQUES 

4.1 Introduction 

We now present some common linear control system design techniques, such 
as the well-known PID control, H 2 and H oo optimal control, linear quadratic 
regulator (LQR) with loop transfer recovery design (LTR) , together with 
some newly developed design techniques, such as the robust and perfect track­
ing (RPT) method. We will first introduce the precise problem definitions of 
these techniques and then provide detailed solutions explicitly constructed 
by dosely examining the structural properties of the given systems. Most of 
these results will be intensively used later in the design of HDD servo sys­
tems, though some are presented here for the purpose of easy reference for 
general readers. 

We have noticed that it is some kind of tradition or fashion in the HDD servo 
system research community in which researchers and practising engineers pre­
fer to carry out a control system design in the discrete-time setting. In this 
case, the designer would have to discretise the plant to be controlled (mostly 
using the ZOH technique) first and then use some discn~te-time control sys­
tem design technique to obtain a discrete-time controllaw. However, in our 
personal opinion, it is easier to design a controller directly in the continuous­
time setting and then use some continuous-to-discrete transformations, such 
as the bilinear transformation as given in Chapter 3, to discretise it when 
it is to be implemented in the real system. The advantage of such an ap­
proach follows from the following fact: the bilinear transformation does not 
introduce unstable invariant zeros to its discrete-time counterpart. On the 
other hand, it is well-known in the literature that the ZOH approach al­
most always produce some additional nonminimum phase invariant zeros for 
higher-order systems with faster sampling rates. These nonminimum phase 
zeros will cause some additionallimitations on the overall performance of the 
system to be controlled. Nevertheless, we will present both continuous-time 
and discrete-time vers ions of these control techniques for completeness. It is 
up to the reader to choose the appropriate approach in designing their own 
servo system. 
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Lastly, w€ would like to note that the design methods presented in this chap­
ter are weIl studied in the literature. As such, all results are quoted without 
detailed proofs and derivations. Interested readers are referred to the related 
references for details. 

4.2 PID Control 

PID control is the most popular technique used in industries because it is 
relatively easy and simple to design and implement. Most importantly, it 
works in most practical situations, although its performance is somewhat 
limited owing to its restricted structure. Nevertheless, in what follows, we 
recall this well-known dassical control system design methodology for ease 
of reference. 

r e 
K(s) 

u 
G(s) 

y 

+ ,./ 

-

Figure 4.1. The typical PID control configuration. 

To be more specific, we consider the control system as depicted in Figure 4.1, 
in which G(8) is the plant to be controlled and K(8) is the PID controller 
characterised by the following transfer function 

( 4.1) 

The control system design is then to determine the parameters K p , Ti and 
Td such that the resulting dosed-loop system yields a certain desired perfor­
mance, i.e., it meets certain prescribed design specifications. 

Ziegler-Nichols tuning is one ofthe most common techniques used in practical 
situations to design an appropriate PID controller for the dass of systems 
that can be exactly modelled as, or approximated by, the following first-order 
system: 

G( ) - Y(8) _ ~ -tdS 
8 - - e. 

U(8) 78+1 
(4.2) 
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One of the methods proposed by Ziegler and Nichols ([63, 64]) is first to re­
place the controller K(s) in Figure 4.1 by a simple proportional gain. We then 
increase this proportional gain to a value, say Ku, for which we observe con­
tinuous oscillations in its step response, i.e., the system becomes marginally 
stable. Assume that the corresponding oscillating frequency is wu . The PID 
controller parameters are then given as follows: 

3Ku n n 
K p = -5-' Ti = -, Td = -4 . 

Wu Wu 
(4.3) 

Experience has shown that such controller settings provide a good closed­
loop response for many systems. Unfortunately, it will be seen shortly in 
the coming chapters that the typical model of a VCM actuator is actually a 
double integrator and thus Ziegler-Nichols tuning cannot be directly applied 
to design a servo system for the VCM actuator. 

Another common way to design a PID controller is the pole assignment 
method, in which the parameters K p , 11 and Td are chosen such that the 
dominant roots of the closed-loop characteristic equation, i.e., 

1 + K(s)G(s) = 0, (4.4) 

are assigned to meet certain desired specifications (such as overshoot, rise 
time, settling time, etc.), while its remaining roots are placed far away to 
the left on the complex plane (roughly three to four times faster compared 
with the dominant roots). The detailed procedure of this method can be 
found in most of classical control engineering texts (see e.g., [65]). For the 
PID control of discrete-time systems, interested readers are referred to [1] for 
more information. 

4.3 H 2 Optimal Control 

Most of the feedback design tools provided by the classical Nyquist-Bode fre­
quency domain theory are restricted to single-feedback-loop designs. Modern 
multi variable control theory based on state-space concepts has the capabil­
ity to deal with multi feedback-Ioop designs, and as such has emerged as 
an alternative to the classical Nyquist-Bode theory. Although it does have 
shortcomings of its own, a great asset of modern contral theory utilising the 
state-space description of systems is that the design methods derived from 
it are easily amenable to computer implementation. Owing to this, rapid 
progress has been made during the last two or three decades in developing 
a number of multivariable analysis and design tools using the state-space 
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description of systems. One of the füremost and most powerful design tools 
developed in this connection is based on what is called linear quadratic Gaus­
sian (LQG) control theory. Here, given a linear model of the plant in a state­
space description, and assuming that the disturbance and measurement noise 
are Gaussian stochastic processes with known power spectral densities, the 
designer translates the design specifications into a quadratic performance cri­
terion consisting of some state variables and control signal inputs. The object 
of design then is to minimise the performance criterion by using appropriate 
state or measurement feedback controllers while guaranteeing the closed-loop 
stability. A ubiquitous architecture für a measurement feedback controller has 
been observer-based, wherein astate feedback controllaw is implemented by 
utilising an estimate of the state. Thus, the design of a measurement feed­
back controller here is worked out in two stages. In the first stage, an optimal 
internally stabilising static state feedback controller is designed, and in the 
second stage astate estimator is designed. The estimator, otherwise called 
an observer or filter, is traditionally designed to yield the least mean square 
error estimate of the state of the plant, utilising only the measured output, 
which is often assumed to be corrupted by an additive white Gaussian noise. 
The LQG control problem as described above is posed in a stochastic setting. 
The same can be posed in a deterministic setting, known as an H 2 optimal 
control problem, in which the H 2 norm of a certain transfer function from 
an exogenous disturbance to a pertinent controlled output of a given plant is 
minimised by appropriate use of an internally stabilising controller. 

Much research effort has been expended in the area of H 2 optimal control 
or optimal control in general during the last few decades (see e.g., Anderson 
and Moore [66], Fleming and Rishel [67], Kwakernaak and Sivan [68], and 
Saberi, Sannuti and ehen [69], and references cited therein). In wh at follows, 
we focus mainly on the formulation and solution to both continuous- and 
discrete-time H 2 optimal control problems. Interested readers are referred to 
[69] für more detailed treatments of such problems. 

4.3.1 Continuous-time Systems 

We consider a generalised system}; with a state-space description, 

{
;i; = A x + B u + E w, 

};: Y = Cl X + Dll U + DI W, 

h = C2 X + D 2 U + D 22 W, 

(4.5) 

where x E IRn is the state, u E IRm is the control input, w E IRq is the 
external disturbance input, y E IRP is the measurement output, and h E IRR is 
the controlled output of };. For the sake of simplicity in future development, 
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throughout this chapter, we let E p be the subsystem characterised by the 
matrix quadruple (A,B,C2 ,D2 ) and E Q be the subsystem characterised by 
(A, E, Cl, D l ). Throughout this section, we assurne that (A, B) is stabilisable 
and (A, Cd is detectable. 

Generally, we can assurne that matrix D n in Equation (4.5) is zero. This can 
be justified as follows: If D 11 =I- 0, we define a new measurement output 

Ynew = Y - Dnu = Clx + Dlw, (4.6) 

which does not have a direct feedthrough term from u. Suppose we carry on 
our control system design using this new measurement output to obtain a 
proper controllaw, say, u = K(s)Ynew. Then, it is straightforward to verify 
that this control law is equivalent to the following one 

u = [1 + K(s)Dn]-l K(s)y, (4.7) 

provided that [1 +K(s)Dl1 ]-l is weIl posed, i.e., the inverse exists for almost 
all s E ce. Thus, for simplicity, we will assurne that D 11 = o. 
The standard H 2 optimal control problem is to find an internally stabilising 
proper measurement feedback controllaw, 

{
V = A cmp v + B cmp y, 

Ecmp : 
u = Ccmp V + D cmp y, 

(4.8) 

such that the H 2 -norm of the overall closed-loop transfer matrix function from 
w to his minimised (see also Figure 4.2). To be more specific, we will say that 
the controllaw Ecmp of Equation (4.8) is internally stabilising when applied 
to the system E of Equation (4.5), if the following matrix is asymptotically 
stable: 

BCcmp ] , 

Acmp 
(4.9) 

i.e., all its eigenvalues lie in the open left-half complex plane. It is straight­
forward to verify that the closed-loop transfer matrix from the disturbance 
w to the controlled output h is given by 

(4.10) 

where 
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w h 

u E y 

E cmp 

Figure 4.2. The typical control configuration in state-space setting. 

A .-e .- [ A + BDcmpC1 

BcmpC1 

BCcmp] 
Acmp , 

[ E + BDcmpD 1 J 
BcmpD 1 ' 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

It is simple to note that if 17cmp is a static state feedback law, i.e., u = Fx, 
then the closed-loop transfer matrix from w to h is given by 

(4.15) 

The H2-norm of a stable continuous-time transfer matrix, e.g., Thw(s), is 
defined as follows: 

( 4.16) 

By Parseval's theorem, IIThwl12 can equivalently oe defined as 

IIThw ll 2 = (trace [10 00 g(t)g(t)' dtJ) 1/2, (4.17) 

where g(t) is the unit impulse response of Thw(s). Thus, IIThw ll 2 = IIg1l2' 

The H 2 optimal control is to design a proper controller 17cmp such that, when 
it is applied to the plant 17, the resulting closed-Ioop is asymptotically stable 
and the H2-norm of Thw(s) is minimised. For future use, we define 

1'; := inf { IIThw(17x17cmp)1I21 17cmp internally stabilises 17}. (4.18) 
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Furthermore, a controllaw 17cmp is said to be an H 2 optimal controller for 
17 of Equation (4.5) if its resulting closed-Ioop transfer function from w to h 
has an H2 -norm equal to 1'2' i.e., IIThwll2 = 1'2' 

It is clear to see from the definition of the H2-norm that, in order to have a 
finite IIThwl\2, the foHowing must be satisfied: 

{4.19) 

which is equivalent to the existence of a static measurement pre-feedback law 
u = Sy + nnew to the system in Equation (4.5) such that 

(4.20) 

We note that the minimisation of lIThw IJ2 is meaningful only when it is finite. 
As such, it is without loss of any generality to assurne that the feed-forward 
matrix D22 = 0 hereafter in this section. In fact, in this case, IIThw ll2 can be 
easily obtained. Solving either one of the following Lyapunov equations: 

(4.21) 

for Pe or Qe, then the H2-norm of Thw(S) can be computed by 

(4.22) 

In what folIows, we present solutions to the problem without detailed proofs. 
We start first with the simplest case, when the given system 17 satisfies the 
following assumptions of the so-called regular case: 

1. 17p has no invariant zeros on the imaginary axis and D2 is of maximal 
column rank. 

2. 17Q has no invariant zeros on the imaginary axis and D1 is of maximal 
row rank. 

The problem is called the singular case if 17 does not satisfy these conditions. 

The solution to the regular case of the H 2 optimal control problem is very 
simple. The optimal controller is given by (see, e.g., [70]), 

{ V = (A + BF + KCd v + K y, 
17cmp : F u = - v 

(4.23) 

where 
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F = -(D~D2)-1(D~C2 + B'p), 

K = -(QCf + EDD(D1DD-1, 

( 4.24) 

(4.25) 

and where P = pi 2 0 and Q = QI > 0 are respectively the stabilising 
solutions of the following Riccati equations: 

A'p+PA+C~C2 -(PB+C~D2)(D~D2)-1(D~C2+BIP) = 0 

QA'+AQ+EE'-(QCf +EDD(DIDD-l(DlEI+ClQ) = O. 

Moreover, the optimal value 1'2 can be computed as follows: 

( 4.26) 

(4.27) 

( 4.28) 

We note that if all the states of E are available for feedback, then the optimal 
controller is reduced to astaUe law u = Fx with F being given as in Equation 
(4.24). 

Next, we present two methods that solve the singular H 2 optimal control 
problem. As a matter of fact, in the singular case, it is in general infeasible to 
obtain an optimal controller, although it is possible under certain restricted 
conditions (see e.g., [69, 71]). The solutions to the singular case are generally 
suboptimal, and usually parameterised by a certain tuning parameter, say c. 
A controller parameterised by c is said to be suboptimal if there exists an 
c* > 0 such that for all c ::S c* the dosed-loop system comprising the given 
plant and the controller is asymptotically stable, and the resulting elosed­
loop transfer function from w to h, which is obviously a function c, has an 
H 2 -norm arbitrarily elose to 1'2 as c approaches to o. 

The following is a so-called perturbation approach (see e.g., [72]) that would 
yield a suboptimal controller for the general singular case. We should note 
that such an approach is numerically unstable. The problem becomes very 
serious when the given system is ill-conditioned or has multiple time scales. 
In principle, the desired solution can be obtained by introducing some small 
perturbations to the matrices E, D1 , C2 and D2 , i.e., 

( 4.29) 

and 

(4.30) 
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A full order H 2 suboptimal output feedback controller is given by 

- .. {iJ = A + BF:!" kCl v + k y, 17cmp (€) 
u = -F v 

where 

(4.31) 

(4.32) 

(4.33) 

- -I --I 
and where P = P > 0 and Q = Q > 0 are respectively the solutions of the 
following Riccati equations: 

- - -I - - -I - -I - 1 -I - -
A'P+PA+C2C2-(PB+C2D2)(D2D2)- (D2C2+B'P) = 0 (4.34) 

QAI +AQ+EE' - (QC~ +Eb~)(bJ)~)-l(ihEI +ClQ) = O. (4.35) 

Alternatively, one could solve the singular case by using numerically sta­
ble algorithms (see e.g., [69]) that are based on a careful examination of 
the structural properties of the given system. We separate the problem into 
three distinct situations: (1) the state feedback case, (2) the full order mea­
surement feedback case, and (3) the reduced order measurement feedback 
case. The software realisation of these algorithms in MATLAB can be found 
in [34]. For simplicity, we assume throughout the rest of this subsection that 
both subsystems 17p and 17Q have no invariant zeros on the imaginary axis. 
We believe that such a condition is always satisfied for most HDD servo sys­
tems. However, most servo systems can be represented as certain chains of 
integrators and thus could not be formulated as a regular problem without 
adding dummy terms. Nevertheless, interested readers are referred to the 
monograph in [69] for the complete treatment of H2 optimal control using 
the approach given below. 

i. State Feedback Case. For the case when y = x in the given system 17 of 
Equation (4.5), i.e., all the state variables of 17 are available for feedback, we 
have the following step-by-step algorithm that constructs an H 2 suboptimal 
static feedback controllaw u = F(€)x for 17. 

STEP 4.3.c.s.1: transform the system 17p into the special coordinate basis 
as given by Theorem 3.4.1. To all submatrices and transformations in the 
special coordinate basis of 17p , we append the subscript p to signify their 
relation to the system 17p • We also choose the output transformation rop 

to have the following form: 
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r. _ [Imop 0] 
op - 0 r orp ' 

where mop = rank (D2 ). Next, define 

(4.36) 

( 4.37) 

(4.38) 

(4.39) 

(4.40) 

( 4.41) 

(4.42) 

STEP 4.3.c.s.2: solve the following algebraic matrix Riccati equation: 

(4.43) 

for Px > 0 and define 

[F:O 
Fu := + 

Fal 

Then, partition [F~ Fbl 1 as 

[F~ ~::: l' 
Fbl~dP 

( 4.45) 

where F~i and F bli are of dimensions 1 x ntp and 1 x nbp, respectively. 

STEP 4.3.c.s.3: let ß cp be any arbitrary m cp x n cp matrix subject to the 
constraint that 

( 4.46) 
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is a stable matrix. Note that the existence of such a Llcp is guaranteed 
by the property that (Accp , Bcp ) is controllable. 

STEP 4.3.c.s.4: this step makes use of subsystems, i = 1 to mdp, represented 
by Equation (3.23). Let Ai = {AiI' Ai2, ... , Aiq, }, i = 1 to mdp, be the 
sets of qi elements all in C- , which are closed under complex conjugation, 
where qi and mdp are as defined in Theorem 3.4.1 but associated with 
the special coordinate basis of Ep • Let Adp := Al U A2 U ... U AmdP . For 
i = 1 to mdp, we define 

qi 
pieS) := II (s - Aij) = sq; + Filsq,-l + ... + Fiqi-IS + Fiq, (4.47) 

j=l 

and 

(4.48) 

STEP 4.3.c.s;5: in this step, various gains calculated in Steps 4.3.c.s.2 to 
4.3.c.s.4 are put together to form a composite state feedback gain for the 
given system E p • Let 

and 

[ ~::~~~::~::: 1 
FblmdPFmd~qmdP /cqmdp 

Then, the H 2 suboptimal state feedback gain is given by 

where 

o 
o 

Llcp 

(4.49) 

(4.50) 

(4.51) 

(4.52) 
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[CO., ctap CObp COcp Co
@ 1 Fo = Eiap Etap Edbp Edcp Edp , ( 4.53) 

E::up Et,p E cbp 0 0 

and where 

( 4.54) 

( 4.55) 

This completes the algorithm. 

Theorem 4.3.1. Consider the given system in Equation (4.5) with D22 = 0 
and y = x, i.e., all states are measurable. Assurne that E p has no invariant 
zeros on the imaginary axis. Then, the closed-loop system comprising that of 
Equation (4.5) and u = F(c)x with F(c) being given as in Equation (4.51) 
has the following properties: 

1. it is internally stable for sufficiently small c; 

2. the closed-loop transfer matrix from the disturbance w to the controlled 
output h, Tzh(s,c), possesses IITzh (s,c)112 ---+ 1'2 as c ---+ o. 

Clearly, u = F(c)x is an H 2 suboptimal controller for the system in Equation 
(4.5). <) 

ii. Full Order Output Feedback Case. The following is a step-by-step 
algorithm for constructing a parameterised full order output feedback con­
troller that solves the general H 2 optimisation problem. 

STEP 4.3.c.F.1: (construction ofthe gain matrix Fp(c)). Define an auxiliary 
system 

{
X=AX+BU+EW 

y = x 

h = C2 X + D 2 U 

( 4.56) 

and then perform Steps 4.3.c.s.1 to 4.3.c.s.5 of the previous algorithm 
on the above system to obtain a parameterised gain matrix F(c). We let 
Fp(c) = F(c). 
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STEP 4.3.c.F.2: (construction of the gain matrix KQ(c:)). Define another 
auxiliary system 

{
X = A' x + C~ u + q w 

y = x 

h = E' x + D~ u 

(4.57) 

and then perform Steps 4.3.c.s.1 to 4.3.c.s.6 on the above system to get 
the parameterised gain matrix F(c:). We let KQ(c:) = F(c:)'. 

STEP 4.3.c.F.3: (construction of the full order controller 17Fc)' Finally, the 
parameterised full order output feedback controller is given by 

where 

AFc(C:) := A + BFp(C:) + KQ(c:)C1 , 

BFc(c:) := -KQ(c:), 

CFc(c:) := Fp(C:), 

DFc(c:) := O. 

(4.58) 

} (4.59) 

This concludes the algorithm for constructing the full order measurement 
feedback controller. 0 

Theorem 4.3.2. Consider the given system in Equation (4.5) with D22 = O. 
Assurne that 17p and 17Q have no invariant zeros on the imaginary axis. Then 
the closed-loop system comprising Equation (4.5) and the full order output 
feedback controller of Equation (4.58) has the following properties: 

1. it is internally stable for sufficiently small c:; 

2. the closed-loop transfer matrix from the disturbance w to the controlled 
output h, Tzh(s,c:), possesses IITzh (s,c:)112 -+ 1'2 as c: -+ o. 

By definition, Equation (4.58) is an H 2 suboptimal controller for the system 
in Equation (4.5). 0 

iii. Reduced Order Output Feedback Case. For the case when some 
measurement output channels are clean, i.e., they are not mixed with dis­
turbances, then we could design an output feedback control law that has a 
dynamical order less than that of the given plant and yet has an identical 
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performance compared with that of full order control law. Such a control 
law is called the reduced order output feedback controller. We note that the 
construction of a reduced order controller was first reported by ehen et al. 
[73] for general linear systems, in which the direct feedthrough matrix from 
input is nonzero. It was shown in [73] that the reduced order output feedback 
controller has the following advantages over the full order counterpart: 

1. the dynamical order of the reduced order controller is generally smaller 
than that of the full order counterpart; 

2. the gain required for the same degree of performance for the reduced order 
controller is smaller compared with that of the full order counterpart. 

We now proceed to design a reduced order controller, wh ich solves the general 
H 2 suboptimal problem. First, without loss of generality and for simplicity 
of presentation, we assurne that the matrices Cl and D I are already in the 
form 

Cl = [X CÖ02 ] and D - [DI,o] 
I - 0 ' (4.60) 

where k = e - rank(Dr) and DI,o is of fuH rank. Then the given system in 
Equation (4.5) can be written as 

(!~ ) [All 
A21 

A l2 ] 
A22 (~~) + [~~] u+ [~~ ] W, 

(~~ ) = [X CÖ02 ] (~~ ) + [ D~,o ] w, (4.61) 

h = [C2,1 C2,2] (~~ ) + D2 u+ D22 W, 

where the original state x is partitioned into two parts, Xl and X2; and Y is 
partitioned into Yo and YI with YI == Xl' Thus, one needs to estimate only 
the state X2 in the reduced order controller design. Next, define an auxiliary 
subsystem E QR characterised by a matrix quadrupie (AR' ER, CR , D R), where 

(4.62) 

The following is a step-by-step algorithm that constructs the reduced order 
output feedback controller for the general H 2 optimisation. 
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STEP 4.3.c.R.1: (construction ofthe gain matrix Fp(e». Define an auxiliary 
system 

{
X=AX+BU+EW 
y = x 
h = C2 X + D 2 U 

(4.63) 

and then perform Steps 4.3.c.R.I to 4.3.c.R.5 on the above system to get 
the parameterised gain matrix F(e). We let Fp(e) = F(e). 

STEP 4.3.c.R.2: (construction of the gain matrix KR(e». Define another 
auxiliary system 

{
X = A' x + C' U + C' W R R 2,2 

Y = x 

h = E~ x + D~ U 

(4.64) 

and then perform Steps 4.3.c.R.1 to 4.3.c.R.6 on the above system to get 
the parameterised gain matrix F(e). We let KR(e) = F(e)'. 

STEP 4.3.c.R.3: (construction of the reduced order controller ERd. Let us 
partition Fp(e) and KR(e) as 

(4.65) 

in conformity with the partitions of x = (~~) and y = (~~) of Equa­

tion (4.61), respectively. Then define 

Finally, the reduced order output feedback controller is given by 

where 

ARc(e) := AR + B 2Fp2 (e) + KR (e)CR + KRl(e)BlFp2(e) 

BRde) := GR(e) + [B2 + KR1(e)B1] 

x [0, Fp1(e) -Fp2 (e)KR1 (e)] 

CRde) := Fp2 (e) 

DRde) := [0, Fp1(e) - Fp2 (e)KR1 (e)]. 

(4.66) 

(4.67) 
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This concludes the algorithm for constructing the reduced order output 
feedback controller. 0 

Theorem 4.3.3. Consider the given system in Equation (4.5) with D22 = o. 
Assurne that E p and E Q have no invariant zeros on the imaginary axis. Then, 
the closed-loop system comprising Equation (4.5) and the reduced order out­
put feedback controller in Equation (4.66) has the following properties: 

1. it is internally stable for sufficiently small €; 

2. the closed-loop transfer matrix from the disturbance w to the controlled 
output h, Tzh(S,€), possesses IITzh (s,€)112 ~ 1'2 as € ~ o. 

By definition, Equation (4.66) is an H 2 sub optimal controller for the system 
in Equation (4.5). 0 

4.3.2 Discrete-thne Systems 

We now consider a generalised discrete-time system E characterised by the 
following state-space equations 

{ 
x(k+l) = A x(k) + B u(k) + E w(k), 

E : y(k) = Cl x(k) + Du u(k) + D l w(k), 

h(k) = C2 x(k) + D2 u(k) + D22 w(k), 

(4.68) 

where x E jRn is the state, u E jRm is the control input, w E jRq is the external 
disturbance input, y E jRP is the measurement output, and h E JRR is the 
controlled output of E. As usual, we let E p be the subsystem characterised by 
the matrix quadruple (A, B, C2 , D 2 ) and EQ be the subsystem characterised 
by (A,E,Cl,Dd. Without loss of any generality, we assurne that Du = 0, 
(A, B) is stabilisable and (A, Cd is detectable. 

The standard H 2 optimal control problem for a discrete-time system is to 
find an internally stabilising proper measurement feedback controllaw, 

E cmp : { 
v(k+l) = Acmp v(k) + Bcmp y(k), 

u(k) = Ccmp v(k) + D cmp y(k), 
(4.69) 

such that the H 2-norm of the overall closed-loop transfer matrix function 
from w to h is minimised. To be more specific, we will say that the control 
law Ecmp of Equation (4.69) is internally stabilising when applied to the 
system E of Equation (4.68), if the following matrix is asymptotically stable: 
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BCcmp ] 
Acmp , 

(4.70) 

i.e., all its eigenvalues lie inside the open unit disco The closed-Ioop transfer 
matrix from the disturbance w to the controlled output h is given by 

where 

(4.71 ) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

The H2-norm of a stable discrete-time transfer matrix, e.g., Thw(Z), is defined 
as follows: 

(4.76) 

By Parseval's theorem, IIThwl12 can equivalently be defined as 

(4.77) 

where g(k) is the impulse response of Thw(k). Thus, IIThw l1 2 = Ilgll2. 

The H 2 optimal control for the discrete-time system of Equation (4.68) is to 
design a proper controller 17cmp such that, when it is applied to the plant 17, 
the resulting closed-Ioop is asymptotically stable and the H2-norm of Thw(z) 
is minimised. For future use, we define 

/; := inf { IIThw(17x 17cmp )112 1 17cmp internally stabilises 17}. (4.78) 

Again, a controllaw 17cmp is said to be an H 2 optimal controller for 17 of 
Equation (4.68) if its resulting closed-Ioop transfer function from w to h has 
an H2-norm equal to /2' Le., IIThw ll 2 = /2. 
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For the case when D e = 0, IIThw l1 2 can be computed by 

(4.79) 

where Pe and Qe are respectively the solutions of the following Lyapunov 
equations: 

(4.80) 

We now present soIutions to the discrete-time H 2 optimal control problem 
without detailed proofs. As usual, we assume that D22 = 0 for convenience. 
We start first with the simplest case when the given system E satisfies the 
following assumptions of the so-called regular case: 

1. E p has no invariant zeros on the imaginary axis and is left invertible; 

2. E Q has no invariant zeros on the imaginary axis and is right invertible. 

The problem is called the singular case if E does not satisfy these conditions. 

Again, the solution to the regular case of the discrete-time H 2 optimal control 
problem is very simple as weIl. The optimal controller is given by E cmp : 

{ 
v(k+1) = (A+BF+KC1 -BNC1) v(k) + (BN -K) y(k) 

u(k) = (F-NCd v(k) + N y(k) 
(4.81) 

where 

and 

F = -(B'PB + D~D2)-1(B'PA + D~C2), 

K = -(AQC~ + EDD(DID~ + C1QCD-1, 

N = -(B'PB+D~D2)-1[(B'PA+D~D2)QCl +B'PEDn 

( 4.82) 

(4.83) 

x (DID~ + Cl QCD-l, (4.84) 

and where P = P' 2: 0 and Q = Q' 2: 0 are respectively the stabilising 
solutions of the following Riccati equations: 

P = A'PA + C~C2 - (C~D2 + A'PB)(D~D2 + B'PB)-l 

X(D~C2+B'PA), (4.85) 
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and 

Ci = AQA' + EE' - (ED~ + AQGD(DID~ + GIQGD-I 

X (DIE' + GIQA'). (4.86) 

We note that the above discrete-time Riccati equations can be solved using 
the noniterative method given in [44]. If all the states of E are available for 
feedback, then the optimal controller is reduced to a static law u(k) = Fx(k) 
with F being given as in Equation (4.82). 

Next, we present solutions to the singular H2 optimal control problem. Simi­
larIy. the solutions to the singular case are generally suboptimal, and usually 
parameterised by a certain tuning parameter, say c. Again, a discrete-time 
controller parameterised by c is said to be suboptimal for the system in Equa­
tion (4.-68) if there exists an c* > 0 such that for all c :::; c* the elosed-loop 
system comprising the given plant and the controller is asymptotically stable, 
and the resulting elosed-loop transfer function from w to h, which is obvi­
ously a function c, has an H2-norm arbitrarily elose to "(2 as c approaches to 
o. 
The following perturbation approach would yield a sub optimal controller for 
the general discrete-time singular case. Given any c > 0, define 

E := [E cI 0], ih:= [D I 0 cI], 

and 

A fuU order H2 suboptimal output feedback controller is given by 

where 

and 

{ 
v(k+l) = (A+BF~i<~1 -BNGI ) v(k) + (BN_-i<) y(k) 

u(k) = (F-NGI ) v{k) + N y(k) 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

(4.91) 
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and where P p' > 0 and Q Q' > 0 are respectively the stabilising 
solutions of the following Riccati equations: 

- - -, - -, - - -, - - I 
P = A'pA + C 2 C 2 - (C2 D 2 +A'PB)(D2 D 2 +B'PB)-

X (D~62 + B' PA) (4.93) 

and 

- - - -, - -, - - -, - 1 
Q = AQA' + EE - (ED I + AQCD(DID1 + CIQC~)-

X (DIE' + C1QA'). (4.94) 

The following are alternative methods based on the structural decompositions 
of the given systems. Similarly, we separate the problem into three distinct 
situations: (1) the state feedback case, (2) the full order measurement feed­
back case, and (3) the reduced order measurement feedback case. 

Similarly, for convenience, we assume throughout the rest of this subsection 
that both subsystems E p and E Q have no invariant zeros on the unit circ1e. 
The complete treatment of H 2 optimal control using the approach given below 
can be found in [69]. Interestingly, it turns out that for this case, although 
it is singular, we can always obtain a set of H 2 optimal controllers that need 
not be parameterised by any tuning scalar. 

i. State Feedback Case. For the case when y = x in the given system E of 
Equation (4.68), we have the following step-by-step algorithm that constructs 
an H2 sub optimal static feedback controllaw u = F(c:)x for E. 

STEP 4.3.D.S.1: (decomposition of E p ). Transform the subsystem E p , i.e., 
the matrix quadruple (A, B, C2 , D 2 ), into the special coordinate basis as 
given by Theorem 3.4.1. Denote the state, output and input transforma­
tion matrices as rsp , rop and np, respectively. 

STEP 4.3.D.S.2: (gain matrix for the subsystem associated with Xc). Let Fe 
be any constant matrix subject to the constraint that 

(4.95) 

is a stable matrix. Note that the existence of such an Fe is guaranteed by 
the property of the special coordinate basis, i.e., (Ace, Be) is controllable. 
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STEP 4.3.D.S.3: (gain matrix for the subsystem associated with Xi, Xb and 
Xd). Let 

and 

Solve the following discrete-time Riccati equation 

for Px > O. Then partition 

__ [F:O - + 
Fad 

(4.96) 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

STEP 4.3.D.S.4: (composition of gain matrix F). In this step, various gains 
calculated in the previous steps are put together to form a composite 
state feedback gain matrix F. It is given by 

[CO" 
Crt, +F:O COb+FbO COe COd+FdO 1 

F = -Iip Eia F;1d Fbd Ede Fdd rs;l. 
E::a Eta 0 Fe 0 

(4.101) 

This completes the algorithm. 
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Theorem 4.3.4. Consider the given system in Equation (4.68) with D22 = 0 
and y = x, i.e., all states are measurable. Assurne that E p has no invariant 
zeros on the unit circle. Then, the closed-loop system comprising Equation 
(4.68) and u(k) = Fx(k) with F being given as in Equation (4.101) has the 
following properties: 

1. it is internally stable; 

2. the closed-loop transfer matrix from the disturbance w to the controlled 
output h, TZh(Z), pos ses ses IITzhl12 = "12. 

Thus, u(k) = Fx(k) is an H 2 optimal controller for the system in Equation 
(4.68). <) 

ii. Full Order Output Feedback Case. The following is a step-by-step al­
gorithm for constructing an H 2 optimal full order output feedback controller. 

STEP 4.3.D.F.1: (computation of N). Utilise the properties of the special 
co ordinate basis to compute two constant matrices X and Y such that 
V0(Ep ) = Ker (X) and S0(EQ ) = Im (Y). Then, compute 

N=-(B'X'XB+D~D2)t [B'X' Dfl [~:;: ~!] 

x [Y~7f] (C1YY'C~ + D1DDt . (4.102) 

STEP 4.3.D.F.2: (construction of the gain matrix Fp ). Define an auxiliary 
system 

where 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = x(k) 

h(k) = 6 2 x(k) + D 2 u(k) + 0 w(k), 

( 4.103) 

(4.104) 

and then perform Steps 4.3.D.S.1 to 4.3.D.S.4 of the previous algorithm 
on the above system in Equation (4.103) to obtain a gain matrix F. We 
let Fp = F. 
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STEP 4.3.D.F.3: (construction of the gain matrix K Q ). Define another aux­
iliary system 

{ 
x(k+1) = A' x(k) + q u(k) + C~ w(k), 

y(k) = x(k) 
-I 

h(k) = E x(k) + D~ u(k) + 0 w(k), 

(4.105) 

and then perform Steps 4.3.D.S.1 to 4.3.D.S.4 of the previous algorithm 
on the above system to get a gain matrix F. Similarly, we let K Q = F 1• 

STEP 4.3.D.F.4: (construction of the full order controller 17Fc ). Finally, the 
parameterised full order output feedback controller is given by 

where 

17Fc : { 
v(k + 1) = AFC v(k) + B FC y(k), 

u(k) = GFC v(k) + D FC y(k), 

B FC := -KQ , 

GFC := Fp , 

D FC :=N. 
) 

(4.106) 

(4.107) 

This concludes the algorithm for constructing the full order measurement 
feedback controller. <) 

Theorem 4.3.5. Consider the given system in Equation (4.68) with D22 = O. 
Assume that 17p and 17Q have no invariant zeros on the unit circle. Then 
the closed-loop system comprising Equation (4.68) and the full order output 
feedback controller of Equation (4.106) has the following properties: 

1. it is internally stable; 

2. the closed-loop transfer matrix from the disturbance w to the controlled 
output h, Tzh(z), possesses IITzh l1 2 = 1'2' 

Hence, Equation (4.106) is an H 2 optimal controller for the system of Equa­
tion (4.68). <) 

iii. Reduced Order Output Feedback Case. We now follow the pro ce­
dure as in the continuous-time case to design a reduced order output feedback 
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controller. For simplicity of presentation, we assume that the matrices Cl and 
D l are already in the form 

C = [0 Cl,02] 
1 I k 0 and D = [Dl,o] 

1 0' (4.108) 

where k = €-rank(Dd and Dl,o is offull rank. Next, we follow Steps 4.3.D.F.1 
and 4.3.D.F.2 of the previous subsection to compute the constant matrix N, 
and form the following system: 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = Cl x(k) + D l w(k), 

h(k) = 62 x(k) + D 2 u(k) + 0 w(k), 

(4.109) 

where A, E and 6 2 are defined as in Equation (4.104). Then, partition Equa­
tion (4.109) as follows: 

(~~~~:~n = [~~~ ~~~] (~~~~n + [~~] u(k) + [~~] w(k) 

(~~~~D =[~ C~02] (~~~~n +[D~'O]W(k) 

h(k) = [C2 ,1 C2 ,2] (~~~~n + D2 u(k) + 0 w(k) 

where the state x of Equation (4.109) is partitioned into two parts, Xl and X2; 

and y is partitioned to Yo and Yl with Yl == Xl. Thus, one needs to estimate 
only the state X2 in the reduced order controller design. Next, define an aux­
iliary subsystem E QR characterised by a matrix quadruple (AR' ER, CR' D R), 
where 

(4.110) 

The following is a step-by-step algorithm that constructs the reduced order 
output feedback controller for the general H 2 optimisation. 

STEP 4.3.D.R.1: (construction of the gain matrix Fp ). Define an auxiliary 
system 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

y(k) = x(k) 

h(k) = 62 x(k) + D2 u(k) + 0 w(k), 

(4.111) 
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and then perform Steps 4.3.D.R.1 to 4.3.D.R.4 of the previous algorithm 
on the above system to obtain a parameterised gain matrix F. Further­
more, we let Fp = F. 

STEP 4.3.D.R.2: (construction of the gain matrix KR). Define another aux­
iliary system 

{ 
x(k + 1) = A~ x(k) + C~ u(k) + Q,2 w(k), 

y(k) = x(k) 

h(k) = E~ x(k) + D~ u(k) + 0 w(k), 

(4.112) 

and then perform Steps 4.3.D.R.1 to 4.3.D.R.4 of the previous algorithm 
on the above system to obtain a parameterised gain matrix F. Similarly, 
we let KR = F'. 

STEP 4.3.D.R.3: (construction of the reduced order controller ERC ). Let us 
partition Fp and KR as 

(4.113) 

in conformity with x = (~~) and y = (~~) respectively. Then define 

(4.114) 

Finally, the parameterised reduced order output feedback controller is 
given by 

where 

{ 
v(k + 1) = A Rc v(k) + B RC y(k), 

u(k) = CRC v(k) + DRC y(k), 

A Rc := AR + B 2Fp2 + KRCR + KRIBIFp2, 

B RC := GR + [B2 + KR1B1l [0, Fp1 - Fp2 K Rl J , 

(4.115) 

) (4.116) 

This concludes the algorithm for constructing the reduced order output 
feedback controller. <:; 
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Theorem 4.3.6. Consider the given system in Equation (4.68) with D22 = o. 
Assurne that E p and E Q have no invariant zeros on the unit circle. Then, the 
closed-Ioop system comprising Equation (4.68) and the reduced order output 
feedback controller in Equation (4.115) has the following properties: 

1. it is internally stable; 

2. the closed-Ioop transfer matrix from the disturbance w to the controlled 
output h, Tzh(z), possesses IITzh(Z)112 = 'Y~. 

Thus, Equation (4.115) is an H 2 optimal controller for tue system in Equation 
(4.68). <> 

Lastly, we note that the result presented in this section, although it is not 
totally complete, should be sufficient enough to obtain appropriate solutions 
for HDD servo systems and many engineering problems. We next move to 
issues of H= control and its related problems. 

4.4 Hoc Control and Disturbance Decoupling 

The ultimate goal of a control system designer is to build a system that 
will work in a real environment. Since the real environment may change and 
the operating conditions may vary from time to time, the control system 
must be able to withstand these variations. Even if the environment does not 
change, other factors of life are the model uncertainties, as weIl as noises. 
Any mathematical representation of a system often involves simplifying as­
sumptions. Nonlinearities are either unknown, and hence unmodelled, or are 
modelIed and later ignored in order to simplify analysis. High-frequency dy­
namics are often ignored at the design stage as weIl. In consequence, control 
systems designed based on simplified models may not work on real plants 
in real environments. The particular property that a control system must 
possess for it to operate properly in realistic situations is commonly called 
robustness. Mathematically, this means that the controller must perform sat­
isfactorily not just for one plant, but for a family of plants. If a controller 
can be designed such that the whole system to be controlled remains stable 
when its parameters vary within certain expected limits, the system is said 
to possess robust stability. In addition, if it can satisfy performance spec­
ifications such as steady state tracking, disturbance rejection and speed of 
response requirements, it is said to possess robust performance. The problem 
of designing controllers that satisfy both robust stability and performance 
requirements is called robust control. H= control theory is one of the corner­
stones of modern control theory and was developed in an attempt to solve 
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such a problem. Many robust control problems (such as the robust stability 
problem of unstructuraHy perturbed systems, the mixed-sensitivity problem, 
robust stabilisation with additive and multiplicative perturbations, to name 
a few) can be cast into a standard H oo control problem {see e.g., [44]). 

Since the original formulation of the H oo control problem by Zames [74], a 
great deal of work has been done on finding the solution to this problem. 
PracticaHy all the research results of the early years involved a mixt ure of 
time-domain and frequency-domain techniques, including the following: In­
terpolation approach (see e.g., Limebeer and Anderson {75]); Frequency do­
main approach (see e.g., Doyle [76], Francis [77] and Glover [78]); Polynomial 
approach (see e.g., Kwakernaak [79]); and J-spectral factorisation approach 
(see e.g., Kimura [80]). Recently, considerable attention has been focused on 
purely time-domain methods based on algebraic Riccati equations and/or sin­
gular perturbation approach (see e.g. [44,70,81] and references cited therein). 

We also recall in this section the solutions to the problem of H oo almost 
disturbance decoupling with measurement feedback and internal stability. 
Although, in principle, it is a special case of the general H oo control prob­
lem, the problem of almost disturbance decoupling has a vast history behind 
it, occupying a central part of classical as weIl as modern control theory. 
Several important problems, such as robust control, decentralised control, 
non-interactive control, model reference or tracking control, H 2 and H oo op­
timal control problems can all be recast into an almost disturbance decoupling 
problem. Roughly speaking, the basic almost disturbance decoupling problem 
is to find an output feedback controllaw such that in the closed-Ioop system 
the disturbances are quenched, say in an Lp sense, up to any pre-specified 
degree of accuracy while maintaining internal stability. Such a problem was 
originally formulated by Willems f82, 83] and termed almost disturbance 
decoupling problem with measurem~mt feedback and internal stabiIity (AD­
DPMS). 

The formulation of H oo control is very similar to that of H 2 optimal control. 
In order to avoid unnecessary repetitions, we will make use of some terms 
defined in the previous section, e.g., the state-space equations of the given 
system and its subsystems E p and E Q , the format of the controllaw and its 
corresponding closed-Ioop transfer matrix, as weH as the definitions of the 
regular and singular problems. 

4.4.1 Continuous-time Systems 

We consider a continuous-time linear time-invariant system as given in Equa­
tion (4.5). For simplicity, we assurne that (A, B) is stabilisable, (A, Cd is 
detectable, Du = ° and D 22 = O. The standard Hoo control problem for 
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continuous-time systems is to find an internally stabilising proper measure­
ment feedback controllaw of the format in Equation (4.8) such that when it is 
applied to Equation (4.5) the resulting closed-loop system is internally stable 
and the Hoo-norm of the overall closed-loop transfer matrix function from w 
to h, i.e., Thw(S), is minimised. The Hoo-norm of a stable continuous-time 
transfer matrix, e.g., Thw(S), is defined as follows: 

IIT 11 -T ")] IIhl1 2 
hw 00:= sup O'max l hw(JW = sup -11-11-' 

wE[O,oo) IlwllFl w 2 
(4.117) 

where wand h are respectively the input and output of Thw(s), and 11 . Ilz 
is the l2-norm of the corresponding signal. It is clear that the Hoo-norm of 
Thw(S) corresponds to the worst case gain from its input to its output. For 
future use, we define 

1'~ := inf{IIThw(.EX E cmp ) 1100 1 Ecmp internally stabilises E}. (4.118) 

We note that the determination of this 1'~ is rather tedious. For a fairly large 
class of systems, 1'~ can be exactly computed using so me numerically stable 
algorithms. In general, an iterative scheme is required to determine 1'~. We 
refer interested readers to the work of ehen [44] for a detailed treatment of 
this particular issue. For simplicity, we assume throughout this section that 
1'~ has been determined and hence it is known. 

For the case when 1'~ = 0, the corresponding H oo control problem is com­
monly known in the literature as the problem of H oo almost disturbance 
decoupling with internal stability. It can be shown that such a problem is 
solvable for E of Equation (4.5) if and only if the following conditions hold 
(see e.g., [44, 60]): 

1. (A, B) is stabilisable; 

2. (A, Cd is detectable; 

3. D22 + D2SD1 = 0, where S = -(D~D2)t D~D22D~ (D1DDt; 

4. Im (E + BSDd C S+(Ep ) n {n\EO'S\(Ep )}; 

5. Ker (C2 + D2 SCd :J V+(EQ ) U {U\EO' V\(EQ )}; and 

6. V+(EQ ) C S+(Ep ). 

We note that if E p is right invertible and of minimum phase, and E Q is 
left invertible and of minimum phase, then conditions 4-6 are automatically 
satisfied. 
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It transpires that, for H oo control, it is almost impossible to find a control 
law with a finite gain to achieve the optimal performance, i.e., I~. As such, 
we will focus on designing H oo suboptimal controllers instead. To be more 
specific, given a scalar 1 > I~' we will focus on finding a control law that 
yields IIThwiloo < I, where Thw(S) is the corresponding closed-Ioop transfer 
matrix. Hereafter, we will call a control law that pos ses ses such a property 
an H oo I-sub optimal controller. 

Next, we proceed to construct a solution to the regular problem (for its 
definition see the previous section). Given a scalar 1 > I~' we solve for 
positive semi-definite stabilising solutions P 2 0 and Q 2 0 respectively to 
the following Riccati equations: 

A' P + PA + C~C2 + 1-2 P EE' P 

-(PB + C~D2)(D~D2)-I(B' P + D~C2) = 0 

and 

AQ + QA' + EE' + 1-2QC~C2Q 
-(QC{ + EDD(DIDD-I(C1Q + DIE') = O. 

The H oo I-suboptimal controllaw is given by (see also [70]), 

where 

{
i; = Acmp v + B cmp y, 

Ecmp : 
u = Ccmp V + 0 y, 

and where 

F = -(D~D2)-I(D~C2 + B'P), 

K = -(QC{ + EDD(DID~)-l. 

( 4.119) 

(4.120) 

(4.121) 

(4.122) 

(4.123) 

(4.124) 

(4.125) 

(4.126) 

Note that, for the state feedback case, the H oo I-sub optimal control law is 
given by u = Fx with F being given as in Equation (4.125). 

For the singular case, the following perturbation method can be utilised. For 
1 > I~ and a positive scalar E > 0, define E, ih, 6 2 and D2 as in Equations 
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(4.29) and (4.30), and solve the following Riccati equations: 

A' P + PA + C;C2 + "(-2pjj;jj;' P 
- -I - -I - 1 - -1-

-(PB + C2D 2 )(D2D 2 )- (B' P + D 2C2) = 0 (4.127) 

and 

AQ + QA' + jj;jj;' + "(-2QC;C2Q 
- -I - -I 1 - -I 

-(QC~ + ED1)(D1D 1)- (C1Q + DIE) = 0 (4.128) 

for P > 0 and Q > O. Then, it can be shown that there exists an €* > 0 such 
that for all € E (0, €*] the following control law is an H oo "(-sub optimal for 
the given system: 

- { 1; = Acmp v + Bcmp y, 
L'cmp : -

u = Ccmp V + 0 y, 

where 

Acmp =A+"(-2 EE' P+BF+(1 _"(-2QP) -lk(C1+"(-2 D 1E' P) 

Bcmp = - (I - "(-2Qp) -1 k 

Ccmp=F 

and where 

- -I - 1 -I - -
F = -(D2D 2)- (D 2C2 + B' P), 

k = -(QC~ + jj;J5~)(ihJ5~)-I. 

(4.129) 

(4.130) 

(4.131) 

(4.132) 

(4.133) 

(4.134) 

Note that for the state feedback case, the Hoo "(-sub optimal control law is 
given by u = Fx with F being given as in Equation (4.133). 

Alternatively, the singular H oo control problem can also be solved using the 
singular perturbation approach as in the previous section for H2 optimal 
control. In fact, we only need to modify the algorithms slightly for H 2 control 
to yield required H oo "(-suboptimal controllers. We will treat separately the 
state feedback case and the measurement feedback case. For simplicity, we 
assume that both subsystems L'p and L'Q do not have invariant zeros on the 
imaginary axis. 
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i. State Feedback Case. Given a scalar "( > "(~, the following algorithm 
will yield an H oo "(-sub optimal state feedback gain matrix for E of Equation 
(4.5) with y = x. 

STEP 4.4.c.s.1: transform the system E p into the special coordinate basis 
as given by Theorem 3.4.1. To all submatrices and transformations in the 
special coordinate basis of E p , we append the subscript p to signify their 
relation to the system E p . We also choose the output transformation rop 

to have the following form: 

(4.135) 

where mop = rank (D2 ). Next, compute 

(4.136) 

and define AllP , Bllp , A13p , C 21p , A xp , BxpBxp , and C~pCxp as in Equa­
tions (4.37)-(4.42). Finally, define 

(4.137) 

STEP 4.4.c.s.2: solve the following algebraic matrix Riccati equation, 

PxAxp + A~pPx + PxExpE~pPxh2 

for Px > 0 and define 

[Fdo 
Fll := + 

Fa1 

- PxBxpB~pPx + C~pCxp = 0 

Then, partition [F:!i Fb1 1 as 

(4.138) 
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(4.140) 

where F;lii and Fbli are of dimensions 1 x ntp and 1 x nbp respectively. 

STEP 4.4.C.8.3: follow exactly Steps 4.3.c.8.3 to 4.3.c.8.5 of the previous 
section to construct astate feedback gainmatrix F(c:). 

This completes the algorithm. 

We have the following result. 

Theorem 4.4.1. Consider the given system in Equation (4.5) with D22 = 0 
and y = x, Le., aH states are measurable. Assurne that E p has no invariant 
zeros on the imaginary axis. Then, the closed-loop system comprising Equa­
tion (4.5) and u = F(c:)x with F(c:) being given as in the above algorithm 
has the following properties: 

1. it is internally stable for sufficiently small C:j 

2. the closed-loop transfer matrix from the disturbance w to the controlled 
output h, Tzh(s,c:), pos ses ses //Tzh(s,c:)//oc < " for sufficiently small c:. 

Clearly, u = F(c:)x is an Hoc ,-suboptimal controller for the system in Equa­
tion (4.5). 0 

ii. Measurement Feedback Case. Similarly, one can design either a fuH 
order or a reduced order output feedback control law that solves the Hoc 
,-suboptimal problem. Unfortunately, the reduced order controller design 
for Hoc control is quite different from its counterpart in H2 control and is 
quite complicated. We will only focus below on the design of a full order Hoc 
,-suboptimal controller. Interested readers are referred to [44] for a more 
complete treatment. The following is a step-by-step algorithm to construct a 
full order Hoc ,-sub optimal controllaw for any , > ,~. 

STEP 4.4.c.F.1: define an auxiliary fuH state feedback system 

{
X=AX+BU+EW 
y = x 
h = C2 X + D 2 U 

(4.141) 
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and perform Steps 4.4.c.s.1 to 4.4.c.s.3 of the previous algorithm to 
obtain a gain matrix F(E). Also, define 

[
0 0 0 0] 

P '= (r- I )' 0 Px 0 0 r- I > 0 
• SP 0 0 0 0 SP - • 

o 0 0 0 

(4.142) 

Note that Px > 0 is the solution of Equation (4.138). 

STEP 4.4.C.F.2: define another auxiliary full state feedback system as fol­
lows: 

{ 

j; = A' x + Cf u + q w 

y = x 

h = E' x + D~ u 

(4.143) 

and perform Steps 4.4.c.s.1 to 4.4.c.s.3 of the previous algorithm, but 
for this auxiliary system, to obtain a gain matrix F(E). Let us define 
K(E) := F(E)'. Similarly, define a positive semi-definite matrix Q as in 
(4.142), but for the current auxiliary system. 

STEP 4.4.C.F.3: the fuH order H oo /,-suboptimal controller is given by 

{
V = Acmp v + B cmp y, 

L'cmp : 
u = Ccmp V + 0 y, 

where 

Acmp = A + /,-2 EE' P + BF(E) 

+ (I _/,-2QP) -1 [K(E) (Cl + /,-2 DIE' p) 

+/,-2Q(A'P + PA + C~C2 + /,-2PEE'P) 

+ /,-2Q(PB + C~D2)F(E)], 

Bcmp = -(I _/,-2QPr l K(E), 

Ccmp = F(E). 

This completes the algorithm. 

We have the foHowing theorem. 

(4.144) 

(4.145) 

(4.146) 

(4.147) 
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Theorem 4.4.2. Consider the given system in Equation (4.5) with D22 = o. 
Assume that E p and E Q have no invariant zeros on the imaginary axis. 
Then, the closed-Ioop system comprising Equation (4.5) and the measurement 
feedback controller in Equation (4.144) has the following properties: 

1. it is internally stable for sufficiently small c; 

2. the closed-Ioop transfer matrix from the disturbance w to the controlled 
output h, Tzh(s,c), possesses IITzh(s,c)jjoo < ,,(, for sufficiently small c. 

Hence, Equation (4.144) is an H oo "(-sub optimal controller for the system in 
Equation (4.5). 0 

Remark 4.4.1. For the case when "(~ = 0, i.e., the problem of Hoo almost 
disturbance decoupling with internal stability for E of Equation (4.5) {with 
both subsystems E p and E Q having no invariant zeros on the imaginary axis) 
is solvable, then either the above algorithm or the algorithm in the previous 
section for H 2 optimal control would yield desired solutions. We note that, 
in general, suboptimal solutions are nonunique. In fact, one could utilise the 
algorithm for constructing the reduced order output feedback H 2 suboptimal 
controller in the previous section to construct a reduced order solution for 
the H oo almost disturbance decoupling problem. 0 

4.4.2 Discrete-time Systems 

We now consider a discrete-time linear time-invariant system as given in 
Equation (4.68). Again, for simplicity, we assume that (A, B) is stabilisable, 
(A, Cd is detectable, D ll = 0 and D 22 = o. The standard H oo control 
problem for discrete-time systems is to find an internally stabilising proper 
measurement feedback controllaw of the format in Equation (4.69) such that, 
when it is applied to the system in Equation (4.68), the resulting closed­
loop system is internally stable and the Hoo-norm of the overall closed-Ioop 
transfer matrix function from w to h, i.e., Thw(Z), is minimised. The Hoo-
norm of a stable discrete-time transfer matrix, e.g., Thw(z), is defined as 
follows: 

(4.148) 

where wand h are respectively the input and output of Thw(s), and 11·112 is 
the t2-norm of the corresponding signal. Next, we define 
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')'~ := inf {IIThw(17 x 17cmp)1100 I 17cmp internally stabilises 17}. (4.149) 

Again, we refer interested readers to the work of Chen [44] for the compu­
tation of ')'~. For simplicity, we assume throughout this section that ')'~ has 
been determined and hence it is known. 

It can be shown that the problem of H oo almost disturbance decoupling with 
internal stability is solvable for 17 of Equation (4.5), i.e., ')'~ = 0, if and only 
if the following conditions hold (see e.g., Chen [44]): 

1. (A, B) is stabilisable; 

2. (A, Gd is detectable; 

3. D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~(DIDDt; 

4. Im (E + BSDd C {V0(17p ) + BKer (D2)} n {nl),l=l S),(17p )}; 

5. Ker (G2 + D2SGI ) :l {S0(17Q ) n G11 {Im (Dd} } U {U1),1=1 V}, (17Q ) }; 

6. S0(17Q ) c V0(17p ). 

We note that if 17p is right invertible and of minimum phase with no infinite 
zeros, and E Q is left invertible and of minimum phase with no infinite zeros, 
then conditions 4-6 are automatically satisfied. 

The problems of discrete-time H oo control and H oo almost disturbance decou­
pling can be solved explicitly in the discrete-time domain. Complete solutions 
to these problems have been reported by Chen [44]. However, by utilising the 
bilinear transformations of Chapter 3, we can convert these discrete-time 
problems into equivalent continuous-time problems, and thus all algorithms 
presented in the previous subsection can be readily applied to yield desired 
solutions. The procedure is pretty simple. 

1. We first apply the result of Lemma 3.5.2 with a = 1 to the given discrete­
time system in Equation (4.68) to obtain an equivalent continuous-time 
counterpart, i.e., 

where 

:i; = Ad X + Bd U + Ed W 

Y = Gid X + Dl1d U + D1d W 

h = G2d X + D2d U + D22d W 
} (4.150) 
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Ad = (A + I)-l(A - I), 

B d = V2(A + I)-1 B, 

E d = V2(A + I)-1 E, 

C1d = V2C1(A + I)-I, 

D l1d = D l1 - C1(A + 1)-1 B, 

D1d =D1-C1(A+I)- IE, 

C2d = V2C2 (A + I)-1, 

D 2d = D 2 - C2 (A + 1)-1 B, 

D 22d = D 22 - C2 (A + 1)-1 E. 

(4.151) 

Note that if A has eigenvalues at -1, then one should apply some pre­
feedback laws to remove them. 

2. Next, utilise any method of the previous subsection to Equation (4.150) 
to find an appropriate H oo I'-suboptimal controller, say, 

iJ = Ac v + Be y, 

U = Ce V + D e y. } (4.152) 

Note that some pre-feedback might be necessary to wash out D 22d . 

3. Lastly, apply the result of Lemma 3.5.1 to convert Equation (4.152) to 
a discrete-time equivalent system. It is known in the literat ure (see e.g., 
[78]) that the discrete-time controller obtained is H oo I'-suboptimal to 
the original discrete-time system in Equation (4.68). <> 

The above procedure is also applicable to finding discrete-time H oo almost 
disturbance decoupling controllers. As mentioned earlier, all results presented 
in the previous section on H 2 optimal control are applicable to solving the 
H oo almost disturbance decoupling problem when both E p and E Q have no 
invariant zeros on the unit circ1e. 

4.5 Robust and Perfeet Tracking Control 

We present in this section a robust and perfect tracking (RPT) problem, 
which was proposed and solved by Liu et al. [84] for continuous-time systems 
and Chen et al. [85] for discrete-time systems (see also Chen [44]). The RPT 
problem is to design a controller such that the resulting c1osed-loop system 
is asymptotically stable and the controlled output almost perfectly tracks a 
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given reference signal in the presence of any initial conditions and external 
disturbances. By almost perfect tracking we mean the ability of a controller 
to track a given reference signal with an arbitrarily fast settling time in the 
face of external disturbances and initial conditions. Of course, in real life, a 
certain trade-off has to be made in order to design a physically implementable 
controllaw. The results of this section will be utilised heavily in later chapters 
to solve track following problems in hard disk drive servo systems. 

4.5.1 Continuous-time Systems 

Consider the following continuous-time system: 

x(O) = Xo, 

(4.153) 

where x E OCn is the state, u E OCm is the control input, w E OCq is the external 
disturbance, y E ocP is the measurement output, and h E OCR is the output to 
be controlled. We also assume that the pair (A, B) is stabilisable and (A, Cd 
is detectable. For future reference, we define E p and E Q to be the subsystems 
characterised by the matrix quadrupies (A, B, C2 , D 2 ) and (A, E, Cl, D l ) re­
spectively. Given the external disturbance WELp, P E [1, (0), and any ref­
eren ce signal vector r E OCR with r, T, "', r(K-l), K, 2: 1, being available, and 
r(K) being either a vector of delta functions or in Lp, the RPT problem for the 
system in Equation (4.153) is to find a parameterised dynamic measurement 
control law of the following form 

{ 
1; = Acmp(e)V + Bcmp(e)y + Go(e)r + ... + GK- l (e)r(K-l) 

(4.154) 
u = Ccmp(e)V + Dcmp(e)y + Ho(e)r + ... + HK_l(e)r(K-l) 

such that when Equation (4.154) is applied Equation (4.153), we have 

1. there exists an e* > 0 such that the resulting closed-loop system with 
r = 0 and W = 0 is asymptotically stable for all e E (0, e*]; and 

2. let h( t, e) be the closed-loop controlled output response and let e( t, e) be 
the resulting tracking error, i.e., e(t,e) := h(t,e) - r(t). Then, for any 
initial condition of the state, Xo E OCn , 

lIell p = (100 le(t)IP dt) l/p -+ 0 as e -+ O. (4.155) 
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We introduce in the above formulation some additional information besides 
the reference signal r, i.e., r, r,"', r(I<-I), as additional controller inputs. 
Note that, in general, these additional signals can easily be generated without 
any extra costs. For example, if r(t) = t2 . l(t), where l(t) is a unit step 
function, then one can easily obtain its first-order derivative 

r(t) = 2t· l(t) + t 2 . 8(t) = 2t· l(t), ( 4.156) 

where 8(t) is a unit impulse function, and the second-order derivative 

r(t) = 2· l(t). (4.157) 

These r(t) and r(t) can be used to improve the overall tracking performance, 
whereas r(3) (t) = 2· 8(t) does not exist in the real world and hence cannot be 
used. We also note that our formulation covers all possible reference signals 
that have the form r(t) = t k , 0 ~ k < 00. Thus, our method could be 
applied to track approximately those reference signals that have a Taylor 
series expansion at t = O. This can be done by truncating the high er-order 
terms of the Taylor series of the given signal. Also, it is simple to see that, 
when r(t) == 0, the proposed problem reduces to the well-known perfect 
regulation problem with measurement feedback. 

It is shown that the RPT problem for Equation (4.153) is solvable if and only 
if the following conditions hold: 

1. (A, B) is stabilisable and (A, Cl) is detectable; 

2. D22 + D2SDI = 0, where S = -(D~D2)tD~D22D~(DIDDt; 

3. E p , i.e., (A, B, C2 , D 2 ), is right invertible and of minimum phase; 

We assume throughout the rest of this subsection that the above conditions 
are satisfied, and move on to construct solutions to the RPT problem. As 
usual, we will focus on the following three cases: (1) the state feedback case; 
(2) the full order measurement feedback case; and (3) the reduced order 
measurement feedback case. 

i. State Feedback Case. When all states of the plant are measured for 
feedback, the problem can be solved by a static controllaw. We construct in 
this subsection a parameterised state feedback controllaw, 

u = F(r::)x + Ho (r::)r + ... + HI<_r(r::)r(I<-I) (4.158) 
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that solves the RPT problem for the system in Equation (4.153). It is simple 
to note that we can rewrite the given reference in the following form: 

( 
r ) [0 IR d· .. 

dt r(K~2) = Ö Ö 
r(K-l) 0 0 

(4.159) 

Combining Equation (4.159) with the given system, we obtain the foUowing 
augmented system: 

{
X= A x+ B u+Ew 

E AUG : Y = x 
e = C 2 x + D 2 U 

(4.160) 

where 

(r(l_,: 1 ' 
r(K-l) 

x 

(4.161) 

; 11' B = [1 ' E = [1 il ' (4.162) 

and 

C 2 = [ - IR 0 0 . . . 0 C2 ], D 2 = D2 . (4.163) 

It is then straightforward to show that the subsystem from u to e in the 
augmented system of Equation (4.160), i.e., the quadrupie (A,B,C2 ,D2 ), 

is right invertible and has the same infinite zero structure as that of E p • 

Furthermore, its invariant zeros contain those of E p and f x K, extra ones at 
s = O. We are now ready to present a step-by-step algorithm to construct the 
required controllaw of the form in Equation (4.158). 

STEP 4.5.c.s.1: this step transforms the subsystem from u to e of the aug­
mented system in Equation (4.160) into the special coordinate basis of 
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Theorem 3.4.1, i.e., finds nonsingular state, input and output transfor­
mations rs , I'; and ro to put the subsystem into the structural form of 
Theorem 3.4.1 and in a small variation of the compact form of Equations 
(3.29) to (3.32). It can be shown that the compact form of Equations 
(3.29) to (3.32) for the subsystem from u to e of Equation (4.160) can be 
written as 

and 

l A~" 0 0 

L~:C, ] .4= Be~2a 
A;a 0 

BeE::a Ace LedCd 

BdE~a BdEda BdEde A dd 

[ 
Ie 

J - r B~" A~a = B= 
0 Boe 
0 BOd 

CÜa 
o 

COe 

o 

(4.164) 

0 

~l 0 

0 
Bd 

(4.165) 

o 0]. 
o 0 

(4.166) 

STEP 4.5.c.s.2: choose an appropriate dimensional matrix Fe such that 

(4.167) 

is asymptotically stable. The existence of such an Fe is guaranteed by 
the property that (Ace, Be) is completely controllable. 

STEP 4.5.c.s.3: for each Xi of Xd, which is associated with the infinite zero 
structure of E p or the subsystem from u to e of Equation (4.160), we 
choose an Fi such that 

qi 
pieS) = rr (s - Aij) = sqi + Fil sqi- 1 + ... + Fiqi_1S + Fiqi (4.168) 

j=1 

with all Aij being in C- . Let 

Fi1 J, i = 1,···, md· (4.169) 

STEP 4.5.c.s.4: next, we construct 
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[08" 
CÜa COe 

OOd 1 
F(e:) = -I1 E~a Eia Ede Ed + ;d(e:) r s- l , 

E~a E~ Fe 

(4.170) 

where 

(4.171) 

and where 

(4.173) 

STEP 4.5.c.s.5: finally, we partition 

F(e:) = [Ho(e:) ... H"-l(e:) F(e:)], (4.174) 

where Hi(e:) E jRmxl and F(e:) E jRmxn. This ends the constructive 
algorithm. 0 

We have the following result. 

Theorem 4.5.1. Consider the given system in Equation (4.153) with its ex­
ternal disturbance WELp, P E [1,00), its initial condition x(o) = xo. Assume 
that all its states are measured for feedback, i.e., Cl = land D l = 0, and the 
RPT problem for the system in Equation (4.153) is solvable. Then, for any 
reference signal r(t), which has aU its ith-order derivatives, i = 0,1, ... ,K, -1, 
K, 2: 1, being available and r(")(t) being either a vector of delta functions or 
in L p , the RPT problem is solved by the controllaw of Equation (4.158) with 
F(e:) and Hi(e:), i = 0,1," ',K,-1, as given in Equation (4.174). 0 

The following remark gives an alternative approach for solving the proposed 
RPT problem via fuU state feedback. We leave the proof of this method to 
readers as an exercise. 

Remark 4.5.1. Note that the required gain matrices for the state feedback 
RPT problem might be computed by solving the following Riccati equation: 
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PÄ+Ä'P+C~C2- (PB+C~iJ2)( iJ~iJ2) -~PB+C~iJ2 )'=0 

for a positive definite solution P > 0, where 

(4.175) 

Ä= [ .40 0] 
o A ' (4.176) 

and where B, C 2 and D 2 are as defined in Equations (4.162) and (4.163). 
The required gain matrix is then given by 

= [Ho(c:) (4.177) 

where Hi(c:) E JRmxC and F(c:) E JRmxn. 

Finally, we note that solutions to the Riccati equation in Remark 4.5.1 might 
have severe numerical problems as c: becomes smaller and smaller. 

We will consider two types of measurement feedback control laws: one is 
of full order controllers whose dynamical order is equal to the order of the 
given system; the other is of reduced order controllers with a dynamical order 
that is less than the order of the given system. Without loss of generality, 
we assume throughout this subsection that D22 = O. If it is nonzero, it can 
always be washed out by the following pre-output feedback: u = Sy. 

ii. Full Order Output Feedback Case. The following is a step-by-step 
algorithm for constructing a parameterised full order measurement feedback 
controller, which solves the RPT problem. 

STEP 4.5.c.F.l: for the given reference r(t) and the given system in Equa­
tion (4.153), we first assume that all the state variables of Equation 
(4.153) are measurable and follow the procedures of the state feedback 
case to define an auxiliary system, 
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{
X=AX+BU+EW 
y = x 

e = C 2 X + D 2 u. 
(4.178) 

Then, we follow Steps 4.5.c.s.1 to 4.5.c.s.5 of the algorithm of the state 
feedback case to construct astate feedback gain matrix: 

F(c) = [Ho(c) (4.179) 

STEP 4.5.c.F.2: let E Qa be characterised by a matrix quadrupie 

(4.180) 

This step is to transform this EQa into the special co ordinate basis of 
Theorem 3.4.1. Because of the special structure of the matrix E Qa , it is 
simple to show that EQa is always right invertible and is free of invariant 
zeros. Utilise the results of Theorem 3.4.1 to find nonsingular state, input 
and output transformation rsQ , I1Q and rOQ such that 

r-1 Ar. = [ AccQ 
SQ SQ EdcQ 

LCdQ ] + [ BOcQ ] [COCQ AddQ BOdQ 
0], (4.181) 

r- 1 E n [BOCQ 
0 In-k ~] , (4.182) SQ Qa iQ = B h 0 OdQ 

r-1c r. = [COCQ 
OQ 1 SQ 0 X] , (4.183) 

ro~l [D1 O]I1Q = [IpÜk 0 0 ~] , (4.184) 
0 0 

where k = p - rank(Dd. It can be verified that the pair (A, Cd is de­
tectable if and only if the pair 

( AccQ , [~:::]) (4.185) 

is detectable. 

STEP 4.5.c.F.3: let K CQ be an appropriate dimensional constant matrix 
such that the eigenvalues of the matrix 

are all in rc- . Next, we define a parameterised ob server gain matrix, 
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(4.187) 

STEP 4.5.c.F.4: finally, we obtain the following full order measurement 
feedback control law: 

{ 
iJ = Acmp(c)v-K(c)y+BHo(c)r+·· . +BHI<-1(c)r(I<-I) 

(4.188) 
u= F(c) v+Ho(c)r+···+H"_I(C)r(I<-I) 

where Acmp(c) = A + BF(c) + K(c)C1. This completes the construction 
of the full order measurement feedback controller. <> 

We have the following theorem. 

Theorem 4.5.2. Consider the given system in Equation (4.153) with its ex­
ternal disturbance WELp, P E [1, (0), its initial condition x(O) = xo. As­
sume that the RPT problem is solvable for the system in Equation (4.153). 
Then, for any reference signal r(t), which has all its ith-order derivatives, 
i = 0,1,· .. , '" - 1, '" 2:: 1, being available and r(l<) (t) being either a vector of 
delta functions or in Lp , the proposed RPT problem is solved by the param­
eterised full order measurement feedback control laws as given in Equation 
(4.188). <> 

The following remark yields an alternative way to compute the gain matrix 
K(c) in Step 4.5.c.F.3. 

Remark 4.5.2. The gain matrix K(c) in Step 4.5.c.F.3 can also be computed 
by solving the following Riccati equation: 

AQ+QA' + (EE' +1) 

- (QC~ + EDD(DID~ + c1)-I(C1 Q + DIE') = 0, (4.189) 

for a positive definite solution Q > O. The required gain matrix K(c) is then 
given by 

(4.190) 

Again, this approach might have some numerical problems. 

iii. Reduced Order Output Feedback Case. We now present solutions to 
the RPT problem via reduced order measurement feedback controllaws. For 
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simplicity of presentation, we assume that matrices Cl and D 1 have al ready 
been transformed into the following forms: 

and D = [D1 ,o] 
1 0' (4.191) 

where D 1,o is of full row rank. Before we present a step-by-step algorithm to 
construct a parameterised reduced order measurement feedback controller, 
we first partition the following system 

{
X = A x + B u + [E In] W 

Y = Cl X + [D 1 0] W 
(4.192) 

in conformity with the structures of Cl and D 1 in Equation (4.191), i.e., 

where 

(4.194) 

Obviously, Y1 = Xl is directly available and hence need not be estimated. 
Next, we define E QR to be characterised by 

It is again straightforward to verify that E QR is right invertible with no finite 
and infinite zeros. Moreover, (AR' CR ) is detectable if and only if (A, Cd is 
detectable. We are ready to present the following algorithm. 

STEP 4.5.c.R.1: for the given reference r(t) and the given system in Equa­
tion (4.153), we again assume that all the state variables of Equation 
(4.153) are measurable and follow the procedures of the state feedback 
case to define an auxiliary system, 

{
X=AX+BU+EW 
y = x 

e = C 2 x + D 2 u. 

(4.195) 
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Then, we follow Steps 4.5.c.s.l to 4.5.c.s.5 of the algorithm of the state 
feedback case to construct astate feedback gain matrix 

F(e:) = [Ho(e:) ... Hn-l(e:) F(e:)]. (4.196) 

Let us partition F(e:) in conformity with Xl and X2 of Equation (4.193) 
as folIows, 

(4.197) 

STEP 4.5.c.R.2: let KR be an appropriate dimensional constant matrix such 
that the eigenvalues of 

(4.198) 

are all in C-. This can be done because (AR' GR ) is detectable. 

STEP 4.5.c.R.3: let 

and 

(4.199) 

Bcmp(e:) = GR + (B2 + KRlBt) [0, Fl(e:) - F2(e:)KRl ] 

Acmp(e:) = AR + B2F2(e:) + KRGR + K Rl Bl F2(e:) ) 

(4.200) 
Gcmp(e:) = F2 (e:) 

Dcmp(e:) = [0, Fl(e:) - F2(e:)KRd. 

STEP 4.5.c.R.4: finally, we obtain the following reduced order measurement 
feedback controllaw: 

where for i = 0,1,···, ",-1, Gi(e:) = (B2 + K Rl Bt}Hi (e:). This completes 
the constructing procedure. <> 

Theorem 4.5.3. Consider the given system in Equation (4.153) with its ex­
ternat disturbance WELp, P E [1,00), its initial condition x(O) = Xo. As­
sume that the RPT problem is solvable for the system in Equation (4.153). 
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Then, for any reference signal r(t), which has all its ith-order derivatives, 
i = 0,1,' .. ,K, - 1, K, 2': 1, being available and r(l<) (t) being either a vector 
of delta functions or in L p , the proposed RPT problem is solved by the pa­
rameterised reduced order measurement feedback control laws of Equation 
(4.201). 0 

4.5.2 Discrete-time Systems 

We present in this subsection the RPT problem for the following discrete-time 
system: 

{ 
x(k+1) = A x(k) + B u(k) + E w(k), 

E: y(k) = Cl x(k) + D 1 w(k), 

h(k) = C2 x(k) + D 2 u(k) + D 22 w(k), 

x(O) = xo, 

(4.202) 

where x E ~n is the state, u E ~m is the control input, w E ~q is the external 
disturbance, y E nt is the measurement output, and h E ~i is the output to 
be controlled. We also assume that the pair (A, B) is stabilisable and (A, Cl) 
is detectable. For future reference, we define E p and E Q to be the subsystems 
characterised by the matrix quadrupIes (A, B, C2 , D 2 ) and (A, E, Cl, D 1 ) re­
spectively. Given the external disturbance WELp, P E [1,00], and any refer­
ence signal vector r E ~i, the RPT problem for the discrete-time system in 
Equation (4.202) is to find a parameterised dynamic measurement feedback 
control law of the following form: 

{ 
v(k+1) = Acmp(c)v(k) + Bcmp(c)y(k) + G(c)r(k), 

u(k) = Ccmp(c)v(k) + Dcmp(c)y(k) + H(c)r(k), 

such that, when Equation (4.203) is applied to Equation (4.202), 

(4.203) 

1. there exists an c* > 0 such that the resulting closed-Ioop system with 
r = 0 and w = 0 is asymptotically stable for all c E (0, c*]; and 

2. let h(k,c) be the closed-Ioop controlled output response and let e(k,c) 
be the resulting tracking error, i.e., e(k,c) := h(k,c) - r(k). Then, for 
any initial condition of the state, Xo E ~n, lIell p -+ 0 as c -+ O. 

It has been shown by ehen [44] that the above RPT problem is solvable for 
Equation (4.202) if and only if the following conditions hold: 

1. (A, B) is stabilisable and (A, Cl) is detectable; 
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2. D22 + D2SD1 = 0, where S = -(D~D2)tD~D22D~(DIDDt; 
3. E p is right invertible and of minimum phase with no infinite zeros; 

4. Ker(C2 +D2SCd:::> C11{Im(Dd}. 

It turns out that the controllaws, which solve the RPT for the given plant in 
Equation (4.202) under the solvability conditions, need not be parameterised 
by any tuning parameter. Thus, Equation (4.203) can be replaced by 

{ 
v(k+l) = Acmpv(k) + Bcmpy(k) + Gr(k) 

u(k) = Ccmpv(k) + Dcmpy(k) + Hr(k) 
(4.204) 

and, furthermore, the resulting tracking error e(k) can be made identically 
zero for all k 2: o. 
Assurne that all the solvability conditions are satisfied. We present in the 
following solutions to the discrete-time RPT problem. 

i. State Feedback Case. When all states of the plant are measured for 
feedback, the problem can be solved by a static controllaw. We construct in 
this subsection astate feedback controllaw, 

u = Fx+Hr, (4.205) 

that solves the RPT problem for the system in Equation (4.202). We have 
the foIlowing algorithm. 

STEP 4.5.D.S.l: this step transforms the subsystem from u to h ofthe given 
system in Equation (4.202) into the special coordinate basis of Theo­
rem 3.4.1, i.e., finds nonsingular state, input and output transformations 
Ts , Il and To to put it into the structural form of Theorem 3.4.1 as weIl 
as in the compact form of Equations (3.29) to (3.32), i.e., 

- -1 -1 [Boa B = Ts BIl = Ts [Bo B 1 l Il = 
Boe 

(4.206) 

(4.207) 

(4.208) 

(4.209) 

STEP 4.5.D.S.2: choose an appropriate dimensional matrix Fe such that 
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is asymptotically stable. The existence of such an Fe is guaranteed by 
the property that (Ace, Be) is completely controllable. 

STEP 4.5.D.S.3: finally, we let 

[
C-

F = -11 2,Oa 

E~ 
and (4.211) 

This ends the constructive algorithm. 

We have the following result. 

Theorem 4.5.4. Consider the given discrete-time system in Equation (4.202) 
with any external disturbance w(k) and any initial condition x(O). Assume 
that all its states are measured for feedback, i.e., Cl = I and D l = 0, and the 
solvability conditions for the RPT problem hold. Then, for any reference sig­
nal r(k), the proposed RPT problem is solved by the controllaw of Equation 
(4.205) with F and H as given in Equation (4.211). <> 

ii. Measurement Feedback ease. Without loss of generality, we assume 
throughout this subsection that matrix D22 = O. If it is nonzero, it can always 
be washed out by the following pre-output feedback u(k) = Sy(k). It turns 
out that, for discrete-time systems, the full-order observer-based controllaw 
is not capable of achieving the RPT performance, because there is a delay of 
one step in the observer itself. Thus, we will focus on the construction of a 
reduced order measurement feedback control law to solve the RPT problem. 
For simplicity of presentation, we assume that matrices Cl and D l have 
already been transformed into the following forms, 

C = [0 Cl,02] 
1 1/'1, 0 (4.212) 

where Dl,o is of full row rank. Before we present a step-by-step algorithm to 
construct a reduced order measurement feedback controller, we first partition 
the following system 

{ 
x(k+l) = A x(k) + B u(k) + [E In] w(k) 

y(k) = Cl x(k) + [D l 0] w(k) 
(4.213) 

in conformity with the structures of Cl and D l in Equation (4.212), i.e., 
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o 
o 

0] _ o W 

where 8(xd = xI(k+ 1) and 8(X2) = x2(k+ 1). Obviously, YI = Xl is directly 
available and hence need not be estimated. Next, let E QR be characterised 
by 

It is straightforward to verify that E QR is right invertible with no finite and 
infinite zeros. Moreover, (AR' CR) is detectable if and only if (A, Cl) is de­
tectable. We are ready to present the following algorithm. 

STEP 4.5.D.R.l: for the given system in Equation (4.202), we again as­
sume that all the state variables of Equation (4.202) are measurable and 
then follow Steps 4.5.D.S.l to 4.5.D.S.3 of the algorithm of the previous 
subsection to construct gain matrices F and H. We also partition F in 
conformity with Xl and X2 as folIows: 

(4.214) 

STEP 4.5.D.R.2: let KR be an appropriate dimensional constant matrix such 
that the eigenvalues of 

(4.215) 

are all in (;0. This can be done because (AR' CR) is detectable. 

STEP 4.5.D.R.3: let 

(4.216) 

Acmp = AR + B 2F2 + KRCR + K RI BIF2, ) 

Bcmp = GR + (B2 + KRIBI) [0, FI - F2 K RI l , 
Ccmp = F2 , 

Dcmp = [0, FI - F2KRI l, 

( 4.217) 

(4.218) 
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STEP 4.5.D.R.4: finally, we obtain the following reduced order measurement 
feedback control law: 

{ 
v(k+1) = Acmp v(k) + B cmp y(k) + G r(k), 

u(k) = Ccmp v(k) + Dcmp y(k) + H r(k). 

This completes the algorithm. 

{4.219) 

Theorem 4.5.5. Consider the given system in Equation (4.202) with anyex­
ternal disturbance w(k) and any initial condition x(O). Assurne that the solv­
ability conditions for the RPT problem hold. Then, for any reference signal 
r(k), the proposed RPT problem is solved by the reduced order measurement 
feedback controllaws of Equation (4.219). <> 

As has been seen in the previous section, the solvability conditions for the 
RPT problem, especially the restriction on the infinite zeros of the given 
system, are too strong to be satisfied in most practical situations. We intro­
duce in this section a modified problem, the so-called almost perfect tracking 
problem, which can be solved for a much larger dass of discrete-time sys­
tems with any infinite zero structure. This modified formulation will yield 
internally stabilising controllaws that are capable of tracking reference sig­
nal r(k) with some delays. If we know the reference signal a few steps ahead, 
the modified tracking control scheme will then track the reference precisely 
after certain steps. 

For simplicity, we consider in the following the discrete-time system of Equa­
tion (4.202) without external disturbances, i.e., 

{ 
x(k+1) = A x(k) + B u(k), 

E: y(k) = Cl x(k), 

h(k) = C2 x(k) + D 2 u(k). 

x(O) = Xo, 

(4.220) 

Let us first consider the reference r(k) E IRf to be tracked is a known vector 
sequence, which implies that r(k + d), 0 ::; d::; K d , is known for some integer 
K d :::: O. This is a quite reasonable assumption in most practical situations 
when one wants to track references such as step functions, ramp functions 
and sinusoidal functions. We williater deal with the case when r(k+d), d > 0, 
is unknown. We are ready to define formally the almost perfect tracking 
pr-oblem. Given the discrete-time system in Equation (4.220) with x(O) = 
Xo and the reference r(k) with r(k + d), 0 ::; d ::; K d , being known for a 
nonnegative integer Kd , the (Kd , KO) almost perfect tracking problem, where 
KO is another nonnegative integer, is to find a dynamic measurement feedback 
control law of the following form: 
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such that, when Equation (4.221) is applied to Equation (4.220), 

1. the resulting closed-loop system is internally stable; and 

2. for any initial condition Xo E !Rn, the resulting tracking error satisfies: 

CXl 

J(XO,U,K,d'K,O) := 2:: le(k)1 = 0, (4.222) 
k=I<Q 

i.e., e(k) = 0, or h(k) = r(k), for all k ~ K,o. 

We have the following theorem. 

Theorem 4.5.6. Consider the discrete-time plant in Equation (4.220) with 
x(O) = Xo, and with (i) (A, B) being stabilisable and (A, Cd being observable; 
and (ii) E p being right invertible and of minimum phase. Let the infinite 
zero structure (see Chapter 3 for its definition) of E p be given as S~(Ep) = 
{ql, ... , qmd}' with ql :::; ... :::; qmd' and let the controllability index of the 
pair (A', C{) be C = {k1 , ••• ,kp }, with k1 :::; ••• :::; kp • Then, the (K,d' K,o) almost 
perfect tracking problem is solvable for any reference with K,o = qmd + k p - 1 
and K,d = qmd' <> 

Proof. We prove this theorem by explicitly constructing the required control 
law. Let us first construct the special coordinate basis of E p • It follows from 
Theorem 3.4.1 that there exist nonsingular state, output and input transfor­
mations rs , ro and 11, which will take E p into the standard format of the 
special coordinate basis, i.e., 

(4.223) 

(4.224) 

(4.225) 

(4.226) 
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(4.229) 

and for each i = 1,···, md, Xi E jRqi and 

O(Xi) = Aqi xi+LiDho+Lidha+Bqi [Ui+EiaX; +Eicxc+ ~ EijXj] (4.230) 
J=1 

(4.231) 

where 0(*) = *(k + 1); the triple (Aq" Bq" CqJ has the special structure 
as given in Equation (3.25). It follows from Theorem 3.4.1 that Lid has the 
special format, Lid = [Li! L i2 . .. L ii - 1 0 . . . 0 1 , with its last row 
always being identically zero. Next, we partition LiO and Lid, i = 1,· .. ,md, 
as folIows: 

[ 
LiO,1 1 [ Lid,1 1 

LiD = : ,Lid = .: ' 
LiD,qi Lid,qi 

(4.232) 

and define a new controlled output, 

hoCk) 
ql 

h1(k + q1) - L:[LlO,j L 1d,j]h(k + ql - j) 
j=1 

(4.233) 

q""d 
hmd(k+qmd)- L:[Lmdo,j Lmdd,j]h(k+qmd-j) 

j=1 

Then, it is straightforward to verify that Yn can be expressed as 

(4.234) 

with 

and ~], (4.235) 
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where 

- 1 - • -- •• 
Let A = r s- Ars, B = r s- l BIi, and let E p characterised by (A, B, C2 , D2 ). 

It is simple to show that the auxiliary system Ep is right invertible and of 
minimum phase with no infinite zeros. 

We first assume that Cl = land follow Steps 4 . .'5.D.8.1 to 4.5.D.S.3 to obtain 
astate feedback control law 

u(k) = Px(k) + Hfn(k), 

where 

ro(k) 
ql 

Tl (k + ql) - L [LlO,j Lld,j] f(k + ql - j) 
j=l 

q"'d 

rmd(k+qmJ- L[LmdO,j Lmdd,j]f(k+qmd-j) 
j=l 

(4.237) 

(4.238) 

which has the following properties: (i) A + BP is asymptotically stable, and 
(ii) the resulting hn (k) = f n (k). This implies that the actual controlled output 
h is capable of precisely tracking the given reference r(k) after qmd steps. 
Rewriting Equation (4.237), we obtain 

u(k) = l1u(k) = 11 [PX(k) + Hfn(k)] 

= 11 [PX(k) + HLof(k) + ... + HLmdf(k + qmd)] (4.239) 

for some appropriate matrices Lo, Li, ... , Lmd . Let F = 11 P rs- l , and 

(4.240) 

for j = 0,1, ... ,md. We have 

(4.241) 
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Next, we proceed to construct a reduced order measurement feedback con­
troller. We follow Steps 4.5.D.R.1 to 4.5.D.R.3 to obtain matrices B l , B2 , 

F l , F2 and gain matrices A cmp , B cmp , Ccmp and Dcmp as given in Equa­
tion (4.217). Noting that the pair (A,Cl ) is observable and (AI,CD has a 
controllability index {kl,"" kp }, it is simple to show that (AR' CR) is also ob­
servable and the controllability index of (A~, C~) is given by {kl -1, ... , kp -1}. 
It follows from Theorem 3.3.1 that there exists a gain matrix KR such that 
AR + KRCR has all its eigenvalues at the origin and 

(4.242) 

We thus choose such a KR in constructing gain matrices A cmp , B cmp , Ccmp 

and Dcmpo The reduced order measurement feedback law is then given by 

md 

v(k+1) = Acmpv(k) + Bcmpy(k) + L Gjr(k + j) 
j=O 

md 

u(k) = Ccmpv(k) + Dcmpy(k) + L Hjr(k + j) 
j=O 

) (4.243) 

where Gj = (B2 + KRBl)Hj, i = 0,1,"" md. It can be further shown that 
such a controller solves the (~d' ~o) almost perfect tracking problem for Equa­
tion (4.220) with ~d = qmd and ~O = qmd + kp - 1. The result follows. 0 

Remark 4.5.3. Consider the given plant in Equation (4.220) which has all 
properties as stated in Theorem 4.5.6. Then, the (~d' ~o) almost perfect track­
ing problem is solvable by a full order measurement feedback controller of the 
form in Equation (4.221) with ~d = qmd and ~O = qmd + kp • The required 
control law is given by 

md 

v(k+1) = Acmpv(k) + L BHjr(k + j) - Ky(k) 
j=O 
md 

u(k) = F v(k) + LHjr(k + j) 
j=O 

) (4.244) 

where A cmp = A + BF + KCl with K being chosen such that all the eigen­
values of A + KCl are at the origin and (A + KCd kp - l = 0. 0 

Remark 4.5.4. For simplicity, we consider Ep being a single output system, 
i.e., f = 1, with a relative degree ql' Clearly, if the reference r(k + d) is 
unknown for all d > 0, then the fuH order measurement feedback controller 
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(4.244) with r(k + *) being replaced by r(k) will be capable of tracking the 
reference with a delay of ql steps after ql + kp initial steps. Similarly, under 
the same situation, the reduced order measurement feedback controller in 
Equation (4.243) with r(k+*) being replaced by r(k) will track the reference 
with a delay of ql steps after ql + kp -1 initial steps. <> 

4.6 Loop Transfer Recovery Technique 

Another popular design methodology for multivariable systems, which is 
based on 'loop shaping' concept, is linear quadratic Gaussian (LQG) with 
loop transfer recovery (LTR). It involves two separate designs of astate feed­
back controller and an ob server or an estimator. The exact design procedure 
depends on the point where the unstructured uncertainties are modelled and 
where the loop is broken to evaluate the open-Ioop transfer matrices. Com­
monly, either the input point or the output point of the plant is taken as 
such a point. We should focus on the case when the loop is broken at the 
input point of the plant. The required results for the output point can be 
easily obtained by appropriate dualisation. Thus, in the two-step procedure 
of LQG/LTR, the first step of design involves loop shaping by astate feed­
back design to obtain an appropriate loop transfer function, called the target 
loop transfer function. Such a loop shaping is an engineering art and often 
involves the use of linear quadratic regulator (LQR) design, in which the 
cost matrices are used as free design parameters to generate the target loop 
transfer function, and thus the desired sensitivity and complementary sensi­
tivity functions. However, when such a feedback design is implemented via an 
observer-based controller (or KaIman filter) that uses only the measurement 
feedback, the loop transfer function obtained, in general, is not the same as 
the target loop transfer function, unless proper care is taken in designing 
the observers. This is when the second step of LQG/LTR design philosophy 
comes into picture. In this step, the required observer design is attempted so 
as to recover the loop transfer function of the full state feedback controller. 
This second step is known as LTR. 

The topic of LTR was heavily studied in 1980s. Major contributions came 
from [86-96]. We present in the following the methods of LTR design at both 
the input point and output point of the given plant. 

4.6.1 LTR at Input Point 

It turns out that it is very simple to formulate the LTR design technique for 
both continuous- and discrete-time systems into a single framework. Thus, 
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we will do it in one shot. Let us consider a linear time-invariant multivariable 
system characterised by 

{ 
J(x) = A x + B u 

E: 
y =Cx+Du 

(4.245) 

where J(x) = x(t), if E is a continuous-time system, or J(x) = x(k + 1), if 
E is a discrete-time system. Similarly, x E Ifkn, U E Ifkm and y E IfkP are the 
state, input and output of E. They represent respectively x(t), u(t) and y(t) 
if the given system is of continuous-time, or represent respectively x(k), u(k) 
and y(k) if Eis of discrete-time. Without loss of any generality, we assurne 
throughout this section that both [B' D' 1 and [C D 1 are of fuH rank. The 
transfer function of E is then given by 

per:;) = C(r:;! - A)-l B + D, (4.246) 

where r:; = s, the Laplace transform operator, if E is of continuous-time, or 
r:; = z, the z-transform operator, if Eis of discrete-time. 

As mentioned earlier, there are two steps involved in LQG/LTR design. In the 
first step, we assurne that aH state variables of Equation (4.245) are available 
and design a fuH state feedback controllaw 

u= -Fx (4.247) 

such that 

1. the closed-loop system is asymptoticaHy stable, and 

2. the open-loop transfer function when the loop is broken at the input 
point of the given system, i.e., 

(4.248) 

meets some frequency-dependent specifications. 

Arriving at an appropriate value for F is concerned with the issue of loop 
shaping, which often includes the use of LQR design in which the cost ma­
tri ces are used as free design parameters to generate Lt (r:;) that satisfies the 
given specifications. 

To be more specific, if E is a continuous-time system, the target loop transfer 
function L t (s) can be generated by minimising the foHowing cost function: 
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Je = 1000 
(x'Qx+u'Ru) dt, (4.249) 

where Q 2:: 0 and R > 0 are free design parameters provided that (A, Q1/2) 
has no unobservable modes on the imaginary axis. The solution to the above 
problem is given by 

F=R- 1B'P, (4.250) 

where P 2:: 0 is the stabilising solution of the f0llowing algebraic Riccati 
equation (ARE): 

PA+ A'P - PBR- 1B'P+ Q= o. (4.251) 

It is known in the literat ure that a target loop transfer function Lt(s) with 
F be given as in Equation (4.250) has a phase margin greater than 60° and 
an infinite gain margin. 

Similarly, if Eis a discrete-time system, we can generate a target loop transfer 
function L t (z) by minimising 

00 

Jo = 2::( x'(k)Qx(k) + u'(k)RU(k)) (4.252) 
k=ü 

where Q 2:: 0 and R > 0 are free design parameters provided that (A, Q1/2) 
has no unobservable modes on the unit circle. 

F= (R+B'PB)-lB'PA, (4.253) 

where P 2:: 0 is the stabilising solution of the following ARE: 

P = A'PA - A'PB(R + B'PB)-l B'PA + Q. (4.254) 

Unfortunately, there are no guaranteed phase and gain margins for the target 
loop transfer function Lt(z) resulting from the discrete-time linear quadratic 
regulator. 

Generally, it is unreasonable to assume that all the state variables of a given 
system can be measured. Thus, we will have to implement the controllaw ob­
tained in the first step by a measurement feedback controller. The technique 
of LTR is to design an appropriate measurement feedback control (see Figure 
4.3) such that the resulting system is asymptotically stable and the achieved 
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Figure 4.3. Plant-controller closed-Ioop configuration. 

open-loop transfer function La(~) from u to -u is either exactly or approxi­
mately matched with the target loop transfer function L t (~) obtained in the 
first step. In this way, all the nice properties associated with the target loop 
transfer function can be recovered by the measurement feedback controller. 
This is the so-called LTR design. 

It is simple to observe that the achieved open-loop transfer function in the 
configuration of Figure 4.3 is given by 

(4.255) 

Let us define recovery errar as 

(4.256) 

The LTR technique is to design an appropriate stabilising K(~) such that the 
recovery error E(~) is either identically zero or small in a certain sense. As 
usual, two commonly used structures for K(~) are: (1) the full order observer­
based controller, and (2) the reduced order observer-based controller. 

i. Full Order Observer-Based Controller. The dynamic equations of a 
full order observer-based controller are well known and are given by 

{
<>(x) = Ax + Bu + Kr(y - Gx - Du), 

u = -Fx, 
(4.257) 

where Kr is the full order observer gain matrix and is the only free design 
parameter. It should be chosen so that A - KrG is asymptotically stable. The 
transfer function of the full order observer-based control is given by 

K(~) = F(d - A + BF + KrG - KrDF)-l Kr. (4.258) 

It has been shown [87, 94] that the recovery error resulting from the full order 
observer-based controller can be expressed as 
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E(c:;) = Mr(c:;)[I + Mr(c:;)]-l[I + F(c:;I - A)-l B], (4.259) 

where 

Mr(c:;) = F(c:;I - A + KrC)-l(B - KfD). (4.260) 

Obviously, in order to ren der E(c:;) to be zero or small, one will have to design 
an observer gain Kr such that Mr (c:;) , or equivalently Mf(c:;), is zero or small 
(in certain sense). Defining an auxiliary system, 

{ 
~ = A' ~ + C' Ü + F ' w 
y = x 

h = B' x + D' ü 

(4.261) 

with astate feedback controllaw, 

(4.262) 

It is straightforward to verify that the closed-loop transfer matrix from w to 
hof the above system is equivalent to Mf(c:;). As such, any of the methods 
presented in Sections 4.3 and 4.4 for H 2 and H oo optimal control can be 
utilised to find Kf to minimise either the H 2 -norm or Hoo-norm of Mf(c:;). In 
particular, 

1. if the given plant E is a continuous-time system and if E is left invertible 
and of minimum phase, 

2. if the given plant E is a discrete-time system and if E is left invertible 
and of minimum phase with no infinite zeros, 

then either the H 2 -norm or Hoo-norm of Mr(c:;) can be made arbitrarily small, 
and hence LTR can be achieved. If these conditions are not satisfied, the 
target loop transfer function Lt (c:;), in general, cannot be fully recovered! 

For the case when the target loop transfer function can be approximately 
recovered, the following full order Chen-Saberi-Sannuti (CSS) architecture­
based controllaw (see [88, 94]), 

(4.263) 

which has a resulting recovery error, 
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E(c;) = Mf(c;) = F(c;I - A + KfC)-I(B - KfD), (4.264) 

can be utilised to recover the target loop transfer function as well. In fact, 
when the same gain matrix Kf is used, the full order CSS architecture-based 
controller would yield a much better recovery compared to that of the full 
order observer-based controller. 

ii. Reduced Order Observer-Based Controller. For simplicity, we as­
sume that C and D have already been transformed into the form 

C = [01 G002 ] [ Do ] and D = 0 ' (4.265) 

where D o is of full row rank. Then, the dynamic equations of E can be 
partitioned as follows: 

where Xl is readily accessible. Let 

(:~) + [~~] U, 

( :~) + [~o] U, 

[ C02 ] D = [Do ] 
A12 ' r BI' 

(4.266) 

(4.267) 

and the reduced order observer gain matrix Kr be such that Ar - KrCr is 
asymptotically stable. Next, we partition 

F = [FI F2 J , Kr = [Kro K rl 1 , (4.268) 

in conformity with the partitions of X = (~~) and y = (~~) respectively. 

Then, define 

The reduced order observer-based controller is given by 

{ 
8(v) = (Ar - KrCr)v + (Br - KrDr)u + Gry, 

u = -F2v - [0, FI + F2 K r d y. 

(4.269) 

( 4.270) 
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It is again reported in [87, 94] that the recovery error resulting from the 
reduced order observer-based controller can be expressed as 

(4.271) 

where 

(4.272) 

Thus, making E(~) to be zero or small is equivalent to design a reduced 
order ob server gain Kr such that Mr(~), or equivalently Af:(~), is zero or 
small. Following the same idea as in the full order case, we define an auxiliary 
system 

{
i = A' x + C' U + F,' W r r 2 

fj = x 
h = B' x + D' U r r 

(4.273) 

with astate feedback controllaw, 

(4.274) 

Obviously, the closed-loop transfer matrix from w to h of the above system 
is equivalent to M:(~). Hence, the methods of Sections 4.3 and 4.4 for H 2 

and H oo optimal control again can be used to find Kr to minimise either the 
H 2-norm or Hoo-norm of M:(~). In particular, for the case when E satisfies 
Condition 1 (for continuous-time systems) or Condition 2 (for discrete-time 
systems) stated in the full order case, the target loop can be either exactly 
or approximately recovered. In fact, in this case, the following reduced order 
CSS architecture-based controller 

{ 
8(v) = (Ar - KrCr) V + Cr y, 

U = -F2 V - [0, F1 +F2 K r1 ] y, 

which has a resulting recovery error, 

(4.275) 

(4.276) 

can also be used to recover the given target loop transfer function. Again, 
when the same Kr is used, the reduced order CSS architecture-based con­
troller would yield a better recovery compared to that of the reduced order 
observer-based controller (see [88, 94]). 
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4.6.2 LTR at Output Point 

For the case when uncertainties of the given plant are modelled at the output 
point, the following dualisation procedure can be used to find appropriate 
solutions. The basic idea is to conVf~rt the LTR design at the output point 
of the given plant into an equivalent LTR problem at the input point of an 
auxiliary system so that aH the methods studied in the previous subsection 
can be readily applied. 

1. Consider a plant E characterised by the quadrupie (A, B, C, V). Let us 
design a KaIman filter or an ob server first with a KaIman filter or observer 
gain matrix K f such that A - KrC is asymptotically stable and the 
resulting target loop 

( 4.277) 

meets aU design requirements specified at the output point. We are now 
seeking to design a measurement feedback controller K(c;) such that all 
the properties of Lt (c;) can be recovered. 

2. Define a dual system Edu characterised by (Adu , Bdu , Cdu , V du ) where 

Adu := A', Bdu := C', Cdu := B', Vdu:= V'. ( 4.278) 

Let Fdu := K; and let Ldu(c;) be defined as 

(4.279) 

Let Ldu(c;) be considered as a target loop transfer function for Edu when 
the loop is broken at the input point of E du ' Let a measurement feedback 
controller Kdu(c;) be used for E du . Here, the controller Kdu(c;) could be 
based either on a full or a reduced order ob server or CSS architecture 
depending upon what K(c;) is based on. Following the results given earlier 
for LTR at the input point to design an appropriate controller Kdu (c;), 
then the required controller for LTR at the output point of the original 
plant E is given by 

(4.280) 

This concludes the LTR design for the case when the loop is broken at 
the output point of the plant. 



CHAPTER5 

NONLINEAR CONTROL TECHNIQUES 

5.1 Introduction 

Every physical system in our reallife has nonlinearities and very little can be 
done to overcome them. Many practical systems are sufficiently non linear so 
that important features of their performance may be completely overlooked 
if they are analysed and designed through linear techniques. In HDD servo 
systems, major non li neari ti es are frictions, high-frequency mechanical reso­
nances and actuator saturation nonlinearities. Among all these, the actuator 
saturation could be the most significant nonlinearity in designing an HDD 
servo system. When the actuator saturates, the performance of the control 
system designed will seriously deteriorate. Interested readers are referred to a 
recent monograph by Hu and Lin [97] for a fairly complete coverage of many 
newly developed results on control systems with actuator nonlinearities. 

The actuator saturation in the HDD has seriously limited the performance 
of its overall servo system, especially in the track seeking stage, in which the 
HDD RjW head is required to move in a wide range of tracks. It will be ob­
vious in the coming chapters that it is impossible to design a linear controller 
that would achieve a desired performance in the track seeking stage. Instead, 
we will have no choice but to utilise some sophisticated nonlinear control 
techniques in the design. The most popular non linear control technique used 
in the design of HDD servo systems is the so-called proximate time-optimal 
servomechanism (PTOS) proposed by Workman [29], which achieves near 
time-optimal performance for a large dass of motion control systems char­
acterised a double integrator. The PTOS was actually modified from the 
well-known time-optimal control. However, it is made to yield a minimum 
variance with smooth switching from the track seeking to track following 
mo des via a mode switching controller. 

In this chapter, we will also introduce two newly proposed nonlinear control 
techniques, namely a new mode switching control (MSC) and a composite 
nonlinear feedback (CNF) control. The MSC we present in this chapter is 
actually a combination of the PTOS and the RPT control of Chapter 4. 
Inspired by the recent work of Lin et al. [98], which was introduced to improve 
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the tracking performance under state feedback laws for a dass of second­
order continuous-time linear systems subject to actuator saturation, we have 
developed in this chapter a nonlinear control technique, namely the composite 
nonlinear feedback control, to a more general dass of continuous-time and 
discrete-time systems with measurement feedback. The advantages of this 
new CNF control technique are as follows: (1) it generally yields a better 
performance compared with those of the PTOS and MSC; and (2) it does 
not need a mode switching controller, which greatly simplifies the actual 
process in implementation. 

5.2 Time Optimal Control 

We recall the technique of the time optimal control (TOC) in this section. 
Given a dynamic system characterised by 

;i; = h(x, u, t), (5.1) 

where x is the state variable and u is the control input, the objective of 
optimal control is to determine a control input u that will cause a controlled 
process to satisfy the physical constraints and at the same time optimise a 
certain performance criterion, 

l tf J = f(x, u, t) dt, 
to 

(5.2) 

where tü and tf are respectively initial time and final time of operation, and 
f is a scalar function. The TOC is a special dass of optimisation problems 
and is defined as the transfer of the system from an arbitrary initial state 
x(to) to a specified target set point in minimum time. For simplicity, we 
let to = O. Hence, the performance criterion for the time-optimal problem 
becomes minimising the following cost function with f(x, u, t) = 1, i.e., 

t f 

J = Jo dt = tf· (5.3) 

Let us now derive the TOC law using Pontryagin's principle and the ca1culus 
of variation (see e.g., [99]) for a simple dynamic system obeying Newton's 
law, i.e., for a double integrator system represented by 

y(t) = au(t), (5.4) 
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where y is the position output, a is the acceleration constant and u is the 
input to the system. It wiH be seen later that the dynamics of the actuator of 
an HDD can be approximated as a double integrator model. To start with, 
we rewrite Equation (5.4) as the following state space model: 

x(t) = Ax(t) + Bu(t) (5.5) 

with 

Note that v = iJ be the velocity of the system. Let the control input be 
constrained as folIows: 

I u(t) I:::; Umax · (5.7) 

Then, the Hamiltonian (see e.g., [99]) for such a problem is given by 

H(x(t), u(t), A(t» = 1 + A1(t)X2(t) + A2(t)au(t) (5.8) 

where A = (Al A2 )' is a vector of the time-varying Lagrange multipliers. 
Pontryagin's principle states that the Hamiltonian is minimised by the opti­
mal control, or 

H(x* u* A*) < H(x· u A*) 
" - '" (5.9) 

where superscript * indicates optimality. Thus, from Equations (5.8) and 
(5.9), the optimal control is 

{ 
-Umax, for A2(t) > O} 

u*(t) = := - sgn(A;(t»Umax . 

+umax ' for X2(t) < 0 
(5.10) 

The caleulus of variation (see [99]) yields the following necessary condition 
for a time-optimal solution: 

~*(t) = -A'A*(t), (5.11) 

which is known as a costate equation in optimal control terminology. The 
solution to the costate equation is of the form 
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(5.12) 

where Cl and C2 are constants of integration. Equation (5.12) indicates that 
>.; and, therefore u* can change sign at most once. Since there can be at most 
one switching, the optimal control for a specified initial state must be one of 
the following forms: 

1°: u*(t) = +umax , Vt E [to, t*l; 

{ + U max , Vt E [to, td, 
2°: u*(t) = 

- U max , Vt E [tl, t*l; 

3°: u*(t) = - U max , Vt E [to, t*l; 

40 : { - U max , Vt E [to, h), 
u*(t) = 

+Umax , Vt E [tl, t*l. 

(5.13) 

Thus, the segment of optimal trajectories can be found by integrating Equa­
tion (5.5) with U = ±umax to obtain 

(5.14) 

(5.15) 

where C3 and C4 are constants of integration. It is to be noted that if the 
initial state lies on the optimal trajectories defined by Equations (5.14) and 
(5.15) in the state plane, then the control will be either 1° or 3° in Equation 
(5.13) depending upon the direction of motion. In HDD servo systems, it will 
be shown later that the problem is of relative head positioning control, and 
hence the initial and final states must be 

x(O) = (~), x(t*) = (~) , (5.16) 

where r is the reference set point. Because of these kinds of initial state in 
HDD servo systems, the optimal control must be chosen from either 2° or 
4° in Equation (5.13). Note that if the control input + U max pro duces the 
acceleration a, then the input -Umax will produce a deceleration of the same 
magnitude. 

Hence, the minimum time performance can be achieved either with maxi­
mum acceleration for half of the travel followed by maximum deceleration 
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for an equal amount of time, or by first accelerating and then decelerating 
the system with maximum effort to follow some predefined optimal velo city 
trajectory to reach the final destination in minimum time. The former case 
results in an open-loop form of TOC which will use predetermined time-based 
acceleration and deceleration inputs, whereas the latter yields a closed-loop 
form of TOC. We note that if the area under acceleration, which is a func­
tion of time, is the same as the area under deceleration, there will be no net 
change in velo city after the input is removed. The final output velo city and 
the position will be in a steady state. 

In general, the time-optimal performance can be achieved by switching the 
control between two extreme levels of the input, and we have shown that in 
the double integrator system the number of switchings is at most equal to 
one, i.e., one less than the order of dynamics. Thus, if we extend the result 
to an nth-order system, it will need n - 1 switchings between maximum and 
minimum inputs to achieve a time-optimal performance. Since the control 
must be switched between two extreme values, the TOC is also known as 
bang-bang control. 

In what follows, we will discuss the bang-bang control in two versions, i.e., in 
the open-loop and in the closed-loop forms far the double integrator model 
characterised by Equation (5.5) with the control constraint represented by 
Equation (5.7). 

5.2.1 Open-loop Bang-bang Control 

The open-loop method of bang-bang control uses maximum acceleration and 
maximum deceleration for a predetermined time period. Thus, the time re­
quired for the system to reach the target position in minimum time is prede­
termined from the above principles and the control input is switched between 
two extreme levels for this time period. We can precalculate the minimum 
time t* for a specified reference set point r. Let the control be 

{ 
+umax, 

u*(t) = 
-Umax , 

for tE (0, f], 
for t E (f, t*]. 

(5.17) 

We now solve Equations (5.14) and (5.15) for the accelerating phase with 
zero initial condition. For the accelerating phase, i.e., with U = +umax , we 
have 

(5.18) 
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At the end of the accelerating phase, i.e., at t = t* /2, 

t* 
X2a = aumax 2' 1 ( *)2 Xla = "8 a Umax t . 

Similarly, at the end of decelerating phase, we can show that 

1 ( *)2 X2d = 0, Xld = "8 a·umax t . 

(5.19) 

(5.20) 

Obviously, the total displacement at the end of bang-bang control must reach 
the target, i.e., the reference set point r. Thus, 

1 ( *)2 r = Xl a + Xld = 4" a U max t , (5.21) 

which gives 

* ~r t - --
- aumax ' 

(5.22) 

the minimum time required to reach the target set point. 

5.2.2 Closed-loop Bang-bang Control 

In this method, the velo city of the plant is controlled to follow a predefined 
trajectory and more specifically the decelerating trajectory. These trajec­
tories can be generated from the phase-plane analysis. This analysis is ex­
plained below for the system given by Equation (5.5) and can be extended to 
higher-order systems (see e.g., [99]). We will show later that this deceleration 
trajectory will bring the system to the desired set point in finite time. We 
now move to find the deceleration trajectory. 

First, eliminating t from Equations (5.14) and (5.15), we have 

(5.23) 

(5.24) 

where C5 and C6 are appropriate constants. Note that each of the above equa­
tion defines the family of parabolas. Let us define e(t) := r - Xl (t) to be the 
position error with r being the desired final position. Then, if we consider the 
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trajectories between e(t) and X2(t), aur desired final state in e(t) and X2(t) 
plane must be 

(5.25) 

In this case, the constants in the above trajectories are equal to zero. More­
over, both the trajectories given by Equations (5.23) and (5.24) are the decel­
erating trajectories depending upon the direction of the travel. The mecha­
ni sm of the TOC can be illustrated in a graphical form as given in Figure 5.l. 
Clearly, any initial state lying below the curve is to be driven by the positive 
accelerating force to bring the state to the deceleration trajectory. On the 
other hand, any initial state lying above the curve is to be accelerated by the 
negative force to the deceleration trajectory. 

1~r----r----r----.----,----.----,----.-----r----r---~ 
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Figure 5.1. Deceleration trajectories for TOC. 

Let 

A(e) := sgn(eh/2aumax I e 1· (5.26) 

The controllaw is then given by 

U = U max • sgn(ft(e) - v). (5.27) 
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y 

Figure 5.2. Typical scheme of TOC. 

A block diagram depicting the closed-loop method of bang-bang control is 
shown in Figure 5.2. Unfortunately, the controllaw given by Equation (5.27) 
for the system shown in Figure 5.2, although time-optimal, is not practical. It 
applies maximum or minimum input to the plant to be controlled even for a 
small error. Moreover, this algorithm is not suited for disk drive applications 
for the following reasons: 

1. even the smallest system process or measurement noise will cause control 
"chatter". This will excite the high frequency modes. 

2. any error in the plant model, will cause limit cycling to occur. 

As such, the TOC given above has to be modified to suit HDD applications. In 
the following section, we will recall a modified version of the TOC proposed by 
Workman [29], i.e., the PTOS. Such a control scheme is widely used nowadays 
in designing HDD servo systems. 

5.3 Proximate Time-Optimal Servomechanism 

The infinite gain of the signum function in the TOC causes control chatter, as 
seen in the previous section. Workman [29], in 1987, proposed a modification 
of this technique, i.e., the so-called PTOS, to overcome such a drawback. 
The PTOS essentially uses maximum acceleration where it is practical to do 
so. When the error is small, it switches to a linear control law. To do so, it 
replaces the signum function in TOC law by a saturation function. In the 
following sections, we will revisit the PTOS method in continuous-time and 
in discrete-time domains. 
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Figure 5.3. Continuous-time PTOS. 

5.3.1 Continuous-time Systems 
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v 1 y 
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The configuration ofthe PTOS is shown in Figure 5.3. The function fp(') is a 
finite slope approximation to the switching function ft (-) given by Equation 
(5.26). The PTOS controllaw for the system in Equation (5.5) is given by 

(5.28) 

where sat(x) is defined as 

{
+1' if x> +Ye, 

sat(x) = x, if - Ye ::; x ::; Ye, 

- 1, if x < -Ye, 

(5.29) 

and the function fp(e) is given by 

{ 
kl 
-e 

fp(e) = k2 U 

sgn(e)[J2aumaxalel- ;;x] 
for lei::; Yt, 

(5.30) 
for lei> Ye· 

Here we note that k1 and k2 are respectively the feedback gains for position 
and velo city, a is a constant between 0 and 1 and is referred to as the ac­
celeration discount factor, and Ye is the size of the linear region. Since the 
linear portion of the curve fp(') must connect the two disjoint halves of the 
nonlinear portion, we have constraints on the feedback gains and the linear 
region to guarantee the continuity of the function fp(')' It was proved by 
Workman [29] that 

(5.31) 
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Figure 5.4. Control zones of a PTOS. 

The control zones in the PTOS are shown in Figure 5.4. The two curves 
bounding the switching curve (central curve) now redefine the control bound­
aries and it is termed a linear boundary. Let this region be U. The region 
below the lower curve is the region where the control u = +umax , whereas 
the region above the upper curve is the region where the control U = -umax . 

It has been proved [29] that once the state trajectory enters the band U in 
Figure 5.4 it remains within U and the control signal is below the saturation. 
The region marked L is the region where the linear control is applied. 

The presence of the acceleration discount factor a allows us to accommodate 
uncertainties in the plant accelerating factor at the cost of increase in response 
time. By approximating the positioning time as the time that it takes the 
position error to be within the linear region, one can show that the percentage 
increase P in time taken by the PTOS over the time taken by the TOC is 
given by (see [29]): 

P = ~ (_1 __ 1) x 100%. 2va (5.32) 

Clearly, larger values of a make the response closer to that of the TOC. As a 
result of changing the nonlinearity from sgn(·) to sat(·), the control chatter 
is eliminated. 
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5.3.2 Discrete-time Systems 
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Figure 5.5. Discrete-time PTOS. 
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The discrete-time PTOS can be derived from its continuous-time counterpart, 
but with some conditions on sam pIe time to ensure stability. In his seminal 
work, Workman [29] extended the continuous-time PTOS to discrete-time 
control of a continuous-time double integrator plant driven by a zero-order 
hold as shown in Figure 5.5. As in the continuous-time case, the states are de­
fined as position and velocity. With insignificant calculation delay, the state­
space description of the plant given by Equation (5.5) in the discrete-time 
domain is 

x(k + 1) = x(k) + u(k), [ 1 Ts] [aTs2/2] 
o 1 aTs (5.33) 

where Ts is the sampling period. The control structure is a discrete-time 
mapping of the continuous-time PTOS law, but with a constraint on the 
sampling period to guarantee that the control will not saturate during the 
deceleration phase to the target position and also to guarantee its stability. 
Thus, the mapped controllaw is 

u(k) = U max ' sat (k2 [!p(e(k)) - V(k}]) , 
U max 

with the following constraint on sampling frequency Ws, 

Ws 
- >6.3, 
Wn 

where Wn is the desired bandwidth of the dosed-loop system. 

(5.34) 

(5.35) 
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5.4 Mode Switching Control 

In this section, we follow the development of [100] to introduce the design of 
a new mode switching control (MSC) design for a system characterised by a 
double integrator or in the following state-space equation: 

(5.36) 

where as usual x is the state, which consists of the displacement y and the 
velocity Vi u is the control input constrained by 

lu(t)1 ::::; U max • (5.37) 

As will be seen shortly in the coming chapters, the VCM actuators of HDDs 
can generally be approximated by such a model with appropriate parameters 
a and umax • In HDD servo systems, in order to achieve both high-speed track 
seeking and highly accurate head positioning, multimode control designs are 
widely used. The two commonly used multimode control designs are MSC and 
sliding mode control. Both control techniques in fact belong to the category 
of variable structure control. That is, the control is switched between two 
or more different controllers to achieve the two conflicting requirements. In 
this section, we will propose an MSC control in which the seeking mode is 
controlled by a PT OS and the track following mode is controlled by a RPT 
controller. 

The MSC (see e.g., [15]) is a type of variable structure control system [101], 
but the switching is in only one direction. Figure 5.6 shows a basic schematic 
diagram of MSC. There are track seeking and track following modes. Each 
servo mode can be designed independently, and so the main issue in MSC is 
the design of the switching mechanism. 

POSITION 

Figure 5.6. Basic schematic diagram of MSC. 
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This design problem has not yet been completely resolved, and many heuris­
tic approaches have been tried so far (see e.g., [102]). Several methods were 
proposed for mode switching from one controller to another. In [15], a method 
called initial value compensation is proposed. Note that, when the switch is 
transfered from track seeking mode to the track following mode, the final 
states of the track seeking controller become the initial states for the track 
following controller, and hence affect the settling performance of track fol­
lowing mode. In order to reduce the impact of these initial values during 
mode switching, some compensation must be worked out. Here, the initial 
values are referred to the values of the states during mode switching. How­
ever, the RPT controllers developed by Chen and co-workers [44,84] (see also 
Chapter 4) have enough robustness against plant variations and are actually 
independent of initial values. Hence, the use of these controllers in track fol­
lowing mode eliminates the need for initial value compensation during mode 
switching. Moreover, the RPT controllers in a track following servo have been 
proved to be robust against resonance mode changes from disk to disk and 
work weIl against runout disturbances. 

The MSC law that combines the PTOS and RPT controllers takes the fol­
lowing simple form: 

{ 
Up, 

u= 
UR, 

(5.38) 

where U p is a control signal generated by the PTOS control and is given 
as in Equation (5.28), and UR is a signal generated by the reduced order 
RPT control as given in Equation (4.201). Furthermore, tl, the time that 
MSC switches from one mode to the other, will be presented in the next 
subsection together with the stability analysis of the closed-Ioop comprising 
the given plant and the MSC controllaw. 

5.4.1 Stability Analysis and Mode Switching Conditions 

We show in this subsection the stability of the MSC and give a set of condi­
tions for mode switching. First of all, we rewritethe given system Equation 
(5.36) as follows: 

(5.39) 

where e = r - y is the tracking error with r being the target reference. In 
the HDD servo systems that we deal with in the coming chapters, y will be 
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regarded as the displacement of an HDD RjW head, and v is its velo city. 
Recall the PTOS control law: 

(5.40) 

where the U max used throughout this section has a saturation level equal 
to unity; the function f (.) and the feedback gain k2 are as defined in the 
previous section. It has been shown [29] that the PTOS control law will 
yield an asymptotically stable closed-loop system provided that the following 
conditions are satisfied: 

1. ak2 > 0; 

2. f(O) = 0; 

3. f(e)e > 0, for any nonzero e; 

4. lim r f(6) dJ = 00; 
e~oo Jo 

5. j(e) exists everywhere; and 

[ 1] .. [1. ] 6. for any e, U max -a + k
2 

f(e) < - f(e)f(e) < U max a - k2 f(e) . 

Generally, as the velocity is not measurable, the PTOS controllaw will have 
to be modified as follows if it is to be implemented in a real system: 

1 Up = U max sat [u:2ax (f (e) -, v) ] , 
Z = -fiZ + fi2 e + aup, 

V = Z - fie, 

(5.41) 

where fi is the estimator feedback gain, and Z is the estimator state. Next, 
we let z = Z - v - fie. Then, the dynamics of the closed-loop system with the 
above control law can be written as 

{ 
e = -v, 

: = au~axsat 

Z = -fiZ. 

[U:: x (i ( e) - z - v ) ] , (5.42) 

It can be shown that the closed-loop system comprising the given plant and 
the modified PTOS controllaw, in which the velocity is replaced by the above 
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estimation, is asymptotically stable, if conditions 1 to 5 above are satisfied 
and condition 6 is replaced by 

1 . 
a > k2 f ( e) > 0, (5.43) 

and 

1 j ( e ) f ( e ) 1 < Umax [a - :2 j( e )] - [~+ j ( e )] . 1 z (0) I· (5.44) 

We can show that, under these new conditions, the closed-Ioop is stable for 
the case when the control input is saturated, i.e., Ik2 [J(e) - (z - ~e)lI > umax • 

For the case when Ik2 [J(e) - (z - ~e)ll ~ U max , the closed-Ioop system in 
Equation (5.42) can be written as 

{ : : ~:"[f(e) - i-vi, 
z = -~z. 

(5.45) 

Following the result of [103), we propose the following Lyapunov function for 
the system in Equation (5.45): 

(5.46) 

where pz > 0 is a scalar constant. The derivative of the above Lyapunov 
function is given by 

. Z_2 ( _)2 ( 1) 
Vp = - v + 2" - z Pz~ - 4 . (5.47) 

The last term is negative for all pz > 41",. Thus, under this choice of Pz, 

Vp ~ O. It follows from LaSalle's Theorem [104) that the closed-Ioop system 
comprising the PTOS control law with the estimated velo city and the given 
plant is asymptotically stable. 

It is pretty obvious that the closed-Ioop system comprising the given plant in 
Equation (5.39) and the reduced order RPT controllaw of Equation (4.201) 
is asymptotically stable when the control input is not saturated. For com­
pleteness, and for the analysis of the overall closed-Ioop system with the 
MSC scheme, we proceed to investigate the closed-Ioop system comprising 
the plant and the RPT controller, which can be written as 
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{ 

. _ 2 ( UR ) Z - - ",z + '" e + a U max . sat -- , 
U max 

UR = (h - "'12)e + 12z, 
(5.48) 

where '" is again the reduced order ob server gain, which is selected to be 
exactly the same as that used for the velo city estimation in the PTOS, and 
F = [h 12 1 is the feedback gain obtained using the RPT technique of 
Chapter 4. Again, let z = z - v - ",e and rewrite the RPT controllaw as 

(5.49) 

Let W x E lR2x2 be a positive definite matrix and solve the following Lyapunov 
equation: 

(5.50) 

for Px > O. Such a Px always exists as Ap + BpF is stable. Next, let 

(5.51) 

and 

W z 1 
pz = 2", > 4", > O. (5.52) 

Then, we define a set 

(5.53) 

where c > 0 is the largest positive value such that 

(5.54) 

For all 

(5.55) 

the resulting dosed-loop system can then be written as 
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Define a Lyapunov function, 

(5.57) 

and evaluate its derivative along the trajectories of the closed-Ioop system in 
Equation (5.56), i.e., 

(5.58) 

where 

This shows that all trajectories of Equation (5.56) starting from X will re­
main there and converge asymptotically to zero. Hence, the closed-Ioop sys­
tem comprising the plant and the reduced order RPT controllaw is asymp­
totically stable provided that the control input is not saturated. 

Next, we re-express Equation (5.46) using the Taylor expansion as folIows: 

o 
1 

2ak2 

o 

where T is an appropriate scalar between 0 and e. Let 

. {j(T) 1 pz}/ { () } a = min -2-' 2ak2 '"2 max Amax Pa; ,Pz . 

The MSC scheme can be obtained as follows: 

{ 
Up, 

u(t) = 
UR, 

(5.60) 

(5.61) 
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where tl is such that 

( xp(td ) EX and le(tdl < YR, 
z(lt) 

(5.62) 

and where YR is the size of the linear region of the PTOS control law. The 
Lyapunov function for the overall closed-loop system can be chosen as 

(5.63) 

where l(t) is the unit step function. It is simple to verify that 

(5.64) 

It has already been proved that the derivatives of the functions Vp and VR are 
negative definite. The last term is always negative in view of the definition 
of (j in Equation (5.60). Hence, V :::; 0 and the resulting closed-loop system 
comprising the given plant and the mode switching controllaw is stable. 

5.5 Cornposite Nonlinear Feedback Control 

The PTOS and MSC schemes discussed in the previous sections have two 
controllers, i.e., a non linear controller and a linear controller, operating in 
two different time stages. Inspired by the recent work of Lin et a1. [98], we 
develop in this section a new servo system design method, i.e., the so-called 
composite nonlinear feedback (CNF), which again consists of two parts, a 
linear part and a non linear part. However, unlike the MSC and PTOS control 
laws, both the linear and nonlinear controllers in CNF are in operation all the 
time. The linear part in CNF is designed to yield a fast response, whereas the 
nonlinear part is designed to increase the damping ratio of the closed-loop 
system to reduce the overshoot as the system controlled output approaches 
the desired target position. As will be seen so on in the coming chapters, this 
new control method will improve the performance of the overall servo system 
a great deal. In what follows, we will present the CNF technique for both the 
continuous- and discrete-time systems. We will, as Chapter 4, consider the 
following three different situations: (1) the state feedback case, (2) the full 
order measurement feedback case, and (3) the reduced order measurement 
feedback case. Since this is a new technique (although some parts are under 
review, see e.g., [105]), we will present rigorous and complete proofs for all 
results derived. 
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5.5.1 Continuous-time Systems 

Consider a linear continuous-time system E with an amplitude-constrained 
actuator characterised by 

{ 

j; = A x + B sat(u), 

Y = Cl X 

h = C2 X 

x(O) = xo 

(5.65) 

where x E lRn , u E IR, Y E lRP and h E lR are respectively the state, control 
input, measurement output and controlled output of E. A, B, Cl and C2 are 
appropriate dimensional constant matrices, and sat: lR ~ lR represents the 
actuator saturation defined as 

sat(u) = sgn(u) min{ U max , j U I }, (5.66) 

with U max being the saturation level of the input. The following assumptions 
on the system matrices are required: 

1. (A, B) is stabilisable, 

2. (A, Cd is detectable, and 

3. (A, B, C2 ) is invertible and has no invariant zeros at s = O. 

The objective here is to design a CNF controllaw that will cause the output 
to track a high amplitude step input rapidly without experiencing large over­
shoot and without the adverse actuator saturation effects. This will be done 
through the design of a linear feedback law with a small closed-loop damping 
ratio and a nonlinear feedback law through an appropriate Lyapunov func­
tion to cause the closed-loop system to be highly damped as system output 
approaches the command input to reduce the overshoot. Similar to the design 
of linear controllers discussed in Chapter 4, we separate the CNF controller 
design into three distinct situations (1) the state feedback case, (2) the full 
order measurement feedback case, and (3) the reduced order measurement 
feedback case. 

i. State Feedback Case. We proceed to develop a composite nonlinear 
feedback control technique for the case when all the states of the plant E 
are measurable, i.e., y = x. It will be done in three steps. In the first step, 
a linear feedback controllaw will be designed; in the second step, the design 
of nonlinear feedback control will be carried out. Lastly, in the third step, 
the linear and nonlinear feedback laws will be combined to give a composite 
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nonlinear feedback controllaw. Again, we note that the procedure given for 
this case follows dosely to that reported in Lin et al. [98], although our result 
is applicable to a much larger dass of systems. 

STEP 5.5.c.s.1: design a linear feedback law, 

U L = Fx+Gr, (5.67) 

where F is chosen such that (1) A + BF is an asymptotically stable 
matrix, and (2) the dosed-Ioop system C2 (8[ - A - BF)-l B has cer­
tain desired properties, e.g., having a small damping ratio. We note that 
such an F can be designed using methods such as the H 2 and Hoc opti­
misation approaches, as well as the RPT technique given in Chapter 4. 
Furthermore, G is a scalar and is given by 

(5.68) 

and r is a step command input. Here we note that G is wen defined 
because A + BF is stable, and the tripie (A, B, C2 ) is invertible and has 
no invariant zeros at 8 = o. 

The following lemma determines the magnitude of r that can be tracked by 
such a control law without exceeding the controllimits. 

Lemma 5.5.1. Given a positive definite matrix W E jRnxn, let P > 0 be the 
solution of the following Lyapunov equation: 

(A+BF)'P+P(A+BF) =-w. (5.69) 

Such a P exists since A + BF is asymptotically stable. For any 8 E (0,1), let 
c. > 0 be the largest positive scalar satisfying the following condition: 

I Fx I~ u max{1- 8), 't/x E X. := {x: x'Px ~ c.}. (5.70) 

Also, let 

H:= [1- F(A + BF)-l B] G, (5.71) 

and 

xe := Ge r := -(A + BF)-l BG r. (5.72) 
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Then, the controllaw of Equation (5.67) is capable of driving the controlled 
output h to track asymptotically a step command input r, provided that the 
initial state Xo and r satisfy: 

Xo := (xo - xe) E X 8 and IH rl :::; 8umax . (5.73) 

Proof. Let us first define a new state variable 

x = x - Xe. (5.74) 

It is simple to verify that the linear feedback controllaw of Equation (5.67) 
can be rewritten as 

UL(t) = Fx(t) + [1 - F(A + BF)-l B] Gr = Fx(t) + H r, (5.75) 

and hence for all x E X 8 and, provided that IH rl :::; 8umax , the closed-loop 
system is linear and is given by 

i = (A + BF)x + AXe + BH r. 

Noting that 

AXe +BHr = {B[1-F(A+BF)-lBjG-A(A + BF)-lBG}r 

= {[I -BF(A+BF)-ljBG-A(A + BF)-l BG}r 

= {I -BF(A+BF)-l_A(A + BF)-l }BGr 

= 0, 

the closed-loop system in Equation (5.76) can then be simplified as 

i=(A+BF)x. 

Next, we define a Lyapunov function: 

V(x) = x'Px. 

(5.76) 

(5.77) 

(5.78) 

(5.79) 

Along the trajectories of the closed-loop system in Equation (5.78), V (x) 
satisfies 

V(x) = -x'Wx, (5.80) 
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which implies that V(X) is a monotonically decreasing function with respect 
to t along the trajectories of Equation (5.78). Thus, all trajectories of Equa­
tion (5.78) starting from Xli will remain there and converge asymptotically 
to the origln. For an initial state Xo and the step command input r that 
satisfy Equation (5.73), we have 

lim x(t) = Xe, 
t~oo 

and hence 

This completes the proof of Lemma 5.5.1. 

(5.81) 

(5.82) 

Remark 5.5.1. We would like to note that for the case when Xo = 0, any step 
command of amplitude r can be asymptotically tracked if 

(5.83) 

Clearly, the trackable amplitudes of reference inputs by the linear feed­
back controllaw can be increased by increasing 8 and/or decreasing G~PGe 
through the choice of W. However, the change in gain F will of course affect 
the damping ratio of the closed-loop system and hence its rising time. 0 

STEP 5.5.c.s.2: the nonlinear feedback controllaw uN(t) is given by 

U N = per, y)B' P(x - xe) (5.84) 

where per, y) is any nonpositive function locally Lipschitz in y, which 
is used to change the system closed-loop damping ratio as the output 
approaches the step command input. The choice of such a per, y) will be 
discussed at the end of this section. 

STEP 5.5.c.s.3: the linear and non linear feedback laws derived in the pre­
vious steps are now combined to form a CNF controller: 

U = U L +uN = Fx + Gr + p(r,y)B'P(x - xe). (5.85) 

We now move to prove that the closed-loop system comprising the given plant 
in Equation (5.65) and the CNF controllaw of Equation (5.85) is asymptot­
ically stable. 
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Theorem 5.5.1. Consider the given system in Equation (&.65). Then, for any 
nonpositive function per, y), locally Lipschitz in y, the composite nonlinear 
feedback Iaw in Equation (5.85} will drive the system controlled output h(t} 
to track asymptotically the step command input of amplitude r from an 
initial state xo, provided that Xo and r satisfy Equation (5.73)-. ~ 

Proof. Again, let x = x - Xe. Then, the dosed-loop system comprising the 
given plant in Equation (5.65) and the CNF controllaw of Equation (5.85) 
can be expressed as 

i = (A + BF)x + Bw, (5.86) 

where 

w = sat (Fx + H r + uN ) - Fx - H r. (5.87) 

Clearly, for the given Xo satisfying Equation (5.73), we have Xo = (Xo -xe) E 
X 6' Using the Lyapunov function 

V =X'PX (5.88) 

we can evaluate the derivative of V along the trajectories of the closed-loop 
system in Equation (5.86), i.e., 

v = i' Px + x' pi 
= x'(A + BF)'Px + x'P(A + BF)x + 2x'PBw 

= -x'Wx + 2i'PBw. 

Note that for alI 

We next calculate V for three different values of saturation function. 

Case 1. If!px + Hr + uNI ~ U max , then w = UN = pB'Px and thus 

V· -'W- + 2 -'PBB'P- < -'W­= -x x px x _ -x x. 

(5.89) 

(5.90) 

(5.91) 

Case 2. If Fx+Hr+uN > U max , and by construction I Fx+Hr I~ U max , we 
have 

o < w = U max - Fx - Hr < UN = pB' Pi, (5.92) 
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which implies that x'PB < 0 and hence V = -x'Wx + 2x'PBw:s -X'WX. 

Case 3. Finally, if Fx + Hr + U N < -Umax , we have 

pB' Px = U N < W = -Umax - Fx - Hr < 0, (5.93) 

implying x' PB> 0 and hence V :s -x'Wx. 

In conclusion, we have shown that 

V:S -x'Wx, x EX" (5.94) 

which implies that X {, is an invariant set of the closed-Ioop system in Equa­
tion (5.86) and all trajectories of Equation (5.86) starting from inside X {, 
will converge to the origin. This, in turn, indicates that, for all initial states 
Xo and the step command input of amplitude r that satisfy Equation (5.73), 

Ern x(t) = Xe. 
t--+= 

(5.95) 

Therefore, 

lim h(t) = lim C2x(t) = C2 X e = r. 
t--+= t--+= 

(5.96) 

This completes the proof of Theorem 5.5.1. 

Remark 5.5.2. Theorem 5.5.1 shows that the additional nonlinear feedback 
control law U N , as given by Equation (5.84), does not affect the ability of 
the closed-Ioop system to track the command input. Any command input 
that can be asymptotically tracked by the linear feedback law of Equation 
(5.67) can also be asymptotically tracked by the CNF controllaw in Equation 
(5.85). However, this additional term U N in the CNF controllaw can be used 
to improve the performance of the overall closed-Ioop system. This is the key 
property of the CNF control technique. <:; 

ii. Full Order Measurement Feedback Case. The assumption that all 
the states of E are measurable is, in general, not practical. For example, 
in HDD servo systems, the velo city of the actuator is not usually directly 
measurable. Thus, one will have to implement the PTOS controller or the 
controllaw obtained in the previous case via a certain velo city estimation. In 
what follows, we proceed to develop a CNF design using only measurement 
information. 
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STEP 5.5.c.F.I: we first construct a linear full order measurement feedback 
control law: 

(5.97) 

where r is the reference input and Xv E jRn is the state of the controller. 
As usual, Fand Kare gain matrices and are designed such that A + BF 
and A + KCI are asymptotically stable and the resulting closed-Ioop 
system has the desired properties. As defined in Equations (5.71) and 
(5.72), 

H = [1 - F(A + BF)-I B]G, G = -[C2 (A + BF)-I BJ- I , (5.98) 

and Xe = -(A + BF)-I BGr. 

We have the following result. 

Lemma 5.5.2. Given a positive definite matrix W p E jRnxn, let P > 0 be the 
solution to the Lyapunov equation 

(A+BF)'P+P(A+BF) = -Wp • (5.99) 

Given another positive define matrix W Q E jRnxn with 

(5.100) 

let Q > 0 be the solution to the Lyapunov equation 

(A + KCd'Q + Q(A + KCd = -WQ • (5.101) 

Note that such P and Q exist as A + BF and A + KCI are asymptotically 
stable. For any 15 E (0,1), let Cö be the largest positive scalar such that for 
all 

(5.102) 

we have 

(5.103) 
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The linear control law in Equation (5.97) will drive the system controlled 
output h(t) to track asymptotically a step comrnand input of amplitude r 
from an initial state xo, provided that xo, Xvo = xv(O) and r satisfy: 

IHrl ~ d· Umax and ( Xo - Xe ) E X F6. 
XvO - Xo 

Proof. Let us transform the system coordinate by def1ning 

X=X-Xe and xv=xv-x. 

Then, the linear controllaw of Equation (5.97) can be written as 

Hence, for all states 

and for any r satisfying 

we have 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

Thus, for all x and Xv satisfying the condition as given in Equation (5.107), 
the closed-Ioop system comprising the given plant and the linear controllaw 
of Equation (5.97) can be rewritten as 

( i ) [A + BF BF} ( x ) 
i v = 0 A + KC1 xv· (5.110) 

Next, we def1ne a Lyapunov nmction for the closed-Ioop system in Equation 
(5.110): 

(x)' [P 0] ( x ) V = Xv 0 Q Xv . (5.111) 
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Along the trajectories of the closed-loop system in Equation (5.110) the 
derivative of the Lyapunov function is given by 

(5.112) 

where 

A - W-1pBF-x = x - p xv, WQ = WQ -F'B'PW;lPBF. (5.113) 

With the choice of WQ satisfying Equation (5.100), it is obvious that V ::; O. 
This shows that X FÖ is an invariant set of the closed-loop system in Equation 
(5.110) and all trajectori~s starting from the set converge asymptotically to 
the origin. Thus, for the initial states of Xo and XvQ and step command inputs 
that satisfy Equation (5.104), 

lim xv(t) = 0 and lim x(t) = Xe, 
t-+oo t-+oo 

(5.114) 

which imply 

(5.115) 

This completes the proof of Lemma 5.5.2. 

STEP 5.5.c.F.2: as in the state feedback case, the linear control law of 
Equation (5.97) obtained in the above step is to be combined with a 
nonlinear control law to form the following CNF controller: 

{
Xv = (A + KCt}xv - Ky + Bsat(u), 

u = F(xv - xe) + Hr + p(r,y)B' P(xv - xe), 
(5.116) 

where p( r, y) is a nonpositive scalar function, locally Lipschitz in y, and 
is to be chosen to improve the performance of the closed-Ioop system. 

It turns out that, for the measurement feedback case, the choice of p( r, y), 
the nonpositive scalar function, is not totally free. It is subject to certain 
constraints. We have the following theorem. 
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Theorem 5.5.2. Consider the given system in Equation (5.65). Then, there 
exists a scalar p* > 0 such that for any nonpositive function p(r,y), locally 
Lipschitz in y and Ip(r, y)1 :S p*, the CNF control law of Equation (5.116) 
will drive the system controlled output h(t) to track asymptotically the step 
command input of amplitude r from an initial state xo, provided that xo, Xvo 
and r satisfy Equation (5.104). 0 

Proof: Again, let x = x - Xe and Xv = Xv - x. For simplicity, we drop r and h 
in p(r, y) throughout the rest of the proof of this theorem. Then, the closed­
loop system with the CNF controllaw of Equation (5.116) can be expressed 
as 

( ~ ) [A + BF BF] ( x) [B] ~v = 0 A + KCt Xv + 0 w, (5.117) 

where 

w = sat [[ F F] (iv) + H r + p [B' P B' P] (iv) ] 
- [F F] (iv) -Hr. (5.118) 

Clearly, for the given Xo and Xvo satisfying Equation (5.104), we have 

(5.119) 

U sing the following Lyapunov function: 

( X)/[p o](x) 
V = Xv 0 Q Xv ' 

(5.120) 

we evaluate the derivative of V along the trajectories of the closed-Ioop system 
in Equation (5.117), i.e., 

(5.121) 

Note that for all 

(5.122) 
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Again, as düne in the fuH state feedback case, let us find the abüve derivative 
üf V für three different cases. 

Case 1. If 

then 

which implies 

where 

x = x - Wp-
1 PB(F + pB' P)xv , 

WQ = W Q - (F+pB'P)'B'PWp-1pB(F+pB'P). 

(5.123) 

(5.124) 

(5.126) 

(5.127) 

Nüting Equatiün (5.100), i.e., W Q > F'B'PWp-1PBF, and p(r,y) is lücally 
Lipschitz, it is clear that there exists a pi > 0 such that für any scalar functiün 
satisfying Ip(r,y)l::; pi we have WQ > 0 and hence V::; o. 

Case 2. If 

[F F 1 (~ ) + H r + p [B' P B' P 1 (:v) > U max, (5.128) 

then für the trajectüries inside X F<>, 

(5.129) 

which implies that 

o < w < p [ B' P B' P 1 (:v ) . (5.130) 
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Next, let us express 

w = qp[B'P B'P] (~), (5.131) 

for an appropriate positive piecewise continuous function q(t), bounded by 1 
for all t. In this case, the derivative of V becomes 

where 

. (x)'[ -Wp PB(F+qPB'P)](x) _, ,_ 
V= Xv (F+qpB'P)'B'P -WQ Xv +2qpxPBBPx 

~ (!:)' [-:p -;QJ (!:), (5.132) 

:1;+ = X - W;l P B(F + qpB' P}xv , 

W Q+ = W Q - (F + qpB' P)' B' PWp- 1 P B(F + qpB' P). 

(5.133) 

(5.134) 

Again, noting Equation (5.100), it can be shown that there exists a P2 such 
that for any p(r, y) satisfying Ip(r, y)1 ~ P2 we have W Q+ > 0 and hence 
V ~O. 

Case 3. Similarly, for the case when 

(5.135) 

we can show that there exists a P3 > 0 such that for any p(r, y) satisfying 
Ip(r,y)1 ~ P3' we have V ~ 0 for all the trajectories in X F 8. 

Finally, let p* = min {pi, P2' P3}. Then, we have for any nonpositive scalar 
function p( r, y) satisfying [p( r, y) [ ~ p*, 

(5.136) 

Thus, X F8 is an invariant set of the closed-loop system in Equation (5.117), 
and all trajectories starting from X F8 will remain inside and asymptotically 
converge to the origin. This, in turn, indicates that, for the initial state of 
the given system xo, the initial state of the controller xvo, and step command 
input r that satisfy Equation (5.104), 
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lim xv(t) = 0 and lim x(t) = Xe, 
t-.+oo t-.+oo 

(5.137) 

and hence 

(5.138) 

This completes the proof of Theorem 5.5.2. 

iii. Reduced Order Measurement Feedback Case. For the given system 
in Equation (5.65), it is dear that there are p states ofthe system measurable 
if Cl is of maximal rank. Thus, in general, it is not necessary to estimate these 
measurable states in measurement feedback laws. As such, we will design a 
dynamic controller that has a dynamical order less than that of the given 
plant. We now proceed to construct such a controllaw under the CNF control 
framework. 

For simplicity of presentation, we assume that Cl is already in the form 

Cl=[Ip 0). (5.139) 

Then, the system in Equation (5.65) can be rewritten as 

(!~) [Au 
A2l 

A 12 ] 
A22 (~~) + [~~] sat(u), Xo = (~~~) 

Y I p o 1 (~~ ) (5.140) 

h = C2 (~~) 
where the original state X is partitioned into two parts, Xl and X2 with y == Xl. 

Thus, we will only need to estimate X2 in the reduced order measurement feed­
back design. Next, we let F be chosen such that (1) A + BF is asymptotically 
stable, and (2) C2(sI - A - BF)-l B has desired properties, and let KR be 
chosen such that A22 + K R A 12 is asymptotically stable. Here we note that 
it was shown Chen [87] that (A22 , A12 ) is detectable if and only if (A, Cd is 
detectable. Thus, there exists a stabilising KR' Again, such Fand KR can be 
designed using any of the linear control techniques presented in Chapter 4. 
We then partition F in conformity with Xl and X2: 

(5.141) 

As defined in Equations (5.71) and (5.72), 

H = [1 - F(A + BF)-l B]G, G = -[C2(A + BF)-l B]-l, (5.142) 
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and Xe = -(A + BF)-l BGr. 

The reduced order CNF controller is given by 

Xv = (A22+KRA12)Xv + [A21 +KRAu -(A22+KRA12)KR]Y 

+ (B2 + KRBd sat(u) (5.143) 

and 

where per, y) is a nonpositive scalar nmction locally Lipschitz in y subject to 
certain constraints to be discussed later. 

Next, given a positive definite matrix Wp E IRnxn , let P > 0 be the solution 
to the Lyapunov equation 

(A + BF)' P + P(A + BF) = -Wp • (5.145) 

Given another positive define matrix WR E lR(n-p)x(n-p) with 

(5.146) 

let QR > 0 be the solution to the Lyapunov equation 

(5.147) 

Note that such P and QR exist as A+BF and A22+KRA12 are asymptotically 
stable. For any 6 E (0,1), let c& be the largest positive scalar such that for 
all 

we have 

(5.149) 

We have the following theorem. 
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Theorem 5.5.3. Consider the given system in Equation (5.65). Then, there 
exists a scalar p* > 0 such that for any nonpositive function per, y), locally 
Lipschitz in y and Ip(r, y) I ~ p*, the reduced -order CNF law given by Equa­
tions (5.143) and (5.144) will drive the system controlled output h(t) to track 
asymptotically the step command input of amplitude r from an initial state 
Xo, provided that Xo, XvO and r satisfy 

( Xo - Xe ) EX 
XvO - X20 - KRXlO RO 

and IHrl ~ 8· U max · (5.150) 

Proof: Let x = x - Xe and Xv = Xv - X2 - KRXl. Then, the closed-Ioop 
system comprising the given plant in Equation (5.65) and the reduced order 
CNF controllaw of (5.143) and (5.144) can be expressed as 

( X~v) = [A +OBF BF2 ] ( X ) [B] A22 + K R A12 Xv + 0 w, (5.151) 

where 

w = sat {[F F2 J (:v ) + Hr + per, y)B'P [x + (~v)] } 
- [F F2 J (:v) -Hr. (5.152) 

The rest of the proof follows along similar lines to the reasoning given in the 
full order measurement feedback case. <> 

5.5.2 Discrete-time Systems 

Let us now consider a linear discrete-time system E with an amplitude­
constrained actuator characterised by 

{
X(k+1) = A x(k) + Bsat[u(k)], 

y(k) = Cl x(k) 

h(k) = C2 x(k) 

x(O) = Xo 

(5.153) 

where X E lRn , u E lR, y E lRP and h E lR are respectively the state, control 
input, measurement output and controlled outP1:lt of E. A, B, Cl and C2 are 
appropriate dimensional constant matrices, and sat: lR. ~ lR represents the 
actuator saturation defined as 
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sat(u) = sgn(u) min{ umax, I u I }, (5.154) 

with umax heing the saturation level of the input. The following assumptions 
on the system matrices are required: 

1. (A, B) is stabilisable, 

2. (A, Cd is detectable, and 

3. (A, B, C2 ) is invertible and has no invariant zeros at z = 1. 

We now extend the results of the continuous-time composite nonlinear control 
method to the discrete-time system in Equation (5.153). Thus, the objective 
here is to design a discrete-time CNF law that will cause the output to track a 
high-amplitude step input rapidly without experiencing large overshoot and 
without the adverse actuator saturation effects. This can be done through the 
design of a discrete-time linear feedback law with a smaH closed-Ioop damp­
ing ratio and a non linear feedback law through an appropriate Lyapunov 
function to cause the closed-Ioop system to be highly damped as system out­
put approaches the command input to reduce the overshoot. The result of 
this discrete-time version is analogous to that of its continuous-time counter­
part. Here, we again separate the design of discrete-time CNF control into 
three distinct situations, i.e., (1) the state feedback case, (2) the full order 
measurement case, and (3) the reduced order measurement feedback case. 

i. State Feedback Case. We consider the case when y = x, i.e., all the 
state variables of E of Equation (5.153) are available for feedback. 

STEP 5.5.D.S.l: design a linear feedback law, 

uL(k) = Fx(k) + Gr, (5.155) 

where r is the input command, and F is chosen such that A + BF has all 
its eigenvalues in «;0 and the closed-loop system C2 (zI - A - BF)-l B 
meets certain design specifications. We note again that such an F can be 
designed using any of the techniques reported in Chapter 4. Furthermore, 

G = [C2 (I - A - BF)-l B] -1. (5.156) 

We note that G is weH defined because A + BF has all its eigenvalues in 
«;0, and (A, B, C2 ) is invertible and has no invariant zeros at z = 1. 

The following lemma determines the magnitude of r that can be tracked by 
such a control law without exceeding the controllimits. 
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Lemma 5.5.3. Given a positive definite matrix W E lRnxn , let P > 0 be the 
solution of the following Lyapunov equation: 

P = (A + BF)'P(A + BF) + W. (5.157) 

Such a P exists as A + BF is asymptotically stable. For any 6 E (0,1), let 
cli > 0 be the largest positive scalar such that 

I Fx(k) I::; umax (1- 6), V x(k) E Xli := {x: x'Px ::; c/j}' (5.158) 

Also, let 

H := [1 + F(I - A - BF)-l B] C, (5.159) 

and 

xe := Ce r := (I - A - BF)-l BC r. (5.160) 

Then, the control law in Equation (5.155) is capable of driving the system 
controlled output h(k) to track asymptotically a step command input of 
amplitude r, provided that the initial state Xo and r satisfy: 

(5.161) 

Proof. Let i = x - Xe. Then, the linear feedback control law U L can be 
rewritten as 

uL(k) = Fi(k) + [1 + F(I - A - BF)-l B] Cr = Fi(k) + Hr. (5.162) 

Hence, for all 

i(k) E Xli :::}I Fi(k) I::; umax(l- 6) (5.163) 

and for any r satisfying 

(5.164) 

the linear control law can be written as 

1 uL(k) 1= IFi(k) + Hrl ::;1 Fi(k) I + IHri::; U max , (5.165) 
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which indicates that the control signal uL(k) will never exceed the saturation. 
Next, let us move to verify the asymptotic stability of the closed-Ioop system 
comprising the given plant in Equation (5.153) and the linear feedback law 
in Equation (5.155), which can be expressed as folIows: 

x(k + 1) = (A + BF)x(k). (5.166) 

Let us define a Lyapunov function for the closed-Ioop system in Equation 
(5.166) as 

V(k) = x'(k)px(k). (5.167) 

Along the trajectories of the closed-Ioop system in Equation (5.166) the in­
crement of the Lyapunov function in Equation (5.167) is given by 

\7V(k + 1) = x'(k + l)Px(k + 1) - x'(k)Px(k) 

= x'(k)(A + BF)' P(A + BF)x(k) - x'(k)Px(k) 

= -x'(k)Wx(k) 

::; o. (5.168) 

This shows that X /j is an invariant set of the the closed-Ioop system in Equa­
tion (5.166) and all trajectories of Equation (5.166) starting from X/j will 
converge to the origin. Thus, for any initial state Xo and the step command 
input r that satisfy Equation (5.161), we have 

!im x(k) = Xe, 
k-+oo 

(5.169) 

and hence 

(5.170) 

This completes the proof of Lemma 5.5.3. 

Remark 5.5.3. We would like to note that, for the case when Xo = 0, any 
step command of amplitude r can be tracked asymptotically provided that 

(5.171) 

This input command amplitude can be increased by increasing i5 and/or 
decreasing G~PGe through the choice of W. However, the change in F will of 
course affect the damping ratio of the closed-Ioop system and hence its rising 
time. <> 
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STEP 5.5.D.S.2: the nonlinear feedback controllawuN(k) is given by 

(5.172) 

where per, y) is a nonpositive scalar function, locally Lipschitz in y, and 
is to be used to change the system closed-Ioop damping ratio as the 
output approaches the step command input. The choice of per, y) will be 
discussed later in detail. 

STEP 5.5.D.S.3: the linear and nonlinear components derived above are now 
combined to form a discrete-time CNF law: 

(5.173) 

We have the following result. 

Theorem 5.5.4. Consider the discrete-time system in Equation (5.153). Then, 
for any nonpositive p(r,y), locally Lipschitz in y and Ip(r,y)1 ::; p* := 

2(B'PB)-1, the CNF law in Equation(5.173) is capable of driving the sys­
tem controlled output h(k) to track the step command input of amplitude r 
from an initial state Xo, provided that Xo and r satisfy Equation (5.161). <:; 

Proof. Let i = x - Xe. Then, the closed-loop system can be written as 

i(k + 1) = (A + BF)i(k) + Bw(k), (5.174) 

where 

w(k) = sat[Fi(k) + Hr + uN(k)] - Fi(k) - Hr. (5.175) 

Equation (5.161) implies that :To EX •. Define a Lyapunov function 

V(k) = i'(k)Pi(k). (5.176) 

Noting that 

i(k) EX. :::} 1 Fi(k) I::; umax (l - J), (5.177) 

we can evaluate the increment of V(k) along the trajectories of the closed­
loop system in Equation (5.174) as follows: 
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V'V(k + 1) = x'(k + l)Px(k + 1) - x'(k)Px(k) 

= x'(k)(A + BF)'P(A + BF)x(k) - x'(k)Px(k) 

+2x'(k)(A + BF)' PBw(k) + w'(k)B' PBw(k) 

= -x'(k)Wx(k) + 2x'(k)(A + BF)' PBw(k) 

+w'(k)B'PBw(k) (5.178) 

Next, we proceed to find the increment of V(k) for three different cases, as 
done in continuous-time systems. 

If !Fx(k) + Hr + uN(k)1 :s U max , then 

Thus, 

w(k) = uN(k) = pB' P(A + BF)x(k). 

V'V(k + 1) = -x'(k)Wx(k) + 2x'(k)(A + BF)' PBw(k) 

+ w'(k)B' PBw(k) 

= -x'(k)Wx(k) 

(5.179) 

+ px'(k)(A + BF)' PB(2 + pB' PB)B' P(A + BF)x(k). (5.180) 

For any nonpositive p(r,y) with Ip(r,y)1 :s p*, it is clear that the increment 
V'V(k + 1) :s -x'(k)Wx(k) :s O. 

If Fx(k) + Hr + uN(k) > U max , then 1 Fx(k) + Hr 1:S U max implies that 
0< w(k) < uN(k) and per, y) < o. Hence, 

V'V(k + 1) = -x'(k)Wx(k) + 2x'(k)(A + BF)' PBw(k) 

+ w'(k)B'PBw(k) 

= -x'(k)Wx(k) + w'(k)[2p- 1uN(k) + B'PBw(k)] 

< -x'(k)Wx(k) + w' (k)[2p- 1uN(k) + B' PBUN(k)} 

= -x'(k)Wx(k) + w'(k)(2p-l + B' PB)uN(k). (5.181) 

Thus, for aB -p* :s p(r,y) < 0, we have 2p-l + B'PB:S 0, and hence 

V'V(k + 1) :s -x'(k)Wx(k) :s O. (5.182) 

Similarly, for the case when Fx(k) + Hr + uN(k) < -Umax , it can be shown 
that V'V(k + 1) :s -x'(k)Wx(k) :s O. 

Thus, Xo5 is an invariant set of the closed-loop system in Equation (5.174) 
and all trajectories of Equation (5.174) starting from Xo5 will remain there 
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and converge to the origin. This, in turn, indicates that, for all initial states 
Xo and the step command input of amplitude r that satisfy Equation (5.161), 

and 

lim x(k) = Xe, 
k--+oo 

lim y(k) = lim C2x(k) = C2 x e = r. 
k--+oo k--+oo 

(5.183) 

(5.184) 

This completes the proof of Theorem 5.5.4. 

Remark 5.5.4. Theorem 5.5.4 shows that the addition of the nonlinear feed­
back controllaw U N as given in Equation (5.172) does not affect the ability to 
track the dass of command inputs. Any command input that can be tracked 
by the linear feedback law in Equation (5.155) can also be trackBd by the 
CNF control law (5.173). The composite feedback law in Equation (5.173) 
does not reduce the level of the trackable command input for any choice of 
the function p(r,y). This freedom can be used to improve the performance 
of the overall system. The choice of per, y) will be discussed in the coming 
subsection. <> 

ii. Full Order Measurement Feedback Case. We next proceed to con­
struct a discrete-time full order CNF controllaw. 

STEP 5.5.D.F.1: we first construct a linear full order measurement feedback 
controllaw 

f x v(k+1) = (A + KCdxv(k) - Ky(k) + Bsat{uL(k)] 

l uL(k) = F[xv(k) - xe]+Hr 
(5.185) 

where r is the command input, Xv E ]Rn is the state of the controller, 
Fand K are chosen such that A + BF and A + KC1 have an their 
eigenvalues in (:0, i.e., both are stable matrices, and, furthermore, the 
resulting closed-Ioop system has met certain design specifications. As 
usual, we let 

(5.186) 

H = {1 + F(I - A - BF)-l Bj· [C2 (I - A - BF)-l B]-l. (5.187) 

We note that both Xe and H are weIl defined. 
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Lemma 5.5.4. Given a positive definite matrix Wp E jRnxn, let P > 0 be the 
solution to the Lyapunov equation 

P = (A + BF)'P(A + BF) + Wp • (5.188) 

Given another positive define matrix WQ E jRnxn with 

WQ > F'B'P(A + BF)W;I(A + BF)'PBF, (5.189) 

let Q > 0 be the solution to the Lyapunov equation 

Q = (A + KCt}'Q(A + KCt) + WQ • (5.190) 

Note that such P and Q exist as A + BF and A + KCI are asymptotically 
stable. For any 8 E (0,1), let c8 be the largest positive scalar such that for 
all 

(5.191) 

we have 

(5.192) 

The linear controllaw in Equation (5.185) will drive the system controlled 
output h(k) to track asymptotically a step command input of amplitude r 
from an initial state xo, provided that Xo, Xyo = xy(O) and r satisfy: 

IHrl ~ 8· U max and ( Xo - Xe ) E X Fd' 
XyO - Xo 

(5.193) 

Proof. This follows along similar lines to the reasoning given in the proofs 
of Lemmas 5.5.2 and 5.5.3. 0 

STEP 5.5.D.F .2: the discrete-time full order measurement composite non­
linear feedback controllaw is given by 

xy(k + 1) = (A + KCt}xy(k) - Ky(k) + Bsat(u(k)] (5.194) 

and 
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u(k) =F[Xv(k)-xe] +Hr+p(r, y)B' P(A+BF) [Xv(k) -Xe] (5.195) 

where p(r, y) is a nonpositive scalar function, locally Lipschitz in y, and 
is to be chosen to improve the performance of the closed-loop system. 

We have the following result. 

Theorem 5.5.5. Consider the given discrete-time system in Equation (5.153). 
Then, there exists a scalar 0 < p* :::; 2(B' P B)-l such that for any nonpositive 
function p(r, y), locally Lipschitz in y and Ip(r, Y)l :::; p*, the discrete-time 
CNF law in Equations (5.194) and (5.195) will drive the system controlled 
output h(k) to track asymptotically the step command input of amplitude r 
from an initial state xo, provided that xo, Xvo and r satisfy the conditions in 
Equation (5.193). 0 

Proof. The proof of this theorem follows along similar lines to the reasoning 
given in Theorems 5.5.2 and 5.5.4. 0 

iii. Reduced Order Measurement Feedback Case. As in its continuous­
time counterpart, we now proceed to design a reduced order measurement 
feedback controller. For the given system in Equation (5.153), it is clear that 
p states of the system are measurable if Cl is of maximal rank. As such, we 
could design a dynamic controller that has a dynamical order less than that 
of the given plant. We now proceed to construct such a controllaw under the 
CNF control framework. 

For simplicity of presentation, we assurne that Cl is already in the form 

(5.196) 

Then, the system in Equation (5.153) can be rewritten as 

(XI(k+l)) = [All 
x2(k+l) A21 

A12] (XI(k)) + [BI] sat[u(k)] 
A22 x2(k) B2 

y(k) = [ I p 0 ] (XI(k)) 
x2(k) 

(5.197) 

h(k) = C2 (XI(k)) 
x2(k) 

and 

Xo = (~~~) , (5.198) 
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where the original state x is partitioned into two parts, Xl and X2 with y == Xl. 

Thus, we will onIy need to estimate X2 in the reduced order measurement 
feedback design. Next, we let F be <:hosen su<:h that (1) A + BF is asymp­
totkally stable, and (2) C2(sI - A - BF)-l B has the desired properties, and 
let KR be chosen such that A 22 + K RA l2 1s asymptotically stable. Again, it 
follows from Chen {87] that (A22 , A 12 ) is detectable if and only if(A, Cd is 
detectable. Thus, there exists a stabilising KR. Again, such Fand KR can be 
designed using any of the linear control techniques presented in Chapter 4. 
We then partition F in conformity with Xl and X2: 

As defined in Equations (5.186) and (5.186), we let 

and 

H = {1 + F(I - A - BF)-l Bj· [C2(I - A - BF)-l Bj-l. 

The reduced order CNF controller is given by 

and 

xv(k+1) = (A22 +KRA 12 )xv(k) + (B2 + KRBI ) sat[u(k)j 

+ [A21 +KRAu-(A22+KRAI2)KR]Y(k) 

u(k) = F [ (Xv(k) _Y KRY(k)) - xe] + Hr 

+ p(r, y)B' P(A + BF) [ (Xv -Y~~Y(k)) - xe] , 

(5.199) 

(5.200) 

(5.201) 

(5.202) 

(5.203) 

where p(r, y) is a nonpositive scalar function locally Lipschitz in y subject to 
certain constraints to be discussed later. 

Next, given a positive definite matrix W p E lR.nxn , let P > 0 be the solution 
to the Lyapunov equation 

P = (A + BF)'P(A + BF) + W p • (5.204) 

Given another positive define matrix WR E lR.(n-p)x(n-p) with 
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let QR > 0 be the solution to the Lyapunov equation 

(5.206) 

Note that such P and QR exist as A+BF and A22+KRA12 are asymptotically 
stable. For any 8 E (0,1), let Co! be the largest positive scalar such that for 
all 

we have 

(5.208) 

We have the following theorem. 

Theorem 5.5.6. Consider the given system in Equation (5.65). Then, there 
exists a scalar 0 < p* :::; 2(B' P B)-l such that for any nonpositive function 
p(r,y), locally Lipschitz in y and Ip(r,y)1 :::; p*, the reduced order CNF law 
given by Equations (5.202) and (5.203) will drive the system controlled output 
h(k) to track asymptotically the step command input of amplitude r from 
an initial state Xo, provided that Xo, XvO and r satisfy 

( Xo - Xe ) EX 
xvo - X20 - KRXlO RO 

and IHrt:::; 8· umax . (5.209) 

Proof. Again, the proof of this theorem is similar to those given earlier. 0 

5.5.3 Tuning of Nonlinear Feedback Gains 

The freedom to choose the function p(r,y), in both the continuous-time and 
discrete-time system CNF techniques, is used to tune the controllaws so as to 
improve the performance of the closed-Ioop system as the controlled output 
h approaches the set point. Since the main purpose of adding the nonlinear 
part to the CNF controllers is to speed up the settling time, or equivalently 
to contribute a significant value to the control input when the tracking error, 
r - h, is small. The nonlinear part, in general, will be in action when the 
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control signal is far away from its saturation level, and thus it will cause the 
control input to hit its limits. Under such a circumstance, it is straightforward 
to verify that the closed-Ioop system comprising the given continuous-time 
plant in Equation (5.65) and the three different types of controllaw can be 
expressed as 

i = (A + BF)x + pBB' PX, (5.210) 

and the closed-Ioop system comprising the given discrete-time plant in Equa­
tion (5.153) and their CNF controllaws can be expressed as 

x(k + 1) = (A + BF)x(k) + pBB' P(A + BF)x(k). (5.211) 

We note that the additional term per, y) does not afIect the stability of the 
estimators, and in the final stage the difference between the true state and 
the estimated state is almost zero. In fact, the estimation error will always 
be zero if the initial state of the given plant is precisely known. This turns 
out to be the case in the track seeking stage of HDD servo systems. It is 
now clear that eigenvalues of the closed-Ioop systems in Equations (5.210) 
and (5.211) can be changed by changing the function per, y) and, of course, 
when p(r,y) = 0, the closed-Ioop systems are purely linear. In general, we 
choose p( r, y) such that the damping ratio of the closed-Ioop system changes 
as p(r,y) changes without affecting the stability of the closed-Ioop systems. 
It is easy to determine the function per, y) using a root-Iocus plot of the 
closed-Ioop systems respectively on the S or the z plane. 

Since, in general, the function p is more closely related to tracking error, i.e., 
r - h, in most practical situations the tracking error is known and available 
for feedback. As such, we propose the following exponential function for p in 
terms of tracking error: 

per, h) = -1.581980: (e-Il-h/rl - 0.36788) , (5.212) 

where 0: ~ 0 is a tuning parameter. This function per, h) changes from 0 
to -0: as the tracking error approaches zero. At the initial stage, when the 
controlled output his far away from the final set point, 11 - hlrl closes to 1, 
which implies that per, h) is small and the effect of the nonlinear part on the 
overall system is very limited. When the controlled output h approaches the 
set point, 11- hlrl closes to zero and per, h) ~ -0:, and the nonlinear control 
law will become effective. In general, one can play with the parameter 0: to 
yield a desired performance. Finally, we would like to note that in fact the 
limit for the nonlinear tuning function p(r,y), i.e., p*, in both the full order 
and reduced order measurement feedback cases (either in continuous-time 
or discrete-time), can be arbitrarily pre-chosen and then one can select an 
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appropriate WQ (for the full order case) or WR (for the reduced order case) 
to guarantee the stability of the corresponding closed-loop system. We leave 
this as an exercise for interested readers. 

5.6 Can We Beat Time Optimal Control? 

So far, we have presented quite a number of control techniques that can be 
used to design control laws to track certain target references for systems 
with actuator saturations. The TOC technique is believed to be non-robust 
to system uncertainties and noise, and thus cannot be used in tackling real 
problems. Unfortunately, it has also been regarded as a method that would, 
at least theoretically, yield the best performance in terms of settling time. 

Can we design a control system that would beat the performance of the TOC? 
Obviously, the answer to this quest ion is no if it is required to have a precise 
point-to-point tracking, i.e., to track a target reference precisely from a given 
initial point. However, surprisingly, the answer would be yes if we consider 
an asymptotic tracking situation, i.e., if we consider the settling time to be 
the total time that the controlled system output takes to get from its initial 
position to reach a predetermined neighbourhood of the target reference. The 
reason that we are interested in this issue is that asymptotic tracking is widely 
used in almost all practical situations. 

In what follows, we will show the above observation in an example. Let us 
consider a system characterised a double integrator, i.e., 

x=[~ ~]x+[~]sat(u), y=x, h=[l O]x, (5.213) 

where as usual x is the state, u is the input, and y and h are respectively the 
measurement and controlled outputs. Moreover, we assurne that 

sat(u) = sgn(u) . min{ 1, lul}. (5.214) 

Let the initial state x(O) = ° and the target reference r = 1. Then, it follows 
from Equation (5.22) that the minimum time required for the controlled 
output to reach precisely the target reference under TOC control is exactly 
2 s. Let us now consider an asymptotic tracking situation instead. As is 
commonly accepted in the literature (see e.g., [65]), we define the settling 
time to be the total time that it takes for the control output h to enter the 
±1% region ofthe target reference. The following controllaw, obtained from 
a variation form of the CNF control technique, would give a faster settling 
time than that of the TOC, 
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u = [ -6.5 -1] x + 6.5 r 

- (e-[l-h[ - 0.36788) (1.4481 10.8609] (x - [~]). (5.215) 

Figures 5.7 and 5.8 respectively show the resulting controlled output re­
sponses and the control signals of the TOC and the modified CNF control. 
The resulting output response of the modified CNF control has an overshoot 
less than 1%. However, ifwe zoom in on the output responses (see Figure 5.9), 
we will see that the modified CNF control dearly has a faster settling time 
than that of the TOC when it enters the target region, i.e., 0.99 ::; h ::; 1.01. 
It can be computed that the modified CNF control has a settling time of 
1.8453 s whereas the TOC has a settling time of 1.8586 s. Although the dif­
ference is not much, since we have not tried to optimise the solution of the 
modified CNF control, it is, however, significant enough to address one in­
teresting issue: there are controllaws that can achieve a faster settling time 
than that of the TOC in asymptotic tracking situations. It can also be shown 
that, no matter how small the target region is, say 1 ± € for any small € > 0, 
we can always find a suitable controllaw that beats the TOC in settling time. 
Nonetheless, we believe that it would be interesting to carry out some further 
studies in this subject. 
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Figure 5.7. Controlled output responses of TOC and modified CNF control. 
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CHAPTER6 

TRACK FOLLOWING OF A SINGLE-STAGE 
ACTUATOR 

6.1 Introduction 

The prevalent trend in hard disk design is towards smaller hard disks with 
increasingly larger capacities. This implies that the track width has to be 
smaller, leading to lower error tolerance in the positioning of the head. The 
controller for track following has to achieve tighter regulation in the control 
of the servomechanism. Current HDDs use a combination of classical control 
techniques, such as lead-lag compensators, PID compensators, and notch 
filters. These classical methods can no longer meet the demand for HDDs of 
higher performance. Thus, many control approaches have been tried, such as 
LQG and/or LTR approach (see e.g., [18, 19]), and adaptive control (see e.g., 
[27]) and so on. 

The purpose of this chapter is to use the result of the RPT control method 
of Chapter 4 to carry out a design of a track following controller for an HDD 
with a single VCM actuator. We will first obtain a model of the VCM actuator 
and then cast the overall track following control system design into an RPT 
design framework. A first-order dynamic measurement feedback controller is 
then designed to achieve robust and perfect tracking for any step reference. 
Our controller is theoretically capable of making the Lp-norm of the resulting 
tracking error with 1 ~ P < 00 arbitrarily small in faces of extern al distur­
bances and initial conditions. Some trade-offs are then made in order for the 
RPT controller to be implementable using the existing hardware setup and 
to meet physical constraints such as sampling rates and the limit of control of 
the system. The implementation results of the RPT controller are compared 
with those of a PID controller. The results show that our design is simpler 
and yet has faster settling times, lower overshoot and higher accuracy. As 
will be seen shortly, the control system with the RPT controller is highly 
robust with respect to the variances of resonant frequencies and runout dis­
turbances. It also yields a better position-error-signal (PES) test compared 
with that of the PID control. The results presented in this chapter are rooted 
in earlier work reported in [3} (see also [44]). However, all the results in this 
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chapter are obtained using a new HDD, namely a Maxtor (Model 51536U3) 
HDD. 

6.2 VCM Actuator Model 

In this section, we present the modelling of the VCM actuator, which is weH 
known in the research community of the HDD servo systems to have a charac­
teristic of a double integrator cast with some high-frequency resonance, which 
can reduce the system stability if neglected. There are some bias forces in 
the HDD system that will cause steady-state errors in tracking performance. 
Moreover, there are also some nonlinearities in the system at low frequen­
cies, which are primarily due to the pivot and bearing frictions. All these 
fadors should be taken into consideration when considering the design of 
a controller for the VCM actuator. Für the purpose of developing a model, 
we have to compromise between accuracy and simplicity. In this section, a 
relatively simplified model of the VCM actuator is identified and presented. 

The dynamics of an ideal VCM actuator can be formulated as a second-order 
state space model as follows: 

(6.1) 

where u is the actuator input (in volts), y and v are the position (in tracks) 
and the velo city of the R/W head, ky is the position measurement gain and 
kv = kt!m, with kt being the current-force conversion coefficient and m being 
the mass of the VCM actuator. Thus, the transfer function of an ideal VCM 
actuator model appears to be a double integrator, i.e., 

( kvky 
Gvl s) = -2-. 

S 
(6.2) 

However, if we also consider the high-frequency resonance modes, a more 
realistic model for the VCM actuator should be 

(6.3) 

The frequency characteristics of the Maxtor (Model 51536U3) HDD have 
been obtained using an LDV and an HP Dynamic Signal Analyser. The ac­
tual frequency response is shown in Figure 6.1. Applying the least squares 
estimation identification method given in Chapter 2 (see also [13, 37J) to the 
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measured data from the actual system, we obtain a fourth-order model for 
the actuator: 

6.4013 X 107 2.467 X 108 

GAs) = S2 S2 + 2.513 X 103s + 2.467 X 108 • 
(6.4) 

Figure 6.1 shows that the frequency response of the identified model matches 
the measured data very weH for the frequency range from 0 to 1.8 kHz, which 
far exceeds the working range of the VCM actuator. 
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Figure 6.1. Frequency responses ofthe actual and identified VCM actuator models. 

6.3 Track Following Controller Design 

We now present the control system design for the actuator identified in the 
previous section. Basically, the majority of commercially available HDD servo 
systems todate are designed using a conventional PID approach. For drives 
with a single VCM actuator, designers would encounter problems if they 
wished to push up the track following speed. U sually, there will be some 
huge peak overshoot in step response. Thus, in practice, one would have to 
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make trade-offs between the track following speed and overshoot by selecting 
appropriate PID controller gains. We formulate our control system design 
as an RPT control problem. Such an approach will enable the designer to 
design a very low-order controllaw, and, moreover, the resulting dosed-Ioop 
system will have fast track following speed and low overshoot as weIl as strong 
robustness. 

We will design a control system that meets the following design specifications: 

1. the control input should not exceed ±3 V owing to physical constraints 
on the actual VCM actuator; 

2. the overshoot and undershoot of the step response should be kept less 
than 5% as the RjW head can start to read or write within ±5% of the 
target; 

3. the 5% settling time in the step response should be as fast as possible; 

4. sampling frequency in implementing the actual controller is 10 kHz. 

From the experience that we gained in designing PID controllers, we know 
that it is quite safe to ignore the resonance models of the VCM actuator 
if we are focusing on tracking performance. Thus, we will consider only a 
second-order model for the VCM actuator at this stage. We will then put 
the resonance modes back when we are to evaluate the performance of the 
overall design. Thus, in our design, we will first use the following simplified 
model of the VCM actuator: 

(6.5) 

and 

y=C1x=[10]x. (6.6) 

Next, we define the output to be controlled as 

(6.7) 

Consider the reference r(t) to be a step function with a magnitude Ct, i.e., 
r(t) = Ct • l(t), where l(t) is a unit step function. Then, we have 

r(t) = Ct· J(t), (6.8) 
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where 8(t) is a unit impulse function. Following the results of Chapter 4, we 
obtain a corresponding auxiliary system: 

[~ 
0 0] [ 0 ] m x= 0 1 x + 0 u+ w 
0 o 6.4013 X 107 

Y = [~ 0 ~] x [~] w 1 + 
(6.9) 

e = [-1 1 0] x + 0 u 

wh€re 

x=(:), w=a·8(t), y=(~), e=h-r. (6.10) 

It is simple to see that (A, B, C2 , D 2 ) is invertible and free of invariant zeros, 
and Ker (Cl) = Ker (C2 ). Hence, it follows from the result of Chapter 4 that 
the RPT performance is achievable. Following the results of Chapter 4, one 
can show that there exists a family of measurement feedback control laws, 
parameterised by a tuning parameter c, such that when it is applied to the 
given VCM actuator: 

L the resulting closed-loop system is asymptotically stable for sufficiently 
small C; and 

2. for any given initial condition Xo and any p E [1, (0), the lp-norm of the 
resulting tracking error e has the property Iiellp -+ 0, as c -+ O. 

Following the construction algorithm for the reduced order RPT controller 
in Chapter 4, we obtained a parameterised first-order measurement feedback 
control law of the form 

with 

ARC(c) = -7345.8/c 

B RC (c) = 12 [ 4.975 X 106 -3.4358 x 107 ] 
c 

CRC(c) = -5.2267 X 1O-5 /c 
1 

DRc( c) = 2" [0.0777 -0.2868]. 
c 

(6.11) 

(6.12) 
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The results in Figure 6.2 were obtained using the MATLAB package. They 
clearly show that the RPT -problem is solved as we tune the tuning param­
eter c to be smaller and smaHer. Unfortunately, owing to the constraints 
of the physical system, i.e., the limits in control inputs and sampling rates, 
as weH as resonance modes, it is impossible to implement a controller that 
will track the reference with zero time. We would thus hav€ to make some 
compromises in the track following speed because of these limitations. Af­
ter several trials, we found that the contmller parameters of Equation (6.12) 
with c = 1 would give us a satisfactory performance. We then discretise it 
using a bilinear transformation with a sampling frequency of 10 kHz. The 
discretised controller obtained using the bilinear transformation technique 
(see Chapter 3) is given by 

{ 
xv(k+ 1) = 0.46275 xv(kj + 363.88 r(k) - 2512.9 y(k) 

(6.13) 
u(k) = -3.8227x 10-5 xv(k) + 0.0682 r(k) - 0.2211 y(k) 

Figure 6.3 shows that the step response of the overall system, comprising 
the fourth-order model of the VCM actuator {we now put the resonance 
modes back into the VCM actuator model) and the discretised RPT con­
troller, meets the design specifications. In actual HDD manufacturing, the 
resonant frequency Wn ofthe VCM actuator, see Equation (6.4), for the same 
batch of drives might vary from one to another. A common practice in the 
disk drive industry is to add some notch filters in the servo system to at­
tenuate these resonant peaks as much as possible. Surprisingly, our RPT 
controller is capable of withstanding the variation of resonance frequencies 
as weIl. Figure 6.4 shows the step responses of the closed-loop systems of our 
RPT controller and the VCM actuator model with two different resonant fre­
quencies: one is ß = 75% of the nominal value, and the other is ß = 150% of 
the nominal resonant frequency. The results show that the RPT controller is 
very robust with respect to the change of resonant frequency in the actuator. 

Although we do not consider the effects of runout disturbances in our problem 
formulation, it turns out that our simple first-order controller is capable of 
rejecting the first few modes of the runout disturbances, which are mainly 
due to the imperfectness of the data tracks and the spindle motor speeds, 
and commonly have frequencies at the multiples of about 55 Hz. We simulate 
these runout effects by injecting a sinusoidal signal into the measurement 
output, i.e., the new measurement output is the sum of the actuator output 
and the runout disturbance. Figure 6.5 shows the simulation result of the 
output response of the overall control system comprising the fourth-order 
model of the VCM actuator model and the discretised RPT controller with 
a fictitious runout disturbance injection 

w{t) = 0.5 + 0.1 cos(l101ft) + 0.05 sin(2201ft), (6.14) 
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Figure 6.3. Closed-loop step response with discretised RPT controller. 

and a zero reference r(t). The result shows that the effects of such a distur­
bance on the overall response are minimal. A more comprehensive test on 
runout disturbances, i.e., the position error signal (PES) test on the actual 
system will be presented in the next section. 

6.4 Implementation Results 

In this section we present the actual implementation results of our design 
and their comparison with those of a PID controller. Two major tests are 
presented: one is the track following of the closed-loop systems and the other 
is the PES test, which is considered to be a major factor in the design of 
HDD servo systems. Our controller was implemented on an open HDD with 
a sampling rate of 10 kHz. Closed-loop actuation tests were performed using 
an LDV to measure the R/W head position. The resolution used for LDV was 
2/1 rn/V. This displacement output is then fed into the DSP, which would 
then generate the necessary control signal to the VCM actuator. A DSA 
was used to assist in obtaining the frequency response of the overall control 
system. It can inject a swept sinusoidal reference signal, then read the output 
displacement from the LDV and calculate the frequency Bode plot using this 
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information. Altogether, two sets of experiment were performed, one using 
the RPT controller and the other using a finely tuned PID controller. 

6.4.1 Track Following Test 

The solid-line curve in Figure 6.6 shows the experimental step response of the 
RPT controller. In this figure, the response of the RPT controller is shown 
together with that of a PID controller as a comparison. The 5% settling time 
is about 1.35 ms, which surely meets the design specifications. 

The dotted-line curve in Figure 6.6 shows the step response of the PID con­
troller (again using a 10 kHz sampling rate). The PID controller had the usual 
structure and was finely tuned such that it could have a fast time response. 
It is given by 

_ 0.23z - 0.2156 ( _ ) 
u - z _ 0.091 r y. (6.15) 

Unfortunately, the overshoot of the controller is rather high, about 25%, and 
this is the result of trading improved settling time at the expense of higher 
overshoot. To achieve a settling time of 4-5 ms, it is necessary to tune the 
PID controller such that the overshoot is significant. The 5% settling time 
for the PID control is about 4.8 ms, which is significantly larger than that 
of the RPT controI. Nonetheless, this PID control law yields a much better 
performance compared with that reported in [3]. 

We believe that the shortcoming of the PID contro} is mainly due to its 
structure, i.e., it only feeds in the error signal, y - r, instead of feeding 
in both y and r independently. We trust that the same problem might be 
present in other control methods if the only signal fed is y - r. The PID 
control structure might weIl be as simple as most researchers and engineers 
have claimed. However, our RPT controller is even simpler, i.e., the RPT 
controller is of the first order and the PID controller is of the second order, 
but we have fully utilised all available information associated with the actual 
system. 

Unfortunately, we could not compare our results with those of other methods 
mentioned in the chapter introduction. Most of the references we found in 
the open literature contained only simulation results in this regard. Some of 
implementation results we found were, however, very different in nature. For 
example, Hanselmann and Engelke [18] reported an implementation result of 
a disk drive control system design using the LQG approach with a sampling 
frequency of 34 kHz. The overall step response in [18} with a higher-order 
LQG controller and higher sampling frequency is worse than that of ours. 
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6.4.2 Position Error Signal Test 

The disturbances in areal HDD are usually considered as a lumped dis­
turbance at the plant output, also known as runouts. Repeatable runouts 
(RROs) and nonrepeatable runouts (NRROs) are the major sources of track 
following errors. RROs are caused by the rotation of the spindle motor and 
consists of frequencies that are multiples of the spindle frequency. NRROs 
can be perceived as coming from three main sources: vibration shocks, me­
chanical disturbance and electrical noise. Static force due to flex cable bias, 
pivot-bearing friction and windage are all components of the vibration shock 
disturbance. Mechanical disturbances include spindle motor variations, disk 
flutter and slider vibrations. Electrical noises include quantisation errors, 
media noise, servo demodulator noise and power amplifier noise. NRROs are 
usually random and unpredictable by nature, unlike repeatable runouts. They 
are also of a lower magnitude (see e.g., [1]). A perfect servo system for HDDs 
should reject both the RROs and NRROs. 

In our experiment, we have simplified the system somewhat by removing 
many sources of disturbances, especially that of the spinning magnetic disko 
Therefore, we actually have to add the runouts and other disturbances into 
the system manually. Based on previous experiments, we know that the 
runouts in real disk drives are composed mainly of RROs, which are ba­
sically sinusoidal with a frequency of about 55 Hz, equivalent to the spin rate 
of the spindle motor. By manually adding this "noise" to the output while 
keeping the reference signal at zero, we can then read off the subsequent po­
sition signal as the expected PES in the presence of runouts. In disk drive 
applications, the variations in the position of the R/W head from the centre 
of the track during track following, which can be directly read off as the PES, 
is very important. Track following servo systems have to ensure that the PES 
is kept to aminimum. Having deviations that are above the tolerance of the 
disk drive would result in too many read or write errors, making the disk 
drive unusable. A suitable measure is the standard deviation of the readings, 
o-pes. A useful guideline is to make the 3o-pes value less than 10% of the track 
pitch, which is about 0.1 /-Lm for a track density of 25 kTPI. 

Figures 6.7 and 6.8 show the tracking errors of the RPT controller and PID 
controller respectively, under the disturbance of the runouts. The 30-pes value 
is about 0.029 /-Lm for the RPT controller, and about 0.063 /-Lm for the PID 
controller. Again, the RPT controller does better than the PID one in the 
PES test. 

In conclusion, the RPT controller has a much better performance in track 
following and in the PES tests compared with that of the PID controller. 
The RPT controller utilised is first order. This is one order lower in com­
parison with the PID controller and would allow for quicker execution of the 
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DSP codes during implementation. This would be an important considera­
tion when the sampling rate of the disk drive servo is pushed higher to meet 
the increasing demands on the servo performance. The current results can be 
furt her improved if we used a better VCM actuator and arm assembly, with 
a higher resonance frequency. The control input limit has not been reached, 
and, theoretically, we should be able to tune the controller to achieve even 
faster settling time, and higher servo bandwidths. 
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CHAPTER7 

SINGLE-STAGE ACTUATED SERVO SYSTEMS 

7.1 Introduction 

In this chapter, we proceed to address one of the key issues of this book -
the design of complete single-stage HDD servo systems that meet the two 
most important requirements for HDDs, i.e., a high-speed seeking perfor­
mance, and a highly accurate head-positioningjsettling performance. We will 
utilise the nonlinear control techniques reported in Chapter 5 and the linear 
techniques reported in Chapter 4 to carry out the design of three different 
types of servo system for a Maxtor HDD with a single VCM actuator. More 
specifically, we will design the servo systems using the conventional PTOS 
approach, the CNF control technique, and the MSC system with PTOS and 
RPT controllers. As will be seen shortly, the CNF technique will yield the 
best performance compared with those of the other two approaches. This is 
due to the fad that there is no switching element involved in the CNF design. 

As in the previous chapter, a Maxtor (Model 51536U3) HDD will be used 
to implement our design. The actual frequency response and the identified 
model are shown once more in Figure 7.1 for the sake of easy reference. The 
frequency domain model has been identified earlier in Chapter 6 and is given 
by 

6.4013 X 107 2.467 X 108 

Gv (8) = 82 82 + 2.513 X 1038 + 2.467 X 108 . 
(7.1) 

As mentioned earlier, it is a common practice in the design of HDD servo 
systems to approximate the VCM actuator model as a double integrator 
with an appropriate DC gain. Such an approximation simplifies the overall 
design procedure a great deal. Most importantly, it works very weIl, since, 
in general, we do not want to excite the resonant modes in the closed-Ioop 
system. However, in order to make our design more realistic, all our simulation 
results will be done using the fourth-order model. The final implement at ion 
is, of course, to be carried out on the actual system. 

The following state-space model will be used throughout our design: 
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Figure 7.1. Frequency responses of the actual and identified VCM actuator models. 

(7.2) 

where y and v are respectively the position of the VCM actuator head in 
micrometres and velocity in micrometres per second, and u is the control 
input in volts. In general, the velocity of the VCM actuator in the actual 
system is not available, and thus y will be the only measurable state. For this 
particular system, the controlled output is also the measurement output, i.e., 

h = y = [1 O]x. (7.3) 

Our objective is to design a servo controller that meets the following physical 
constraints and design specifications: 

1. the control input should not exceed ±3 V owing to physical constraints 
on the actual VCM actuator; 

2. the overshoot and undershoot of the step response should be kept less 
than 0.05 11m, 5% of one track pitch. We note that the R/W head can 
start writing data on to the disk when it is within 5% of one track pitch 
of the target. 
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As mentioned earlier, three different approaches, namely the PTOS method, 
the MSC method and the CNF method, will be presented in the following to 
design appropriate servo systems for the given HDD. We will carry out con­
trol system design for each method first. All simulation and implementation 
results, as well as their comparison will be discussed in the last section. 

7.2 Servo System with PTOS Control 

We present in this section the design and implementation of an HDD servo 
system using the PTOS approach (see Chapter 5). The first step is to find 
the state feedback gains k1 and k2 in the PTOS control law based on the 
design specifications. To get specifications in terms of required closed-Ioop 
poles we need natural frequency Wn and the damping ratio (. Let us choose 
the natural frequency to be 1067 radis, i.e., 170 Hz, and the damping factor 
to be 0.898 so as to have an acceleration discount factor CI-: of 0.62, which will 
yield a reasonably good performance for seek lengths up to 300 f.Lm. It follows 
from Equation (5.32) that a PTOS controllaw with such a discount factor will 
only increase the total tracking time by about 13.5% from that required in the 
TOC. Interested readers are referred to [29, 106, 107] for detailed information 
on the selection of these parameters. Note that the relation between the 
damping ratio ( and the acceleration discount factor in PTOS control law is 
given by (see [29]) 

1 
CI-: = 2(2. (7.4) 

Then, the corresponding 8-plane closed-loop poles are 

81,2 = -959.19 ± j469.98. (7.5) 

Using the m-function acker in MATLAB, we obtain the following feedback 
gains 

k1 = 0.0178 and k2 = 2.997 X 10-5 , (7.6) 

and the length of the linear region in PTOS can be found from Equation 
(5.31) and is given by YR = 168.32 f.Lm. Thus, the PTOS controllaw for our 
disk drive is as follows: 

_ (kz[!p(e) - v]) 
U - U max . sat , 

U max 
(7.7) 
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where 

{ 
~: e, for lei:::; Yc, 

fp(e) = ~ 

sgn(e) l J2umaxaa I e I - U;;x] , for lei> Yc, 

(7.8) 

with 

a = 6.4013 x 107 , k1 = 0.0178, k2 = 2.997 X 10-5 , (7.9) 

and 

Ye = 168.32, a = 0.62. (7.10) 

The advantage of this control scheme is that it is quite simple to understand. 
The implement at ion of such a controller requires an estimation of the VCM 
actuator velocity (with the estimator pole being placed at -4000). The simu­
lation and implement at ion results of the above design will be given in Section 
7.5. 

7.3 Servo System with MSC 

In this section, we will apply the MSC method of Chapter 4 to our com­
mercial disk drive model. The MSC scheme uses the proximate time-optimal 
controller in the track seeking mode, and the RPT controller in the track 
following mode. We note that in MSC, initially, the plant is controlled by 
the seeking controller and at the end of seeking mode a switch changes it 
to a track following controller. In [102], the mode switching was done after 
finding the optimal mode switching conditions such that the impact of the 
initial values on settling performance was minimised. But the impact of the 
resulting control signal on the resonance modes was not considered. It has 
been shown [44, 84] that the RPT controller is independent of these initial 
values. The optimal mode switching conditions in our scheme can just be set 
such that the control signal is small enough so as not to excite the resonance 
vibrations. The problem of unmodelled mechanical resonance can be treated 
more rigorously by using either minimising the jerk as defined by Ildu/dtll2 as 
reported in [108] or by using a method developed in the frequency domain in 
[109]. However, by utilising the features of RPT control, such as it works for 
a wide range of resonance frequencies (see Chapter 6), the mode switching 
conditions can be determined in a very simple way (see Chapter 5). 
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We now move to present an MSC controller forthe HDD with a single VCM 
actuator. The control law in track seeking mode (here we label its control 
signal as up ) is given byEquation (7.7), as this mode uses the PTOS control. 
The controllaw in the track following mode, i.e., the reduced-order measure­
ment feedback RPT control law, is given by 

with 

ARc = -8410.8 

BRC = [7.9952 X 106 -4.1367 x 107 ] 

eRC = -6.8905 x 10-5 

DRC = [0.1249 -0.4005]. 

~7.1l) 

(7.12) 

Next we find the mode switching conditions as defined in Equation (5.62). 
Using the RPT controller parameters, and following the results of Chapter 5, 
the mode switching conditions can be determined as le(h)1 :::; 2 J.lm < Yl = 
168.32 J.lm and Iv(tdl :::; 2703 J.lm/s. We select the MSC law 

t < h, 
(7.13) 

in which h is chosen such that 

I yetI) - r I = 2 J.lm and I V(tl) I :::; 2703 J.lm/s. (7.14) 

The overall closed-loop system comprising the given VCM actuated HDD and 
the MSC controllaw will be asymptotically stable. For easy comparison, the 
simulation and implementation of the overall system with the MSC control 
law will again be presented in Section 7.5. 

7.4 Servo System with CNF Control 

We now move to the design of a reduced order continuous-time compos­
ite nonlinear control law as given by Equations (5.143) and (5.144) for the 
commercial hard disk model shown in Figure 7.1. A similar result using the 
discrete-time CNF method has also been reported [110]. The design can be 
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achieved by following the procedure given in Chapter 5. Practically, the de­
sign procedure is not as complex as explained in Chapter 5. The simplified 
procedure is as folIows. 

1. Determine astate feedback gain matrix F using any appropriate method 
(see e.g., linear control techniques in Chapter 4) to have a stable and a 
quick rising time with a control input that is below saturation. 

2. Compute the matrix Ge and the steady-state Xe to determine the feed 
forward gain G r (see CNF control in Chapter 5). 

3. Select an appropriate Wp > 0 and solve the following Lyapunov equation: 

(A + BF)'P + P(A + BF) = -Wp • (7.15) 

4. Select a nonlinear tuning function p(r, h), where rand h are the step 
command input and the system controlled output respectively. 

5. Determine an appropriate value of a such that the eigenvalues of matrix 
A + B(F - aB' P) have a large damping ratio and hence the output 
response will have a small overshoot. 

As the controllaw depends on the size of the step command input, we derive, 
for our HDD model given by Equation (7.2), the following parameterised state 
feedback gain F(c): 

_ 1 [47f2 P 
F(c) - - 6.4013 X 107 E2 47f:(] . (7.16) 

The eigenvalues of A + BF(c), are placed at (-( ±j~)27ff/c. As in 
Chapter 5, we select the non linear tuning function as folIows, 

p(r, h) = -1.58198a (e-Il-hjrl - 0.36788) . (7.17) 

Following the design procedure given in Chapter 5 and the physical properties 
of the given system, we choose a low damping ratio of ( = 0.3 and f = 350, 
which corresponds roughly to the normal working frequency range of the 
linear part of the CNF control law with c = 1. 

Here we note that c is a tuning parameter, which can be tuned with respect 
to the amplitude of the command reference r, i.e., it can be tuned so that 
the given command reference can be tracked by the CNF controller. a is 
another tuning parameter, which is to be adjusted to yield a smooth response 
when the controlled output is approaching the target reference. Both tuning 
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parameters can be tuned with respect to the amplitude of the target reference 
r. Based on simulation, we come out with a set of best tuned values for E and 
a. The results are given in Table 7.1. Using the least squares linear fitting 
technique, we obtain 

and 

E = { 0.0594r + 1.0805, 

0.0019r + 2.2062, 

a = { 0.0515r + 1.0756, 

O.OOOlr + 0.8259, 

1:::; r < 20 f.1m, 

20 :::; r :::; 300 f.1m, 

1:::; r < 20 f.1m, 

20 :::; r :::; 300 f.1m. 

Table 7.1. Tuning parameters c; and Q versus track seek lengths. 

r (f.-tm) E Q 

1 1.0000 1.00 
2 1.1864 1.28 
5 1.4894 1.40 
10 1.7949 1.55 
20 2.1875 1.55 
50 2.3333 1.5.9 
100 2.3333 1.59 
150 2.5926 1.59 
200 2.6923 1.59 
250 2.5926 1.59 
300 2.7559 1.59 

(7.18) 

(7.19) 

Based on these functions of the tuning parameters E and a, and following the 
procedure given in Chapter 5 with KR = -4000, we obtain a reduced order 
CNF controllaw as folIows: 

Xv = -4000xy -1.6 x 107 y + 6.4013 X 107 sat (u), (7.20) 

and 

u = /'l,2Xv + (/'l,i + 4000/'l,2)y - /'l,ir 

+ p(r, h>[/'l,3XV + (4000/'l,3 - /'l,dY + /'l,i r ] , (7.21) 

where p(r,h) is as given in Equation (7.17), 
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0.0755 2.0613 x 10-5 5.7257 X 10-5 
1\;1 = ---- 1\;2 = , 1\;3 = ------c2 tee (7.22) 

Again, the simulation and implementation results of the servo system with the 
CNF controllaw will be presented in the next section for an easy comparison. 

7.5 Simulation and Implementation Results 

Now, we are ready to present the simulation and implementation results for 
all three of the servo systems discussed in the previous sections and do a 
full-scale comparison on the performances of these methods. In particular, 
we will study the following tests: 

1. track seeking and following test; 

2. runout disturbance test; and 

3. PES test. 

All simulation results presented in this section have been obtained using 
SIMULINK in MATLAB and all implementation results are carried out using our 
own experimental setup as described in Chapter 1. The sampling frequency 
for actual implementation is chosen as 10 kHz. Here, we note that all our 
controllers are discretised using the ZOH technique. As will be seen shortly, 
the HDD servo system with the CNF contral law yields the best results in 
all the categories. 

7.5.1 Track Seeking and Following Test 

In our simulation and implementation, we use a track pitch of 1 Jlm for 
the HDD. In what folIows, we present results for four selected track seek 
lengths (SL), i.e., 8L = 1,50,100 and 300 Jlm. Unfortunately, owing to the 
capacity of the LDV that has been used to measure the displacement of the 
RjW head of the VCM actuator, the absolute errors of our implement at ion 
results given below are 0.05, 0.1, 0.2 and 0.5 Jlm for 8L = 1,50,100 and 
300 Jlm, respectively. As such, the settling time for both implementation and 
simulation results is defined as the total time required for the RjW head to 
move from its initial position to the entrance of the region of the final target 
with plus and minus the respective absolute error. This is the best we can do 
with our current experimental setup. Nonetheless, the results we obtain here 
should be sufficient enough to illustrate our design ideas and philosophy. 
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PTOS: Figures 7.2 and 7.3 show the normalised response of the closed-loop 
system for the servo system with the PTOS control. The results in Figure 7.2 
were obtained using SIMULINK, whereas those in Figure 7.3 are experimental 
results obtained from the actual system. Note that all results were obtained 
hy replacing the velocity by a first-order estimator with its estimator pole 
heing placed at -4000. 

MSC: similarly, the simulation results using the MSC control law are shown 
in Figure 7.4 and the implementation results of the MSC servo system are 
shown in Figure 7.5. 

CNF: lastly, the simulation results for the servo system with the CNF control 
law are shown in Figure 7.6, and the corresponding implement at ion results 
are shown in Figure 7.7. 

We now summarise the overall results on settling times and percentages of 
improvement in Table 7.2. 

Table 7.2. Simulation and implementation: settling time and improvement. 

(a) settling times 

Seek Settling time (ms) 
length Simulation Implementation 

(p,m) PTOS MSC CNF PTOS MSC CNF 
1 3.75 1.15 0.96 - 1.25 1.20 

50 5.50 5.00 3.70 6.50 6.00 4.60 
100 5.50 5.30 3.70 6.50 6.50 4.60 
3GO 5.70 5.70 4.40 6.70 7.20 5.30 

(b) percentage improvement 

Seek Improvement vs PTOS (Y,) 

length Simulation Implementation 
(p,m) MSC CNF MSC <:NF 

1 69 74 - -
50 9 33 8 29 
100 4 33 0 29 
300 0 23 -7 21 

Clearly, the simulation and implementation results show that the servo sys­
tem with the CNF controller has the best performance. We believe that this 
is due to the fact that the CNF control law unifies the nonlinear and linear 
components without switching, whereas the other two servo systems involve 
switching elements between the nonlinear and linear parts, which degrades 
the overall performance. 
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7.5.2 Runout Disturbance Test 

We now study the effects of runout disturbances on our servo systems. As 
pointed out in Chapter 6, runout disturbances are mainly generated by the 
imperfectness of the data tracks ana the spindie motor speeds. In order to 
test the robustness of the servo systems against runout disturban<:es, this 
time we inject a fictitious runout signal, which is the same as that in Chapter 
5, into the actual system (the corresponding results of Chapter 6 were based 
on simulation). The implementation results for the servo systems with the 
PTOS, MSC and CNF controllaws are respectively given in Figures 7.8, 7.9 
and 7.10. The standard deviations of tue error signals are respectively 0.0161, 
0.0084 ana 0.008l. Again, the servo system with the CNF controllaw yields 
the best performance in this test. 
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Figure 1.8. Implementation result. Response to a runout disturbance (PTOS). 

7.5.3 Position Error Signal Test 

As pointed out in Chapter 6, the PES test is important in designing HDD 
servo systems as its 3apes value is directly related to the best achievable track 
density of HDDs. Figures 7.11 , 7.12 and 7.13 show the histograms of the 
PES tests for the servo systems with tue PTOS, MSC and CNF controllaws 
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respectively. The 3o-pes values of these tests are respectively 0.0483, 0.0252 
and 0.0243. The last two servo systems in principle are capable of achieving 
a track density greater than 80 kTPI. 
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CHAPTER8 

DESIGN OF A PIEZOELECTRIC ACTUATOR 
SYSTEM 

8.1 Introduction 

We present in this chapter a case study on a piezoelectric bimorph actuator 
control system design using an H oo optimisation approach, which was origi­
nally reported by Chen et al. [20]. Piezoelectricity is a fundamental process 
in electromechanical energy conversion. It reiates electric polarisation to me­
chanical stress/strain in piezoelectric materials. Under the direct piezoelectric 
effect, an electric charge can be observed when the materials are deformed. 
The converse, or the reciprocal piezoelectric effect, is when the application 
of an electric field can cause mechanical stress/strain in the piezo materi­
als. There are numerous piezoelectric materials available today, including 
P ZT (lead zirconate titanate), PLZT (lanthanum modified lead zirconate ti­
tanate), and PVDF (piezoelectric polymeric polyvinylidene fluoride) to name 
a few (see Low and Guo [111]). 

Piezoelectric structures are widely used in applications that require electri­
cal to mechanical energy conversion coupled with size limitations, precision, 
and speed of operation. Typical examples are microsensors, micropositioners, 
speakers, medical diagnostics, shutters and impact print hammers. Lll most 
applications, bi morph or stack piezoelectric structures are used because of 
the relatively high stress/strain to input electric field ratio (see Low and Guo 
[111]). 

The present work is motivated by the possibility of applying piezoelectric 
microactuators in magnetic recording. A dual-stage actuated HDD was suc­
cessfully demonstrated by Tsuchiura et al. [112] of Hitachi. In [112], a fine 
positioner based on a piezoelectric structure was mounted at the end of a 
primary VCM stage to form the dual actuator. The higher bandwidth of the 
fine positioner allowed the R/W heads to be positioned accurately. There 
have been other instances where electromagnetic [113] and electrostatic [114] 
microactuators have been used for fine positioning of R/W heads. Since then, 
many research studies have been done along this line. More detailed infor­
mation ab out HDD servo systems with a dual-stage actuator will be found 
in Chapter 9. 



204 Rard Disk Drive Servo Systems 

The focus of this chapter is to concentrate on the control issues involved in 
dealing with the nonlinear hysteresis behaviour displayed by most piezoelec­
tric actuators. More specifically, we consider a robust controller design for a 
piezoelectric bimorph actuator as depicted in Figure 8.1. A scaled-up model 
of this piezoelectric actuator, which is targeted for use in the secondary stage 
of a future dual actuator for magnetic recording, was actually built and mod­
elled by Low and Guo [111]. It has two pairs of bimorph beams which are 
subjected to bipolar excitation. The dynamics of the actuator were identified 
in [111] as a second-order linear model coupled with a hysteresis. The linear 
model is given by 

4 

3 

2 

1 

I-base; 2-piezoelectric bimorph beams; 3-moving plate; and 4-guides 

Figure 8.1. Structure of the piezoelectric bimorph actuator. 

(8.1) 

where m, b, k and d are the tangent mass, damping, stiffness and effec­
tive piezoelectric coefficients; u is the input voltage that generates excitation 
forces in the actuator system. The variable Xl is the displacement of the 
actuator and is also the only measurement we can have in this system. It 
should be noted that the working range of the displacement of this actuator 
is within ± 1 /-lm. The variable z arises from hysteretic nonlinear dynamics 
[111] and is governed by 

z = adü - ßlülz -l'ülzl, (8.2) 
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where a, ß and I are some constants that control the shape of the hysteresis. 
For the actuator system that we are considering here, the above coefficients 
are identified as follows: 

m 0.01595 kg, 
b 1.169 N s/m, 
k 4385 N/m, 
d 8.209 x 10-7 rn/V, (8.3) 
a 0.4297, 
ß 0.03438, 

I -0.002865. 

For a more detailed description of this piezoelectric actuator system and the 
identifications of the above parameters, we refer interested readers to the 
work of Low and Guo [111]. Our goal in this chapter is to design a robust 
controller, as in Figure 8.2, that meets the following design specifications. 

1. The steady-state tracking errors of the dis placement should be less than 
1 % for any input reference signals that have frequencies ranging from 0 
to 30 Hz, as the actuator is to be used to track certain coloured noise 
types of signal in disk drive systems. 

2. The 1 % settling time should be as fast as possible (we are able to achieve 
a 1% settling time of less than 0.003 s in our design). 

3. The control input signal u(t) should not exceed 112.5 V because of the 
physical limitations of the piezoelectric materials. 

o TROL INPUT Piezo Actuator DISPLACEMENT 

Controller 
REFERENC 

Figure 8.2. Piezoelectric bimorph actuator plant with controller. 

Our approach is as follows: we will first use the stochastic equivalent lineari­
sation method proposed by Chang [115J to obtain a linearised model für the 
nonlinear hysteretic dynamics. Then we reformulate our design into an Hoc 
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almost disturbance decoupling problem in which the disturbance inputs are 
the reference input and the error between the hysteretic dynamics and that of 
its linearised model, and where the controlled output is simply the double in­
tegration of the tracking error. Thus, our task becomes to design a controller 
such that, when it is applied to the piezoelectric actuator, the overall system 
is asymptotically stable, and the controlled output, which corresponds to the 
tacking error, is as small as possible and decays as fast as possible. 

The outline of this chapter is as follows. In Section 8.2 a first-order lin~arised 
model is obtained for the nonlinear hysteresis using the stochastic equivalent 
linearisation method. A simulation result is also given to show the match 
between the nonlinear and linearised models. In Section 8.3 we formulate our 
controller design into a standard almost disturbance decoupling problem by 
properly defining the disturbance input and the controlled output. Two in­
tegrators are augmented into the original plant to enhance the performance 
of the overall system. Then a robust controller that is explicitly parame­
terised by a certain tuning parameter, and that solves the proposed almost 
disturbance decoupling problem, is carried out using a so-called asymptotic 
time scale and eigenstructure assignment technique. In Section 8.4 we present 
the final controller and simulation results of our overall control system using 
MATLAB SIMULINK. We also obtain an explicit relations hip between the peak 
values of the control signal and the tuning parameter of the controller, as well 
as an explicit linear relationship of the maximum trackable frequency, i.e. the 
corresponding tracking error can be settled to 1%, versus the tuning param­
eter of the controller. The simulation results of this section clearly show that 
all the design specifications are met and that the overall performance is very 
satisfactory. 

8.2 Linearisation of Nonlinear Hysteretic Dynamics 

We will proceed to linearise the nonlinear hysteretic dynamics of Equation 
(8.2) in this section. As pointed out by Chang [115], there are basically three 
methods available in the literature to linearise the hysteretic types of non­
linear system. These are (i) the Fokker~Planck equation approach (see e.g., 
Caughey [116)), (ii) the perturbation techniques (see e.g., Crandall [117] and 
Lyon [118]) and (iii) the stochastic linearisation approach. All of them have 
certain advantages and limitations. However, the stochastic linearisation tech­
nique has the widest range of applications compared with the other methods. 
This method is based on the concept of replacing the nonlinear system with 
an "equivalent" linear system in such a way that the "diffenmce" between 
these two systems is minimised in a certain sense. The technique was initiated 
by Booton [119]. In this chapter, we will just follow the stochastic linearisa-
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tion method given by Chang [115] to obtain a linear model of the following 
form: 

(804) 

for the hysteretic dynamics of Equation (8.2), where k1 and k2 are the lineari­
sation coefficients and are to be determined. The procedure is quite straight­
forward and proceeds as follows. First we introduce a so-called "difference" 
function e between Z of Equation (8.2) and Z of Equation (8.4): 

(8.5) 

Then minimising E[e2 ], where E is the expectation operator, with respect to 
kl and k2 , we obtain 

(8.6) 

from which the stochastic linearisation coefficients kl and k2 are determined. 
It turns out that if hand u are of zero means and jointly Gaussian, then 
kl and k2 can be easily obtained. Let us assurne that hand u have a joint 
prob ability density function 

where Püz is the normalised covariance of u and z, and aü and az are the 
standard deviations of u and z respectively. Then the linearisation coefficients 
kl and k2 can be expressed as follows: 

(8.7) 

and 

(8.8) 

where Cl, C2, C3 and C4 are given by 

(8.9) 

C2 = 0.79788456az, C4 = 0.79788456püzaü, (8.10) 



208 Hard Disk Drive Servo Systems 

and 

After a few iterations, we found that a sinusoidal excitation ü with frequencies 
ranging from 0 to 100 Hz (the expected working frequency range) and peak 
magnitude of 50 V, which has a standard deviation of (Tü = 35, would yield 
a suitable linearised model for Equation (8.2). For this excitation, we obtain 
(Tz = 5 X 10-7 , Püz = 5 X 10-3 

Cl = 1.9947 X 10-9 , Cz = 3.9894 X 10-7 , (8.12) 

C3 = 27.9260, C4 = 0.1396, (8.13) 

and 

k l = 3.5382 X 10-7 , kz = -0.9597. (8.14) 

The stochastic linearisation model of the given nonlinear hysteretic dynamics 
of Equation (8.2) is then given by 

i = k1 Ü + kzz = 3.5382 X 10-7 ü - 0.9597z. (8.15) 

For future use, let us define the linearisation error as 

(8.16) 

Figure 8.3 shows the open-Ioop simulation results of the nonlinear hysteresis 
and its linearised model, as weIl as the error for a typical sine wave input 
signal u. The results are quite satisfactory. Here we should note that, because 
of the nature of our approach in controller design later in the next section, the 
variation of the linearised model within a certain range, which might result 
in larger linearisation error ez , will not much affect the overall performance 
of the closed-Ioop system. We will formulate ez as a disturbance input and 
our controller will automatically reject it from the output response. 

8.3 Almost Disturbance Decoupling Controller Design 

This section is the heart of this chapter. We will first formulate our control 
system design for the piezoelectric bimorph actuator into a standard H 00 
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Figure 8.3. Responses of hysteresis and its linearised model to a sine input. 
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almost disturbance decoupling problem, and then apply the results of Chap­
ter 4 to check the solvability of the proposed problem. Finally, we will utilise 
the results in Chapter 4 to find an internally stabilising controller that solves 
the proposed almost disturbance decoupling problem. Of course, most im­
portantly, the resulting closed-Ioop system and its responses should meet an 
the design specifications as stated at the beginning of this chapter. To do 
this, we will have to convert the dynamic model of Equation (8.1) with the 
linearised model of the hysteresis into a state-space form. Let us first define 
a new state variable 

(8.17) 

Then from Equation (8.15), we have 

(8.18) 

Substituting Equations (8.16) and (8.17) into Equation (8.1), we obtain 

(8.19) 

The overall controller structure of aur approach is then depicted in Figure 
8.4. Note that in Figure 8.4 we have augmented two integrators after e, the 
tracking error between the displacement Xl and the reference input signal 
r. We have observed a very interesting property of this problem, i.e., the 
more integrators that we augment after the tracking error e, the smaller the 
tracking error we can achieve for the same level of control input u. Because 
our control input u is limited to the range from -112.5 to 112.5 V, it turns out 
that two integrators are needed in order to meet all the design specifications. 
It is clear to see that the augmented system has an order of five. Next, let us 
define the state of the augmented system as 

(8.20) 

and the measurement output 

(8.21) 

i.e., the original measurement of dis placement Xl plus two augmented states. 
The auxiliary disturbance input is 
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Figure 8.4. Augmented linearised model with controller. 

(8.22) 

and the output to be controlled, h, is simply the double integration of the 
tracking error. The state-space model of the overall augmented system is then 
given by 

A x + B u + E w, 

E: (8.23) 

with 

[
1 0 0 0 0] 

Cl = 0 () 0 1 0 , 
o 0 0 0 1 

(8.24) 

C2 = [0 0 0 0 1 J , (8.25) 
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[ -~/m 
1 0 

o 0] -bjm -kjm o 0 
A = 0 0 k2 o 0 

1 0 0 o 0 
0 0 0 1 0 

[ -27tL63 
1 0 0 

~] , -73.2915 -274921.63 0 
= 0 -0.9597 0 (8.26) 

0 0 0 
0 0 1 

[ k(d - ~,)/m ] [ 0 ] 
0.12841 

B= k1 k2 -3,3956i x 10-' (8.27) 
0 
0 

[ -~/m -~] [ -27t'63 -!] E= 0 (8.28) 
0 
0 

For the problem that we are considering here, it is simple to verify that the 
system E of Equation (8.23) has the following properties. 

1. The subsystem (A, B, C2 , D 2 ) is invertible and of minimum phase with 
one invariant zero at -1.6867. It also has one infinite zero of order four. 

2. The subsystem (A, E, Cl, Dt) is left invertible and of minimum phase 
with one invariant zero at -0.9597 and two infinite zeros of orders one 
and two. 

Then, it follows from the results of Section 4.4 that the Hoo-ADDPMS for 
the system in Equation (8.23) is solvable. In fact, one can design either a full 
order observer-based controller or a reduced order observer-based controller 
to solve this problem. For the full order observer-based controller, the order 
of the disturbance decoupling controller (see Figure 8.4) will be five and the 
order of the final overall controller (again see Figure 8.4) will be seven (the 
disturbance decoupling controller plus two integrators). On the other hand, 
if we use a reduced order observer in the disturbance decoupling controller, 
the total order of the resulting final overall controller will be reduced to four. 
From the practical point of view, the latter is much more desirable than the 
former. Thus, in what follows we will only focus on the controller design based 
on a reduced order observer. We can separate our controller design into two 
steps: 
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1. In the first step, we ass urne that all five states of E in Equation (8.23) 
are available and then design a static and parameterised state feedback 
control law, 

u = F(e:)x, (8.29) 

such that it solves the almost disturbance decoupling problem for the 
state feedback case, i.e., y = x, by adjusting the tuning parameter e: to 
an appropriate value; 

2. in the second step, we design a reduced order observer-based controller. 
It has a parameterised reduced order ob server gain matrix K 2 (e:) that 
can be tuned to recover the performance achieved by the state feedback 
control law in the first step. 

We will use the structural decomposition approach of Chapter 4 to construct 
both the state feedback law and the reduced order observer gain. We would 
like to note that, in principle, one can also apply the ARE-based H oo optimi­
sation technique (see e.g., Zhou and Khargonekar [72]) to solve this problem. 
However, because the numerical conditions of our system E are very bad, 
we are unable to obtain any satisfactory solution from the ARE approach. 
We cannot get any meaningful solution for the associated H oo continuous­
time ARE in MATLAB. The following is a closed form solution of the static 
state feedback parameterised gain matrix obtained using the method given 
in Chapter 4. 

F(e:) = [(2.1410 X 106 - 62.3004/e:2 ) (570.7610 - 31.1502/e:) 

2.1410x 106 -62.3004/e:3 -31.1502/e:4 ] , (8.30) 

where e: is the tuning parameter that can be adjusted to achieve almost 
disturbance decoupling. It can be verified that the closed-loop system matrix, 
A + BF(e:) is asymptotically stable for all 0 < e: < 00 and the closed-loop 
transfer function from the disturbance w to the controlled output h, Thw (e:, s), 
satisfying 

as e: -t o. 
The next step is to design a reduced order observer-based controller that will 
recover the performance of the above state feedback controllaw. First, let us 
perform the following nonsingular (permutation) state transformation to the 
system E of Equation (8.23), 
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x=Tfi, 

where 

T= [~ 
o 

o 0 0- O} 001 0 
o 0 0 1 , 
100 0 
(} 1 0 0 

such that the transformed measurement matrix has the form of 

[
1 0 0 0 0] 

CIT = 0 1 0 0 0- = [13 OJ. 
o 0 1 0 0 

(8.32) 

(8.33) 

(8.34) 

Clearly, the first three states of the transformed system, or Xl, X4 and X5 

of the original system E in Equation (8.23), need not be estimated as they 
are already available from the measurement output. Let us now partition the 
transformed system as folIows: 

T- I AT = [All A12 J A2I A22 . 

1
0001 0 I 1 0 0 0 0 

= (} 100 0 , 
-274921.630 0 -73.2915 -274921.63 

o 0 (} 0 -0.9597 

[ 
0 I o T-IB = [BI] = 0 

B 2 0.12841' 
-3.39561 x 10-7 

o -1 
T-IE - EI - 0 0 [ 0 01 

- [E,j - -274~21.63 g . 

Also, we partition 

(8.35) 

(8.36) 

(8.37) 

(8.38) 
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= [(2.14X 106 - 62.3/c2) -62.3/c3 -31.15/c4 I 
(570.76-31.15jc) 2.14X106 ]. (8.39) 

Then the reduced order observer-based controller (see Chapter 4) is given in 
the form of 

with 

{ 
iJ = Acmp(c) v + Bcmp(c) y, 

Ecmp : 
u = Ccmp(c) V + Dcmp(c) y, 

(8.40) 

Acmp(c) = A 22 + K 2(c)A12 + B 2 F2 (c) + K 2(c)B1 F2 (c), (8.41) 

Bcmp(c) = A 21 + K 2 (c)Au - [A22 + K 2(c)A12]K2(c) 

+[B2 + K 2(c)Bt} IF1(c) - F2 (c)K2 (c)], (8.42) 

Ccmp(c) = F2 (c), (8.43) 

Dcmp(c) = F1(c) - F2 (c)K2 (c), (8.44) 

where K 2(c) is the parameterised reduced order observer gain matrix and is to 
be designed such that A 22 + K 2 (c)A12 is asymptotically stable for sufficiently 
small c and also 

(8.45) 

as c """"* o. Again, using the software package of [34], we obtained the following 
parameterised reduced order observer gain matrix 

K ( ) = [73.2915 - l/c 0 0] 
2C 0 00· (8.46) 

Then the explicitly parameterised matrices of the state-space model of the 
reduced order observer-based t:ontroller are given by 

_ [ 73.2915 - 4/c - l/c 0] 
Acmp(c) - -1.9381 X 10-4 + 1.0577 x 10-5/c -1.6867 ' 

Ccmp(c) = [570.7619 - 31.1502/c 2140967], 

Dcmp(c) = (2099135.4+2853.81/c-93.45/c2 -62.3/c3 -31.15/c4 ], 
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where 

'l/Jl = -5731.6533 - 13/s2 + 439.7492/s, 

and 

'l/J2 = -0.7128 + 3.1732 x 10-.5/ S2 - 9.6904 x 10-4/ s. 
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Figure 8.5. Maximum singular values of closed-loop transfer function Thw(C:, s). 

The overall closed-Ioop system comprising the system E of Equation (8.23) 
and the above controller would be asymptotically stable as long as sE (0,00). 
In fact, the closed-Ioop poles are exactly located at -1.6867, two pairs at 
-1/s ± jl/s, -0.9597 and -1/s. The plots of the maximum singular values 
of the closed-Ioop transfer function matrix from the disturbance w to the 
controlled output h, namely Thw(s, s), for several values of s, i.e., s = 1/100, 
s = 1/400 and s = 1/3000, in Figure 8.5 show that as s tends to smaller 
values, the Hoo-norm of Thw(S, s) becomes also smaller. Hence, almost dis­
turbance decoupling is indeed achieved. These are the properties of our con­
trol system in the frequency domain. In the next section we will address its 
time domain properties, which are, of course, much more important, as all 
the design specifications are in the time domain. 
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8.4 Final Controller and Simulation Results 

In this section we will put our design of the previous section into a final 
controller as depicted in Figure 8.2. It is simple to derive the state-space 
model of the final overall controller by observing its interconnection with the 
disturbance decoupling controller L'cmp of Equation (8.40) (see Figure 8.4). 
We will also present simulation results of the responses of the overall design 
to several different types of reference input signal. They clearly show that all 
the design specifications are successfully achieved. Furthermore, because our 
controller is explicitly parameterised by a tuning parameter, it is very easy 
to adjust it to meet other design specifications without going through it all 
over again from the beginning. This will also be discussed next. 

As mentioned earlier, the final overall controller of our design will be of the 
order of four, of which two are from the disturbance decoupling controller 
and two from the augmented integrators. It has two inputs: one is the dis­
placement Xl and the other is the reference signal T. It is straightforward to 
verify that the state-space model of the final overall controller is given by 

{
i; = Aoc(c) v + Boc(c) Xl + Goc T, 

U = Coc(c) v + Doc(c) Xl 

where Aoc(c) is given by 

o 
-1.69 

o 
o 

-8/103 
2.12 X 1O-5/c3 

o 
1 

r~~l l ~ , 

-4/c4 1 1.08 x 10-5/ c4 

o ' 
o 

with 'lfJl and 'lfJ2 given by Equations (8.47) and (8.48) respectively, 

(8.49) 

(8.50) 

(8.51) 

Coc(c) = [570.76-31.15/c 2140967 -62.3/c3 -31.15/c4 ], (8.52) 

and 

Doc(c) = 2099135.4 - 93.45/c2 + 2853.81/c. (8.53) 

There are some very interesting and useful properties of this parameterised 
controller. After repeatedly simulating the overall design, we found that the 
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maximum peak values of the control signal u are independent of the frequen­
cies of the reference signals. They are only dependent on the initial error 
between displaf:ement Xl and the reference r. The larger the initial error is, 
the bigger is the peak that occurs in u. Because the working range of our 
actuator is within ±1 J.Lm, we will assume that the largest magnitude of the 
initial error in any situation should not be larger that 1 J-Lm. This assumption 
is reasonable, as we can always reset our dis placement Xl to zero before the 
system is to track any reference and hence the magnitude of initial tracking 
error can never be larger than 1 J-Lm. Let us consider the worst case, i.e., 
that the magnitude of the initial error is 1 J-Lm. Then, interestingly, we are 
able to obtain a dear relationship between the tuning parameter 1j€ and 
the maximum peak of u. The result is plotted in Figure 8.6. We also found 
that the tracking error is independent of initial errors. It only depends on 
the frequencies of the references, i.e., the larger is the frequency that the 
reference signal r has, the larger the tracking error that occurs. Again, we 
can obtain a simple and linear relationship between the tuning parameter € 

and the maximum frequency that a reference signal can have such that the 
corresponding tracking error is no larger than 1%, which is one of our main 
design specifications. The result is plotted in Figure 8.7. 
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Figure 8.6. Parameter 1/c: versus maximum peaks of u in worst initial errors. 

Clearly, from Figure 8.6, we know that owing to the constraints on the control 
input, i.e., it must be kept within ±112.5 V, we have to select our controller 
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Figure 8.7. Parameter l/e versus maximum frequency of r that has 1% tracking 
error. 

with c > 1/3370. From Figure 8.7, we know that in order to meet the first de­
sign specification, i.e., the steady-state tracking errors should be less than 1% 
for reference inputs that have frequencies up to 30 Hz, we have to choose our 
controller with c < 1/2680. Hence, the final controller as given in Equation 
(8.49) to Equation (8.53) will meet all the design goals for our piezoelectric 
actuator system of Equations (8.1) and (8.2), far all c E (1/3370,1/2680). 
Let us choose c = 1/3000. We obtain the overall controller as in the form of 
Equation (8.49) with 

[-14926.71 0 -2.16 x 1011 3.24 x 10"] 
Aoe = 

0.0315 -1.69 5.71 x 105 8.57 X 108 
(8.54) 

0 0 0 o ' 
0 0 1 0 

[-116 x 10'] 
Go, ~ [_~] , Boe = 

281.97 
Doe = -8.3 X 108 , (8.55) 

1 ' 
0 

Coe = [-92879.9 2140967 -1.68 x 1012 -2.52 x 1015 ]. (8.56) 
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The simulation results presented in the following are done using the MATLAB 
SIMULINK package, which is widely available everywhere these days. Two 
different reference inputs are simulated using the Runge~Kutta 5 method in 
SIMULINK with a minimum step size of 10 fis and a maximum step size of 100 
fis as well as a tolerance of 10-5 . These references are: (1) a eosine signal with 
a frequency of 30 Hz and peak magnitude of 1 firn, and (2) a sine signal with 
a frequency of 34 Hz and peak magnitude of 1 firn. The results for the eosine 
signal are given in Figures 8.8 to 8.10. In Figure 8.8, the solid-line curve 
is Xl and the dash-dotted curve is the reference. The tracking error and the 
control signal corresponding to this reference are given in Figures 8.9 and 8.10 
respectively. Similarly, Figures 8.11 to 8.13 are the results corresponding to 
the sine signal. All these results show that our design goals are fully achieved. 
To be more specific, the tracking error for a 30 Hz eosine wave reference 
is ab out 0.8%, which is better than the specification, and the worst peak 
magnitude of the control signal is less than 90 V, which is of course less than 
the saturated level, i.e., 112.5 V. Furthermore, the 1% tracking error settling 
times for both cases are less than 0.003 s. It is interesting to note that the 
performance of the actual closed-loop system is even better than that of its 
linear counterpart. 
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CHAPTER9 

DUAL-STAGE ACTUATED SERVO SYSTEMS 

9.1 Introduction 

The present demand for large-capacity disk drives is leading to an increase 
in areal density at a rate of 100% per year. This requires a positioning accu­
racy of the order of few nanometres. The servo bandwidth of the current disk 
drive actuators makes it very hard to achieve this. The VCM actuator used in 
conventional disk drives has hundreds of flexible resonances in high frequen­
eies (see e.g., [1, 29]), which limits the increase of bandwidth and hence the 
positioning accuracy. In order to develop high bandwidth (track following) 
servo systems, dual-stage actuation has been proposed as a possible solution. 
Dual-stage actuator refers to the fact that there is a microactuator mounted 
on a large conventional VCM actuator. The VCM actuator is used for coarse 
and relatively slow positioning and the microactuator is used for fine and 
fast positioning. The two most fundamental choices in a dual-stage system 
are the actuator configuration and the control algorithm. There have been 
proposals for electromagnetic, electrostatic, piezoelectric, shape memory and 
rubber microactuators, etc., each with their own advantages and disadvan­
tages. Many research studies have been done and reported in the literat ure 
(see e.g., [20, 114, 120-137] just to name a few). In this chapter, we focus on 
the design of complete HDD servo systems with a dual-stage actuator with 
a piezoelectric actuator in its second stage (see Figure 9.1). 

Diverse control strategies and methods have been reported in the design of 
HDD servo systems with a dual-stage actuator (see e.g., [121, 125, 127, 128, 
130; 132-134]). Guo et al. [125] have proposed four control strategies to design 
the dual-stage actuator control system: the so-called parallel loop, master­
slave loop, dual feedback loop and master-slave with decoupling methods. Hu 
et al. [130] and Guo et al. [127] have also utilised the well-known LQG /LTR 
method to design the dual-stage actuator control system. These studies have 
accelerated the progress to improve HDD servo system performances, but 
more studies need to be done before such dual-stage actuated HDDs can be 
considered for commercialisation. 
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Figur-e9.1. A dual-stage HDD actuator. 

We present in this chapter the design of complete dual-stage actuated HDD 
servo systems with two different approaches, i.e., the MSC method, and the 
CNF control technique. In each design, the VCM actuator will be controlled 
by a controllaw obtained using one of these two approaches and the microac­
tuator will be controlled by an appropriate proportional gain together with a 
low-pass filter. Here we note that the pure PTOS approach generally cannot 
achieve a satisfactory performance. As such, we will drop the results of such 
an approach in this chapter. 

9.2 Modelling of a Dual-stage Actuator 

In this section we will develop a model for the dual-stage actuator. Since our 
control design will be such that the VCM actuator and the microactuator 
are decoupled, we need to identify two separate models for the VCM actu­
ator and for the microactuator. A Maxtor dual-stage HDD is used in our 
design and implementation. It has a fine positioner based on a piezoelectric 
suspension mounted at the end of a primary VCM arm (see Figure 9.1), and 
the microactuators produce the relative motion of the R/W head along the 
radial direction. Here we note that only the displacement of the R/W head 
is available as the measurement output. Also, the VCM arm in this HDD is 
quite similar to that in the HDD studied in Chapters 6 and 7. Figures 9.2 
and 9.3 respectively show the frequency response characteristics of the VCM 
actuator and the microactuator. 

Using the data measured from the actual system, and the algorithm given in 
Chapter 2 (see also [13, 37]) , we obtain a fourth-order model for the VCM 
actuator , 

Gy (8) = 6.4013 X 107 2.467 X 108 

8 2 8 2 + 2.513 X 103 8 + 2.467 X 108' (9.1) 

and a fourth-order model fo~ the microactuator, 
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- 0.722(1.593x109S2 +1.708x1012S+2.512xlQ18) 92 
Gm(s) - S4 +4256s3 +3.506 x 1Q9S2+7.496 x 1012S+2.512x1018 · ( . ) 

We note here that the inputs to both actuators are voltages (in volts) and 
their outputs are displacements (in micrometres). In order to simplify our 
design procedure, we approximate the models of the VCM actuator and the 
microactuator, respectively, as follows: 

E v : { Xv = [~ ~] Xv + [6.401~ X 107 ] U v 

Yv - [1 0] Xv 

(9.3) 

and Ern: 

Ym = 0.722 Um· (9.4) 

Note that the control input to the VCM actuator should be constrained 
within ±3 V, which is the same as the one used in Chapters 6 and 7, and 
the control input to the microactuator should be kept within ±2 V. More­
over, the maximum displacement that can be generated by the microactuator 
should not exceed 1 /-Lm, which is equivalent to one track pitch of the HDD 
servo system. Clearly, we are having a plant with both sensor and actuator 
nonlinearities. 

9.3 Dual-stage Servo System Design 

We now carry out the design of servo systems for the HDD with a dual-stage 
actuator. Similarly, we would like to design our servo systems to the following 
requirements. 

1. The control input to the VCM actuator should not exceed ±3 V, whereas 
the control input to the microactuator should be within ±2 V. 

2. The displacement of the microactuator should not exceed 1 /-Lm. More­
over, it should settle down to zero in the steady state so that the mi­
croactuator can be furt her used for the next move. 

3. The overshoot and undershoot of the step response should be kept less 
than 0.05 /-Lm, i.e., 5% of one track pitch. As pointed out earlier, the R/W 
head of the HDD servo system can start writing data on to the disk when 
it is within 5% of one track pitch of the target. 
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Unfortunately, the only avaiIable measurement in the dual-stage actuated 
HDD is the dis placement of the RjW head, which is a combination of the 
displacement of the VCM actuator and that of the microactuator. Practically, 
we have to control both actuators using the same measurement, which will 
make the servo system design very difficult. Observing that the frequency 
response of the microactuator is as in Figure 9.3, we find that it is nothing 
more than a constant gain at low frequencies with a gain of 0.722. This 
property will be valid so long as we do not push the speed of the microactuator 
too fast. As such, we propose in Figure 9.4 a control configuration for the 
dual-stage actuated servo system. 

r + 

VCM Uv 

co TRQL I-----~ 

L AW 

+ 

Yv 
VCH 

y 

Figure 9.4. The schematic representation of a dual-stage actuator contro!. 

To be more specific, we estimate the dis placement of the microactuator Ym 
directly from its input Um and then the estimation of the displacement of 
the VCM actuator can be obtain as Y - Ym. In the control configuration of 
Figure 9.4, we add a low-pass filter on the path to the control input of the mi­
croactuator. The main purpose of adding such a filter is to reduce the effects 
of the resonant modes of the microactuator and other noises. The switch on 
the same path is to make sure that the microactuator is only to be activated 
when the tracking error is within the reach of the microactuator, which has 
a maximum dis placement of 1 J.lm. Our design philosophy is actually rather 
simple. 

1. Since the maximum displacement of the microactuator is 1 J.lm, it will not 
provide much help in the track seeking stage. Thus, when the tracking 
error is large, i.e., the displacement y is far away from the target, the 
switch in the microactuator path will be turned off and only the VCM 
actuator will be solo in action. 
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2. When the R/W head is entering the target region, e.g., within 1 /Lm of 
the target reference, the switch will be turned on and the microactuator 
will be in action to speed up the response of the overall system. 

3. It can be observed from the configuration in Figure 9.4 that Ym, the 
displacement of the microactuator, will settle down to zero as the tracking 
error approaches zero. As pointed out earlier, such a feature would enable 
the microactuator to be used for the next move. 

The detailed control parameters are as follows. 

1. The estimation gain of the microactuator displacement K s = 0.722. 

2. The switch is chosen such that the path is activated when Ir - Yvl < 1.2 
/Lm. Otherwise, it will be open. 

3. A second-order Chebyshev low-pass filter is used on the control in­
put path of the microactuator to attenuate the microactuator resonant 
modes. Its transfer function is given by 

(300011")2 
Hr(s) = S2 + 45001l"s + (300011")2' (9.5) 

which has a cut-off frequency at 1500 Hz. This filter is to be discretised 
using the ZOH method in implementation. 

4. The controllaws for the VCM actuator and the proportional gain of the 
microactuator am given as follows: 

a) MSC. The first part of the MSC law, i.e., the PTOS controllaw, is 
the same as that given in Equations (7.7) and (7.8). The second part 
of the MSC law, i.e., the RPT controller, is given by 

{
Xv = -8410.8 Xv - 4.1367 X 107 Yv + 7.9952 X 106 r, 

UR = -6.8905 X 10-5 Xv - 0.4005 Yv + 0.1249 r. 

The proportional gain Km is chosen as: 

i. Km = 0.4416 for SL = 1 and 10 /Lm; 

ii. Km = 0.3450 for SL = 20 /Lm. 

The switching conditions remain the same as those in Chapter 7. 

b) CNF. The CNF controller is the same as that in Equations (7.20) to 
(7.22), except Y is replaced by Yv. The proportional gain Km is chosen 
as: 
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i. Km = 0.3462 for SL = 1 and 10 /Lm; 

ii. Km = 0.2778 for SL = 20 /Lm. 

The simulation and impIementation results of the dual-stage actuated sys­
tems obtained are presented in Section 9.4. The velocity estimator used for 
the PTOS controllaw is the same as that in Chapter 7. We note that a com­
plete analysis on the stability of the overall closed-Ioop system as depicted in 
Figure 9.4 with the CNF approach can be found in [138]. 

9.4 Simulation and Implementation Results 

We now present the simulation and implementation results of the servo sys­
tems obtained in the previous section. The simulation results are done in 
a continuous-time setting. The implementation results are carried out at a 
sampling frequency of 10 kHz. The results of the dual-stage actuated HDD 
servo systems will then be compared with those of the servo systems with a 
single-stage actuator. The latter are done on the same drive by keeping the 
microactuator inactive throughout the whole implementation process. The 
controller parameters for the single-stage actuated systems are identical to 
those given in Chapter 7. As expected, and as to be seen soon, the dual-stage 
actuated servo systems do yield a better performance compared with their 
single-actuated counterparts. 

9.4.1 Track Seeking and Following Test 

We first test the performance of track seeking and track following of the 
dual-stage actuated servo system. The simulation and implementation resuIts 
with various seek lengths, i.e., for SL = 1, 10 and 20 /Lm, are to be presented. 
Note that, for larger seek lengths, the performance of the dual-stage actuated 
servo system will be ab out the same as that of the single-stage actuated 
counterpart. 

In order to see how the dual-stage actuated system works, we present de­
tailed simulation and implementation results for SL = 1 /Lm, which show 
the responses of the R/W head, the VCM actuator and the microactuator, 
as weIl as the control signals of two actuators. The contributions of the mi­
croactuator to the overall response can also be clearly observed from these 
resuIts. For larger seek lengths, i.e., SL = 10 and 20 /Lm, the contributions of 
the microactuator are almost invisible, and thus it is meaningless to include 
them in the plots. Nonetheless, results for SL = 10 and 20 /Lm will then be 
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given together with those for SL = 1 pm for easy reference. Results of the 
corresponding single-stage actuated system will also be given for comparison. 

MSC. The results for the servo systems with the MSC technique are presented 
in Figures 9.5 to 9.10. The settling times and the percentages of improvement 
are summarised in Table 9.1. 

Table 9.1. Performances of single- and dual-stage servo systems with MSC. 

(a) simulation results 

Seek Settling Time (ms) Overall 
length (p,m) Single Dual improvement 

1 1.15 1.05 9% 
10 3.83 3.65 5% 
20 4.43 4.35 2Y. 

(b) experimental results 

Seek Settling Time (ms) Overall 
length (p,m) Single I Dual improvement 

1 1.25 1.1 12% 
10 4.15 4.0 4% 
20 5.10 4.9 4% 

CNF. Similarly, the results of the HDD servo systems with the CNF method 
are shown in Figures 9.11 to 9.16. The settling times and the percentages of 
improvement are summarised in Table 9.2. 

Table 9.2. Performances of single- and dual-stage servo systems with CNF. 

(a) simulation results 

Seek Settling Time (ms) Overall 
length (p,m) Single Dual improvement 

1 0.96 0.83 14% 
10 2.59 2.43 6% 
20 3.25 3.17 2% 

(b) experimental results 

Seek Settling Time (ms) Overall 
length (p,m) Single Dual improvement 

1 1.20 0.85 29% 
10 3.25 2.80 14% 
20 4.13 3.90 6% 
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9.4.2 Runout Disturbance Test 

As in the previous chapters, we artificially add a runout disturbance 

w(t) = 0.5 + 0.1 cos(lOO7Tt) + 0.05 sin(2207Tt), (9.6) 

which is the same as those used in Chapters 6 and 7, to our servo systems and 
the implement at ion results of the corresponding responses are respectively 
shown in Figures 9.17 and 9.18. The standard deviations of the error signals 
are summarised in Table 9.3. 

Table 9.3. Standard deviations of error signals in runout disturbance tests. 

MSC CNF 
Single I Dual I Single I Dual 
0.0085 I 0.0075 I 0.0083 I 0.0073 

9.4.3 Position Error Signal Test 

Lastly, as were done in Chapters 6 and 7, we conduct the PES tests for 
the complete single- and dual-stage actuated servo systems. The results, i.e., 
the histograms of the PES tests, are given in Figures 9.19 and 9.20. The 
3upes values of the PES tests, which are a measure of track mis-registration 
(TMR) in HDDs and which are dosely related to the maximum achievable 
track density, are summarised in Table 9.4. 

Table 9.4. The 3up es values of the PES tests. 

MSC CNF 
Single I Dual I Single I Dual 
0.0255 I 0.0225 I 0.0249 I 0.0219 

9.5 Discussion 

It can be easily observed from the results in Section 9.4 that the dual-stage 
actuated servo systems do provide a faster settling time compared with that 
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Figure 9 • .17. Implementation results. Responses to a runout disturbance (MSC). 
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of the single-stage actuated counterparts. The improvement in the track fol­
lowing stage turns out to be very noticeable. This was actually the original 
purpose of introducing the microactuator to HDD servo systems. However, 
we personally feel that the price we have paid (i.e., by adding an expensive 
and delicate piezoelectric actuator to the system) for such an improvement 
is too high. Besides this, we believe that the following improvements on the 
physical properties of the microactuator are needed before it can be consid­
ered for use in commercial HDDs. 

1. There should be a significant improvement on the bandwidth of the pi€zo­
electric actuator. The resonant mo des of the piezoelectric actuator used 
here are simply not high enough. Much more can be done if these resonant 
modes can be made further away at higher frequencies. 

2. The maximum displacement of the piezoelectric actuator should be made 
as large as possible. This would allow us to design a more effident servo 
system in which the microactuator would playamore active role. 

Nonetheless, these issues are beyond our interest and control. Somehow, we 
feel that there is some way to go before the dual-stage actuated hard drives 
can be pushed to the market. It would perhaps be more efficient to just focus 
on improving the properties of the VCM actuators instead. 



CHAPTER 10 

RESONANCE AND DISTURBANCE REJECTION 

10.1 Introduction 

The prevalent trend in hard disk design is towards smaller hard disks with 
increasingly larger capacities. This implies that the track width has to be 
smaller, leading to low€r error tolerance in the positioning of the head. Th€ 
controller for track following has to achieve tighter regulation in th€ control 
of the servomechanism. To read (or write) the data rdiably from (or to) the 
disk, the absolute track foUowing error with respect to the target track centre, 
which is commonly called track mis-registration (TMR), must be less than 
10% of the track pitch. For example, for a 3.5" HDD with 25 kTPI, the track 
pitch is about 1 J.Lm and its TMR must be less than 0.1 J.Lm. Thus, for 70 
kTPI, TMR must be less than 0.036 J.Lm. This requires rigorous analysis of 
the sources of TMR and development of advanced techniques to overcome 
or eliminate these sources to meet the increasing demand for higher TPI. 
Figure 10.1 shows a typical disk drive servo channel indicating the various 
sources of disturbances and errors. Some of the larger components of TMR 
are due to the following error sources, listed roughly in the order of impact 
(see e.g., [139] and references ~ited therein): 

1. external shock and vibrations present in portable devices; 

2. TMR caused by bearing hysteresis and poor velocity estimates during 
track settling mode; 

3. servo pattern nonlinearities and inaccuracies caused by head, media, and 
servo writing effects; 

4. mechanical resonances in suspension, actuator, disk, and housing; 

5. electronic noise in ree-ording channel entering the servo demodulator; 

6. nonrepeatable spindie runout caused by bearings; 

7. variations in RRO caused by thermal and other drifts. 



252 Hard Disk Drive Servo Systems 

In our opinion, it would be ideal to design an HDD servo system that has 
the desired track seeking and following performance and at the same time 
is robust enough to overcome all the above listed disturbances and uncer­
tainties. Nonetheless, this would be a subject for our future research. The 
main purpose of this chapter is to give abrief survey on how these issues are 
tackled in the literature. 

Bearing runout Translent 
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Figure 10.1. Sources of error in an HDD servo system. 

10.2 Disturbance Rejection 

As discussed earlier , high er TPI requires a tighter TMR, wh ich is formally 
defined as three times the position error variance of the true PES, i.e., 30"pes, 

plus some terms due to the settling process. The sources of disturbances, 
which are the error sources contributing to 30"pes can be classified into three 
categories: input disturbance, output disturbance and measurement noise. 
The input disturbance is typically a colour noise due to flexure , an electronic 
bias superimposed with selective energy aring from the natural frequencies 
of the various mechanical perturbations such as resonances, vibrations and 
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friction. The output disturbance is also a colour noise due to spindle rotation 
and its effects such as runout, windage and media noise. The measurement 
noise is a typical white noise due to the position measurement techniques 
and/or sensors. These disturbances and noise can be modelled as in Fig­
ure 10.2. The objective would be to reject the effect of the disturbances and 
the measurement noise and achieve minimum position error variance. 

Wid Wod Wmn 

+ + + Measured 

HOO ~O 0 PES 

A"""" -Y' T 
PES 

Figure 10.2. Modeling of disturbances in an HDD servo system. 

It has been shown [140] that, under some simplifications, a pes can be approx­
imated as 

1 n 

- LY~es(i). 
n i=l 

(10.1) 

Recently, Li et al. [141] gave a solution that minimises a pes by converting the 
minimisation of a pes into an equivalent H 2 optimal control problem for an 
auxiliary system, which contains the dynamics of the actuator, the input and 
output disturbances and the measurement noise, and which has a properly 
defined disturbance input and an output to be controlled. The problem to 
minimise apes can then be solved using any appropriate H 2 optimal control 
methods (see e.g., Chapter 4). 

Next, to understand runout disturbances, we recall the two main functions 
of HDD servo systems, i.e., track seeking and track following, which are usu­
ally achieved by two different controllers. The track seeking controller moves 
the R/W head to the target track in minimum time; after this, when the 
control is switched to the track following controller, it must make the R/W 
head follow the target track and keep the errors as small as possible. Thus, 
all HDDs must have a position measurement mechanism. The position feed­
back signals in most HDD servomechanisms are derived through prerecorded 



254 Rard Disk Drive Servo Systems 

position information recorded on one side of a disk surface at the time of 
manufacture using a servo writer. Ideally, servo tracks are perfect concentric 
circles. However, in the process of servo writing, the head that writes the sig­
nals cannot be kept perfectly still, due to e.g., the presence of vibration and 
NRRO effects, which result in tracks that are not perfect circles. This appar­
ent track motion will cause the RjW head to move in an attempt to minimise 
the position error, which resuIts in positioning of the RjW head away from 
the real data track. Such an imperfection is termed a runout. This runout 
can depending upon its nature be classified as repeatable and nonrepeatable. 
In what follows we will discuss these two types of runout and the methods 
available to compensate these disturbances collected from a literat ure survey. 

10.2.1 Repeatable Runout 

When the sampling frequency is equal to the spindie rotation frequency, or 
one of its order, the runout motion produced by the apparent track is re­
peated. This repeated runout, which is locked to the spindle rotation in both 
frequency and phase, is what we call a RRO. Thus, the major source of 
RROs is the eccentricity of the track. Other sources include the offset of the 
track cent re with respect to the spindie centre, bearing geometry and wear, 
and motor geometry [142]. RROs caused by factors other than the eccentric­
ity would cause a large amount of RROs at the rotational frequency of the 
spin die or its order, which is common to all tracks. 

An RRO is a repetitive event in that both its amplitude and phase are locked 
to the rotation of the spindie. Therefore, this prior knowledge of an RRO can 
be used as a feed-forward signal to compensate the tracking error. Roughly, 
there exist three approaches to reject RRO: (1) repetitive control, (2) feed­
back control based on the internal model principle, and (3) identification and 
feed-forward contro!. Many versions of above compensation techniques for 
RROs have been reported, and some include adaptive feed-forward cancella­
tion and repetitive control (see e.g., [142-145]), PID with repetitive control 
(see e.g., [146]) and recurrent neural networks (see e.g., [147]). To be a bit 
more specific, assuming that the RRO, d(t), is a time-varying unknown dis­
turbance consisting of a sum of n sinusoids of known frequencies, i.e., 

n 

d(t) = L [ai(t) COS(Wi t ) + bi(t) sin(wi t )], (10.2) 
i=l 

the adaptive feed-forward compensation approach is to design a control 

n 

u(t) = d(t) = L [ai(t) COS(Wi t) + bi(t) sin(wi t ) + 9ikiy(t)] . (10.3) 
i=l 
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Next, an appropriate adaptive algorithm is used to adjust the estimates ai(t) 
and biet) so that these estimates are made equal to the nominal values, i.e., 

(10.4) 

The RRO disturbance approximated as in Equation (10.2) can then be can­
celled by the reproduced signaL This technique is also demonstrated by using 
neural networks in {147]. 

10.2.2 Nonrepeatable Runout 

NRROs are a product of disk drive vibration and electrical noise in the mea­
surement channel (see e.g., {1l). More specifically, the causes of NRRO are 
spindie bearing defects, windage-induced disk flutter, electronics noise in the 
measurement channel, etc., present during servo track writing. NRROs can 
be minimised via improved servo writing, use of better bearings, and im­
proved design of electronics. Since RROs are the harmonics of the motor 
rotational frequency in the frequency domain, an NRRO is the subtraction 
ofthe harmonics from the total indicated runout (TIR), which can be defined 
as the distance difference between the R/W head and the previously written 
track in an HDD, and hence an NRRO in the time domain can be easily 
constructed by the inverse Fourier transform of an NRRO in the frequency 
domain [148]. Alternatively, for a better understanding of the time trends of 
an NRRO, specifically a motor NRRO, Ohmi [149] proposed subtracting the 
averaged RRO from the experimentally obtained radial vibration of a rotor, 
the TIR. That is, an NRRO can be derived as follows [149]: 

N 

RRO(j) = ~ LTIR (i,j), j = 1,2,···,M, 
i=l 

(10.5) 

NRRO (i,j) = TIR (i,j) - RRO (j), j = 1,2,···, M, (10.6) 

where N is the number of revolutions of the rotor, M is the number of 
sampies per revolution, i represents the number of disk revolutions and j 
represents the number of phases from a fixed point of the slit. An NRRO can 
be taken care of by the servo controller through improved loop bandwidth. 
However, the increase in servo bandwidth required to reject an NRRO is 
mainly determined by three factors, i.e., the servo sampling rate, the spectrum 
of the measurement noise, and the existence of plant resonance modes. The 
effect of resonance modes and their compensation will be discussed in the 
following section. Recent research suggests the use of improved mechanicai 
design, with a damped disk substrate and fluid bearing spindies [150], which 
provides less stress on the servo loop, to reject NRROs. 
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10.3 Resonance Compensation 

The actuator and HDD structures, of course, are not perfectly rigid and have 
hundreds of flexible modes. This flexibility gives rise to vibrations, which 
results in a longer time to settle at the target track and amounts to a signif­
icant component of the TMR. The servo bandwidth of modern disk drives is 
approaching 2 kHz, and it has been proved in the literature that resonance 
mo des that exist within a decade away from the servo crossover frequency de­
grade the system performance. In short, in modern disk drives, resonance or 
vibration mo des are the major sources of NRROs. Each resonance mode can 
be modelIed as a second-order transfer function. The VCM actuator transfer 
function displaying multiple resonance mo des can be modelIed as [139], 

(10.7) 

where kt is torque constant, J is inertia, (i and Wi are respectively the damp­
ing ratio and the natural frequency of the ith resonance mode. For simplicity, 
the frequency response characteristics with a single resonance mode in actu­
ator dynamics are shown in Figure 10.3, in which the characteristics without 
resonance mode is shown by dashed lines. There is a significant difference in 
phase angle of the transfer function with the resonance mode. This tends to 
cause a loss of gain margin in the compensated loop and hence reduces its 
stability. Although there are hundreds of such resonances in an actual disk 
drive, many of the characteristics can be defined by considering only three or 
four modes, as other mo des have an insignificant amplitude or are of too high 
a frequency to be of interest [1]. Some of the important resonance modes that 
must be considered in the design of high-density disk drives are the quasi­
rigid body mode, the pivot bearing, the lateral elastic bending mode, and the 
vibrations of the individual disk platters. 

Currently, the resonances of an HDD head actuator assembly caused by the 
pivot bearing have become a critical issue, since these resonances have been 
found to be the major design factor limiting the higher servo control band­
width [151]. These resonances are excited during the track seeking mode, and 
when the control is transfered to the track following mode these vibrations re­
sult in an increased settling time. Recently, Mah et al. [152] have developed 
a novel moving-coil head actuator, which is designed deliberately to make 
sure that the force acting on the VCM is an orthogonal force so that there 
is no resulting force acting on the pivot bearing, thereby minimising resid­
ual vibrations. The rotational speeds of modern disk drives are progressively 
increasing, and hence the effect of the vibration of individual disk platters 
at their natural frequencies is a significant contributing factor to TMR in 
high-density disk drives. These resonances are driven primarily by internal 
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Figure 10.3. The ideal and "actual" frequency responses of HDD actuators. 

windage excitation, and its behaviour is dominated by the disk material prop­
erties and geometry, and not by the spindle, encloser, or structural design (see 
e.g., [153]). Use of alternate disk substrate materials can control these effects. 
Structural resonance mo des can be compensated by using a notch filter as 
a precompensator. Since alm ost all structural resonant mo des have lightly 
damped poles, the id€a is to cancellightly damped poles and place a pair of 
well-damped poles instead by using a not eh filter. Hanselmann and Mortix 
[154] proposed the use of three notch filters to suppress the plant model res­
onance modes. These filters are preferred instead of low-pass filters because 
the sharper the cut-off in the magnitude frequency response, the lower the 
phase introduced in the loop. The transfer function of an analog notch filter 
is commonly chosen as (see e.g., [155]) 

(10.8) 

where 10 is the cent re frequency and Q is the Q-factor. These not eh filters can 
be realised by using switched capacitance filters. To use with digital control, 
digital notch filers can be realised using microprocessors or high-speed DSPs. 
Weaver and Ehrlich [156] proposed the use of multirate filters to eliminate 
the resonance modes beyond the Nyquist frequency. 
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Since VCM actuators have three or four resonance modes between 1 and 
10 kHz, alternate solutions currently being investigated include the use of a 
secondary actuator, such as a piezoelectric actuator, i.e., the use of dual-stage 
actuated systems, which have already been discussed in previous chapters, 
e.g., Chapters 8 and 9. 

Finally, we would like to note that it is possible to design a simple servo sys­
tem that is capable of rejecting disturbances, such as the RROs and NRROs, 
and compensating the resonance modes, while also giving a good track seek­
ing and following performance. In fact, the results presented in the previous 
chapters have confirmed this, although it is not addressed in a systematic 
fashion. Our future research, as mentioned earlier, is to concentrate on deriv­
ing a complete treatment of all the issues discussed in this very last chapter. 
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