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SERIES EDITORS’ FOREWORD

The series Advances in Industrial Control aims to report and encourage
technology transfer in control engineering. The rapid development of control
technology has an impact on all areas of the control discipline. New theory, new
controllers, actuators, sensors, new industrial processes, computer methods, new
applications, new philosophies..., new challenges. Much of this development
work resides in industrial reports, feasibility study papers and the reports of
advanced collaborative projects. The series offers an opportunity for researchers
to present an extended exposition of such new work in all aspects of industrial
control for wider and rapid dissemination.

From time to time a particular practical control problem emerges as a
challenge to the design capabilities of the control community. One example has
been the activated sludge process in wastewater systems where the process is
highly nonlinear and measurements are few. A second example is the hard disk
drive servo system. These widely used systems are critical to the operation of
modern computing devices. They are nonlinear and demand a high-precision
control system for the operations of track seeking and track following. There are
also alternative actuation systems available to achieve these objectives. In this
Advances in Industrial Control monograph B.M. Chen, T.H. Lee and V.
Venkataramanan at the National University of Singapore provide a thorough
presentation of the technical background, the modelling and control solutions for
this benchmark problem of hard disk drive servo control systems. It is a
monograph which encompasses physical system descriptions, modelling,
identification, linear control and nonlinear control. The issue of implementing
discrete control solutions makes an important appearance. Professor Chen and his
colleagues also describe the test facilities that they have used for assessing the
performance of proposed control solutions.

It would be difficult to find a better example of the full range of software and
hardware tools used by the modern control engineer to solve a challenging
advanced technical problem. The monograph should be an inspiration to many
students studying control engineering today. There is much to learn from the
monograph on the validity of advanced linear (/, and H,,) control and how

nonlinear control can be applied. Thus the monograph should be of considerable
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interest to postgraduate students, academics and practising industrial engineers
alike.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.



PREFACE

Nowadays, it is pretty hard for us to imagine what life would be like without
computers and what computers would be like without hard disks. Hard disks
provide an important data-storage medium for computers and other data-
processing systems. Many of us can still recall that the storage medium used
on computers in the 1960s and 1970s was actually paper, which was later
replaced by magnetic tapes. The key technological breakthrough that enabled
the creation of the modern hard disks came in the 1950s, when a group of
researchers and engineers in IBM made the very first production hard disk,
IBM 305 RAMAC (Random Access Method of Accounting and Control). The
first generation of hard disks used in personal computers in the early 1980s
had a capacity of 10 megabytes and cost over $100 per megabyte. Modern
hard disks have capacities approaching 100 gigabytes and cost less than 1
cent per megabyte.

In modern hard disk drives (HDDs), rotating disks coated with a thin mag-
netic layer or recording medium are written with data that are arranged
in concentric circles or tracks. Data are read or written with a read/write
(R/W) head, which consists of a small horseshoe-shaped electromagnet. The
two main functions of the R/W head positioning servomechanism in disk
drives are track seeking and track following. Track seeking moves the R/W
head from the current track to a specified destination track in minimum time
using a bounded control effort. Track following maintains the head as close as
possible to the destination track centre while information is being read from
or written to the disk. Track density is the reciprocal of the track width. It is
suggested that, on a disk surface, tracks should be written as closely spaced
as possible so that we can maximise the usage of the disk surface. This means
an increase in the track density, which subsequently means a more stringent
requirement, on the allowable variations of the position of the heads from the
true track centre. The prevalent trend in hard disk design is towards smaller
hard disks with increasingly larger capacities. This implies that the track
width has to be smaller, leading to lower error tolerance in the positioning of
the head. The controller for track following has to achieve tighter regulation
in the control of the servomechanism.
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The scope of this book is to provide a systematic treatment on the design of
modern HDD servo systems. In particular, we will focus on the applications of
some newly developed results in control theory, namely the robust and perfect
tracking control, and the composite nonlinear feedback control. Emphasis will
be made on HDD servo systems with either a single-stage voice-coil-motor
actuator or a dual-stage actuator in which an additional micro-actuator is at-
tached to a conventional voice-coil-motor actuator to provide faster response
and hence higher bandwidth in the track following stage. Most of the results
presented in this book are from research carried out by the authors and their
co-workers over the last few years.

The intended audience of this book includes practising engineers in hard
disk and CD-ROM drive industries and researchers in areas related to servo
systems and engineering. An appropriate background for this monograph
would be some senior level and/or first year graduate level courses in linear
systems and multivariable control. Some knowledge of control techniques for
systems with actuator nonlinearities would certainly be helpful.

We have the benefit of the collaboration of several co-workers, from whom
we have learnt a great deal. Many of the results presented in this monograph
are the results of our collaboration. Among these co-workers are Professor
Chang C. Hang of the National University of Singapore, Dr Siri Weerasooriya,
of Quantum Corporation, Dr Tony Huang of Seagate Technology Colorado,
and Dr Guoxiao Guo of the Data Storage Institute of Singapore. We are
indebted to all of them for their contributions.

We are grateful to Professor Zongli Lin of the University of Virginia, for his
invaluable comments and discussions on the subject related to the composite
nonlinear feedback control technique of Chapter 5. This technique, originally
proposed by Zongli and his workers and later enhanced by us, has emerged
as an effective tool in designing HDD servo systems. We are also indebted to
Professor Iven Mareels of the University of Melbourne, who is now visiting our
department here at the National University of Singapore, for many beneficial
discussions on related subjects, especially the issue on HDD servo systems
with a dual actuator.

The first two authors of this monograph would like to thank their current
and former graduate students, especially Yi Guo, Xiaoping Hu, Lan Wang,
Teck-Beng Goh, Kexiu Liu, Zhongming Li and Chen Lin, for their help and
contributions. We are also indebted to Dr Kemao Peng, our Research Fellow,
for various help throughout the preparation of this book, especially for his
help in obtaining the experimental results of Chapters 7 and 9, and to Kavitha
and the Copy-Editor of Springer for their kindly help in proof reading the
whole monograph.
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We would like to acknowledge the National University of Singapore for pro-
viding us with the funds for two research projects (R-263-000-038-112 and
R-263-000-096-112) on the development of the dual-stage actuated servo sys-
tems of HDDs. We are also grateful to Dr Teck-Seng Low, Dr Tow-Chong
Chong and Dr Guoxiao Guo of the Data Storage Institute of Singapore for
their support to our projects.

Last, but certainly not the least, we owe a debt of gratitude to our families
for their sacrifice, understanding and encouragement. It is very natural that
we dedicate this book to all of them.
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CHAPTER 1
INTRODUCTION AND PREVIEW

1.1 Introduction

Hard disk drives (HDDs) provide an important data-storage medium for
computers and other data-processing systems. In most HDDs, rotating disks
coated with a thin magnetic layer or recording medium are written with data
that are arranged in concentric circles or tracks. Data are read or written
with a read/write (R/W) head, which consists of a small horseshoe-shaped
electromagnet. Figure 1.1 shows a simple illustration of a typical hard disk
servo system with a voice-coil-motor (VCM) actuator.

The two main functions of the R/W head positioning servomechanism in disk
drives are track seeking and track following. Track seeking moves the R/W
head from the present track to a specified destination track in minimum time
using a bounded control effort. Track following maintains the head as close as
possible to the destination track centre while information is being read from
or written to the disk. Track density is the reciprocal of the track width. It is
suggested that, on a disk surface, tracks should be written as closely spaced
as possible so that we can maximise the usage of the disk surface. This means
an increase in the track density, which subsequently means a more stringent
requirement on the allowable variations of the position of the heads from the
true track centre.

The prevalent trend in hard disk design is towards smaller hard disks with
increasingly larger capacities. This implies that the track width has to be
smaller, which leads to lower error tolerance in the positioning of the head.
The controller for track following has to achieve tighter regulation in the
control of the servomechanism. Basically, the servo system of an HDD can
be divided into three stages, i.e., the track seeking, track settling and track
following stages (see Figure 1.2 for a detailed illustration). Current HDDs
use a combination of classical control techniques, such as the proximate time
optimal control technique in the tracking seeking stage, and lead-lag com-
pensators, proportional-integral-derivative (PID) compensators in the track
following stage, plus some notch filters to reduce the effects of high-frequency
resonant modes (see e.g., [1-16] and references cited therein). These classical
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Figure 1.1. A typical HDD with a VCM actuator servo system.
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Figure 1.2. Track seeking and following of an HDD servo system.

methods can no longer meet the demand for HDDs of higher performance.
Thus, many control approaches have been tried, such as the linear quadratic
Gaussian (LQG) with loop transfer Recovery (LTR) approach (see e.g., [L7—
19]), Hy control approach (see e.g., [20-25]), and adaptive control (see e.g.,
[26-29]) and so on. Although much work has been conducted to date, more
studies need to be done to achieve better performance in HDDs.

The scope of this book is to provide a systematic treatment on the design of
modern HDD servo systems. In particular, we will focus on the applications
of some newly developed resuits in control theory, i.e., robust and perfect
tracking (RPT) control, which is suitable for track following, and composite
nonlinear feedback (CNF) control, which is for track seeking and following.
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The emphasis will be on HDD servo systems with either a single-stage VCM
actuator or a dual-stage actuator in which an additional microactuator is
attached to a conventional VCM actuator to provide faster response and
hence higher bandwidth in the track following stage. Most of the results
presented in this book are from research carried out by the authors and their
co-workers over the last few years. The purpose of this book is to discuss
various aspects of the subject under a single cover.

1.2 Mechanical Structure of HDDs

The mechanical structure of a typical modern hard disk drive is depicted in
Figure 1.3. The authors of this book are thankful to Seagate Technology for
granting permission to use this figure in our work. A brief description (see
also, e.g., [30]) is given below:

1. DEVICE ENCLOSER. This is the most important component, as it deter-
mines the reliability of the disk drives. It helps to keep the contamination
low. With the aid of recirculation and a breather filter, it keeps out dust
and other contamination that could enter between the R/W heads and
the platters over which they float, and reduces the possibility of head
crashes. The two major parts, the base casting and top cover, are sealed
with a gasket. The base casting provides supports for the spindle, actu-
ator, VCM yoke and electronics card.

2. Disk. Every hard disk will have one or more flat rotating disks, each with
two magnetic surfaces, called platters. These are made of either an Al-
Mg alloy substrate material electro-less plated with Ni-P, or a mixture
of glass and ceramic. The magnetic material, to allow data storage, is
applied as a thin coating on both sides of each platter together with a
carbon overcoat. The surfaces of each platter are precision machined and
treated to remove any imperfections, and attention is paid during the
manufacturing process to ensure a very smooth surface.

3. ACTUATOR ASSEMBLY. This consists of a VCM, flex cable or printed
circuit cable, actuator arms and crash-stops at both ends of travel. The
data are read/written from/to the platters using the R/W heads mounted
on the top and bottom surfaces of each platter. The heads are supported
by the actuator arm. The actuator in HDDs, i.e., the VCM actuator, is
so named as it works like a loudspeaker. The electrical input to the VCM
is supplied through a flex cable. The coil of the VCM actuator extends
between a yoke/magnets. The write-driver/pre-amplifier is often part of
the actuator assembly, which is mounted on a flex cable.
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Figure 1.3. Mechanical structure of a typical HDD.

4. HEAD/SUSPENSION ASSEMBLY. The R/W heads are of ferrite, metal-in-
gap, thin film or magnetoresistive (MR) types. Older types, i.e., ferrite,
metal-in-gap, and thin film, used the principle of electromagnetic induc-
tion, whereas the modern disk drive heads use MR heads, which use
the principle of change of magnetoresistance. Both read and write op-
erations in older disk drives were performed by a single head, but the
modern HDDs use separate heads for read and write operations. These
heads are positioned only micro-inches above the recording medium on
an air bearing surface, which is often referred to as a slider. A gimbal
attaches the slider to a stainless steel suspension to allow for pitch and
roll, and the suspension is attached to the arm of the actuator by a ball
swaging.

5. SPINDLE AND MOTOR ASSEMBLY. These are responsible for turning the
hard disk platters with stable, reliable and consistent turning power for
thousands of hours of often continuous use. All hard disks use servo-
controlled DC spindle motors and are configured for direct connection,
i.e., there are no belts or gears that are used to connect them to the hard
disk platter spindle. The critical component of the hard disk’s spindle
motor is the set of spindle motor bearings at each end of the spindle
shaft. These bearings are used to turn the platters smoothly. The disk
clamper and spacers are other important parts of this assembly.

6. ELECTRONICS CARD: This provides an interface to the host personal
computer (PC). The most common interfaces used are the integrated
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drive electronics (IDE), the advanced technology attachment (ATA), and
the small computer systems interface (SCSI), which all use integrated
electronic circuits. These integrated circuits have a power driver for the
spindle motor, VCM, R/W electronics, servo demodulator, controller chip
for timing control and control of interface, micro-controller /digital signal
processor (DSP) for servo control and control interface, and ROM and
RAM for micro-code and data transfer.

Lastly, we note that a fairly complete report on the basic mechanical and
electrical structures of hard and floppy disk drives can be found in a book by
Zhang [31].

1.3 Historical Development of HDDs

The first generation of hard disks used in PCs had a capacity of 10 megabytes
(MB) and cost over $100 per MB. Modern hard disks have capacities ap-
proaching 100 gigabytes (GB) and cost less than 1 cent per MB. This rep-
resents an improvement of 1,000,000% in less than 20 years and now it is
cumulatively improving at 70% per year. At the same time, the speed of the
hard disk and its interfaces has also increased dramatically.

Some of the very earliest computers had no storage at all. Each time a pro-
gram had to be run it would have to be entered manually. It was realised then
that, to utilise the power of computers fully, there was a need for permanent
storage.

During the initial search for permanent storage, paper played a major role in
human life. The computer scientists were also psychologically influenced by
paper. This led to the use of paper as the first storage medium on comput-
ers, though magnetic storage had already gained momentum by that time.
Programs and data were recorded using holes punched into paper tapes or
punch cards to represent a “1”, and paper blocks to represent a “0” (or
vice versa). This type of storage was used for many years until the creation
of magnetic tapes. However, these tapes also lost their place when random
access to the data was needed for quick and efficient usage of data stored.
Thus, an improvement needed to be sought. Disk drive development took an
eventful spin, when IBM announced, in May 1955, a product that offered
unprecedented random-access storage to 5 million characters each of 7-bit.

These early prototypes had the heads of the hard disk in contact with the
disk surface. This was done to allow the low-sensitivity electronics to be able
to better read the magnetic fields on the disk surface. However, owing to
the fact that manufacturing techniques were not nearly as sophisticated as
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they are now, it was not possible to produce a disk surface that was smooth
enough for the head to slide smoothly over it at high speed while in contact
with the surface. As a result, the heads and the magnetic coating on the
surface of the disk would wear out over time. Thus the problem of reliability
was not addressed.

IBM engineers working under R. Johnson at IBM in San Jose, California, be-
tween 1952 and 1954, realised that, with the proper design, the R/W heads
could be suspended above the disk surface and read the bits as they passed
underneath. This critical discovery, that contact with the surface of the disk
was no longer necessary, was implemented as IBM 305 RAMAC (Random
Access Method of Accounting and Control), introduced on September 13,
1956. This early version stored 5 million characters on 50 disks, each 24" in
diameter. The capacity was approximately 5 MB. Its bit density was about
2,000 bits per square inch and the data transfer rate was an impressive 8,800
bytes per second. Over the succeeding years, the technology improved incre-
mentally; bit density, capacity and performance all increased.

Next, we summarise the interesting history of the hard disk. In what follows,
we present lists of some historical “firsts” and new trends in the develop-
ment of HDDs. These lists are generated from the following sources on the
net: www.pcguide.com, www.storage.ibm.com, www.storagereview.com and
www.mkdata.dk [32, 33].

1.3.1 Chronological List of Developments in HDDs

There have been a number of important “firsts” in the world of hard disks
over their first 40 years or so. The following is a list, in chronological order, of
some of the products developed during the past half-century that introduced
key or important technologies in HDDs.

e FIRST HARD DISK (1956): IBM 305 RAMAC was introduced. It had a
capacity of about 5 MB, stored on fifty 24" disks. Its bit density was a
mere 2,000 bits per square inch and its data throughput was about 8,800
MB per second.

¢ FIRST AIR BEARING HEADS (1962): IBM’s model 1301 lowered the flying
height of the R/W heads to 250 micro-inches. It had a 28 MB capacity on
half as many heads as the original RAMAC, and increased both bit density
and throughput by about 1000%.

¢ FIRST REMOVABLE DISK DRIVE (1965): IBM’s model 2310 was the first
disk drive with a removable disk pack. While many PC users think of
removable hard disks as being a modern invention, in fact they were very
popular in the 1960s and 1970s.
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FIRST FERRITE HEADS (1966): IBM’s model 2314 was the first hard disk
to use ferrite core heads, the first type later used on PC hard disks.

FIRST MODERN HARD DISK DESIGN (1973): IBM’s model 3340, nicknamed
the Winchester, was introduced. With a capacity of 60 MB, it introduced
several key technologies that led to it being considered by many as the
ancestor of the modern disk drives.

FIRST THIN FILM HEADS (1979): IBM’s model 3370 was the first with
thin film heads, which would for many years be the standard in the HDD
industry.

FIRST &' FORM FACTOR DISK DRIVE (1979): IBM’s model 3310 was the
first disk drive with 8" platters, greatly reduced in size from the 14" that
had been the standard for over a decade.

FIRST 5.25" FORM FACTOR DISK DRIVE (1980): Seagate’s ST-506 was the
first drive in the 5.25"” form factor, used in the earliest PCs.

FIRST 3.5” FORM FACTOR DISK DRIVE (1983): Rodime introduced RO352,
the first disk drive to use the 3.5"” form factor, which became one of the
most important industry standards.

FIRST EXPANSION CARD DISK DRIVE (1985): Quantum introduced the
Hardcard, a 10.5 MB hard disk mounted on an industry standard archi-
tecture (ISA) expansion card for PCs that were originally built without a
hard disk. This product put Quantum “on the map” so to speak.

FIRST VOICE-COIL-ACTUATOR 3.5” DRIVE (1986): Conner Peripherals in-
troduced CP340, the first disk drive to use a voice-coil actuator.

FirsT “LOW-PROFILE” 3.5"” DISK DRIVE (1988): Conner Peripherals in-
troduced CP3022, which was the first 3.5” drive to use the reduced 1”
height, now called low profile and the standard for modern 3.5"” drives.

FIRST 2.5"” FORM FACTOR DISK DRIVE (1988): PrairieTek introduced a
drive using 2.5" platters. This size later became a standard for portable
computing.

FIRST DRIVE WiTH MR HEADS AND PARTIAL RESPONSE AND MAXIMUM
LIKELIHOOD (PRML) DATA DECODING (1990): IBM’s model 681 (Red-
wing), an 857 MB drive, was the first to use MR heads and PRML data
decoding.

FIRST THIN FILM DiSKS (1991): IBM’s Pacifica mainframe drive was the
first to replace oxide media with thin film media on the platter surface.
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e FIRST 1.8"” FORM FACTOR DISK DRIVE (1991): Integral Peripherals’ 1820
was the first hard disk with 1.8" platters, later used for PC-card disk drives.

e FIRST 1.3" FORM FACTOR DISK DRIVE (1992): Hewlett Packard’s C3013A
is the first 1.3" drive.

e FIrRsT 1” HiGH 1 GB DISK DRIVE (1993): IBM unveiled the world’s first
1" high 1 GB disk drive, storing 354 million bits per square inch.

e FIRST 7,200 RPM ULTRA ATA-INTERFACE DISK DRIVE (1997): Industry’s
first of this kind for desktop computers from Seagate Technology.

e FIRST 10,000 RPM DISK DRIVE (1998): Seagate Technology introduced the
first 10,000 rpm drives, i.e., the 9.1 GB (ST19101) and 4.55 GB (5T34501)
Cheetah family.

e FIRST ULTRA ATA /100 DISK DIVES (2000): Seagate announced the first
Ultra ATA /100 interface on its Barracuda ATA II disk drive, the industry’s
fastest desktop PC disk drive.

o LARGEST HDD (2000): At the time of the preparation of this monograph,
Seagate’s Barracuda 180 is the largest single drive in the world. It has a
capacity of 180 GB.

1.3.2 Trends in the Development of HDD Systems

In spite of a slow change in the basic design of hard disks over the years,
accelerated improvements in terms of their capacity, storage, reliability and
other characteristics have been made. In what follows, the various trends are
highlighted.

e BiT DENSITY: The bit density of hard disk platters continues to increase
at an amazing rate, even exceeding some of the optimistic predictions of a
few years ago. Densities in the laboratory are now exceeding 35 Gbits per
square inch, and modern disks are now packing as much as 20 GB of data
onto a single 3.5" platter.

e CaApPACITY: Hard disk capacity continues to increase at an accelerating
rate. From 10 MB in 1981, the normal capacity is now well over 20-30 GB.
Consumer drives would most likely have a capacity of 100 GB within a
couple of years.

e SPINDLE SPEED: The move to faster and faster spindle speeds continues.
Since increasing the spindle speed improves both random access and se-
quential performance, this is likely to continue. 7,200 rpm spindles are now
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standard on mainstream IDE/ATA drives. A 15,000 rpm SCSI drive was
announced by Seagate in early 2000.

e FORM FACTOR: The trend in form factors is downward: to smaller and
smaller drives. 5.25"” drives have now all but disappeared from the main-
stream market, with 3.5" drives dominating the desktop and server seg-
ment. In the mobile world, 2.5" drives are the standard, with smaller sizes
becoming more prevalent; IBM in 1999 announced its Microdrive, a tiny
170 MB or 340 MB device, only 1" in diameter and less than 0.25" thick.
Over the next few years, desktop and server drives are likely to make a
transition to the 2.5" form factor as well. The primary reasons for this
“shrinking trend” include the enhanced rigidity of smaller platters, reduc-
tion of mass to enable faster spin speeds, and improved reliability due to
enhanced ease of manufacturing.

¢ PERFORMANCE: Both positioning and transfer performance factors are im-
proving. The speed with which data can be pulled from the disk is in-
creasing more rapidly than the improvement of positioning performance,
suggesting that, over the next few years, addressing seek time and latency
will be the areas of greatest value to hard disk engineers.

e REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAID): In the province of
only high-end servers, the use of multiple disk arrays to improve perfor-
mance and reliability is becoming inereasingly common, and is now seen
even in consumer desktop machines.

e RELIABILITY: The reliability of hard disks is improving slowly as manufac-
turers refine their processes and add new reliability-enhancing features, but
this characteristic is not changing nearly as rapidly as the others above.
It is simply very hard to improve the reliability of a product when it is
changing rapidly.

e INTERFACES: Despite the introduction to the PC world of new interfaces,
such as the IEEE-1394 and universal serial bus (USB), the mainstream in-
terfaces are the same as they were through the 1990s: IDE/ATA and SCSI.
The interfaces themselves continue to create new and improved standards
with higher maximum transfer rates, to match the increase in performance
of the hard disks themselves.

1.4 Implementation Setup

To make our work more complete, we have implemented almost all of our
designs on actual HDDs with some highly advanced and accurate equipment.



10 Hard Disk Drive Servo Systems

In what follows, we briefly summarise the key software and hardware tools
used to obtain the simulation and implementation results.

1. MATLAB AND SIMULINK. All off-line computation and simulation of the
results in this book are done using the well-known products from Math
Work, MATLAB 5.3 with its simulation package SIMULINK 3.0.

9. LINEAR SYSTEMS AND CONTROL TOOLBOX. The linear systems and con-
trol toolbox [34], developed under a MATLAB environment by the first
author of the book and his co-worker, Zongli Lin of the University of
Virginia, collects a few tens of m-functions. These m-functions realise al-
gorithms for computing linear system structures (such as the finite and
infinite zero structures, invertibility structures, and many other proper-
ties) and algorithms for computing H, and H, optimal controllers, as
well as controllers that solve the H,, almost disturbance decoupling prob-
lem, and robust and perfect tracking problem. The toolbox has been used
intensively to carry out the design of the HDD servo systems throughout
the book.

3. Tue dSPACE DSP sysTeEM. A dSPACE (DSP) system is used in the ac-
tual implementation throughout the book. The system has the following
main components:

e The dSPACE Add-on Card. The main component of the dSPACE DSP
system is its add-on card, DS1102, which is built upon a Texas In-
struments TMS320C31 floating-point DSP. The DSP has been supple-
mented by a set of analog-to-digital (A/D) and digital-to-analog (D/A)
converters, a DSP micro-controller-based digital I/O subsystem and in-
cremental sensor interfaces. Some major features of this add-on card
are:

a) a TMS320C31 floating-point DSP;

b) two 16-bit 250 kHz and two 12-bit 800 kHz sampling A /D converters
with input span of £10 V;

c) a quad 12-bit D/A converter with programmable output voltages;

d) a 16-bit fixed point digital I/O, a bit-selectable-parallel I/O port,
four timers, six PWM circuits, and a serial interface.

e Real-Time Interface (RTI) and Real-Time Workshop (RTW). The RTI
acts as a link between SIMULINK and the dSPACE hardware. It has
built-in hardware control functions and blocks for DS1102 add-on card
based on SIMULINK. This, together with the RTW, automatically gen-
erates real-time codes from SIMULINK off-line models and implements
these codes on the dSPACE real-time hardware.
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e The dSPACE Control Desk. This is a software platform that combines
all the above tools of dSPACE for controlling, monitoring, and au-
tomating the implementation process on the actual HDDs.

. POLYTEC LASER DOPPLER VIBROMETER (LDV). The Polytec LDV is an
optical instrument for accurately measuring velocity and displacement of
vibrating surfaces completely without contact. The LDV system consists
of two main components: (1) an optical sensor head or fibre optic unit
(both are laser interferometers), which measures the dynamic Doppler
shift from the vibrating object; and (2) a controller (processor), which
provides power to the optics and demodulates the Doppler information
using various types of Doppler signal decoder electronics, thereby produc-
ing an analog vibration signal (velocity and/or displacement) that can
be viewed/measured by the customer using commercially available fast
Fourier transform (FFT) analysers and oscilloscopes. This instrument
is used to measure the displacement and velocity of the R/W heads of
HDDs.

. DYNAMIC SIGNAL ANALYSER (DSA). The HP dynamic signal analyser,
HP35670A, is a dynamic monitoring and measuring instrument that can
be used for characterising the performance and stability of a control
system. Performance parameters, such as rise time, overshoot, and set-
tling time, are generally specified in the time domain. Stability criteria,
gain/phase margins, are generally specified in the frequency domain. The
HP35670A DSA is capable of measuring in both the time and frequency
domains. The instrument can also be used for system identification.

. VIBRATION-FREE TABLE. Since the success of the actual implementation
depends largely on the accurate measurement of very small displacements
of less than 1um, there is a need to isolate the HDD implementation
setup from the external vibrations. A Vibraplane Model 9100/9200 series
vibration-free workstation was used. These are designed and constructed
to provide very effective isolation of vibrations at frequencies above 5
Hz and low amplification at low frequencies of 2-3 Hz. Hence, the use
of this vibration-free table shows significant improvements in resolution
and repeatability of the measurement.

The overall hardware setup in our laboratory is depicted in Figure 1.4.

1.5 Preview of Each Chapter

A preview of each chapter is given next. Chapter 2 recalls some commonly
used system identification and modelling techniques, such as the prediction
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Experimental Setup for
HEDD Servo Systems

Dual
Actuator

Vibration Free Table

Figure 1.4. Implementation setup for HDD servo systems.

error identification and least squares estimation methods, applicable in the
frequency domain, and the impulse response analysis and step response anal-
ysis in the time domain, which will be employed to identify the models of
VCM actuators and microactuators later in the book. Chapter 3 recalls some
linear system tools such as bilinear transformation, Jordan canonical forms
and several structural decompositions of linear systems, which have the dis-
tinct feature of displaying the finite and infinite zero structures as well as the
invertibility structures of a given system. They play a dominant role in the
development of several control methods in Chapter 4, which will be utilised
in the design of HDD servo systems. More precisely, Chapter 4 deals with
linear control techniques, which include the well-known classical PID control,
H, optimal control, Hy, control and almost disturbance decoupling, robust
and perfect tracking (RPT) control, and loop transfer recovery (LTR) tech-
nique. These methods are suitable for track following control and have been
used extensively in designing HDD servo systems in the literature. Chapter
5 focuses on nonlinear control techniques such as the proximate time opti-
mal servomechanism (PTOS), mode switching control (MSC) and composite
nonlinear feedback (CNF) control. PTOS is generally used to design a control
law in the track seeking stage of HDD servo systems, whereas the MSC and
CNF design techniques can be used to find a controller that is applicable for
both track seeking and track following.

Chapters 6 and 7 focus on the design of HDD servo systems with a single-
stage VCM actuator. In particular, Chapter 6 deals with the modelling of
the VCM actuator and design of track following controllers using both the
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conventional PID control method and the recently developed RPT control
method. The integrated single-stage actuator servo systems combining the
track seeking and track following controllers will be given in Chapter 7. Three
different approaches will be presented in this chapter and their results will
be carefully compared.

Likewise, Chapters 8 and 9 deal with the modelling and design of HDD servo
systems with a dual-stage actuator. In particular, Chapter 8 considers a ro-
bust controller design for a piezoelectric bimorph nonlinear actuator using an
H,, almost disturbance decoupling approach. A complete HDD servo system
with a dual-stage actuator will then be presented in Chapter 9. Conventional
HDDs with a single-stage VCM actuator usually have resonances in the po-
sitioning arm and low-frequency bearing effects. It is believed that the per-
formances of such HDDs have been pushed almost to their limits. Dual-stage
servo systems with high bandwidth and high accuracy control are a possible
solution to overcome the problems associated with conventional HDDs.

Finally, some issues on disturbance rejection, such as repeatable and non-
repeatable runout rejection, and resonance compensation will be discussed in
Chapter 10. Concluding remarks and further discussions on some key issues
related to HDD servo systems will also be addressed. This will conclude the
whole monograph.

1.6 Nomenclature

Throughout this monograph, we adopt the following abbreviations and no-
tation, which are fairly standard.

R the set of real numbers

C the entire complex plane

ce the set of complex numbers inside the unit circle
(O the set of complex numbers outside the unit circle
c° the unit circle in the complex plane

Cc the open left-half complex plane

ct the open right-half complex plane

C the imaginary axis in the complex plane

I an identity matrix

Iy, an identity matrix of dimension k x k

X' the transpose of X

X" the complex conjugate transpose of X
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Im (X)
Ker (X)
xt
A(X)
Amax (X)
Omax(X)
1X1
IGIl2
llgll2

L,

lgllp

Ly,
Glloo
dim (X)
L
ARE
CNF
DSP
LDV
LQG
LQR
LTR
MSC
N/RRO
PES
PID
PTOS
RPT
TMR
TOC
TPI
ZOH

the range space of X

the null space of X

the Moore—Penrose {pseudo) inverse of X

the set of eigenvaluesof X

the maximum eigenvalue of X

the maximum singular value of X

the usual 2-norm of a matrix X

the Hy-norm of a stable system G(s) or G(2)
the la-norm of a signal g(t) or g(k)

the set of all functions whose I3 norms are finite
the {,-norm of a signal ¢(t) or g(k)

the set of all functions whose [,-norms are finite
the Hoo-norm of a stable system G(s) or G(2)
the dimension of a subspace X’

the orthogonal complement of a subspace X’ of R”
algebraic Riccati equation

composite nonlinear feedback

digital signal processor

laser Doppler vibrometer

linear quadratic Gaussian

linear quadratic regulator

loop transfer recovery

mode switching control

non-/repeatable runouts

position error signal
proportional-integral-derivative

proximate time optimal servomechanism
robust and perfect tracking

track mis-registration

time optimal control

track per inch (kTPI = kilo TPI)

zero-order hold

Also, C~1{X} := {z|Cz € X}, where X is a subspace and C is a matrix.
Finally, we append a { at the end of a proof or a result statement.



CHAPTER 2
SYSTEM IDENTIFICATION TECHNIQUES

2.1 Introduction

The purpose of this chapter is to revisit some basic theories and solutions
of system identification, which will be used later in the coming chapters to
model various HDD systems. In general, the goal of system identification is
to determine a mathematical model for a system or a process. Mathemati-
cal models may be developed either by use of “laws of nature”, commonly
known as modelling or based on experimentation, which is known as system
identification [35]. In order to achieve a certain desirable performance for a
given plant, it is necessary to derive a model for the plant that is adequate for
controller design. The conventional design techniques in linear control sys-
tems require either parametric or nonparametric models. For example, design
methods via root locus or robust control technique require a transfer function
or a state space description of the plant to be controlled. The plant model is
either described by the coeflicients of certain polynomials or by the elements
of state space matrices. In either case, we call these polynomial coefficients or
Jmatrix elements the parameters of the model. The category of such models
is a parametric description of the plant model. On the other hand, design
based on Nyquist, Bode and Nichols methods requires curves of amplitude
and phase of transfer function from input to the output as functions of real
frequency w. If we have experimental data from a typical frequency response
test, then we will be able to obtain certain functional curves for the plant.
These curves are called nonparametric models of the plant, as there is no
finite set of numbers that describes it exactly (see e.g., [1]).

Thus, for a given plant, the problem of system identification is to determine
a system model from the relationship (either in the time or the frequency do-
main) between its input and output. The problem can be represented graph-
ically as shown in the Figure 2.1, in which u(t) is the known input signal,
n(t) is the observation noise, and y(¢) is the measured output. A large vari-
ety of methods have been developed for solving such a problem (see e.g., [36]
and references cited therein). These methods include classical identification
techniques (such as the impulse response analysis, step response analysis,
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n(t)
u(t) /L y(t)
—_— Unknown System )

Figure 2.1. The unknown system to be identified.

frequency response identification) and equation error approaches and model
adjustment techniques (such as the least squares estimation, maximum likeli-
hood, and stochastic approximation, to name a few). The detailed derivations
of these techniques can be found in a number of advanced texts devoted to
system identification, e.g., [35, 37-39].

2.2 Time Domain Methods

In this section, we will restrict our attention to identifying both parametric
and nonparametric models through some commonly used time domain tech-
niques. Interested readers are referred to [35, 36, 40] for detailed materials
on the identification through impulse and step response characteristics.

2.2.1 Impulse Response Analysis

Parametric Models. Parametric models are described by parameters of dif-
ferential equations or transfer functions. From these analytic representations,
plots or values of interest of frequency response can in general be generated
without much difficulty, whereas the reverse process of deriving parameters
from nonparametric model descriptions is much more difficult.

A fairly general parametric model of a single-input and single-output (SISO)
system can be described by the following differential equation (see e.g., [40]),

any ™ (t) + - + ary(t) + aoy(?)
= bou(t - Td) + bl’l'l,(t — Td) + -4 bmu(m)(t - Td). (2.1)

Solving the differential equation for the input signal

u(t) = 6(t), (2.2)
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with &(t) being the unit impulse function, gives the impulse transfer function
h(t),

y(t) = h(t), (2.3)

as the corresponding output function. Note that it is hard to generate an
impulse input in the continuous-time domain, and hence this method is im-
practical.

Nonparametric Models. Consider again a SISO system as in Figure 2.1
with a scalar input signal u(t) and a scalar output signal y(¢). Assume that
the system is linear, time invariant and causal.

It is well known that a linear, time-invariant causal system can be described
by its impulse response g(7) as follows:

y(t) = /Ooo g(Tu(t — 1) dr + n(t). (24)

Knowing {g(7)}32, and knowing u(s) for s < ¢, we can consequently compute
the corresponding output y(s), s < ¢t for any input. The impulse response is
thus a complete characterisation of the system.

The discrete equivalent of the output y(t) can be written at the sampling
instants t, = kT, k=0,1,2,---, as

y(te) = /O " g()ulte — ) dr + n(te), (2.5)

where T is the sampling period. Since, the input u(tz) is kept constant be-
tween the sampling instants:

u(t) = u(ty) = ug, ET <t < (k+ 1T, (2.6)

we can derive that
i=1

Now, let G(z) be the transfer function of the system from input to output
with z being the usual forward shift operator, i.e.,
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G(z) =Y _g(k)z"". (2.8)

k=1

Then, Equation (2.7) can be written as
y(te) = G(2)u(te) + n(tx). (2.9)

If the system Equation (2.9) is subjected to a pulse input

» k=0,
u(tk)z{g t’;#O (2.10)

then the output will be

y(te) = ag(te) + n(te)- (2.11)

If the noise level is low, then the estimates of the coefficients of the impuise
response {g(tx)} from an experiment will be

g(te) =

y(tx)
- (2.12)

and the errors n(ty)/c«. This simple analysis is called impulse response analy-
sis. Unfortunately, many physical processes do not allow the error n(tx)/a to
be insignificant compared with the impulse response coefficients. Moreover,
such an input could induce nonlinear effects that would disturb the linearised
behaviour of the model. As such, identification methods depend on impulse
inputs are rarely used in practical situations.

2.2.2 Step Response Analysis

Parametric Models. Parametric models usually are described by their fre-
quency response function,

bo + bijw + ..bp (Jw)™ .
_ ) - 2.13
Glw) = 2= g ¥ oy SPIen), (2.13)

where a;, b;, m, n and 7 are parameters to be identified.

Many researchers proposed methods for determining parameter values from
time functions of the process output provided that the process input is a
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well-determined signal. Of primary importance are step functions as input
signals and step responses as output signals.

Almost all methods for the evaluation of step response functions use a small
number of characteristic values of the response function. A first-order lag
model with time delay and a frequency response

G(w) - exp(—jwT) (2.14)

T 1+jen

is widely used in step response analysis. In fact, there are quite a number of
systems, especially in process control that can be approximated by a first-
order model with an appropriate delay. The parameters K, 71 and 7 can
be derived from the step response shown in Figure 2.2 with ug being the
amplitude of the input step signal (see e.g., [40}). In short, if the system model
is of the first order, one may need only obtain two pieces of information: (i)
the steady-state response to the step input, and (ii) the time constant. The
latter can be obtained either from the tangent with maximum slope of the
step response or from the 10 to 90% rise time.

L‘t“ B !
Figure 2.2. A typical step response.

For a second-order system model (with two poles and no zero), there are two
possible situations: {1) when the two poles are real and (2) when the poles are
a complex conjugate pair. Formulae for finding these from measurements of
the (a) steady-state response, (b) maximum overshoot, (c) time required to
reach the first-peak, and {d) time required to reach 50% of the steady-state
value (for overdamped systems) can be easily derived. For the general case of
higher-order practical systems, it is perhaps best to use a gradient method
to find the parameters of the model of a given order such that the integral of
the square of the error is minimised (see e.g., {35]).
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Nonparametric Models. Since the impulse response of a system is the
derivative of the step response, the identification problem in this case may
be regarded as the determination of the transfer function from the impulse
response. Alternatively, a step function

a, tpy>0
u(ty) = { 0 t: 2o (2.15)

when applied to Equation (2.9) gives the output

k
y(te) =a Y g(i) +n(t), te=kT, k=01, (2.16)

i=1
Then, the estimates can be obtained as

glty) = M}“y—(tﬁl—) (2.17)

which has an error [n(tg) — n(¢x—1)]/@. Hence, we would suffer again from
large errors in most practical applications. But, if the goal is to determine
some basic control-related characteristics, then the step responses from Equa-
tion (2.16) can very well furnish that information to a sufficient degree of
accuracy. In fact, some well-known rules for tuning simple regulators, such
as the Ziegler—Nichols rule, are based on model information reached in step
responses. Based on plots of the step responses, some key characteristics of
the system can be graphically constructed, which in turn can be used to
determine system parameters.

2.3 Frequency Domain Methods

We recall in this section two identification methods in the frequency domain,
namely, the predication error identification approach and the least squares es-
timation method, Both are particularly important to our studies in modelling
the micro and VCM actuators in HDD servo systems in the coming chapters.
The theories behind these techniques can be found in various references (see
e.g., (35, 41]).

2.3.1 Prediction Error Identification Approach

The prediction error approach is one of a black-box identification method. It
includes the following three steps.
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1. PARAMETER IDENTIFICATION. Suppose a system can be described as
y(k) = Gz u(k) + H(z Yn(k), _ (2.18)

where u(k) and y(k) are its process input and output; n(k) is noise input
and supposed to be white; and

G(z™") = B(z"1)/A(z") )

H(z™') = D(z"")/A(=™)

A(z™Y) =14zt +az 2+ +an,z7 " (2.19)
B(z™Y) =biz7 4 bz 4 4 by 27

D(z7) =izt +daz 4o+ dy 2™ )

The predictor is:

(k1) = [1 — H™ (274, 0)ly(k) + H (=7, 0)G (27", O)u(k), (2.20)

where
ai
Gn,
b
9= : (2.21)
bn,
\d,,

is the parameter vector of the system. Then, the prediction error given
by a model is

e(k,0) = y(k) — §(k|6). (2.22)
Next, we define a loss function as
N
Vn (6, Zn) = Z e(k,0)), (2.23)

k:

where £(-) is a scalar-valued positive function, and
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Loss Function
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Zn = [y(0),-- y(N), u(@), -+ u(N)] (2:24)

is a set of input and output data from the experiment test. The desired
system parameters can then be obtained by the minimisation of this loss
function, i.e.,

6n = argmin Vn (8, Zn). (2.25)

. DETERMINATION OF MODEL ORDER. The loss function Vi (6, Zn) can

also be used to determine the order of a system. If the order of a model
is lower than that of the system, then the value of the loss function will
decrease significantly with the increase of the order of the model. How-
ever, when the order of the model is higher than that of the system, the
increase of model order will not provide any more innovation for param-
eter identification, thus the value of Vy (6, Zn) will not decrease much.
Therefore, the order of the system to be identified can be determined
based on the decrease rate of Vy (8, Zn). Figure 2.3 shows a typical plot
of the loss function versus identified model orders. It is clear from the
plot that the order of the corresponding system to be identified is four.

0.12 T T T T T T T T i

0.1

8

8

o
b4

0.02

0 L ) 1 L I . " 1 "
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Model Order

Figure 2.3. Values of loss function versus identified model orders.

3.

MODEL VALIDATION. The third step of the prediction error identification
method is to verify the correctness of the model obtained. It is clear that
the residuals of the model can be obtained as
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e(k,8) = y(k) — §(k6)
= B71(z71,0) [y(k) - Gz, O)u(k)] (2.26)

Obviously, if the model is correct, i.e.,
G(z71,8) = Go(z™!) and H™1(z71,8) = Ho(z™Y), (2.27)

the residual will tend to a white noise sequence n(k). However, the non-
whiteness of the residuals does not necessarily mean that the model is
incorrect. In that case, the cross-correlation of the input u and residuals
e can be used to verify the model. If u and e are independent, this means
that all information in the residuals is explained by the process model G,
and we can conclude that the estimate is correct. Otherwise the result is
incorrect.

The cross-correlation of u and e is
Reu(7) = E{e(t + m)u(t)} (2.28)

where E{-} is the expected value. If the residuals and input are indepen-
dent, we have

VNR., - N(0,P), as N — oo, (2.29)

where P = Y02 _  R.(k)Ru.(k), and N(0, P) denotes the normal ran-
dom distribution with zero mean and a variance P. Let N, be the a-level
of the M(0, P) such that

P {IReu| <4 ’J—P,;‘['Na} =a, (230)

where P{-} is the probability. Define the following null hypothesis:

Ho : [Reu] < \/ 2Nt (2.31)

If Hy is accepted, then we can say that the model is acceptable with
a probability of 1 — a. Figure 2.4 shows a typical plot of the values of
cross-correlation function between the input and the error residual. It
can be seen that, for such a model, all the data are within the 95%
confidence region. Hence, we can say that the corresponding identified
model is acceptable with a probability of 95%.
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cross—correlation between input and residuals
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Figure 2.4. Model validation test.

2.3.2 Least Squares Estimation Method

We will utilise the frequency response identification method (see e.g., [37]) to
model our actuator. Such a method is applicable to minimum phase processes.
We expect from the properties of the physical system that the VCM actuator
should be of minimum phase. The detailed procedure proceeds as follows: we
first assume that the transfer function of a minimum phase plant is given by

N(s) _bo+bys+bys®+ -+ bps™

= , 2.32
D(s) 1+ais+as?2+---+aps” (2.32)

G(s) =

for some appropriate coefficients ax, £k = 1,2,---,n, and b, k =0,1,---,m,
with n > m. These parameters are to be identified. Then, its corresponding
frequency response is given by

a(w) + jwBw) _ N(jw)

G0 = G@) v jer@ ~ D)’

(2.33)

where
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a(wi) =by — bzwf + b4w21 —_ ..
B(w;) = by — baw? + bswf — - - - s
o(wi) =1- azwiz + a4wz4 ..

T(wi) = a1 — azw? + aswf — -+

Let R(w) and I(w) be the real and imaginary parts of the measured frequency
response of the actuator system. The frequency response error between the
model and the actual measurement data is given by

_ NGw)

£(w) = [R() + 1] = Hkes.

(2.35)

Thus, the parameters of the system can be obtained by minimising the fol-
lowing index:

L
T =2 |EGw)P, (2.36)
=1

where L is the total number of points of the measured data. Unfortunately,
this is a nonlinear optimisation problem, and it is difficult to solve. We then
follow the results of [37] to modify the error norm as

L
7 =3 ID(w)EGwi) . (2.37)

=1

The original problem now becomes a linear optimisation problem. Using
Equations (2.33) and (2.35), we can rewrite Equation (2.37) as follows

7= {0 + ), (2.38)
i=1
where
X (w;) = o(w;)R(ws) — wit(w;) I{w;) — afw;), (2.39)
and
Y (wi) = wit(wi) R(wi) + o{wi) I (w;) — wi(ws). (2.40)
Therefore, J can be minimised by finding 130, 51, e, by, and ay, g, * -, Gn

such that
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8J L
dbo b.,:sf;{m“’""‘”} b
aJ =
8—b1’b1=51 B ;{2)/(%)(_%)}]%:5: 0
: ;
6J‘ _ L _
B lorcen = 2 2 [V @R = X@I@)]| |, =0
8J L
e =) 20| X (wi)R(w;i) + Y (wi) {w; =0
B sy = 2 =248 [Y@ORG) + Y@ I@i]|
Ve
Rearranging the above equations, we obtain
An A12) b)=/B1
Az Az ) \a \B; )’
where
Vo 0 -V 0 W o
0 v 0 -Vy 0 b
V.. 0 -V, 0 Vg by
Au=1|0 v, 0 -V 0 b= by |
Vi 0 -V, 0 W by
Al Ss —T3 —S4 Ts Fap ]
—5’2 T3 54 —T5 —Sﬁ &2
T3 54 ~T5 —Se 17 as
A = =Sy Ts S¢ -Tr —Ss @=1ag o
Ty Ss -Tr —Ss T s
B ) i . ]
rTy =S —-T13 Sy T [So ]
So T ~-Ss —T; Se T
T3 -84 -Ts S Ty S
An=15 T, -8 -T: Ss Bi=\14]>
T,5 —Se —T'[ Sg Tg 54
L ‘ : L:

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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U 0 =Us 0 Us --- 0
0 U, 0 -“Ug 0 ---{ U,
Uus, 0 -Us 0 Ug --- 0
An=|0 v, 0 -Us 0 ---|» Be=|p, |, (246
Us 0 -Us 0 U --- 0
and where
L L
Ve=) wf,  Si=) wfR(w), (2.47)
L L
Ti= Y whl(w), Uk=Y wlR*wi) + I2(wi)]. (2.48)
i=0 i=0

The desired parameters of the corresponding transfer function model can be
obtained by solving the above equations.

Finally, we note that the methods recalled above are merely for the iden-
tification of the HDD VCM and micro-actuators in the coming chapters. If
systems to be identified are highly uncertain with disturbances, it would be
more appropriate to use the methods reported in a recent monograph by
Chen and Gu [42] to yield more accurate results.



CHAPTER 3
LINEAR SYSTEM TOOLS

3.1 Introduction

It is our belief that a good unambiguous understanding of linear system struc-
tures, i.e., the finite and infinite zero structures as well as the invertibility
structures of linear systems, is essential for a meaningful control system de-
sign. As a matter of fact, the performance and limitation of an overall control
system is primarily dependent on the structural properties of the given open-
loop system. In our opinion, a control system engineer should thoroughly
study the properties of a given plant before carrying out any meaningful
design. Many of the difficulties one might face in the design stage may be
avoided if the designer has fully understood the system properties or limita-
tions. For example, it is well understood in the literature that a nonminimum
phase zero would generally yield a bad overall performance no matter what
design methodology is used. A good control engineer should try to avoid
these kinds of problem at the initial stage by adding or adjusting sensors or
actuators in the system. Sometimes, a simple rearrangement of existing sen-
sors and/or actuators could totally change the system properties. We refer
interested readers to the recent work by Liu et al. [43] for details.

As such, we recall in this chapter several system decomposition techniques
that can be utilised to display all the above-mentioned structural properties.
More specifically, we will recall: (1) the Jordan and real Jordan canonical
forms for a square constant matrix; (2) the controllability structural decom-
position (CSD) and block diagonal control canonical form for a constant
matrix pair; and (3) the special coordinate basis of a linear time invariant
system characterised by either a matrix triple or a matrix quadruple. These
canonical forms and the special coordinate basis will form a transformer for
linear systems. Once a linear system is touched by this transformer, all its
structural properties become clear and transparent. Lastly, we will recall
at the end of the chapter some key results of bilinear transformation and
inverse bilinear transformation. Mappings of the structural properties of gen-
eral linear systems under bilinear and inverse bilinear transformations will
also be identified. These results serve as a bridge between the continuous-
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and discrete-time systems. In fact, many results for discrete-time systems,
such as discrete-time H,, optimisation and H,, almost disturbance decou-
pling problems, can be derived from their continuous-time counterparts by
the bilinear transformation.

3.2 Jordan Canonical Forms

We recall in this section the Jordan canonical form and the real Jordan canon-
ical form of a square constant matrix. We first have the following theorem.

3.2.1 Jordan Canonical Form

Theorem 3.2.1. Consider a constant matrix A € R**™. There exists a non-
singular transformation T € C**" and an integer k such that

T-1AT = blkdiag{Jl, Jo, Jk}, (3.1)
where J;, i = 1,2,---, k, are some n; X n; Jordan blocks, i.e.,
Ao 1
Ji = )\Z . (3.2)
A
Obviously, X; € M(4), i = 1,2,---,k, and 3¢ n; = n. o

The result of Theorem 3.2.1 is very well known. The realisation of this Jordan
canonical form in MATLAB can be found in Lin and Chen [34] (see e.g., the m-
function jordan.m). The following theorem is to find a real Jordan canonical
form.

3.2.2 Real Jordan Canonical Form

Theorem 3.2.2. Consider a constant matrix A € R"*"™. There exists a non-
singular transformation P € R®*"™ and an integer k such that

P-lAP = blkdiag{Jl,Jz, e Jk}, (3.3)
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where each block J;, i = 1,2,---,k, has the following form: if X\; € A(4) is
real,

J; = , 3.4
N (3.4)
Ai

or if A\; = p; + jw; € AM(A4) and \; = p; — jw; € AMA) with w; # 0,

e A “] 35
A I ' {—w pi 49
A;

The above structure of P~1 AP is called the real Jordan canonical form. ¢

Again, the above result can be found in many standard textbooks. An m-
function, r_jordan.m, realising the above real Jordan canonical form has been
reported in Lin and Chen {34].

3.3 Structural Decompositions of Matrix Pairs

In this section, two structural decompositions of a constant matrix pair,
namely the so-called controllability structural decomposition (CSD) and the
block diagonal control canonical form (see e.g., [44]), will be presented. We
will first recall the CSD for a linear system characterised by a matrix pair
(4, B), which was called a Brunovsky canonical form by many researchers in
the literature (see e.g., [45]). However, it is noted that such a decomposition
was actually first discovered by Luenberger {46] in 1967, which was 3 years
earlier than the publication of Brunovsky’s results [47] in 1970. We have the
following theorems regarding the CSD and the block diagonal control canon-
ical form for a given constant matrix pair.

3.3.1 Controllability Structural Decomposition

Theorem 3.3.1. Consider a constant matrix pair (4, B) with A € R**" and
B € R*™™ with B being of full rank. There exist nonsingular state and input
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transformations Ty and T; such that (A, B) := (T, 'AT,, T, ! BT}) has the
following form:

A, O 0 - 0 0 0 0

0 0 Ip—1 --- 0 0 0 0

* ok * S % * 1 -0
S : R (3.6)

0 0 0 0 Iy, 0 0

* % * * * 0 1
where k; > 0, i = 1,---,m, A, is of dimension n, := n — > k; and
its eigenvalues are the uncontrollable modes of (A4, B). Moreover, the set of
integers, C := {no, k1, - - -, km }, is hereafter called the controllability index
of (A, B). o

3.3.2 Block Diagonal Control Canonical Form

Theorem 3.3.2. Consider a constant matrix pair (A, B) with A € R™*" and
B ¢ R**™ and with (A, B) being completely controllable. Then there ex-
ist an integer k£ < m, a set of k integers ki, k2, ---, kg, and nonsingular
transformations Ty and T; such that

r4, 0 O --- 0
0 4, 0 --- ©
TS——IATS — 0 0 A3 e 0 R (37)
L0 0 O A,
B x % * ok
0 By * * %
TS—IBTi -0 0 By -+ *x x% ; (3.8)
L0 0 0 -+ B x
where the x symbols represent some matrices of less interest, and matrices
A; and B;, i =1,2,---, k, have the following control canonical form:
0 1 0 0 0
0 0 1 0 0
Ai= : : |, Bi=1i|, 39)
0 0 0 1 0

|
Q
Rpas
—

—at —qat _at
O, Ok, —1 Qg —2
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for some scalars a}, a}, - -+, a} . Obviously, 3.7 ; ki = n. We call the above
structure of A and B a block diagonal control canonical form. &

The software realisations of these canonical forms in MATLAB can be found
in Lin and Chen [34].

3.4 Structural Decomposition of Linear Systems

Consider a general proper linear time-invariant system X, which could be of
either continuous-time or discrete-time, characterised by a matrix quadruple
(A., B.,C.,D,) or in the state-space form
6(x) = Arz + B u
. { (@) = A ’ (3.10)
y =Ciz+ D, u,

where §(z) = z(t) if X, is a continuous-time system, or §(z) = z(k + 1) if
XY, is a discrete-time system. Similarly, z € R*, v € R™ and y € RP are the
state, input and output of X,. They represent respectively z(t), u(t) and y(t)
if the given system is of continuous-time, or represent respectively z(k), u(k)
and y(k) if X, is of discrete-time. Without loss of any generality, we assume
throughout this section that both [B] D.] and [C. D.] are of full rank.
The transfer function of X, is then given by

H,(s) = Cu(sI — A.) "By + Da, (3.11)
where ¢ = s, the Laplace transform operator, if X, is of continuous-time, or

¢ = z, the z-transform operator, if X, is of discrete-time. It is simple to verify
that there exist nonsingular transformations U and V such that

UD.V = [I’go 8] , (3.12)

where my is the rank of matrix D,. In fact, U can be chosen as an orthogonal
matrix. Hence, hereafter, without loss of generality, it is assumed that the

matrix D, has the form given on the right hand-side of Equation (3.12). One
can now rewrite system X, of Equation (3.10) as

8(z)

(%)

I

A* T + [B*,O B*,l] (UO),

U3

C*,O Imo 0 Ug
e = U o) ()

(3.13)

I
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where the matrices B, g, B. 1, Cs0 and C,; have appropriate dimensions.

Theorem 3.4.1 on the special coordinate basis (SCB) of linear systems (see
also [48, 49]) is mainly due to the results of Sannuti and Saberi. The proofs
of all its properties can be found in a recent monograph by Chen [44].

Theorem 3.4.1. Given the linear system X, of Equation (3.10), there exist
1. coordinate-free nonnegative integers n;, nd, nt, ny, ne, ng, mg < m—mg
and ¢;, i = 1,---,my, and

2. nonsingular state, output and input transformations I's, I', and I'; that
take the given Y, into a special coordinate basis that displays explicitly
both the finite and infinite zero structures of X.,.

The special coordinate basis is described by the following set of equations:

T = Fs';i'a y= Foga u= Fi’&, (314)
Za .27; Iy
Zg
i= ;" , Ta=| 2}, za=| . |, (3.15)
c x+ :
Td a T,
n Uy
yO y2 UQ u2
y=|vaf,va=] . |ro=|uw|,wa=] . |, (3.16)
) ’ Ue .
Ymy Umy
d(z;) = Aj, 7 + Boyo + Logya + Lus, (3.17)
8(z3) = A%x0 + Bloyo + Ligya + Loy, (3.18)
8(z}) = Azt + Biyo + L ya + Liwe, (3.19)
O(xp) = AssTe + Bovyo + Leaya, Yo = Cos, (3.20)

<S(117c) = Acce + BOcyO + chyb + Lcdyd
+ B. [E_z; + E3 22 + E}z¥] + Beu,, (3.21)

yo = Cocc + C(;l.’lI; + Cg;il:g + C{L.’E: + Coazqg + Copxp +ug  (3.22)
and for each t = 1,---,mg,

0(zi) = Ag; i + Lioyo + Liayd
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mg
+ By, [us + E,oxo + Eppxy + Ejeze + Z E,'j(l,‘j , (3.23)
j=1

¥i = Cq,;Ti,  ya = CaZq. (3.24)

Here the states z, 22, zF, x5, . and z4 are respectively of dimensions
n;, nd, nt, ny, n. and ng = Y .v4 ¢, and z; is of dimension ¢; for each
i =1,---,mg. The control vectors ugp, ug and u, are respectively of dimensions
me, mq and m. = m — mg — mg, and the output vectors yo, yq and y; are
respectively of dimensions py = mg, ps = mq and pp = p — po — pq- The
matrices Ag;, By, and Cy, have the following form:

01, - 0 '
A‘]i = |:0 qO I:I ’ Bq" = 1:1] ’ Cq" = [la O; ) O] (325)
Assuming that z;, i = 1,2,---,my, are arranged such that ¢; < giy1, the

matrix L;g has the particular form
Lig={Lia Lg -+ Ly 0 --- 0] (3.26)
The last row of each L;q is identically zero. Moreover:
1. I X, is a continuous-time system, then
MAD) cC, M4Y,) cC, A ccC. (3.27)
2. If X, is a discrete-time system, then
MA;,) CCo, AA4%,)CC®, xAl)ccCe. (3.28)
Also, the pair (Acc, B.) is controllable and the pair (Ass, Cs) is observable. ¢

Note that a procedure of constructing the original version of the above struc-
tural decomposition of a strictly proper linear system was given by Sannuti
and Saberi [48]. The required modifications for non-strictly proper systems
were given by the same authors in [49]. Here, in Theorem 3.4.1 by another
change of basis, the variable z, is further decomposed into z,, 3 and z7.
For continuous-time systems, one can use the real Schur algorithm to obtain
such a decomposition. For discrete-time systems, the algorithm of Chen {50]
can be used. The realisation of this unified decomposition can be found in
Lin and Chen [34]. Finally, the proofs of all properties of this decomposition
listed below have been reported by Chen [44, 51].
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We can rewrite the special coordinate basis of the quadruple (A., By, Cs, D.)
given by Theorem 3.4.1 in a more compact form:

A, = F_I(A* - B*7oc*70)1—1s

s

A;a 0 0 L;be 0 L,;dCd ]
0 A9, 0  I%C, 0 I°,Cq
_ 0 0 Af, LhC, 0 LYCy (3.29)
0 0 0 A 0 LyCyl’
BcEc_a BcEga BCE;Z chCb Acc Lchd
'BdEd_ BdE((i)a BdE;a BdEdb BdEdc Add E
(B(;z 0 07
B, 0 O
~ B+
B.=I"'[B.o B.yn=|B0a 0 0] (3.30)
Bg O 0
BOC 0 Bc
LBog By 0 J
CYO_a C(())a C(;t; COb COc COd

. C.
C.=1," { ’0] I={0 0 0 0 0 Cqf, (331
0 0 0 C 0 0

Iny 00
D.=Ir;'D.i=| 0 o0 of. (3.32)
0 0 0

A block diagram of the special coordinate basis of Theorem 3.4.1 is given
in Figure 3.1. In this figure, a signal given by a double-edged arrow is some
linear combination of outputs y;, i = 0 to my, whereas a signal given by the
double-edged arrow with a solid dot is some linear combination of all the
states. Also, the block D> is either an integrator if X, is of continuous-time or
a backward shifting operator if X, is of discrete-time.

We note the following intuitive points regarding the special coordinate basis.

1. The variable u; controls the output y; through a stack of ¢; integrators
(or backward shifting operators), whereas z; is the state associated with
those integrators (or backward shifting operators) between u; and y;.
Moreover, (Aq,,By;) and (Ag,,Cy,) respectively form controllable and
observable pairs. This implies that all the states z; are both controllable
and observable.



3. Linear System Tools 37
BanO + Labyb + Ladyd
L -

Aaa

Bovyo + Leqya

| Ty p y» Output
I b

App

cbyb + Bocyo + Lcdyd

Ue + Ecaxa
Zc

U ——Q——» yo Output

C) : Tig; -1 C : C) :1"11 =
: Output

Note that a signal given by a double-edged arrow with a solid dot is some linear
combination of all the states, whereas a signal given by a simple double-edged arrow
is some linear combination of only output y4. Also, matrices Bo,, Lob, Loq and Ec,
are to be defined in Property 3.4.1.

Figure 3.1. A block diagram representation of the special coordinate basis.
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2. The output y, and the state xp are not directly influenced by any in-
puts; however, they could be indirectly controlled through the output yg.
Moreover, (A, Cp) forms an observable pair. This implies that the state

zp is observable.

3. The state z, is directly controlled by the input u., but it does net directly
affect any output. Moreover, (A.., B;) forms a controllable pair. This
implies that the state z. is controllable.

4. The state x, is neither directly controlled by any input nor does it directly

affect any output.

In what follows, we state some important properties of the above special
coordinate basis that are pertinent to our present work. As mentioned earlier,

the proofs of these properties can be found in Chen {44].

Property 3.4.1. The given system X, is observable (detectable) if and only if
the pair (Aops, Cobs) is observable (detectable), where

A, 0
Aops = [BCEZa Acc] y Cobs i= [

and where

A7, 0 0
Ago =

0 0 At

Es:=|E;, ES E}), E.:=[E, E% EI].

Also, define
Aga LapC
Acon 1= { 0 .jlbbbb] , Beon 1= l:
By, Ly
Bﬁa - ng, ’ Lab = Lab )
By, L3,

COa COC]
Eda Edc

BOa Lad ]
Bop Lpq |

?

0 4%, o }, Coq :=[Cy, CQ Ci1,

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Similarly, X, is controllable (stabilisable) if and only if the pair (Acon, Beon)

is controllable (stabilisable).

¢
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The invariant zeros of a system X, characterised by {A., B., Cx, D,) can be
defined via the Smith canonical form of the (Rosenbrock) system matrix [52]
of X.:
R §I - A* _B*
Ps.(s) i= [ o P l . (3.38)

We have the following definition for the invariant zeros (see also [53]).

Definition 3.4.1. (Invariant Zeros). A complex scalar a € C is said to be
an invariant zero of X, if

rank {Py, (a)} < n + normrank {H,(s)}, (3.39)

where normrank { H,(s)} denotes the normal rank of H.(s), which is defined
as its rank over the field of rational functions of ¢ with real coefficients. ¢

The special coordinate basis of Theorem 3.4.1 shows explicitly the invariant
zeros and the normal rank of X,. To be more specific, we have the following
properties.

Property 3.4.2.

1. The normal rank of H,(s) is equal to mg + mgq.

2. Invariant zeros of X, are the eigenvalues of A,,, which are the unions of
the eigenvalues of A,,, A%, and A},. Moreover, the given system X, is of
minimum phase if and only if A,, has only stable eigenvalues, marginal
minimum phase if and only if A,, has no unstable eigenvalue but has
at least one marginally stable eigenvalue, and nonminimum phase if and
only if Ay, has at least one unstable eigenvalue. $

In order to display various multiplicities of invariant zeros, let X, be a nonsin-
gular transformation matrix such that A, can be transformed into a Jordan
canonical form (see Theorem 3.2.1), i.e.,

X 1AgXa = J = blkdiag {Jl, A Jk}, (3.40)

where J;, 1 =1,2,---, k, are some n; x n; Jordan blocks:

Jz‘ = diag{ai,ai,.. '7ai}+ [(0) In6_1:| . (341)
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For any given a € A(Aq,), let there be 7, Jordan blocks of A,, associated
with a. Let ng1, N2, ** - Ma,r, be the dimensions of the corresponding
Jordan blocks. Then we say « is an invariant zero of Y, with multiplicity
structure SX(X,),

Se(Zi) = {na,l,na,z, Ny, } (3.42)

The geometric multiplicity of « is then simply given by 7,, and the algebraic
multiplicity of a is given by 1%, ng,;. Here we should note that the invari-
ant zeros, together with their structures of X,, are related to the structural
invariant indices list Z; (X) of Morse [54].

The special coordinate basis can also reveal the infinite zero structure of X..
We note that the infinite zero structure of X, can be either defined in as-
sociation with root-locus theory or as Smith-McMillan zeros of the transfer
function at infinity. For the sake of simplicity, we only consider the infinite
zeros from the point of view of Smith—-McMillan theory here. To define the
zero structure of H,(s) at infinity, one can use the familiar Smith-McMillan
description of the zero structure at finite frequencies of a general not neces-
sarily square but strictly proper transfer function matrix H,(s). Namely, a
rational matrix H,(c) possesses an infinite zero of order k¥ when H,(1/z) has
a finite zero of precisely that order at z = 0 (see [52, 55-57]). The number
of zeros at infinity, together with their orders, indeed defines an infinite zero
structure. Owens [58] related the orders of the infinite zeros of the root-loci of
a square system with a nonsingular transfer function matrix to the C* struc-
tural invariant indices list Z4 of Morse [54]. This connection reveals that, even
for general not necessarily strictly proper systems, the structure at infinity is
in fact the topology of inherent integrations between the input and the out-
put variables. The special coordinate basis of Theorem 3.4.1 explicitly shows
this topology of inherent integrations. The following property pinpoints this.

Property 8.4.3. X, has mg = rank (D,) infinite zeros of order 0. The infinite
zero structure (of order greater than 0) of X, is given by

S5%(Z) = {ql,qz,‘--,qmd}- (3.43)

That is, each ¢; corresponds to an infinite zero of X, of order g;. Note that
for an SISO system Y., we have S* (X.) = {q1}, where ¢; is the relative
degree of X,. ¢

The special coordinate basis can also exhibit the invertibility structure of a
given system X,. The formal definitions of right invertibility and left invert-
ibility of a linear system can be found in [59]. Basically, for the usual case
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when [B, D,]and [C. D.] are of maximal rank, the system X, or equiv-
alently H.(s), is said to be left invertible if there exists a rational matrix
function, say L.(s), such that

L ($)Ho(S) = I (3.44)

X, or H.(¢) is said to be right invertible if there exists a rational matrix
function, say R.(s), such that

H.(Q)R.(s) = Ip. (3.45)

XY, is invertible if it is both left and right invertible, and X, is degenerate if
it is neither left nor right invertible.

Property 8.4.4. The given system X, is right invertible if and only if z, (and
hence y») are nonexistent, left invertible if and only if z. (and hence u.) are
nonexistent, and invertible if and only if both z;, and z. are nonexistent.
Moreover, Y, is degenerate if and only if both z and z. are present. &

The special coordinate basis can also be modified to obtain the structural
invariant indices lists Zo and Z3 of Morse [54] of the given system X,. In order
to display Zo(X.), we let X. and X; be nonsingular matrices such that the
controllable pair (A.., B.) is transformed into the CSD (see Theorem 3.3.1),
ie.,

0 Iy, - 0 0
* * R 4 *
0 0 0 I, 1
L*x % * *
0 0
1 ... 0
X'BXi= |1 - 1], (3.47)
0 0
0 1

where the * symbols denote constant scalars or row vectors. Then we have

(%) = {151,---,€mc}, (3.48)

which is also called the controllability index of (A.¢, B.)- Similarly, we have
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Z3(X.) = {Nl:"'yﬂpb}’ (3.49)

where {ul,---,upb} is the controllability index of the controllable pair
(Ags, Cp)-

By now it is clear that the special coordinate basis decomposes the state-
space into several distinct parts. In fact, the state-space X is decomposed as

X=X 0X0X 00X, 0 X, (3.50)

Here X is related to the stable invariant zeros, i.e., the eigenvalues of A_,
are the stable invariant zeros of X,. Similarly, X0 and X are respectively
related to the invariant zeros of X, located in the marginally stable and
unstable regions. On the other hand, X}, is related to the right invertibility,
i.e., the system is right invertible if and only if A} = {0}, whereas & is related
to left invertibility, i.e., the system is left invertible if and only if &, = {0}.
Finally, X, is related to zeros of X, at infinity.

There are interconnections between the special coordinate basis and various
invariant geometric subspaces. To show these interconnections, we introduce
the following geometric subspaces.

Definition 3.4.2. (Geometric Subspaces V* and §*). The weakly unob-
servable subspaces of X,, V¥, and the strongly controllable subspaces of X,
S*, are defined as follows:

1. V*(X,) is the maximal subspace of R™ that is (A.+ B, F,)-invariant and
contained in Ker (C, + D, F) such that the eigenvalues of (A.+ B, F,)|V*
are contained in C* C C for some constant matrix F,.

2. §*(X,) is the minimal (A, + K,C,)-invariant subspace of R" containing
Im (B, + K.D,) such that the eigenvalues of the map that is induced by
(A« + K.C,) on the factor space R*/S* are contained in C* C C for
some constant matrix K,.

Moreover, we let V~=V* and S =8%, if C*=C~ UC?%; V*=V* and ST=8%,
if = (C+ VOo=V* and §°=8*,if C*=C° U (Co Ve=V* and S®=S8%, if
C*=C?; and finally V*=V* and $*=8%, if C*= O

Property 3.4.5.

L X aX’aX {V‘(Z*), if X, is of continuous-time,
. spans
¢ N ¢ 5P Vve(x,), if XY, is of discrete-time.
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V+(x%,), if X, is of continuous-time,

2. Xfeo X,
a ©de spans {V®(Z'*), if X, is of discrete-time.

3. X, @ X0 X @ X, spans V*(X,).

S7(X,), if X, is of continuous-time,

4. XfeoX oX
a D Ac O Aq spans { So(X,), if X, is of discrete-time.

S*T(X,), if Z. is of continuous-time,

5 X oXaX. 00X
e DA, O A D Aq spans {369 (2,), if X, is of discrete-time.

6. X. ® Xy spans S*(X.). O

Finally, for future development on deriving solvability conditions for H.,
almost, disturbance decoupling problems, we introduce two more subspaces
of X,. The original definitions of these subspaces were given by Scherer [60].

Definition 3.4.3. (Geometric Subspaces V) and S)). For any A € C, we
define

W(Z.) = {cecc" 13w€@m 0= [A*CT*M g:] (i)} (3.51)
and

S\(5.) = {gec" awecc"w“m:(c):[“‘*‘ﬂ B*]w} (3.52)

0 C. D,

Va(2,) and Sx(X,) are associated with the so-called state zero directions of
X, if X is an invariant zero of X,. o

These subspaces Sy(X.) and V5(X,) can also be easily obtained using the
special coordinate basis. We have the following new property of the special
coordinate basis.

Property 3.4.6.

M=-A, 0 0 O
0 Yix 0 0

S\(Z) =Im{ T, 0 8* L 0 , (3.53)
0 0 0 I,

where
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Im {Y;»} = Ker [Cy(Ap + K3Cp — M), (3.54)

and where K} is any appropriately dimensional matrix subject to the con-
straint that A, + KpCp has no eigenvalue at A. We note that such a K,
always exists, as (App, Cp) is completely observable.

Xax O
Va(2s) =1Im < I 0 0 (3.55)
* K] O XC)\ ’ ‘
0 0
where X, is a matrix whose columns form a basis for the subspace,
{ga €T | (AT = Aua)Ca = o}, (3.56)
and
—-1
Xy = (Acc + B.F, — AI) B., (3.57)

with F, being any appropriately dimensional matrix subject to the constraint
that A.. + B.F, has no eigenvalue at A. Again, we note that the existence of
such an F, is guaranteed by the controllability of (A.., B.). O

Clearly, if A & A(Aqa), then we have
WA () CVH(EL), Sxa(Z.) 28*(%.). (3.58)

It is interesting to note that the subspaces V*(X,) and S*(X.) are dual
in the sense that VX(X¥) = SX(X,)*, where X7 is characterised by the
quadruple (AL, C%, B.,D.). Also, Sx(X.) = V5(X*)1. Finally, we conclude
this section by summarising in Figure 3.2 some major properties of the tools
of linear systems, which combines the mechanisms of the special coordinate
basis, the Jordan canonical form and the CSD. Such tools have been used in
the literature to solve many system and control problems (see Chen [44] for
details).

3.5 Bilinear Transformations

We recall in this section the work of Chen and Weller [61] on bilinear and in-
verse bilinear transformations of linear time-invariant systems (see also Chen
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/\1 \ SCB
\_y CSD, Jordan

Figure 3.2. Tools and structural properties of linear time-invariant systems.

[44]). Their result presents a comprehensive picture of the mapping of struc-
tural properties associated with general linear multivariable systems under
bilinear and inverse bilinear transformations. They have completely inves-
tigated the problem of how the finite and infinite zero structures, as well
as invertibility structures of a general continuous-time (discrete-time) linear
time-invariant multivariable system, are mapped to those of its discrete-time
(continuous-time) counterpart under the bilinear (inverse bilinear) transfor-
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mation. In what follows, we present a comprehensive study on the structural
mappings of the well-known bilinear (inverse bilinear) transformations

-1
s:a(z ) and z= ats (3.59)
z+1 a— S

respectively.

3.5.1 Continuous to Discrete

In this subsection, we will consider a continuous-time linear time-invariant
system X. characterised by

5, {:i::Ax+Bu,

y=Cz+ Du, (360)

wherez € R*,y € R?, u € R™ and 4, B, C and D are matrices of appropriate
dimensions. Without loss of any generality, we assume that both matrices
[C D]and [B' D'] are of full rank. X, has a transfer function

Ge(s) =C(sI — A 'B+D. (3.61)

Let us apply a bilinear transformation to the above continuous-time system,
by replacing s in Equation (3.61) with

2 (z-1 z—1
=2 - 62
N T<z+1) a(z+1)’ (362)

where T' = 2/a is the sampling period. As presented in Equation (3.62), the
bilinear transformation is often called Tustin’s approximation [62], whereas
the choice

w1
a4=—— 3.63
tan(w; T'/2) (3.63)
yields the pre-warped Tustin approximation, in which the frequency responses
of the continuous-time system and its discrete-time counterpart are matched
at frequency w;. In this way, we obtain a discrete-time system

-1
z_iI~A) B+D. (3.64)

Gq(z) = C (az -

The following lemma provides a direct state-space realisation of Gq(z).
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Lemma 3.5.1. A state-space realisation of G4(z), the discrete-time counter-
part of the continuous-time system X, of Equation (3.60) under the bilinear
transformation of Equation (3.62), is given by

z(k+1) = A z(k) + B u(k),
d : ~ ~ (365)
y(k) =C (k) + D u(k),
where
A = (al + A)(al — A)™1,
B = v2a (al — A)~'B,
B = Vaa (ol — 4) i (3.66)
C = V2aC(al — A7,
D = D+C(al - A)~'B.
Here we clearly assume that matrix A has no eigenvalue at a. &

The following theorem establishes the interconnection of the structural prop-
erties of X, and Xg.

Theorem 3.5.1. Consider the continuous-time system Y. of Equation (3.60)
characterised by the quadruple (A4, B,C, D) with matrix A having no eigen-
value at a, and its discrete-time counterpart under the bilinear transformation
of Equation (3.62), i.e., X4 of Equation (3.65) characterised by the quadruple
(4, B, C, D) of Equation (3.66). We have the following properties.

1. Controllability (stabilisability) and observability (detectability) of Xq:

a) the pair (4, B) is controllable (stabilisable) if and only if the pair
(4, B) is controllable (stabilisable);

b) the pair (4, C) is observable (detectable) if and only if the pair (4, C)
is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together
with state feedback and output injection laws:

a) for any given nonsingular state, output and input transformations
Ts, T, and T;, the quadruple

(T, AT, T, BT, T, CT,, T, DT, (3.67)

is the discrete-time counterpart under the bilinear transformation of
Equation (3.62), of the continuous-time system

(T AT, T, BT, T CT,, T, DTY); (3.68)
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for any F € R™*"™ with A + BF having no eigenvalue at a, define a
nonsingular matrix

Ti:=1+F(al —-A- BF)™'B
= [[ - F(al — A)7'B]™! € R™*™, (3.69)

and a constant matrix

F:=+2a F(al — A— BF)™! ¢ R™*". (3.70)
Then a continuous-time system Y. characterised by

(A+ BF,B,C + DF, D), (3.71)
is mapped to a discrete-time system Xg4r, characterised by

(A+ BF,BT,,C + DE, DT, (3.72)
under the bilinear transformation of Equation (3.62). Here we note
that Xcp is the closed-loop system comprising X and a state feedback
law with gain matrix F', and YXqy is the closed-loop system comprising

24 and a state feedback law with gain matrix F', together with a
nonsingular input transformation T7;

for any K € R**? with A + KC having no eigenvalue at a, define a
nonsingular matrix

To:=[I+Cal —A—-KC)'K|™! € RP>P, (3.73)
and a constant matrix

K :=v2a(al - A- KC)'K. (3.74)
Then a continuous-time system Y.y characterised by

(A+ KC,B+ KD,C,D), (3.75)
is mapped to a discrete-time system Xy, characterised by

(Ai+KC,B+KD,7.'C, ;' D), (3.76)
under the bilinear transformation of Equation (3.62). We note that
Yk 1s the closed-loop system comprising Y. and an output injection
law with gain matrix K, and Xy is the closed-loop system compris-

ing Y4 and an output injection law with gain matrix K, together
with a nonsingular output transformation 7T',.

3. Invertibility and structural invariant indices lists Zo and Z3 of Xyg:
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a) Iz(Xa) = In(Zc), and I3(Xq) = T3(Xe).
b) X4 is left (right) invertible if and only if 5. is left (right) invertible.

c) X4 is invertible (degenerate) if and only if Y. is invertible (degener-
ate).

4. The invariant zeros of 34 and their associated structures consist of the
following two parts.

a) Let the infinite zero structure (of order greater than 0) of X, be given
by Sx.(Xe) = {¢1,92, -, qm, }- Then z = —1 is an invariant zero of
X4 with the multiplicity structure S*(Xq) = {¢1,492,**, Gmy }-

b) Let s = @ # a be an invariant zero of X, with the multiplicity struc-
ture S5 (Xec) = {na,1,Ma,2," " s Ma,re }- Then z = f = (a+a)/(a—a)
is an invariant zero of its discrete-time counterpart Xy with the mul-
tiplicity structure S5(Xa) = {na,1,7a,2, ", Na,ra }-

5. The infinite zero structure of Xy consists of the following two parts:

a) Let mg = rank (D), and let my be the total number of infinite
zeros of Y. of order greater than 0. Also, let 7, be the geometric
multiplicity of the invariant zero of Yc at s = a. Then we have
rank (D) =mg + myg — 7,.

b) Let s = a be an invariant zero of the given continuous-time system X,

with a multiplicity structure S¥(X.) = {n4,1,Ma,2, " ;Na,r, }- Then
the discrete-time counterpart X4 has an infinite zero (of order greater
than 0) structure S%, (Xq) = {na,1,Ma,2, " sNa,r, }-

6. The mappings of geometric subspaces:
a) V() = 8°(Xy).
b) ST(X.) = Vo(Xy). &

We have the following two interesting observations. The first is with regard
to the minimum phase and nonminimum phase properties of Xy, and the
second concerns the asymptotic behaviour of Xy as the sampling period T
tends to zero (or, equivalently, as a — 00).

Observation 3.5.1. Consider a general continuous-time system X. and its
discrete-time counterpart Xy under the bilinear transformation of Equation
(3.62). Then it follows from 4(a) and 4(b) of Theorem 3.5.1 that
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1. ¥4 has all its invariant zeros inside the unit circle if and only if X has
all its invariant zeros in the open left-half plane and has no infinite zero
of order greater than 0;

2. X4 has invariant zeros on the unit circle if and only if X has invariant
zeros on the imaginary axis, and/or X has at least one infinite zero of
order greater than 0;

3. X4 has invariant zeros outside the unit circle if and only if X has invari-
ant zeros in the open right-half plane. O

Observation 3.5.2. Consider a general continuous-time system X. and its
discrete-time counterpart Xq under the bilinear transformation of Equation
(3.62). Then as a consequence of Theorem 3.5.1, Xy has the following asymp-
totic properties as the sampling period T tends to zero (but not equal to
Z€ro):

1. X4 has no infinite zero of order greater than 0, i.e., no delays from the
input to the output;

2. X4 has one invariant zero at z = —1 with an appropriate multiplicity
structure if X, has any infinite zero of order greater than 0; and

3. The remaining invariant zeros of X4, if any, tend to the point z = 1.
More interestingly, the invariant zeros of X4 corresponding to the stable
invariant zeros of X, are always stable, and approach the point z = 1 from
inside the unit circle. Conversely, the invariant zeros of Xy corresponding
to the unstable invariant zeros of X, are always unstable, and approach
the point z = 1 from outside the unit circle. Finally, those associated
with the imaginary axis invariant zeros of Y. are always mapped onto
the unit circle and move towards to the point z = 1. &

3.5.2 Discrete to Continuous

We present in this subsection a similar result as in the previous section, but
for the inverse bilinear transformation mapping a discrete-time system to a
continuous-time system. We begin with a discrete-time linear time-invariant
system X4 characterised by

Sy {”’"(k“) (3.77)

=Az(k)+ Bu
yk) =Caxz(k)+Du
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wherez € R,y € R?, u € R™ and A, B, € and D are matrices of appropriate
dimensions. Without loss of any generality, we assume that both matrices
[C D]and [B' D'] are of full rank. 54 has a transfer function

Hy(z) = C(zI — A)~'B + D. (3.78)

The inverse bilinear transformation corresponding to (3.62) replaces z in
Equation (3.78) with

a+s
= (3.79)
to obtain the following continuous-time system:
~f(a+s AT
Hc(s)=C(a_SI—A) B+ D. (3.80)

The following lemma is analogous to Lemma 3.5.1, and provides a state-space
realisation of H(s).

Lemma 3.5.2. A state-space realisation of H(s), the continuous-time coun-
terpart of the discrete-time system Xy of Equation (3.77) under the inverse
bilinear transformation of Equation (3.79), is given by

5 {a‘c:Am+Bu,

(3.81

where

=a(A+ D)1 (A-1),
V2a (A+1)7'B,
V2a C(A+ 1),
=D-CA+D'B.

(3.82)

ODaQwe
1

Here we clearly assume that the matrix A has no eigenvalue at —1. O
The following theorem is analogous to Theorem 3.5.1.

Theorem 3.5.2. Consider the discrete-time system X4 of Equation (3.77)
characterised by the quadruple (4, B,C, D) with matrix A having no eigen-
value at —1, and its continuous-time counterpart under the inverse bilinear
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transformation of Equation (3.79), i.e., X of Equation (3.81) characterised
by the quadruple (A, B,C, D) of Equation (3.82). We have the following
properties.

1. Controllability (stabilisability) and observability (detectability) of Y.

a) the pair (A, B) is controllable (stabilisable) if and only if the pair
(A, B) is controllable (stabilisable).

b) the pair (4, C) is observable (detectable) if and only if the pair (4, C)
is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together
with state feedback and output injection laws:

a) for any given nonsingular state, output and input transformations
Ts, T, and Tj, the quadruple
(T7'AT,, T, BT, T, CT, T, ' DT, (3.83)

irdg

is the continuous-time counterpart of the inverse bilinear transfor-
mation, i.e., (3.79), of the discrete-time system

(T7YAT,, T, 'BT,, T, ' CT,, T, DTy); (3.84)

b) for any F € R™*" with A + BF having no eigenvalue at —1, define
a nonsingular matrix

Ti:=I1-F(I+A+BF)"'BeR™™, (3.85)
and a constant matrix
=V2a F(I + A+ BF)™! ¢ R™*", (3.86)
Then a discrete-time system Edp characterised by
(A+ BF,B,C + DF,D), (3.87)
is mapped to a continuous-time counterpart Y. characterised by
(A+ BF,BT;,C + DF,DT;), (3.88)

under the inverse bilinear transformation of Equation (3.79). Note
that Y4z is the closed- loop system comprising Y4 and a state feed-
back law with gain matrix F, and Yar is the closed-loop system
comprising X4 and a state feedback law with gain matrix F', together
with a nonsingular input transformation Tj;
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c) for any K € R**? with A + KC having no eigenvalue at —1, define
a nonsingular matrix
To:=[I-C(I+A+KC) K| e RP*P, (3.89)
and a constant matrix
=v2a (I + A+ KC)'K. (3.90)
Then a discrete-time system Xq, characterised by
(A+KC,B+KD,C,D), (3.91)
is mapped to a continuous-time Y.y, characterised by
(A+KC,B+ KD,T;*C,T,'D), (3.92)

under the inverse bilinear transformation of Equation (3.79). We note
that X gy is the closed-loop system comprising Y4 and an output in-
jection law with gain matrix K, and Y¢x is the closed-loop system
comprising ¥, and an output injection law with gain matrix K, to-
gether with a nonsingular output transformation Tj,.

3. Invertibility and structural invariant indices lists Z, and Zs of Y:
a) Tp(Le) = Ir(¥q) and I3(Z.) = Ts(La);
b) X is left (right) invertible if and only if £ is left (right) invertible;

¢) X is invertible (degenerate) if and only if %4 is invertible (degener-
ate).

4. Invariant zeros of ¥, and their structures consist of the following two
parts.

a) Let the infinite zero structure (of order greater than 0) of £4 be given
by S%, (Z4) = {@1,92," - ,qm, }- Then s = a is an invariant zero of
5. w1th the multiplicity structure S*(X.) = {q1,92, -, qm, }-

b) Let z = a # —1 be an invariant zero of X4 with the multiplicity

structure SX(Z4) = {Na1,Ma2, " ,Nar.}. Then s = § = adt
is an invariant zero of its continuous-time counterpart Y. with the
multiplicity structure S§(X¢)={nq,1,7a,2;" ", Na,7a

5. The infinite zero structure of Y. consists of the following two parts.

a) Let mg = rank (D), and let mg be the total number of infinite
zeros of X4 of order greater than 0. Also, let 7_; be the geometric
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multiplicity of the invariant zero of 54 at z = —1. Then we have
rank (D) = mg +mg — 7_1.

b) Let z = —1 be an invariant zero of the given discrete-time system D4
with the multiplicity structure S*; (Xg)={n-11,7-1,2, -y "-1,7_, }.

Then 5. has an infinite zero (of order greater than 0) structure
S;O(Ec) = {"-1,1,71—1,2, T ,"—1,r_1}-

6. The mappings of geometric subspaces:
a) Vo(Lq) = SH(Ze).
b) 8°(Xa) = V*+(Zo). o

Lastly, we summarise in a graphical form in Figure 3.3 the detailed mappings
associated with the bilinear and inverse bilinear transformations.
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Figure 3.3. Structural mappings of bilinear transformations.
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CHAPTER 4
LINEAR CONTROL TECHNIQUES

4.1 Introduction

We now present some common linear control system design techniques, such
as the well-known PID control, H; and H, optimal control, linear quadratic
regulator (LQR) with loop transfer recovery design (LTR), together with
some newly developed design techniques, such as the robust and perfect track-
ing (RPT) method. We will first introduce the precise problem definitions of
these techniques and then provide detailed solutions explicitly constructed
by closely examining the structural properties of the given systems. Most of
these results will be intensively used later in the design of HDD servo sys-
tems, though some are presented here for the purpose of easy reference for
general readers.

We have noticed that it is some kind of tradition or fashion in the HDD servo
system research community in which researchers and practising engineers pre-
fer to carry out a control system design in the discrete-time setting. In this
case, the designer would have to discretise the plant to be controlled (mostly
using the ZOH technique) first and then use some discrete-time control sys-
tem design technique to obtain a discrete-time control law. However, in our
personal opinion, it is easier to design a controller directly in the continuous-
time setting and then use some continuous-to-discrete transformations, such
as the bilinear transformation as given in Chapter 3, to discretise it when
it is to be implemented in the real system. The advantage of such an ap-
proach follows from the following fact: the bilinear transformation does not
introduce unstable invariant zeros to its discrete-time counterpart. On the
other hand, it is well-known in the literature that the ZOH approach al-
most always produce some additional nonminimum phase invariant zeros for
higher-order systems with faster sampling rates. These nonminimum phase
zeros will cause some additional limitations on the overall performance of the
system to be controlled. Nevertheless, we will present both continuous-time
and discrete-time versions of these control techniques for completeness. It is
up to the reader to choose the appropriate approach in designing their own
servo system.
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Lastly, we would like to note that the design methods presented in this chap-
ter are well studied in the literature. As such, all results are quoted without
detailed proofs and derivations. Interested readers are referred to the related
references for details.

4.2 PID Control

PID control is the most popular technique used in industries because it is
relatively easy and simple to design and implement. Most importantly, it
works in most practical situations, although its performance is somewhat
limited owing to its restricted structure. Nevertheless, in what follows, we
recall this well-known classical control system design methodology for ease
of reference.

——O—— K(s) F— G(s)

Figure 4.1. The typical PID control configuration.

To be more specific, we consider the control system as depicted in Figure 4.1,
in which G(s) is the plant to be controlled and K(s) is the PID controller
characterised by the following transfer function

K(s) =K, (1 + %; + Tds) . (4.1)

The control system design is then to determine the parameters K, T; and
T4 such that the resulting closed-loop system yields a certain desired perfor-
mance, i.e., it meets certain prescribed design specifications.

Ziegler—Nichols tuning is one of the most common techniques used in practical
situations to design an appropriate PID controller for the class of systems
that can be exactly modelled as, or approximated by, the following first-order
system:

Y (s) K

U(s) 7s+1

G(s) = eTtas, (4.2)
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One of the methods proposed by Ziegler and Nichols ({63, 64]) is first to re-
place the controller K(s) in Figure 4.1 by a simple proportional gain. We then
increase this proportional gain to a value, say K,, for which we observe con-
tinuous oscillations in its step response, i.e., the system becomes marginally
stable. Assume that the corresponding oscillating frequency is w,. The PID
controller parameters are then given as follows:

3K, T T
) 111 = Tq = .
5 Wy d 4wy

K, = (4.3)

Experience has shown that such controller settings provide a good closed-
loop response for many systems. Unfortunately, it will be seen shortly in
the coming chapters that the typical model of a VCM actuator is actually a
double integrator and thus Ziegler—Nichols tuning cannot be directly applied
to design a servo system for the VCM actuator.

Another common way to design a PID controller is the pole assignment
method, in which the parameters K, T; and Ty are chosen such that the
dominant roots of the closed-loop characteristic equation, i.e.,

1+ K(s)G(s) = 0, (4.4)

are assigned to meet certain desired specifications (such as overshoot, rise
time, settling time, etc.), while its remaining roots are placed far away to
the left on the complex plane (roughly three to four times faster compared
with the dominant roots). The detailed procedure of this method can be
found in most of classical control engineering texts (see e.g., [65]). For the
PID control of discrete-time systems, interested readers are referred to [1] for
more information.

4.3 H, Optimal Control

Most of the feedback design tools provided by the classical Nyquist—Bode fre-
quency domain theory are restricted to single-feedback-loop designs. Modern
multivariable control theory based on state-space concepts has the capabil-
ity to deal with multi feedback-loop designs, and as such has emerged as
an alternative to the classical Nyquist-Bode theory. Although it does have
shortcomings of its own, a great asset of modern control theory utilising the
state-space description of systems is that the design methods derived from
it are easily amenable to computer implementation. Owing to this, rapid
progress has been made during the last two or three decades in developing
a number of multivariable analysis and design tools using the state-space
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description of systems. One of the foremost and most powerful design tools
developed in this connection is based on what is called linear quadratic Gaus-
sian (LQG) control theory. Here, given a linear model of the plant in a state-
space description, and assuming that the disturbance and measurement noise
are Gaussian stochastic processes with known power spectral densities, the
designer translates the design specifications into a quadratic performance cri-
terion consisting of some state variables and control signal inputs. The object
of design then is to minimise the performance criterion by using appropriate
state or measurement feedback controllers while guaranteeing the closed-loop
stability. A ubiquitous architecture for a measurement feedback controller has
been observer-based, wherein a state feedback control law is implemented by
utilising an estimate of the state. Thus, the design of a measurement feed-
back controller here is worked out in two stages. In the first stage, an optimal
internally stabilising static state feedback controller is designed, and in the
second stage a state estimator is designed. The estimator, otherwise called
an observer or filter, is traditionally designed to yield the least mean square
error estimate of the state of the plant, utilising only the measured output,
which is often assumed to be corrupted by an additive white Gaussian noise.
The LQG control problem as described above is posed in a stochastic setting.
The same can be posed in a deterministic setting, known as an Hy optimal
control problem, in which the H> norm of a certain transfer function from
an exogenous disturbance to a pertinent controlled output of a given plant is
minimised by appropriate use of an internally stabilising controller.

Much research effort has been expended in the area of Hy optimal control
or optimal control in general during the last few decades (see e.g., Anderson
and Moore [66], Fleming and Rishel [67], Kwakernaak and Sivan [68], and
Saberi, Sannuti and Chen [69], and references cited therein). In what follows,
we focus mainly on the formulation and solution to both continuous- and
discrete-time Hy optimal control problems. Interested readers are referred to
[69] for more detailed treatments of such problems.

4.3.1 Continuous-time Systems

We consider a generalised system X with a state-space description,

t=Azxz+ B u+ E w,
X Y C1£IJ+D11’U,+ D1 w, (45)
h=CQx+D2u+D22w,

where x € R™ is the state, u € R™ is the control input, w € R? is the
external disturbance input, y € RP is the measurement output, and A € Rf is
the controlled output of X. For the sake of simplicity in future development,
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throughout this chapter, we let Xr be the subsystem characterised by the
matrix quadruple (A, B, Cs, D3) and X, be the subsystem characterised by
(A, E, C1, D). Throughout this section, we assume that (A, B) is stabilisable
and (A4,C4) is detectable.

Generally, we can assume that matrix Dj; in Equation (4.5) is zero. This can
be justified as follows: If D;; # 0, we define a new measurement output

Ynew =¥ — Dniu = Crz + Dyw, (4.6)

which does not have a direct feedthrough term from u. Suppose we carry on
our control system design using this new measurement output to obtain a
proper control law, say, u = K(s)ynew. Then, it is straightforward to verify
that this control law is equivalent to the following one

w=[I+K(s)Di] " K(s)y, (4.7)

provided that [T+ K(s)D1;]7! is well posed, i.e., the inverse exists for almost
all s € C. Thus, for simplicity, we will assume that Dy; = 0.

The standard H, optimal control problem is to find an internally stabilising
proper measurement feedback control law,

Yemp { 0= Acmp v+ Bemp 9, (4.8)
u = Ccmp v+ Dcmp Y,

such that the Hs-norm of the overall closed-loop transfer matrix function from

w to h is minimised (see also Figure 4.2). To be more specific, we will say that

the control law Xemp of Equation (4.8) is internally stabilising when applied

to the system X of Equation (4.5), if the following matrix is asymptotically

stable:

Ag =

A+ BD iy Ch BCcmp} (4.9)

chpCI Acmp
i.e., all its eigenvalues lie in the open left-half complex plane. It is straight-
forward to verify that the closed-loop transfer matrix from the disturbance
w to the controlled output h is given by

Thw(s) = Co(sI — A,) ' B + D, (4.10)

where
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w h
u 2 y
Ecmp

Figure 4.2. The typical control configuration in state-space setting.

_ | A+ BDmpCi BCemp )
A = [ BewpCh PRNE {4.11)
E + BD¢mpDy
B, = emp , 4.12
[ chle ] ( )
C,. = [02 + DQDcmpC1 chcmp] s (4.13)
D, = Dchmppl + Dos. (4‘14)

It is simple to note that if Ycp,p is a static state feedback law, i.e., u = Fuz,
then the closed-loop transfer matrix from w to h is given by

Thw(s) = (Cs + DoF)(sI — A~ BF)™'E + Dys. (4.15)

The Hs-norm of a stable continuous-time transfer matrix, e.g., Thy(s), is
defined as follows:

1Thwll2 == (;;trace [/:: T (jw) Thuw ()" del/2 : (4.16)

By Parseval’s theorem, ||[Thyll2 can equivalently be defined as

(Thulla = (wrace | [~ gty dt])l/z , (4.17)

where g(t) is the unit impulse response of Thy(s). Thus, || Thyll2 = |lg]le-

The H; optimal control is to design a proper controller Xy, such that, when
it is applied to the plant X, the resulting closed-loop is asymptotically stable
and the Hs-norm of Th,(s) is minimised. For future use, we define

~% = inf { T hiw(Z X Zemp)ll2 | Zemp internally stabilises } (4.18)
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Furthermore, a control law Xen, is said to be an Hy optimal controller for
X of Equation (4.5) if its resulting closed-loop transfer function from w to h
has an Hy-norm equal to 3, i.e., [|Thwllz = 75.

It is clear to see from the definition of the Hy-norm that, in order to have a
finite ||Thw|l2, the following must be satisfied:

De = D3DempDy + Doy = 0, (4.19)

which is equivalent to the existence of a static measurement pre-feedback law
u = SY + Npew to the system in Equation (4.5) such that

D»SD; + Dy3 = 0. (4.20)

We note that the minimisation of ||Tp}|2 is meaningful only when it is finite.
As such, it is without loss of any generality to assume that the feed-forward
matrix Dss = 0 hereafter in this section. In fact, in this case, [|Thy]l2 can be
easily obtained. Solving either one of the following Lyapunov equations:

AP, + P.A. + C'C. =0, AeQe+ Q.A. + B.B. =0, (4.21)

for P, or ., then the He-norm of Tp,(s) can be computed by
| Thullz = trace [BéPeBe] = trace[CeQeCé]. (4.22)

In what follows, we present solutions to the problem without detailed proofs.
We start first with the simplest case, when the given system X satisfies the
following assumptions of the so-called regular case:

1. X has no invariant zeros on the imaginary axis and D, is of maximal
column rank.

2. X, has no invariant zeros on the imaginary axis and D; is of maximal
row rank.

The problem is called the singular case if X does not satisfy these conditions.

The solution to the regular case of the H, optimal control problem is very
simple. The optimal controller is given by (see, e.g., [70]),

?t=(A+BF+KC))v+ Ky,
Zemp ¢ _ _F
u = v

(4.23)

where
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F = —(DyD,)" 1 (DyC, + B'P), (4.24)
K = —(QC} + ED})(D:1 D)7, (4.25)

and where P = P’ > 0 and Q = Q' > 0 are respectively the stabilising
solutions of the following Riccati equations:

A'P+PA+CyCy—(PB+CiDs)(DyD2) Y (DyC2+B'P) =0 (4.26)
QA'+AQ+EE'—(QC,+ED})(D:D})"Y(DiE'+C:1Q) = 0.  (4.27)

Moreover, the optimal value 5 can be computed as follows:

vy = {trace[E'PE] + trace [(A’P + PA + C5C5) Q] }1/2 . (4.28)

We note that if all the states of X' are available for feedback, then the optimal
controller is reduced to a static law u = F'z with F being given as in Equation
(4.24).

Next, we present two methods that solve the singular Hy optimal control
problem. As a matter of fact, in the singular case, it is in general infeasible to
obtain an optimal controller, although it is possible under certain restricted
conditions (see e.g., [69, 71]). The solutions to the singular case are generally
suboptimal, and usually parameterised by a certain tuning parameter, say ¢.
A controller parameterised by ¢ is said to be suboptimal if there exists an
€* > 0 such that for all £ < &* the closed-loop system comprising the given
plant and the controller is asymptotically stable, and the resulting closed-
loop transfer function from w to A, which is obviously a function ¢, has an
Hj-norm arbitrarily close to v5 as € approaches to 0.

The following is a so-called perturbation approach (see e.g., [72]) that would
yield a suboptimal controller for the general singular case. We should note
that such an approach is numerically unstable. The problem becomes very
serious when the given system is ill-conditioned or has multiple time scales.
In principle, the desired solution can be obtained by introducing some small
perturbations to the matrices £, Dy, C2 and D, i.e.,

E:=[E eI 0], Dy:=[D;, 0 eI], (4.29)
and

3 Co 5 D,

Co=|elj, Dy:=1|0 |. (4.30)
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A full order Hy suboptimal output feedback controller is given by

Fom(e) {ZzA+Bi:—f{Clz+f{y, (4.31)
where

F = —(DyDs) Y (DyCy + B'P), (4.32)

K = —(QC} + ED\) (D1 D})7, (4.33)

and where P = P' > 0 and Q= QI > 0 are respectively the solutions of the
following Riccati equations:

AP+PA+CLCo—(PB+CyDs)(DyDs) 1 (DyCo+B'P) =0 (4.34)
QA'+AQ+EE —(OC, +ED)(D1 D)) M (D1 E' +C10Q) = 0.  (4.35)

Alternatively, one could solve the singular case by using numerically sta-
ble algorithms (see e.g., [69]) that are based on a careful examination of
the structural properties of the given system. We separate the problem into
three distinct situations: (1) the state feedback case, (2) the full order mea-
surement feedback case, and (3) the reduced order measurement feedback
case. The software realisation of these algorithms in MATLAB can be found
in [34]. For simplicity, we assume throughout the rest of this subsection that
both subsystems X and X, have no invariant zeros on the imaginary axis.
We believe that such a condition is always satisfied for most HDD servo sys-
tems. However, most servo systems can be represented as certain chains of
integrators and thus could not be formulated as a regular problem without
adding dummy terms. Nevertheless, interested readers are referred to the
monograph in [69] for the complete treatment of Hy optimal control using
the approach given below.

i. State Feedback Case. For the case when y = z in the given system X of
Equation (4.5), i.e., all the state variables of X are available for feedback, we
have the following step-by-step algorithm that constructs an Hy suboptimal
static feedback control law u = F(e)z for X.

STEP 4.3.C.S.1: transform the system X into the special coordinate basis
as given by Theorem 3.4.1. To all submatrices and transformations in the
special coordinate basis of X, we append the subscript ¢ to signify their
relation to the system X». We also choose the output transformation [
to have the following form:
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Tmop 0 ] , (4.36)

Foe = [ 0 Iow

where mgp = rank (D3). Next, define

Ar . LY C Bt
Sl I il Bl v R
Aizp = [L:dp] ) (4.38)
Lpge
Corp = Lorp [8 Ctz);p] y Cosp = Iorp [ C'deC';P] ) (4.39)
Az = A11p — A13:(Ci3:.Co30) ™1 Ch3p Car, (4.40)
BopByp = Buie Biip + A13p(Ca3pCasp) ™ Alzp, (4.41)

CreCrp = C315Ca1 — C31,C210(Ch35Ca3p) "  Chyp Cotp. (4.42)

STEP 4.3.C.5.2: solve the following algebraic matrix Riccati equation:
PyAge + Ay Py — Py BB, P + Ch.Cp = 0 (4.43)

for P, > 0 and define

Ff F B}, P,
Fipi= [ 20 ”0} =[ , e , . (444)
Fy Fu (Ca3pCase) ™" (Al3p P +C33,.Co10)
Then, partition [F; Fy; ] as
Fa‘.'il Fbll
F F
(Fh Fu]=| ° e (4.45)

+
Falmdp FblmdP

where F:M and Fyy; are of dimensions 1 x n}, and 1 x nyp, respectively.

STEP 4.3.C.5.3: let A be any arbitrary mee X n.p matrix subject to the
constraint that

Al = Acer — BepAcp, (4.46)
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is a stable matrix. Note that the existence of such a A is guaranteed
by the property that (Ac.p, Bep) is controllable.

STEP 4.3.C.5.4: this step makes use of subsystems, ¢ = 1 to mgp, represented
by Equation (3.23). Let A; = { Ai1, Aiz, -+, Aig; }, ¢ = 1 to mge, be the
sets of ¢; elements all in C~, which are closed under complex conjugation,
where ¢; and mg, are as defined in Theorem 3.4.1 but associated with
the special coordinate basis of Xp. Let Agp 1= A3 UAsU---U A,,,.. For
i = 1 to mgp, we define

qi
pi(s) = H(S - A,J) =% 4 Filsqi_l + o+ Figm18+ Fig, (4.47)
Jj=1

and

~ 1 .
Fi(E) = E[Fiqn 6‘Fi111'—17 Tty qu_l-Fil]- (448)
STEP 4.3.C.8.5: in this step, various gains calculated in Steps 4.3.C.5.2 to
4.3.c.s.4 are put together to form a composite state feedback gain for the
given system Y. Let

FliFig [e®
Fl(e) = F"+12F?"2 fen : (4.49)
F;imdp Fm.n;qmdp [edmar
and
FuiFg, [e®
Fu(e) = FuuzFao /o (4.50)
Foimap Fma;qmdp [emar
Then, the Hy suboptimal state feedback gain is given by
F(e) = —Tir (F(e) + Fo) T2, (4.51)

where
0 FYt Fe 0 0
Fe)={0 FiL(e) Fu(e) 0 Fuel, (4.52)
0 0 0 Ae 0



68 Hard Disk Drive Servo Systems

CO_O.P C(Stzp CObP COCP COdP
Fo = Ed_ap E:itzp Egr Eqr Egp |, (4.53)
Ec_ap E:Zp Ecbp 0 0
and where
Ell ... Elmdp '|
Egp=| 1+ - : J : (4.54)
Emdpl e E’mdpmdp
Fd(s) = dla'g [Fl (5)7 F2(€)7 B FmdP (6)] . (455)
This completes the algorithm. &

Theorem 4.3.1. Consider the given system in Equation (4.5) with Dy = 0
and y = z, i.e., all states are measurable. Assume that Y. has no invariant
zeros on the imaginary axis. Then, the closed-loop system comprising that of
Equation (4.5) and v = F(e)z with F(¢) being given as in Equation (4.51)
has the following properties:

1. it is internally stable for sufficiently small ¢;

2. the closed-loop transfer matrix from the disturbance w to the controlled
output h, T;x(s,¢e), possesses ||T,n(s,€)|l2 = 75 as e — 0.

Clearly, u = F(e)x is an Hy suboptimal controller for the system in Equation

(4.5). o

ii. Full Order Output Feedback Case. The following is a step-by-step
algorithm for constructing a parameterised full order output feedback con-
troller that solves the general Hy optimisation problem.

STEP 4.3.C.F.1: (construction of the gain matrix Fy(¢)). Define an auxiliary
system

t=Az+ Bu+FEw
Yy = z (4.56)
h=Cyz+ Dyu

and then perform Steps 4.3.C.S.1 to 4.3.¢.S.5 of the previous algorithm
on the above system to obtain a parameterised gain matrix F'(g). We let
F.(¢) = F(e).
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STEP 4.3.C.F.2: (construction of the gain matrix Kq(¢)). Define another
auxiliary system

t=Az+ Clu+Cyuw
y= =z (4.57)
h=FE=z+Dju

and then perform Steps 4.3.C.S.1 t0 4.3.C.$.6 on the above system to get
the parameterised gain matrix F'(¢). We let Kq(e) = F(e)'.

STEP 4.3.C.F.3: (construction of the full order controller Yyc). Finally, the
parameterised full order output feedback controller is given by

[ = Apc(e) v + Brole) v,
Zre {u = Crc(€) v + Dypc(e) v, (4.58)
where
rc(€) := A+ BFp(e) + Kqo(e)Ch,
BFC(e) = —Kq(e),
o) = ( ), (4.59)
DFC(E) =

This concludes the algorithm for constructing the full order measurement
feedback controller. O

Theorem 4.3.2. Consider the given system in Equation (4.5) with Dy = 0.
Assume that X% and XY, have no invariant zeros on the imaginary axis. Then
the closed-loop system comprising Equation (4.5) and the full order output
feedback controller of Equation (4.58) has the following properties:

1. it is internally stable for sufficiently small ¢;

2. the closed-loop transfer matrix from the disturbance w to the controlled
output h, T,n(s,€), possesses ||T,x(s,€)|l2 = v as € — 0.

By definition, Equation (4.58) is an Hs suboptimal controller for the system
in Equation (4.5). . O

ili. Reduced Order Output Feedback Case. For the case when some
measurement output channels are clean, i.e., they are not mixed with dis-
turbances, then we could design an output feedback control law that has a
dynamical order less than that of the given plant and yet has an identical
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performance compared with that of full order control law. Such a control
law is called the reduced order output feedback controller. We note that the
construction of a reduced order controller was first reported by Chen et al.
[73] for general linear systems, in which the direct feedthrough matrix from
input is nonzero. It was shown in [73] that the reduced order output feedback
controller has the following advantages over the full order counterpart:

1. the dynamical order of the reduced order controller is generally smaller
than that of the full order counterpart;

2. the gain required for the same degree of performance for the reduced order
controller is smaller compared with that of the full order counterpart.

We now proceed to design a reduced order controller, which solves the general
H, suboptimal problem. First, without loss of generality and for simplicity
of presentation, we assume that the matrices C; and D; are already in the
form

Cy = [ 28 Clo"’z} and D; = [Dé"’], (4.60)

where k = £ — rank(D;) and Dy o is of full rank. Then the given system in
Equation (4.5) can be written as

([ o1 A A T B, E,
)=l 2] ()« 3] e [B] »
o) _ |0 Cip Ty Dy
() =1 %] (3) o[ % ae

h . <$1>+ Dy u+ Dy w,
s

I
—
S
=
S
M)
—

where the original state x is partitioned into two parts, 3 and z»; and y is
partitioned into yo and y; with y3 = z;. Thus, one needs to estimate only
the state x2 in the reduced order controller design. Next, define an auxiliary
subsystem Y5 characterised by a matrix quadruple (Ag, Fx, Cr, Dg), where

C D
(AFUERaCRv-DR) = <A227E27 l: 141;?22:' ) [ Ell,ojl) . (462)

The following is a step-by-step algorithm that constructs the reduced order
output feedback controller for the general Hs optimisation.
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STEP 4.3.C.R.1: (construction of the gain matrix F;(¢)}. Define an auxiliary
system

y= =z (4.63)

{:t= Az+ Bu+Fw
h=Cyx+ Dsu

and then perform Steps 4.3.C.R.1 to 4.3.C.R.5 on the above system to get
the parameterised gain matrix F(e). We let Fp(e) = F(e).

STEP 4.3.C.R.2: (construction of the gain matrix Ky(e)). Define another
auxiliary system

t=Apz+ CLu+Cyow
y= =z (4.64)
h=E,z+ Dy u

and then perform Steps 4.3.C.R.1 to 4.3.C.R.6 on the above system to get
the parameterised gain matrix F(e). We let Kg(e) = F(e)'.

STEP 4.3.C.R.3: (construction of the reduced order controller Xgc). Let us
partition Fp(e) and Kg(e) as

Fe(e) = [Fri(e) Fra(e)], Krle) =[Krole) Kni(e)]  (4.65)
in conformity with the partitions of z = (il ) and y = (zo) of Equa-
2 1
tion (4.61), respectively. Then define
GR(E) = [—KRQ(E), Aoy + KRl(s)An - (AR + KR(E)CR)KRI(E) ] .

Finally, the reduced order output feedback controller is given by

[ 9 = Arc(e) v + Brcle) ¥,
e {u = Crel€) v + Dro(e) v, (4.66)
where
Agc(g) := Ay + BaFpo(e) + Kr(£)Cr + Kri(e) By Fpa(€)
Bgc(g) := Gg(e) + [B2 + Kr1(e)Bi]
x [0, Fei(e) — Fpa(e)Kni(e)] > (4.67)

Crele) = P2(5)
Dro(e) := [0, Fpr(e) — Fra(e)Kri(e)]- /
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This concludes the algorithm for constructing the reduced order output
feedback controller. &

Theorem 4.3.3. Consider the given system in Equation (4.5) with Dsy = 0.
Assume that X, and X have no invariant zeros on the imaginary axis. Then,
the closed-loop system comprising Equation (4.5) and the reduced order out-
put feedback controller in Equation (4.66) has the following properties:

1. it is internally stable for sufficiently small ¢;

2. the closed-loop transfer matrix from the disturbance w to the controlled
output h, T,p(s,€), possesses |[T,n(s,€)|lz = v5 ase — 0.

By definition, Equation (4.66) is an Hs suboptimal controller for the system
in Equation (4.5). O

4.3.2 Discrete-time Systems

We now consider a generalised discrete-time system X characterised by the
following state-space equations

z(k+1) = A z(k) + B u(k) + E w(k),
29 k) =Crz(k) + D u(k) + D1 w(k), (4.68)
h(k) = CQ .'L'(k?) + D2 ’Lb(k) + D22 U)(k),

where © € R™ is the state, u € R™ is the control input, w € R? is the external
disturbance input, y € RP is the measurement output, and A € Rf is the
controlled output of X'. As usual, we let X% be the subsystem characterised by
the matrix quadruple (A4, B, Cs, D3) and X be the subsystem characterised
by (A, E,Cy, D1). Without loss of any generality, we assume that Dy; = 0,
(A, B) is stabilisable and (A4, C)) is detectable.

The standard Hj optimal control problem for a discrete-time system is to
find an internally stabilising proper measurement feedback control law,

Temp {v(k+l) = Acmp V(k) + Bemp y(k), (4.69)

u(k) = Cemp v(k) + Demp y(k),

such that the Hy-norm of the overall closed-loop transfer matrix function
from w to A is minimised. To be more specific, we will say that the control
law Xemp of Equation (4.69) is internally stabilising when applied to the
system X of Equation (4.68), if the following matrix is asymptotically stable:
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A+ BDnpC1 BCemp

A 1 - —
¢ chpcl Acmp

b (4- 70)

i.e., all its eigenvalues lie inside the open unit disc. The closed-loop transfer
matrix from the disturbance w to the controlled output & is given by

Thw(z) = Ce(2I — Ae)_lBe + D, (4'71)
where
A+ BD¢w,C1 BC,
A, = omp emp | 472
[ chpcl Acmp ] ( )
E + BD.y, D,
B, := empl1 | 473
I: chle } ( )
C, := [CQ + DgDcmpcl D2Ccmp] R (474)
De = Dchmle + D22. (475)

The Hy-norm of a stable discrete-time transfer matrix, e.g., Th.,(2), is defined
as follows:

I Thuwllz == (%trace [ /_ 7; T (€7 ) T (e79)™ dw] ) v . (4.76)

By Parseval’s theorem, ||[Thy |2 can equivalently be defined as

o 1/2
1 Thwll2 = (trace [Z g9(k)g(k)’ dtD , (4.77)

k=0
where g(k) is the impulse response of Tp,, (k). Thus, || Thell2 = |lgll2-

The H; optimal control for the discrete-time system of Equation (4.68) is to
design a proper controller X, such that, when it is applied to the plant X,
the resulting closed-loop is asymptotically stable and the Ho-norm of T}, (2)
is minimised. For future use, we define

v = inf { T (E % Semp)ll2 | Semp internally stabilises & } (4.78)

Again, a control law Y., is said to be an Hj optimal controller for ¥ of
Equation (4.68) if its resulting closed-loop transfer function from w to h has
an Hy-norm equal to 73, ie., [[Thullz = 5.
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For the case when D, = 0, ||Thy|l2 can be computed by
I Thwl|2 = trace [BéPeBe] = trace [C’eQeCé], (4.79)

where P, and ). are respectively the solutions of the following Lyapunov
equations:

AP,A—P,+C.C.=0, A.Q.A., - Q.+ B.B.=0. (4.80)

We now present solutions to the discrete-time Hs optimal control problem
without detailed proofs. As usual, we assume that Dss = 0 for convenience.
We start first with the simplest case when the given system X satisfies the
following assumptions of the so-called regular case:

1. X, has no invariant zeros on the imaginary axis and is left invertible;

2. X, has no invariant zeros on the imaginary axis and is right invertible.

The problem is called the singular case if X' does not satisfy these conditions.

Again, the solution to the regular case of the discrete-time H» optimal control
problem is very simple as well. The optimal controller is given by Xemp:

{v(k+1) = (A+BF+KC,—BNCy) v(k) + (BN —K) y(k) (481)
u(k) = (F=NCy) ok) + N y(k)
where
F = —(B'PB + DyD;)"Y(B'PA + D},C), (4.82)
K = —(AQC, + ED})(D, D} + C,QC})™*, (4.83)

and
N = —(B'PB + DyD,)™! [(B'PA + D4yD)QCH + B'PED;]
x (DD} +C1QCy) ™Y, (4.84)

and where P = P’ > 0 and Q = Q' > 0 are respectively the stabilising
solutions of the following Riccati equations:

P=APA+CyCy — (CyD2 + A'PB)(DyDy + B'PB)™*
x (DyCy + B'PA), (4.85)
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and

@ = AQA' + EE' — (ED), + AQC})(D,D} + C,;QC})™!
X (DlE' + ClQAI) (486)

We note that the above discrete-time Riccati equations can be solved using
the noniterative method given in [44]. If all the states of X' are available for
feedback, then the optimal controller is reduced to a static law u(k) = Fz(k)
with F being given as in Equation (4.82).

Next, we present solutions to the singular Hy optimal control problem. Simi-
larly, the solutions to the singular case are generally suboptimal, and usually
parameterised by a certain tuning parameter, say €. Again, a discrete-time
controller parameterised by ¢ is said to be suboptimal for the system in Equa-
tion (4.68) if there exists an €* > 0 such that for all ¢ < ¢* the closed-loop
system comprising the given plant and the controller is asymptotically stable,
and the resulting closed-loop transfer function from w to h, which is obvi-
ously a function £, has an Hs-norm arbitrarily close to 73 as € approaches to
0.

The following perturbation approach would yield a suboptimal controller for
the general discrete-time singular case. Given any ¢ > 0, define

E:=[E el 0], D,:=[D; 0 ell, (4.87)
and
e [3) o8
Cyi=|el}, Dy:=10 (4.88)
0 el
A full order H, suboptimal output feedback controller is given by
v(k+1) = (A+BEF+KC,~BNC;) v(k) + (BN-K) y(k)
{ u(k) = (F-NCy) W+ N gm
where
F = —(B'PB + DyDy) Y(B'PA + DyCs), (4.90)
K = —(AQC! + ED))(D1 D} + C,QCH)™, (4.91)

and
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N = —(B'PB + DyDs)! [(B’PA + DyD2)GC) + B'pm;]
x (DD} + C;QC)™, (4.92)

and where P = P’ > 0 and Q= QI > 0 are respectively the stabilising
solutions of the following Riccati equations:

P=APA+CyCy— (CoDy+ APBY(DyDy + B'PB)~1
x (DyCy + B'PA)  (4.93)
and
Q = AQA' + EE' — (ED} + AQC}) (D1 D', + ¢,0C})
x (D E + C10A4"). (4.94)

The following are alternative methods based on the structural decompositions
of the given systems. Similarly, we separate the problem into three distinct
situations: (1) the state feedback case, (2) the full order measurement feed-
back case, and (3) the reduced order measurement feedback case.

Similarly, for convenience, we assume throughout the rest of this subsection
that both subsystems X, and Y have no invariant zeros on the unit circle.
The complete treatment of Hy optimal control using the approach given below
can be found in [69]. Interestingly, it turns out that for this case, although
it is singular, we can always obtain a set of Hy optimal controllers that need
not be parameterised by any tuning scalar.

i. State Feedback Case. For the case when y = z in the given system X of
Equation (4.68), we have the following step-by-step algorithm that constructs
an H, suboptimal static feedback control law u = F(e)z for 2.

STEP 4.3.D.8.1: (decomposition of Xy ). Transform the subsystem X, i.e.,
the matrix quadruple (4, B, Cs, D5), into the special coordinate basis as
given by Theorem 3.4.1. Denote the state, output and input transforma-
tion matrices as Isp, Iop and Iip, respectively.

STEP 4.3.D.S.2: (gain matrix for the subsystem associated with X,). Let F,
be any constant matrix subject to the constraint that

AS, = A, — B.F, (4.95)

is a stable matrix. Note that the existence of such an F, is guaranteed by
the property of the special coordinate basis, i.e., (A, B.) is controllable.
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STEP 4.3.D.5.3: (gain matrix for the subsystem associated with X, X}, and
Xy4). Let

[ AL, L3Ca LCh Ef
Az = BdE;; Add BdEdb 3 Ew = Ed ) (496)
0 Lded Abb Eb
'B(}La 0
B, = |Boyy Bg]|, (4.97)
L Byy O
and
0 0 0O I G
Co=Tpe |0 Cqy 0}, Dy=To |0 0]. (4.98)
0 0 G 0 0

Solve the following discrete-time Riccati equation

P, =A'P, A, +C.Cy — (C.D, + A, P,B,)(D,D, + B,P,B,)™"
x (D'C, + B,P,A,)  (4.99)

for P, > 0. Then partition

F, = —(B.P,B, + D\, D,) (B, P, A, + D,,C,)
. [F;B Fao Fbo]

FY Fu Fia

[l

(4.100)

STEP 4.3.D.5.4: (composition of gain matrix F'). In this step, various gains
calculated in the previous steps are put together to form a composite
state feedback gain matrix F'. It is given by

Cou Ca+Fh Co+Fyo Coc Coa+Fao
F=-I | By Fl Fiq Eqc Fyq It
E, Ef 0 F, 0
(4.101)

This completes the algorithm. &
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Theorem 4.3.4. Consider the given system in Equation (4.68) with Dy = 0
and y = z, i.e., all states are measurable. Assume that Y has no invariant
zeros on the unit circle. Then, the closed-loop system comprising Equation
(4.68) and u(k) = Fxz(k) with F being given as in Equation (4.101) has the
following properties:

1. it is internally stable;

2. the closed-loop transfer matrix from the disturbance w to the controlled
output h, T,x(z), possesses ||Tonlle = 73.

Thus, u(k) = Fz(k) is an H, optimal controller for the system in Equation

(4.68). &

ii. Full Order Output Feedback Case. The following is a step-by-step al-
gorithm for constructing an Hs optimal full order output feedback controller.

STEP 4.3.D.F.1: (computation of N). Utilise the properties of the special
coordinate basis to compute two constant matrices X and Y such that
VO(Xp) = Ker (X) and S°(Xy) = Im (V). Then, compute

N=—(B'X'XB+D4yDy)' [B'X' Dj] {XAY XE]

CoY Doy
! !

X {qul] (CLYY'C{ + D1 DY)t (4.102)
1

STEP 4.3.D.F.2: (construction of the gain matrix F}). Define an auxiliary
system

z(k+1) = A 2(k) + B u(k) + E w(k),
{ y(k) z(k) (4.103)
h(k) = Cy x(k) + Dy u(k) + 0 w(k),
where

A=A+BNC,, E=E+BND;, C; =C,+Dy,NCy,  (4.104)

and then perform Steps 4.3.D.5.1 to 4.3.D.5.4 of the previous algorithm
on the above system in Equation (4.103) to obtain a gain matrix F. We
let Fr, = F.
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STEP 4.3.D.F.3: (construction of the gain matrix Kg). Define another aux-
iliary system

a(k+1) = A z(k) + C! u(k) + C; w(k),
y(k) = (k) (4.105)
hk) =E z(k) + D, uwk) + 0 wik),

and then perform Steps 4.3.D.5.1 to 4.3.D.5.4 of the previous algorithm
on the above system to get a gain matrix F. Similarly, we let Ko, = F'.

STEP 4.3.D.F.4: (construction of the full order controller X'zc). Finally, the
parameterised full order output feedback controller is given by

v(k+1) = Apc v(k) + Bgc y(k),
o { ro 0(k) o y(k) (4.106)
U(k) = CFC ’U(k) + DF‘C y(k)’
where
AFC = A -+ BNCl + BFP + Kch,
Bic := — Ky,
e N (4.107)
CFC = FP7
Dy := N.

This concludes the algorithm for constructing the full order measurement
feedback controller. $

Theorem 4.3.5. Consider the given system in Equation (4.68) with Dyy = 0.
Assume that Yp and Y, have no invariant zeros on the unit circle. Then
the closed-loop system comprising Equation (4.68) and the full order output
feedback controller of Equation (4.106) has the following properties:

1. it is internally stable;

2. the closed-loop transfer matrix from the disturbance w to the controlled
output h, T,n(2), possesses || Tunll2 = 75.

Hence, Equation (4.106) is an H» optimal controller for the system of Equa-
tion (4.68). ¢

iii. Reduced Order Output Feedback Case. We now follow the proce-
dure as in the continuous-time case to design a reduced order output feedback
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controller. For simplicity of presentation, we assume that the matrices C; and
D, are already in the form

_ 10 Cio _ | D1
Cl = i:]k 0 J and D1 = ,: 0 ] y (4108)

where k = {—rank(D;) and D g is of full rank. Next, we follow Steps 4.3.D.F.1
and 4.3.D.F.2 of the previous subsection to compute the constant matrix N,
and form the following system:

z(k+1) = A 2(k) + B u(k) + E w(k),
y(k) = Cr z(k) + Dy w(k), (4.109)
h(k) = Cs z(k) + Dy u(k) + 0 w(k),

where A, E and C;, are defined as in Equation (4.104). Then, partition Equa-
tion (4.109) as follows:

(2m)=[a 2] (50)+ [Be] s+ [2] v
Cw) =ln ) SEC
| MR =[Csn 022](283>+ Dy u(k)+ 0 w(k)

where the state z of Equation (4.109) is partitioned into two parts, z; and zs;
and y is partitioned to yo and y; with y; = z;. Thus, one needs to estimate
only the state x5 in the reduced order controller design. Next, define an aux-
iliary subsystem Yo characterised by a matrix quadruple (Ag, Fy, Cx, Dy),
where

C D
(AR7ER76R7DR) = <A227E2, |: 1‘:1[;(;2] I} [ .E:‘lly():I) . (4110)

The following is a step-by-step algorithm that constructs the reduced order
output feedback controller for the general H., optimisation.

STEP 4.3.D.R.1: (construction of the gain matrix F,). Define an auxiliary
system

y(k) = z(k) (4.111)

{x(k+1) = A z(k) + B u(k) + E w(k),
h(k) = Cs z(k) + Ds u(k) + 0 w(k),
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and then perform Steps 4.3.D.R.1 to 4.3.D.R.4 of the previous algorithm
on the above system to obtain a parameterised gain matrix F. Further-
more, we let Fp = F'.

STEP 4.3.D.R.2: (construction of the gain matrix K3). Define another aux-
iliary system

z(k+1) = Ap z(k) + C}, u(k) + C3 5 w(k),
yk) = z(k) (4.112)
hk) = E} z(k) + D, u(k) + 0 w(k),

and then perform Steps 4.3.D.R.1 to 4.3.D.R.4 of the previous algorithm

on the above system to obtain a parameterised gain matrix F'. Similarly,
we let Ky = F'.

STEP 4.3.D.R.3: (construction of the reduced order controller Xc). Let us
partition Fp and Ky as

Fp = [FPI FPQ] and KR = [KRO KRI] (4113)
in conformity with z = (il) and y = (ZO) respectively. Then define
2 1

Gr = [—Kro, A21 + Kr1411 — (Ar + KaCr)Kr1]. (4.114)

Finally, the parameterised reduced order output feedback controller is
given by

vk +1) = Agc v(k) + B k),
Zre { e (4.115)
u(k) = Cgc v(k) + Dnc y(k),
where
Ape := Ag + BoFoo + Ky Cr + Kgy By Feo,
Bpc := Gy + [B2 + KnlBl] [0, Foy — FooKgy ]7
(4.116)

Crc = Fpa,
DRC = [0, Fp1 — szKﬁl] +N

This concludes the algorithm for constructing the reduced order output
feedback controller. &
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Theorem 4.3.6. Consider the given system in Equation (4.68) with Dy = 0.
Assume that X and X' have no invariant zeros on the unit circle. Then, the
closed-loop system comprising Equation (4.68) and the reduced order output
feedback controller in Equation (4.115) has the following properties:

1. it is internally stable;

2. the closed-loop transfer matrix from the disturbance w to the controlled
output h, T;x(z), possesses ||[T;n(2)|l2 = 3.

Thus, Equation (4.115) is an H, optimal controller for the system in Equation

(4.68). o

Lastly, we note that the result presented in this section, although it is not
totally complete, should be sufficient enough to obtain appropriate solutions
for HDD servo systems and many engineering problems. We next move to
issues of H,, control and its related problems.

4.4 H,, Control and Disturbance Decoupling

The ultimate goal of a control system designer is to build a system that
will work in a real environment. Since the real environment may change and
the operating conditions may vary from time to time, the control system
must be able to withstand these variations. Even if the environment does not
change, other factors of life are the model uncertainties, as well as noises.
Any mathematical representation of a system often involves simplifying as-
sumptions. Nonlinearities are either unknown, and hence unmodelled, or are
modelled and later ignored in order to simplify analysis. High-frequency dy-
namics are often ignored at the design stage as well. In consequence, control
systems designed based on simplified models may not work on real plants
in real environments. The particular property that a control system must
possess for it to operate properly in realistic situations is commonly called
robustness. Mathematically, this means that the controller must perform sat-
isfactorily not just for one plant, but for a family of plants. If a controller
can be designed such that the whole system to be controlled remains stable
when its parameters vary within certain expected limits, the system is said
to possess robust stability. In addition, if it can satisfy performance spec-
ifications such as steady state tracking, disturbance rejection and speed of
response requirements, it is said to possess robust performance. The problem
of designing controllers that satisfy both robust stability and performance
requirements is called robust control. H, control theory is one of the corner-
stones of modern control theory and was developed in an attempt to solve
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such a problem. Many robust control problems (such as the robust stability
problem of unstructurally perturbed systems, the mixed-sensitivity problem,
robust stabilisation with additive and multiplicative perturbations, to name
a few) can be cast into a standard Hy, control problem (see e.g., [44]).

Since the original formulation of the H., control problem by Zames [74], a
great deal of work has been done on finding the solution to this problem.
Practically all the research results of the early years involved a mixture of
time-domain and frequency-domain techniques, including the following: In-
terpolation approach (see e.g., Limebeer and Anderson [75]); Frequency do-
main approach (see e.g., Doyle [76], Francis [77] and Glover [78]); Polynomial
approach (see e.g., Kwakernaak [79]); and J-spectral factorisation approach
(see e.g., Kimura [80]). Recently, considerable attention has been focused on
purely time-domain methods based on algebraic Riccati equations and/or sin-
gular perturbation approach (see e.g. {44, 70, 81] and references cited therein).

We also recall in this section the solutions to the problem of H., almost
disturbance decoupling with measurement feedback and internal stability.
Although, in principle, it is a special case of the general H,, control prob-
lem, the problem of almost disturbance decoupling has a vast history behind
it, occupying a central part of classical as well as modern control theory.
Several important problems, such as robust control, decentralised control,
non-interactive control, model reference or tracking control, Hy and H,, op-
timal control problems can all be recast into an almost disturbance decoupling
problem. Roughly speaking, the basic almost disturbance decoupling problem
is to find an output feedback control law such that in the closed-loop system
the disturbances are quenched, say in an L, sense, up to any pre-specified
degree of accuracy while maintaining internal stability. Such a problem was
originally formulated by Willems [82, 83} and termed almost disturbance
decoupling problem with measurement feedback and internal stability (AD-
DPMS).

The formulation of H, control is very similar to that of Hs optimal control.
In order to avoid unnecessary repetitions, we will make use of some terms
defined in the previous section, e.g., the state-space equations of the given
system and its subsystems Xp and Y, the format of the control law and its
corresponding closed-loop transfer matrix, as well as the definitions of the
regular and singular problems.

4.4.1 Continuous-time Systems

We consider a continuous-time linear time-invariant system as given in Equa-
tion (4.5). For simplicity, we assume that (A, B) is stabilisable, (4,C) is
detectable, Dy; = 0 and Ds2 = 0. The standard H,, control problem for
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continuous-time systems is to find an internally stabilising proper measure-
ment feedback control law of the format in Equation (4.8) such that when it is
applied to Equation (4.5) the resulting closed-loop system is internally stable
and the H,-norm of the overall closed-loop transfer matrix function from w
to h, Le., Thy(s), is minimised. The Hy.-norm of a stable continuous-time
transfer matrix, e.g., Thy(s), is defined as follows:

1Al

”Thw“oo ‘= SUP Omax [Thw(]w)] = Ssup ) (4117)
wEl0,00) lwllz=1 llw]l2
where w and h are respectively the input and output of T} (s), and || - ||2

is the ly-norm of the corresponding signal. It is clear that the H-norm of
Thw(s) corresponds to the worst case gain from its input to its output. For
future use, we define

Vi = inf{HThw(Ex Yemp)lloo | Zemp internally stabilises E}. (4.118)

We note that the determination of this «} is rather tedious. For a fairly large
class of systems, vZ, can be exactly computed using some numerically stable
algorithms. In general, an iterative scheme is required to determine v} . We
refer interested readers to the work of Chen [44] for a detailed treatment of
this particular issue. For simplicity, we assume throughout this section that
~%, has been determined and hence it is known.

For the case when 7% = 0, the corresponding H, control problem is com-
monly known in the literature as the problem of H,, almost disturbance
decoupling with internal stability. It can be shown that such a problem is
solvable for X' of Equation (4.5) if and only if the following conditions hold
(see e.g., [44, 60]):

1. (A4, B) is stabilisable;

2. (A,C) is detectable;

Day + D3SD; = 0, where S = —(D}Ds)! D}, Dyy D! (Dy D)1
Im (E + BSD1) C S*(Z5) N {Mxeeo SA(Zr) };

Ker (C2 + D2SCy) D VT(Xy) U {Uxeee VA(Zq)}; and

A

VH(Z) C 8T (Ze).

We note that if Xp is right invertible and of minimum phase, and X, is
left invertible and of minimum phase, then conditions 4-6 are automatically
satisfied.
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It transpires that, for H, control, it is almost impossible to find a control
law with a finite gain to achieve the optimal performance, i.e., 7% . As such,
we will focus on designing H,, suboptimal controllers instead. To be more
specific, given a scalar v > 7Z%,, we will focus on finding a control law that
yields ||Thwlleo < 7, Where Thq(s) is the corresponding closed-loop transfer
matrix. Hereafter, we will call a control law that possesses such a property
an H,, y-suboptimal controller.

Next, we proceed to construct a solution to the regular problem (for its
definition see the previous section). Given a scalar v > v%,, we solve for
positive semi-definite stabilising solutions P > 0 and ¢ > 0 respectively to
the following Riccati equations:

A'P+ PA+CyCy + v ?PEE'P
—(PB + C5D2)(DyDs) ™ (B'P + DyCs) = 0 (4.119)

and

AQ + QA' + EE' + v2QCLCQ
—(QC! + ED\)(D1D})™'(C1Q + D1E') = 0. (4.120)

The H,, v-suboptimal control law is given by (see also [70]),

v=A v + Bemp Y,
Zemp { o emp ¥ (4.121)

u=Cmpv+ 0 9,
where

Acmp=A+7"2EE'P+BF+(I-y72QP) 'K (Ci+7*D,E'P) (4.122)
1

Bemp=— (I —7v2QP)~ (4.123)

Cemp=F (4.124)
and where

F = —(DyD;)"(DLC2 + B'P), (4.125)

K = —(QC, + ED})(D: D))~ (4.126)

Note that, for the state feedback case, the H, vy-suboptimal control law is
given by u = 