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Preface

THE FORMULATION OF the optimization theory has certainly become one of
the mile stones of modern control theory. In a typical analytical design of
control systems, the given specifications are first transformed into a performance
criterion, and then control laws which would minimize the performance criterion
are sought. Two important and well-known criteria are the Hz norm and the
H,, norm of a transfer matrix from an exogenous disturbance to a pertinent
controlled output of a given linear time invariant plant. This book aims to study
the H,, control wherein the control design problem is modeled as a problem
of minimizing the H, norm of a certain closed-loop transfer matrix under
appropriate feedback control laws. Our aim is to examine both the theoretical
and practical aspects of H,, control from the angle of the structural properties
of linear systems. Our objectives are to provide constructive algorithms for
finding solutions to general singular H, control problems, and to general Hy
almost disturbance decoupling problems, as well as to apply these techniques
to solve some real life problems. Two practical problems are presented in the
book. The first one is about a piezoelectric bimorph actuator system, which
has a potential application in forming a dual actuator system for the hard disk
drives of the next generation. The second problem is about a gyro-stabilized
mirror targeting system, which has some crucial military applications.

The intended audience of this manuscript includes practicing control engi-
neers and researchers in areas related to control engineering. An appropriate
background for this monograph would be some first year graduate courses in
linear systems and multivariable control. A little bit of knowledge of the geo-
metrical theory of linear systems would certainly be helpful.

1 have been fortunate to have the benefit of the cooperation of many co-
workers. Foremost, I am indebted to Zongli Lin of the University of Virginia,
formerly a fellow classmate at Xiamen University and Washington State Uni-
versity. Many parts of this monograph were born as the result of our continuing
collaboration and our numerous discussions over the past few years. In general,
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Chapter 1

Introduction

1.1. Introduction

THE ULTIMATE GOAL of a control system designer is to build a system that will
work in a real environment. Since the real environment may change and oper-
ating conditions may vary from time to time, the control system must be able
to withstand these variations. Even if the environment does not change, other
factors of life are the model uncertainties as well as noises. Any mathematical
representation of a system often involves simplifying assumptions. Nonlineari-
ties are either unknown and hence unmodeled, or are modeled and later ignored
in order to simplify analysis. High frequency dynamics are often ignored at the
design stage as well. In consequence, control systems designed based on simpli-
fied models may not work on real plants in real environments. The particular
property that a control system must possess for it to operate properly in re-
alistic situations is commonly called robustness. Mathematically, this means
that the controller must perform satisfactorily not just for one plant, but for a
family of plants. If a controller can be designed such that the whole system to
be controlled remains stable when its parameters vary within certain expected
limits, the system is said to possess robust stability. In addition, if it can satisfy
performance specifications such as steady state tracking, disturbance rejection
and speed of response requirements, it is said to possess robust performance.
The problem of designing controllers that satisfy both robust stability and per-
formance requirements is called robust control. Optimization theory is one of
the cornerstones of modern control theory and was developed in an attempt to
solve such a problem. In a typical control system design, the given specifications
are at first transformed into a performance index, and then control laws which

1



2 Chapter 1. Introduction

would minimize some norm, say Hs or H, norm of the performance index are
sought. This book focusses on the H, optimal control theory.

Over the past decades we have witnessed a proliferation of literature on Hoo
optimal control since it was first introduced by Zames [114]. The main focus
of the work has been and continues to be on the formulation of the problem
for robust multivariable control and its solution. Since the original formula-
tion of the Hoo problem in Zames [114], a great deal of work has been done
on finding the solution to this problem. Practically all the research results of
the early years involved a mixture of time-domain and frequency-domain tech-
niques including the following: i) Interpolation approach (see e.g., Limbeer and
Anderson [58)); ii) Frequency domain approach (see e.g., Doyle [37], Francis [42]
and Glover [45)); iii) Polynomial approach (see e.g., Kwakernaak [52]); and iv)
J-spectral factorization approach (see e.g., Kimura [50]). Recently, considerable
attention has been focussed on purely time-domain methods based on algebraic
Riccati equations (ARE) (see e.g., Chen, Guo and Lin [17], Chen, Saberi and
Ly [24], Doyle and Glover [38], Doyle, Glover, Khargonekar and Francis [39],
Khargonekar, Petersen and Rotea [49], Petersen [79], Saberi, Chen and Lin [86],
Sampei, Mita and Nakamichi [92], Scherer [94-96], Stoorvogel [100], Stoorvo-
gel, Saberi and Chen [102], Tadmor [105], Zhou, Doyle and Glover [115], and
Zhou and Khargonekar [116]). Along this line of research, connections are also
made between H,, optimal control and differential games (see e.g., Bagar and
Bernhard [4], and Papavassilopoulos and Safonov [76]).

Most of the results in the literature are restricted to the so-called regular H
control problem (see Definition 1.3.8). Unfortunately, many real life problems
do not satisfy these conditions and must be formulated in terms of the regular
case by adding some dummy controlled outputs and/or disturbances in order
to apply the theory that deals with only the regular problem. The problem
we treat in this book is general, i.e., it does not necessarily satisfy the regular-
ity assumptions. The existence conditions for Hy suboptimal controllers for
this type of problem are well studied in Stoorvogel [100] and Scherer [96]. The
main focus of this book is, however, very different. We concentrate on 1) the
computation of infimum of H,, optimization problem, which must be known
before one can carry out any meaningful designs; 2) solutions to general Ho,
optimization problem; 3) solutions to general H,, disturbance decoupling prob-
lem, which itself is a very important subject; and 4) the practical applications
of H,, control.

Most of the results presented in this book are from research carried out by
the author and his co-workers over the last six or seven. years. The purpose of
this book is to discuss various aspects of the subject under a single cover.
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1.2. Notations and Terminology

Throughout this book we shall adopt the following abbreviations and notations:

R:
C:
Cc

]

Ct .=
CY .=

co .

Cc® .=

Cc°:
I:

Ik =
X =

X*:

det(X) :=
rank(X) :=

AMX) -

Amax(X) =
Omax(X) 1=
p(X) =
Yy 1=
=

Ker (X) :

Im(X) :=

dim (X) :

X} :
)
:

the set of real numbers,

the entire complex plane,

the open left-half complex plane,

the open right-half complex plane,

the imaginary axis in the complex plane,

the set of complex numbers inside the unit circle,
the set of complex numbers outside the unit circle,
the unit circle in the complex plane,

an identity matrix,

an identity matrix of dimension k x k,

the transpose of X,

the complex conjugate transpose of X,

the determinant of X,

the rank of X,

the Moore-Penrose (pseudo) inverse of X,

the set of eigenvalues of X,

the maximum eigenvalues of X where A\(X) C R,
the maximum singular value of X,

the spectral radius of X which is equal to max; |\; (X)),
a linear system characterized by (A, B, Cy, D.),
a dual system of &, & is characterized by (A}, CL, B.,D.),
the null space of X,

the range space of X,

the dimension of a subspace &,

= the orthogonal complement of a subspace X of R",

li

{z|Cz € X}, where X is a subspace and C' is a matrix,
the end of an algorithm or assumption,
the end of a corollary,

the end of a definition,
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E := the end of an example,
:= the end of a lemma,
B := the end of an observation,
:= the end of a property or proposition,
® := the end of a remark,
:= the end of a theorem,
& := the end of the proof of an interim result,
B := the end of a proof,
ADDPMS := almost disturbance decoupling problem with measurement

feedback and with internal stability,
ADDPS := almost disturbance decoupling problem with state
feedback and with internal stability,
ARE := algebraic Riccati equation,
CARE := continuous-time algebraic Riccati equation,
DARE := discrete-time algebraic Riccati equation,

SCB := special coordinate basis.

Finally, we denote normrank {X ()} the rank of X(¢) with entries in the field
of rational functions of .

1.3. Statement of H,, Optimization Problem

We consider a generalized system X with a state-space description,

dz) = Az+ Bu+ E w,
IR y =Ci z + D) w, (1.3.1)
h =Czz+ Dy u+ Dyp w,

where §(z) = z(t) if ¥ is a continuous-time system, or &(z) = z(k+1) if T is
a discrete-time system. As usual, z € R" is the state, u € R™ is the control
input, w € RF is the external disturbance input, y € R? is the measurement
output, and h € R’ is the controlled output of . They represent z(t), u(t),
w(t), y(t) and h(t), respectively, if ¥ is of continuous-time, or represent z(k),
u(k), w(k), y(k) and h(k), respectively, if T is of discrete-time. For the sake
of simplicity in future development, throughout this book, we let £ be the
subsystem characterized by the matrix quadruple (4, B, Cq, D3) and g, be the
subsystem characterized by the matrix quadruple (A, E, Cy, D,).
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w h
u E Yy

2emp

Figure 1.3.1: The standard H.-optimization problem.

The H, optimal control problem is to find an internally stabilizing proper
measurement feedback control law,

{6(1}) = Aemp ¥ + Bemp ¥,
Zcmp :

(1.3.2)
u = Cemp v + Dcmp Y,

such that the H,-norm of the overall closed-loop transfer matrix function from
w to h is minimized (see also Figure 1.3.1). To be more specific, we will say
that the control law Zcmp of (1.3.2) is internally stabilizing when applied to the
system X of (1.3.1), if the following matrix is asymptotically stable:

A+ BD¢upCi BCemp

, (1.3.3)
chpCl Acmp

cl =
i.e., all its eigenvalues lie in the open left-half complex plane for a continuous-
time system or in the open unit disc for a discrete-time system. It is straight-
forward to verify that the closed-loop transfer matrix from the disturbance w
to the controlled output h is given by the linear fraction map

Thw(s) = Ce(sI — Ac) "' B. + D, (1.3.4)
where ¢ = s, the Laplace transform operator, if X is a continuous-time system,
or ¢ = z, the z-transform operator, if ¥ is a discrete-time one, and

A+ BDcmpCh Bccmp] )

Ae = Ac] = [ chpcl Acmp

E + BDepnpD
B -—[ P 1}, \ (1.3.5)

e chle

Ce = [Cg + DgDcmpC’1 chcmp} ,

D, = D2DcmpD1 + Das. y
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It is simple to note that if S.mp is a static state feedback law, ie., u = Fz,
then the closed-loop transfer matrix from w to h is given by

Tho(c) = (Cs + D2 F)(sI — A— BF)™ E + Da,. (1.3.6)

Similarly, if Tcmp is given by u = Fiz + Fow, ie., a static full information
feedback control law, then we have

Thuw(s) = (C2 + DoFy)(sI - A — BFl)_l(E + BF) + (D22 + Dy Fy). (1.3.7)
The following definitions will be convenient in our future development.

Definition 1.3.1. (l;-norm). The ly-norm of a continuous-time signal y(t)
is defined by

o= ([ weeroue) (1338)

Similarly, for a discrete-time signal y(k), we have

lylls = (Zyw)'y(k)) . (1.3.9)
k=0

The square of the lp-norm of y(¢) or y(k) is commonly termed the total energy in
the signal y(¢) or y(k). In many areas of engineering, energy or ly-norm is used
as a measure of the size of a transient signal y(t) or y(k) which decays to zero
as time ¢ or shift k progresses towards infinity. By Parseval’s theorem, |jy||2 can
also be computed in the frequency domain as follows: for the continuous-time
case,

e = (5 [ Y(jw)“Y(jw)m)% , (1.310)

where Y (jw) is the Fourier transform of y(t); similarly, for the discrete-time

case,
1

1 ™ ) ) 2
W= (55 [ v rriew)”, (1311)
where Y (2) is the z-transform of y(k). Bl

Definition 1.3.2. (Hw-norm). The Hu-norm of a stable continuous-time
transfer matrix Th.,(s) is defined as

(1.3.12)

. h
“Thw”"o = sup Umax[Thw(Jw)] = Ssup ” ”2 y
wed,00) lwllz=1 llwll2
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where w and h are respectively the input and output of Th,,. Similarly, the
Ho-norm of a stable discrete-time transfer matrix T, (z) is defined as

: h
Thwlleo == SUP Omax[Thw(€e’™)] = sup LI , (1.3.13)
wel0,2n] wlla=1 lwll2
where w and h are respectively the input and output of Th.,. Bl

Definition 1.3.3. (y-Suboptimal Controller). Consider the given system
X of (1.3.1) and the controller £¢mp of (1.3.2). Ecmp is said to be an Hy, -
suboptimal controller, or in short a y-suboptimal controller, for £ if when Zcpmp
is applied to ¥, the resulting closed-loop is internally stable and the H.,-norm
of the closed-loop transfer matrix is less than 1. 2]

Definition 1.3.4. (Infimum v*). Consider the given system ¥ of (1.3.1) and
the controller Xemp of (1.3.2). The infimum of the Hy-norm of the closed-loop
transfer matrix T, (X X Xemp) over all stabilizing controllers Yemp is denoted
by v*, namely

~* = inf { N Thw(Z X Eemp)lloo | Lemp internally stabilizes X } (1.3.14)

Obviously, v* > 0. Occasionally, when it is clear in the context, we may also
say that 4* is the infimum of the given system X. el

Definition 1.3.5. (H, Optimal Controller). Consider the given system
T of (1.3.1) and the controller E¢mp of (1.3.2). Zemp is said to be an Hyo
optimal controller for X if when L.pp is applied to T, the resulting closed-loop
is internally stable and the H.,-norm of the closed-loop transfer matrix is equal
to v*. 21

Definition 1.3.6. (Full Information Feedback Case). Consider the given
system ¥ of (1.3.1). Then, the H,, optimization problem for ¥ is called a full
information feedback case if

y=(:}) = 01=(6>,D1=(?). (1.3.15)

We will also call such a system & a full information feedback system. o}

Definition 1.3.7. (Full State Feedback Case). Consider the given system
T of (1.3.1). Then, the H,, optimization problem for ¥ is called a full state
feedback case if

y=x = C, = I, Dy =0. (13.16)

We will also call such a system ¥ a full state feedback system. 2
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Definition 1.3.8. (Regular Case). Consider the given system X of (1.3.1).
Then, the Ho, optimization problem for ¥ is said to be a regular case or a
regular problem provided that:

1. The following conditions are satisfied if ¥ is a continuous-time system,

(a) D3 is of full column rank and X; is free of imaginary invariant zeros;

(b) D; is of full row rank and %4 is free of imaginary invariant zeros.

2. The following conditions are satisfied if ¥ is a discrete-time system,

(a) Xp is left invertible and is free of unit circle invariant zeros;

(b) X is right invertible and is free of unit circle invariant zeros.

Also, we will call such a system X a regular system. We note that the charac-
terizations of the regular case for discrete-time systems precisely correspond to
those for continuous-time systems under a bilinear mapping. This will be seen
clearly later in Chapter 4. Bl

Definition 1.3.9. (Singular Case). Consider the given system X of (1.3.1).
Then, the H,, optimization problem for £ is said to be a singular case or a
singular problem if it is not a regular one. We will occasionally call such a
system ¥ a singular system. o]

1.4. Preview of Chapters

A preview of each chapter is given next. The book can naturally be divided
into three parts. The first part covers from Chapters 1 to 4 and contains some
preliminary results and background materials. Chapter 2 recalls some linear
system tools such as the Jordan and Brunovsky canonical forms and the special
coordinate basis. The latter has the distinct feature of explicitly displaying the
finite and infinite zero structures of a given system. It plays a dominant role in
the development of the whole book. Chapter 3 recalls results on the existence
conditions of H, suboptimal controllers for both continuous- and discrete-time
systems, which are to be used in the proofs of results developed in the sec-
ond part of the book. Chapter 4 presents two preliminary results, namely, a
comprehensive study of the structural mapping of bilinear and inverse bilin-
ear transformations, and solutions to general discrete-time Riccati equations.
Both are instrumental in the development of main results in discrete-time Ho,
optimization problems.



1.4. Preview of Chapters 9

The second part of the book covers from Chapters 5 to 10 and is also
the heart of the book. Chapter 5 deals with the computation of infimum in
continuous-time H, optimization problem. For a fairly large class of singu-
lar problem in which the given system satisfies certain geometric conditions,
we present a non-iterative procedure that computes its infimum exactly. For
the case when the geometric conditions are not satisfied, we modify our algo-
rithm and give an iterative scheme for approximating this infimum based on
an auxiliary reduced order regular system, which generally has a much smaller
dynamical order than that of the original system. Chapter 6 deals with finding
H,, v-suboptimal controllers for the state feedback case, and the full order and
reduced order measurement feedback cases. We provide closed-form solutions
to the H, suboptimal control problem for the class of singular systems which
satisfy the above mentioned geometric conditions. Here by closed-form solu-
tions we mean solutions which are explicitly parameterized in terms of v and
are obtained without explicitly requiring a value of y. Hence, one can easily
tune the parameter - in order to obtain the desired level of disturbance attenua-
tion. This method will be adapted to find ~y-suboptimal control laws for general
systems when the geometric conditions are not satisfied. Chapter 7 gives so-
lutions to the general H,, almost disturbance decoupling problem with either
state feedback or measurement feedback and with internal stability for plants
whose subsystems have invariant zeros on the imaginary axis of the complex
plane. Similarly, Chapters 8 to 10 focus on the discrete-time counterparts of
Chapters 5 to 7, respectively.

The last part of the book consists of some real-life applications of the Hy
theory. Chapter 11 deals with a case study on a piezoelectric actuator control
system design using the H, almost disturbance decoupling approach. Chapter
12 presents another case study on a gyro-stabilized mirror targeting system
design using the H,, control approach. Both designs are carried out with a
clear understanding of the theories and the properties of the given systems.
Simulation and/or real implementation results show that these applications
turn out to be very satisfactory. Finally, an open problem associated with the
computation of the infimum in Ho, optimization is posed in Chapter 13. That
concludes the whole book.



Chapter 2

Linear System Tools

As WILL BE evident in the coming chapters, the finite and infinite zero struc-
tures as well as the invertibility structure of the given system play dominant
roles in the computation of the infima and the solutions to both continuous-
time and discrete-time H, optimization problems. Thus a good non-ambiguous
understanding of linear system structure is essential for our study. In our opin-
ion, the best way to display all the structural properties of linear systems is to
transform them into a so-called special coordinate basis (SCB) developed by
Sannuti and Saberi [93] and Saberi and Sannuti [89). However, quite often it
happens that the original special coordinate basis of Sannuti and Saberi is not
fine enough to characterize all the details of the properties of linear systems. In
order to see all the fine points of a given system, we would have to further de-
compose certain subsystems of its SCB using some well-known canonical forms
such as the Jordan canonical form and the Brunovsky canonical form. Keeping
this in mind, we recall in this chapter the following results: 1) the Jordan and
real Jordan canonical forms for a square constant matrix; 2) the Brunovsky
canonical form and the block diagonal controllability canonical form for a con-
stant matrix pair; and 3) the special coordinate basis of a linear time invariant
system characterized by either a matrix triple or a matrix quadruple. These
canonical forms and the special coordinate basis will form a transformer for
linear systems. Once a system is touched by this transformer, all its structural
properties become clear and transparent. As such, we call it an X-transformer.
We should note that the original work of [93,89] dealt only with the continu-
ous time systems. In this chapter, we will unify the special coordinate basis
for both continuous-time and discrete-time systems under a single framework.
More importantly, we will provide rigorous proofs to all the properties of the
special coordinate basis for the first time in the literature.

11
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2.1. Jordan and Real Jordan Canonical Forms

We recall in this section the Jordan canonical form and the real Jordan canonical
form of a square constant matrix. We first have the following theorem.

Theorem 2.1.1. Consider a constant matrix A € R™*™. There exists a non-
singular transformation T € €™*™ and an integer k¥ such that

T—'AT = blkdiag{Jl, oy Jk}, (2.1.1)
where J;, i = 1,2,---,k, are some n; x n; Jordan blocks, i.e.,
A1
Ji= BN (2.1.2)
Ai
Obviously, X\; € AM(4),i=1,2,---,k, and Zle n; = n.

The result of the above theorem is very well-known. The realization of this
Jordan canonical form in MATLAB can be found in Chen [12]. The following
theorem is to find a real Jordan canonical form.

Theorem 2.1.2. Consider a constant matrix A € R"*™. There exists a non-
singular transformation P € R™*™ and an integer k such that

PlAP = blkdiag{ T, Jay e Jk}, (2.1.3)

where each block J;,7=1,2,-- -, k, has the following form: if \; € A(A) is real,
A1
Ji= , (2.1.4)

orif \; = p; + jw; € A(A) and A; = p; — jw; € A(A) with w; # 0,
A Iy
J, = , A¢=[”" “’i}. (2.1.5)
A, I —Wi
A;

The above structure of P~1AP is called the real Jordan canonical form. =
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The proof of the above theorem can be found in many texts (see e.g., Won-
ham [113]). The following is a constructive algorithm for obtaining the transfor-
mation P that will transform the given matrix A into the real Jordan canonical
form. First, we compute a non-singular transformation T € R™*" such that

T-1AT = blkdiag{A;, Ag, oo, A,}, (2.1.6)

where sub-matrices A; € R™*™, i = 1,2,.-.,¢, have either a single or one
repeated (if n; > 1) eigenvalue A;, if A; is real, or two or two repeated (if
n; > 2) eigenvalues ); and Xi, if A; is not real. Also, we have \; # Aj, if
i # j. Note that such a transformation T can easily be obtained using some
numerically very stable algorithms such as the real Schur decomposition.

For each A; with its corresponding A; being a real number, we use the result
of Theorem 2.1.1 to obtain a non-singular transformation §; = §; € R™*™
such that A; can be transformed into the Jordan canonical form. For each A;
which has eigenvalues \; = y; + jw; and X; = y; — jw; with w; > 0, we follow
the result of Fama and Matthews [40] to define a new (2n;) x (2n;) matrix,

A" - ,‘In‘. w,-Im

Z; = [ _wsn‘_ A Im] : (2.1.7)
It is simple to show that Z; has n; real eigenvalues at 0 and n; purely imaginary
eigenvalues at #j2w;. Then, we use the real Schur decomposition technique to
find a non-singular transformation $9 € R ™)) guch that

Zo O

Y 2]
where Z; has all its eigenvalues at 0 while Z;,; has no eigenvalue at 0. Next,
we utilize the result of Theorem 2.1.1 to obtain a non-singular transformation
S} € R™*™ guch that

szt = | (218)

(517 Z:0S} = bikdiag{ 3, J3, I, B, -+ I} (2.19)
where J*, m = 1,2, - -+, g;, have the form,
m = [g Iﬂia-l}. (2.1.10)
Let us partition
i s 1,n; .
o g[S 0] _[Si st Xiy o X e
A 0 I.]| §2.1 gmir x21 . x2Zma L.
ni % DS | i,1 i1
1,1 1,nia; 1,1 Linis;
hoi T Py Xioi 0 Kigy * . (2.111)
2,1 21"‘:’0; 2,1 2,"'1'05 *

1,0 1,05 1,0 1,04
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L.k o2k ylk 2,k _ — .
where S; ., Sim Xim and X; ., m =1,2,---,0; and k = 1,2, -, 04y, are

n; X 1 column vectors. In fact, they are all real-valued. Next, define an n; X n;
real-valued matrix,

S=lsi st s she sl sl st
Finally, let
8 = blkdiag{S‘l, - Sl} (2.1.12)

and P = TS € R™*". It is now straightforward to show that P~1AP is in the
real Jordan canonical form as described in Theorem 2.1.2. The algorithm has
been implemented in Chen [12].

2.2. Brunovsky and Block Diagonal Controllability Forms

In this section, we first recall the well-known Brunovsky canonical form for a
matrix pair, and then introduce a so-called canonical form for a controllable
matrix pair, say (A4, B). Both will be the keys in the derivations of some im-
portant results later in the book. The derivation of the former is well-known in
the literature and the software realization of the Brunovsky canonical form can
be found in Chen [12]. We will give an explicit constructing algorithm for the
latter to find non-singular transformations, say Ts and T3, such that T, 1 AT,
has a special block diagonal form and T, ! BT; has an upper block triangular
form. Such special forms of A and B will play an important role in constructing
solutions to the general Hy, almost disturbance decoupling problems later in
this book. The existence of this block diagonal controllability canonical form
was proved by Wonham [113].

We have the following theorems regarding the Brunovsky canonical form
and the block diagonal controllability canonical form for a given matrix pair.

Theorem 2.2.1. Consider a constant matrix pair (4, B) with A € R**" and
B € R™™™ with B being of full rank. There exist nonsingular state and input
transformations T; and T; such that

A, O 0 o 0 0
0 0 Iy 0 o0

-~ * * * ter % *

A=T7'AT,=| . . . . . - (2.2.1)
0 0 0 0 Iy,
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and
0 0
0 0
N 1 0
B:=T,/'BT;= | . S (2.2.2)
0 -+ 0
0 --- 1

where k; >0,2=1,.--,m, A, is of dimension n, :=n - Z:’;l k; and its eigen-
values are the uncontrollable modes of (A, B). Moreover, the set of integers,
C:={no, k1, - -+, km }, is called the controllability index of (A, B).

Proof. It is well-known. The software realization of such a canonical form can
be found in Chen [12]. &

Theorem 2.2.2. Consider a constant matrix pair (4, B) with A € R™" and
B € R™™ and with (A, B) being completely controllable. Then there exist an
integer k < m, a set of k integers ki, k2, - - -, kx, and non-singular transforma-
tions T, and T; such that

4 0 O 0
0 A, 0 -+ 0
T-'AT,=|0 0 Az - 0] (2.2.3)
0 0 0 Ay
and
B, x * * ok
0 By * %
T'BT,=|0 0 Bs * x| (2.2.4)
0 0 0 - By *
where x’s represent some matrices of less interest, and A; and B;, i = 1,2, -, k,
have the following controllability canonical form,
0 1 0 -+ 0 0
0 0 1 cee 0 0
Ai=| : : .| Bi= |, (2.2.5)
0' 0 0 e 1 0
—a}, —a,_, -, _, - —q 1
for some scalars a3, a3, -, aj,. Obviously, ¥ ki =n. We call the above

structure of A and B a block diagonal controllability canonical form. @
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Proof. The existence of the block diagonal controllability canonical form was
shown in [113]. In what follows, we will give an explicit constructing algorithm
for realizing realizing such a canonical form. First, we follow Theorem 2.1.2 to
find a non-singular transformation Q € R"™*" such that matrix A is transformed
into a real Jordan canonical form, i.e.,

A= Q—IAQ:blkdiag{J}m...,J:\’:,Jiz,...,J;:, ...... ,J,\“...’J;:},
(2.2.6)
where A; = p; + jw; € AM(A) with w; > 0, and also \;; # Ay, if i3 # ia.

Moreover, for each i € {1,2,---,¢} and s = 1,2,---, 0, J5, € R™*™* has the
following real Jordan form,

wi 1
B3, = , (2.2.7)
w1
i
if w; =0, or
A I
JS = R , A= Hi wi}, 2.2.8
i AL [—wi e (2.2.8)
A;

if w; > 0. For the sake of easy presentation later, we arrange the Jordan blocks
in the way that n;; > np > - -+ > n4,,. Next, compute

[ Bh B - BRi)
Bi, B, - B,
B}, B} - BH
B=Q'B= B%iaz 322:62 352;2 . (2.2.9)
B:gl Bzgx B:;'f
5L, B2, o B,

It is straightforward to verify that the controllability of (A, B) implies: there
exists a B} with v € {1,2,---,m} such that (J} ,B}) is completely control-
lable, which is equivalent to the last row of BY being non-zero if ; is real, or
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at least one of the last two rows of B}; being non-zero if ); is not real. Thus,
it is simple to find a vector

i
t21
Tl = : ) tll 76 07 (2210)
tml
and partition
- ~1 A
11
-1
Bld]
~1
B2l
Bl = BT] = B;a y (2211)
2
.,:1
Bél
-1
L B&rl J

such that (J i,- , B:l) is completely controllable. Because of the special structure
of the real Jordan form and the fact that n;; > ni > -+ > n40,, the eigenstruc-
tures associated with J3. with s > 1 are totally uncontrollable by B;. Thus,
it is straightforward to show that there exist non-singular transformations T,
1=1,2,---,¢, such that

B B
a | ™ m=| | cen
g g
and
By Bl
(T3)! Ba | _ o1, (2.2.13)
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1 .
with (J},, B;;) being completely controllable. This can be done by utilizing
the special structure of the well-known Brunovsky canonical form (see Theo-
rem 2.2.1). Next, perform a permutation transformation P;; such that

T} OTh
521 - Ts21
(Psl)—l . Psl
Th T4
=blkdiag{J,{l,---,J,{l,Jfl,---,Jj\’l‘, ------ ,th,---,J;';}, (2.2.14)
and

T} ot 0 0

2 toy 1 0

1 ~
Pa)t ’ B| .

(Ps1) - 0
T4 tmi O 1
- ~1 ~2 “m -

Bll Bll Bll

<1 ) “m

Bll Bll Bll

~2 ~m

0 Bl2 BlZ

=|o B, - BL |- (2.2.15)

v'2 v"m,

0 B£2 B£2

2 <m
- O Blo‘g Blo‘t-‘

v] .
Because \;, i =1,2,---,¢, are distinct, the controllability of (J}“,,Bﬂ) implies
that the pair

J! By
A1 Jl .1
. . B
(A1, By) = Az § NN (2.2.16)

1 .
J5, 1
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is completely controllable. Hence, there exists a non-singular transformation
X; e RO Xk where k) = }:f___l n;1, such that

0 1 0 e 0
0 0 1 -+ 0
XflAle = A1 = : : ' N (2217)
0 0 0 1
O, ‘a}c,—1 —allu—z —aj
and
0
0
X'Bi=By=|:]. (2.2.18)
0
1
Next, repeating the above procedure for the following pair
- o3 o -
By, --- By,
V2. V"‘n
Bla'l U Bldl
blkdiag{Jfl,- SIS T2, ,J;’;}, S
~2 v.m
By By,
<2 <m
\.Blﬂ’l B oy
(2.2.19)
one is able to separate (A, By). Keep repeating the same procedure for k — 2
more steps, where k = max{s1,02,--,0¢}, one is able to obtain the block

diagonal controllability canonical form as in Theorem 2.2.2. This completes
the proof of the theorem. The result has been implemented in Chen [12]. &

We illustrate the above results in the following example.

Example 2.2.1. Consider a matrix pair (A, B) characterized by

r1 1. 00 00 0 07 rl 87

0100 00 00O 27

0011 00 0O 3 6

0 001 00 0O 4 5

A= 0 000 01 1 0|’ b= 5 4|’ (2:2.20)

0 000 -10 01 6 3

0 000 0O0O 01 7 2
L0 0 00 00 -1 Ol L8 1.
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where matrix A is already in the form of the real Jordan canonical form with
M =1, 01 =2and A\, = j, o2 = 1. Following the proof of Theorem 2.2.2, we

obtain

r 0.1508 0.1508 0.3015 0.3015 0.1508 0.1508 -0.4002 1.81897
—0.3015 0.3015 —0.6030 0.6030 —0.3015 0.3015 —1.4188 1.4188

0.1508 0.4523 0.3015 0.9045 0.1508 0.4523 0.3274 -1.1641
—0.6030 0.6030 —1.2061 1.2061 -0.6030 0.6030 0.8367 —0.8367

I,= —0.1508 3.4674 —4.5227 0 0.4523 0.7538 0 o
—1.9598 2.7136 0.9045 —1.2061 -1.3568 0.9045 0 0
1.2061 -1.3568 0.3015 -—0.3015 -0.9045 1.0553 0 0
[—1.0553 3.3166 —4.5227 45227 -3.4674 1.2061 0 0
_ [o.as08 0
T:= { 0 0.4083 :,’
and
F 0 1 0 0 0 0 0 07 [0 —1.4368 7
0 0 1 0 0 0 0 0 0 -0.2982
0 0 0 1 0 0 0 0 0 0.5207
-1 _ 0 0 0 0 1 0 0 0 1 o 0 1.3969
Ts AT, = 0 0 0 0 0 1 0o op T" BT:= 0 2.8085
-1 2 -3 4 -3 2 0 0 1 4.6900
0 0 0 0 0 0 0 1 0 0
L 0 O 0 0 0 0 -1 2] | 0 1]
This verifies the results of Theorem 2.2.2. E

2.3. Special Coordinate Basis

Let us consider a linear time-invariant (LTI) system X., which could be of
either continuous-time or discrete-time, characterized by a matrix quadruple
(A, By, Cy, D,) or in the state space form,

{6(:1:)=A*x+B* u,

3.1
Yy =C*x+D*u, (23)

where §(x) = i(t), if L, is a continuous-time system, or é(z) = z(k + 1), if
Y, is a discrete-time system. Similarly, z € R®, u € R™ and y € R? are
the state, the input and the output of T.. They represent z(t), u(t) and y(t),
respectively, if the given system is of continuous-time, or represent z(k), u(k)
and y(k), respectively, if £, is of discrete-time. Without loss of any generality,
we assume that both [B, D,] and [C. D,] are of full rank. The transfer
function of X, is then given by

H,(s) = Cu(sI - A.)"'B, + D, (2.3.2)
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where ¢ = s, the Laplace transform operator, if I, is of continuous-time, or
§ = z, the z-transform operator, if ¥, is of discrete-time. It is simple to verify
that there exist non-singular transformations U and V such that

In, 0
UDJ/:[ no 0]’ (2.3.3)

where mg is the rank of matrix D,. In fact, U can be chosen as an orthogonal
matrix. This fact will be used later in the computation of 4* throughout this
book. Hence hereafter, without loss of generality, it is assumed that the matrix
D, has the form given on the right hand side of (2.3.3). One can now rewrite
system T, of (2.3.1) as,

é(x) "

Yo C*,O Imo 0 Uo
()= &)=+ [% o] (2)

where the matrices B, g, By 1, Cs o and C, ; have appropriate dimensions. We
have the following theorem.

A, T + [B*,O B*,l] (Uo) ,
(2.3.4)

Theorem 2.3.1 (SCB). Given the linear system I, of (2.3.1), there exist

1. Coordinate free non-negative integers n, n%, nt, ny, ne, na, mqa < m—mp
and ¢;, 2 = 1,---,my, and

2. Non-singular state, output and input transformations I's, T', and T'; which
take the given ¥, into a special coordinate basis that displays explicitly
both the finite and infinite zero structures of X,.

The special coordinate basis is described by the following set of equations:

z=T., y="T.7, u=I4, (2.3.5)
T, = T1
a T2
i‘ = ib , Lo = xg y Tqg = . 5 (236)
[+ + .
Td Tq Ty
Y (31
Yo Yo Ug Ug
g=|ya | va=| . | a=|ua ] ma=| . [, (2.3.7)
Yo : Ue :
Ymyq Umg

and
0(z;) = Az,z; + Bo,yo + Logya + Loyys, (2.3.8)
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8(22) = A%, 23 + BYyyo + Lyya + Loy, (2.3.9)
8(zF) = Af,xt + Blyo + L ya + LEwe, (2.3.10)
d(xs) = Appxs + Bosyo + Loava,  y» = Cos, (2.3.11)

8(zc) = Acee + Bocyo + Lewys + Leaya + Be [Ez; + EQ, + Efz}] + Beu,
(2.3.12)

Yo = CocZe + Cp2; + Choxly + Cihat + Coaza + Copzs +uo,  (2.3.13)
and for eachi=1,---,my,
mg
8(z;) = Ag, Ti+ Lioyo+ Liaya+ By, | Ui + Eiaza + EipTp + Eiczc + Z Eiz;|,

J=1
(2.3.14)

Y = C'q,.x,;, Yd = C’d:cd. (2.3.15)

Here the states z, 29, 2T, x5, . and z, are respectively of dimensions n;, n2,
nt, ne, ne and ng = -4 ¢i, while z; is of dimension g¢; for each ¢ = 1,---,mg.
The control vectors ug, ug and u. are respectively of dimensions mg, mg and
me = m — mgo — mq while the output vectors yg, y4 and y, are respectively of
dimensions py = mg, ps = mq and p, = p—po — pa. The matrices Ay, By, and
C,, have the following form:

0 I,- 0
Aqiz[O ‘1*01}’ qu:[1}7 Cy=11,0,--,0] (2.3.16)

Assuming that z;,i=1,2,-- -, mg, are arranged such that g; < g;41, the matrix
L;4 has the particular form

Lig=[Liy Liz -+ Ly 0 --- 0]. (2.3.17)
Also, the last row of each L;4 is identically zero. Moreover,
1. If £, is a continuous-time system, then

MAZ) c €™, A(4l,)ccC x4h)cct. (2.3.18)

2. If ¥, is a discrete-time system, then

AMAg,) CC°, A(A%,) ce® \4f)c ce. (2.3.19)

Also, the pair (A.,B.) is controllable and the pair (Aps,Cs) is observable. [
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Proof. For strictly proper systems, using a modified structural algorithm of
Silverman [98], an explicit procedure of constructing the above special coordi-
nate basis is given in [93]. The required modifications for non-strictly proper
systems are given in [89)].

Here in Theorem 2.3.1 by another change of basis, the variable z, is further
decomposed into z, 20 and z}. For continuous-time systems, one can use the
real Schur algorithm to obtain such a decomposition. For discrete-time systems,
the algorithm of Chen [11] can be used. '

The software toolboxes that realize the continuous-time SCB can be found
in LAS by Chen [9] or in MATLAB by Lin [60]. The realization of this unified
SCB can be found in Chen [12]. A numerical example will be given at the end
of this section to illustrate the procedure of constructing the SCB and all its
associated properties. &

We can rewrite the special coordinate basis of the quadruple (A., B.,Cs, D)
given by Theorem 2.3.1 in a more compact form,

A, =T7(Asx = By oCuo)Ts

Az, 0 0 LG 0 L,Ca
0 A°, 0 L°,C, 0  L%,Cy
_ 0 0 Al, LEG 0 LCa| (2.3.20)
0 0 0 App 0 LpaCy
B.E;,, B.E), B.Ef, LuC, Ax LcaCa
| BiE;, B4ES, B4E}, BiEs ByEs - Ada
rB;, 0 01
B, 0 O
B, =T;'[B.y B.1|li= Bi, 0 0 , (2.3.21)
By, 0 O
Boe 0 B.
| Boy Ba 0.

_ Cuo Con CS Cd Co Coc Coa
C.=T;! [c’ }Ps 0 0 0 0 0 Csqlf, (2322
»1 0o 0 0 C 0 0

Im, 0 O
D,=T;D.Ii = [ 0 0 0} . (2.3.23)
0 00

A block diagram of the special coordinate basis of Theorem 2.3.1 is given
in Figure 2.3.1. In this figure, a signal given by a double-edged arrow is some
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Boayo + Lasys + Laaya

! za

Aqa

Bosyo + Lbayd

Ty yp Output
Cs

Apy

Levys + Bocyo + Leayd

uC + ECO: é T

Note that a signal given by a double-edged arrow with a solid dot is some linear
combination of all the states, whereas a signal given by a simple double-edged
arrow is some linear combination of only output y4. Also, matrices Bo,, Las,
L.q and E,, are to be defined in Property 2.3.1.

Figure 2.3.1: A block diagram representation of the special coordinate basis.
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linear combination of outputs y;, i = 0 to mg4, where as a signal given by
the double-edged arrow with a solid dot is some linear combination of all the
states. Also, the block [> is either an integrator if X, is of continuous-time or
a backward shifting operator if I, is of discrete-time.

We note the following intuitive points regarding the special coordinate basis.

1.

The variable u; controls the output y; through a stack of ¢; integrators (or
backward shifting operators), while z; is the state associated with those
integrators (or backward shifting operators) between u; and y;. More-
over, (Aq,, By,) and (Ay;,Cy;) respectively form controllable and observ-
able pairs. This implies that all the states z; are both controllable and
observable.

The output y» and the state z, are not directly influenced by any inputs,
however they could be indirectly controlled through the output y4. More-
over, (Aps, Cp) forms an observable pair. This implies that the state zy is
observable.

The state . is directly controlled by the input u., but it does not directly
affect any output. Moreover, (A.., B.) forms a controllable pair. This
implies that the state z. is controllable.

. The state z, is neither directly controlled by any input nor does it directly

affect any output.

In what follows, we state some important properties of the above special
coordinate basis which are pertinent to our present work and will be used
throughout this book. The proofs of these properties will be given in the next
section.

Property 2.3.1. The given system T. is observable (detectable) if and only if
the pair (Aobs, Cobs) is observable (detectable), where

and where

A 0 Coa  Coc
= aa = 2.3.24
AObs ’ [ BcEca Acc ] ’ CObs ) [ Eda Edc J ’ ( 3 )
A, 0 0
A= 0 A% 0|, Cou:=[Csy C8 Cl, (2.3.25)
0 0 A

Es :=[E;, ES, El), E..:=[E, E) EL]. (2.3.26)
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Also, define

Aaa Labcb - BOa Lad ] 27
Acon := [ 0 A } , Beon:= [ Bos Lig - R (2.3. )
By, ab ad |
Boa:= | B3 |y Lab:= L8|, Laa:=|L%]|. (2.3.28)
B, L, L3

Similarly, £, is controllable (stabilizable) if and only if the pair (Acon, Beon) is
controllable (stabilizable). =]

The invariant zeros of a system X, characterized by (A., Bs,C:,D,) can be
defined via the Smith canonical form of the (Rosenbrock) system matrix [84] of
¥, defined as the polynomial matrix Ps, (),

Ps.() := [‘I 5*’4* “DB**] . (2.3.29)

We have the following definition for the invariant zeros (see also [68]).

Definition 2.3.1. (Invariant Zeros). A complex scalar a € C is said to be

an invariant zero of X, if
rank {Pg, (a)} < n+ normrank {H.(s)}, (2.3.30)

where normrank {H,(s)} denotes the normal rank of H, (), which is defined as
its rank over the field of rational functions of ¢ with real coefficients. Bl

The special coordinate basis of Theorem 2.3.1 shows explicitly the invariant
zeros and the normal rank of 3,. To be more specific, we have the following
properties.

Property 2.3.2.
1. The normal rank of H, (<) is equal to mg + mq.

2. Invariant zeros of I, are the eigenvalues of A,,, which are the unions of
the eigenvalues of A7,, A%, and A},. Moreover, the given system Z, is of
minimum phase if and only if A,, has only stable eigenvalues, marginal
minimum phase if and only if A,, has no unstable eigenvalue but has
at least one marginally stable eigenvalue, and nonminimum phase if and
only if A,, has at least one unstable eigenvalue. &



2.3. Special Coordinate Basis 27

In order to display various multiplicities of invariant zeros, let X, be a non-
singular transformation matrix such that A,, can be transformed into a Jordan
canonical form (see Theorem 2.1.1), i.e.,

X AwoXo = J = blkdiag {J1, J2, I}, (2.3.31)
where J;,1=1,2,--,k, are some n; x n; Jordan blocks:
o o 0 I

Ji = dlag{a“a,, ,a,}+ [0 . ] . (2.3.32)

For any given a € A(A,,), let there be 7, Jordan blocks of A,, associated with
a. Let ng1, N2, '+ Na,r, be the dimensions of the corresponding Jordan
blocks. Then we say a is an invariant zero of L. with multiplicity structure
S*(Z,) (see also [85]),

Sa(Zs) = {na,l,na,z, o ,na,m}. (2.3.33)

The geometric multiplicity of « is then simply given by 7, and the algebraic
multiplicity of c is givenby .2, no,i. Here we should note that the invariant
zeros together with their structures of X, are related to the structural invariant
indices list Z; (2.) of Morse [70].

The special coordinate basis can also reveal the infinite zero structure of
¥,. We note that the infinite zero structure of L. can be either defined in
association with root-locus theory or as Smith-McMillan zeros of the transfer
function at infinity. For the sake of simplicity, we only consider the infinite
zeros from the point of view of Smith-McMillan theory here. To define the
zero structure of H,(s) at infinity, one can use the familiar Smith-McMillan
description of the zero structure at finite frequencies of a general not necessarily
square but strictly proper transfer function matrix H,(s). Namely, a rational
matrix H,(s) possesses an infinite zero of order k& when H,(1/z) has a finite
zero of precisely that order at z = 0 (see [35], [81], [84] and [108]). The number
of zeros at infinity together with their orders indeed defines an infinite zero
structure. Owens [73] related the orders of the infinite zeros of the root-loci of
a square system with a non-singular transfer function matrix to C* structural
invariant indices list Zy of Morse [70]. This connection reveals that even for
general not necessarily strictly proper systems, the structure at infinity is in
fact the topology of inherent integrations between the input and the output
variables. The special coordinate basis of Theorem 2.3.1 explicitly shows this
topology of inherent integrations. The following property pinpoints this.
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Property 2.3.3. X, hasmg = rank (D,) infinite zeros of order 0. The infinite
zero structure (of order greater than 0) of ¥, is given by

S0 (Z4) = {qx,q2,~--,qm,, } (2.3.34)

That is, each g; corresponds to an infinite zero of X, of order ¢;- Note that for
a single-input-single-output. system I, we have S% (Z,) = {q1}, where ¢; is
the relative degree of L,. ]

The special coordinate basis can also exhibit the invertibility structure of a
given system X.. The formal definitions of right invertibility and left invertibil-
ity of a linear system can be found in [71]. Basically, for the usual case when
(B, D.,] and [C. D.] are of maximal rank, the system I, or equivalently
H.,(c) is said to be left invertible if there exists a rational matrix function, say
L,(s), such that

L. () H.(s) = In. (2.3.35)

3. or H,(s) is said to be right invertible if there exists a rational matrix function,
say R. (<), such that

H.(s)R.(s) = I, (2.3.36)
L, is invertible if it is both left and right invertible, and X, is degenerate if it
is neither left nor right invertible.

Property 2.3.4. The given system X, is right invertible if and only if 7, (and
hence y5) are non-existent, left invertible if and only if z. (and hence u.) are
non-existent, and invertible if and only if both z, and z. are non-existent.
Moreover, X, is degenerate if and only if both z;, and . are present. @l

The special coordinate basis can also be modified to obtain the structural
invariant indices lists I, and Z3 of Morse [70] of the given system Z,. In order
to display Z»(X.), we let X. and X; be non-singular matrices such that the
controllable pair (4., B.) is transformed into Brunovsky canonical form (see
Theorem 2.2.1), i.e.,

0 Iy - 0 0 0 --- 0
* ke X% * 1 --- 0
Xc—lAchc = 3 X;—chXz = y
0 0 oo 0 Iy, 0 0
* * e % * 0 -1
(2.3.37)

where *’s denote constant scalars or row vectors. Then we have

L(Z,) = {81,---,€mc}, (2.3.38)
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which is also called the controllability index of (A, B.). Similarly, we have

I3(%.) = {m,'--,up,,}, (2.3.39)

where {1, -, iip, } is the controllability index of the controllable pair (4j,, C}).

By now it is clear that the special coordinate basis decomposes the state-
space into several distinct parts. In fact, the state-space X' is decomposed as

X=X 0X0X o0 X. 0, (2.3.40)

Here X" is related to the stable invariant zeros, i.e., the eigenvalues of A7, are
the stable invariant zeros of Z,. Similarly, X0 and X} are respectively related to
the invariant zeros of X, located in the marginally stable and unstable regions.
On the other hand, A&} is related to the right invertibility, i.e., the system is
right invertible if and only if A}, = {0}, while A, is related to left invertibility,
i.e., the system is left invertible if and only if A, = {0}. Finally, X} is related
to zeros of 3, at infinity.

There are interconnections between the special coordinate basis and various
invariant geometric subspaces. To show these interconnections, we introduce
the following geometric subspaces:

Definition 2.3.2. (Geometric Subspaces V* and 5§*). The weakly un-
observable subspaces of ¥,, V*, and the strongly controllable subspaces of X,,
S*, are defined as follows:

1. V¥(Z,) is the maximal subspace of IR™ which is (A.+B, F)-invariant and
contained in Ker (C, + D, F,) such that the eigenvalues of (A, + B.Fy)|V*
are contained in €* C C for some constant matrix F.

2. 8%(X,) is the minimal (A, + K.C.)-invariant subspace of R"™ containing
Im (B, + K.D,) such that the eigenvalues of the map which is induced
by (A. + K.C,) on the factor space R™/S* are contained in €* C C for
some constant matrix K,.

Furthermore, we let V~= VX and S~ = 8%, if C*=C~ U €% V*=V* and
St=8% if C*=C™T; Vo=V* and §®= &%, if C*=C° U C°; V®=V* and
§e=8%, if C*=C®; and finally V*=V* and §*=8%, if C*=C. =]

Various components of the state vector of the special coordinate basis have
the following geometrical interpretations.
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Property 2.3.5.
L X-0X0X V~(Z.), if I, is of continuous-time,
+ e @ e G spans Ve(L,), if I, is of discrete-time.
V+(Z,), if I, is of continuous-time,

X e X
2. X7 & X spans {v@(z*), if I, is of discrete-time.

3. X @ X0 Xt @ X, spans V*(L,).
S§7(%,), if L, is of continuous-time,

X X. 04X
4 XSO XS Aa spans {SO(E,), if X, is of discrete-time.

St(Z.), if &, is of continuous-time,

5. X" XX, 0X
a ®Ae &4 O A4 spans {S®(Z*), if &, is of discrete-time.

6. X.® Xy spans S*(Z.). 3]

Finally, for future development on deriving solvability conditions for Hoo
almost disturbance decoupling problems, we introduce two more subspaces of
L. The original definitions of these subspaces were given by Scherer [95,96].

Definition 2.3.3. (Geometric Subspaces V) and S,). For any X € C, we

define
JweC™ : 0= {A*‘” B*] (g)} (2.3.41)

V() = {gec . oolle

and

Jwe Cntm (g) = [A*CT)‘I g*}w}. (2.3.42)

Sr(ZL) = {C eC"

Vi(E4) and S, (Z.) are associated with the so-called state zero directions of I,
if ) is an invariant zero of I,. =

These subspaces S)(X.) and V,(Z,) can also be easily obtained using the
special coordinate basis. We have the following new property of the special
coordinate basis.

Property 2.3.6.

AM—-A,, O 0 0

_ 0 Yia 0 O
Sx(S)=m{r,| o S ol (2.3.43)

0 0 0 I,

where
Im {Y;2} = Ker [Cy(Aw + KoCy — AI)71], (2.3.44)
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and where K}, is any appropriately dimensional matrix subject to the constraint
that Ay + K»Chb has no eigenvalue at A. We note that such a K, always exists
as (Aps, Cp) is completely observable.

Xax O
WE)=m{r, | & 0 (2.3.45)
s 0 Xc)\ y ..
0 0
where X, is a matrix whose columns form a basis for the subspace,
{GeC™ | (M - Aw)6 =0}, (2.3.46)
and -
Xop = (Acc + B.F, — ,\I)’ B., (2.3.47)

with F, being any appropriately dimensional matrix subject to the constraint
that A.. + B.F. has no eigenvalue at A. Again, we note that the existence of
such an F, is guaranteed by the controllability of (Acc, B.).

Clearly, if A € A(Aqa), then we have
Vi(Z,) C VE(ZL), (2.3.48)

and
S (Z.) 2 S*(EL). (2.3.49)

Next, we would like to note that the subspaces V*(X,) and S*(L,) are
dual in the sense that V*(Z*) = S*(.)1, where £} is characterized by the
quadruple (A;, Ci»B:nDi) Also, S)\(E*) = VX(EI)-L

We illustrate the procedure for constructing the special coordinate basis and
all its associated properties in the following numerical example.

Example 2.3.1. Consider a linear time-invariant system X, characterized by

= A, B, u,
{5(:5) z Y (2.3.50)
y =Cyz+ Dyu,
where
12 3 1 1
2 3 4 5 2
= = .3.51
a= 23 22 B3], (2:3.51)
5 6 7 8 4
and
C.=[0 3 -2 0], D.=0. (2.3.52)

The procedure for constructing the special coordinate basis of £, proceeds as
follows:
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Step 1. Differentiating (shifting) the output of the given system. It involves the
following sub-steps.

1. Since D, =0, we have
(y) =Cib(z) = CL Az +CiBau=[-2 -1 0 1ljz+0-u.
2. Since C,B, =0, we compute
8*(y) = CL A2z + C,A.Bau=[1 -1 -3 1]z+0-u,

where 62(-) = §(6("))-

3. Since C\A.B, = 0, we continue on computing
8(y) =C, A3z + C,A’B, =-[8 10 12 17]z-6-u,
where 63(-) = 6(6(6(-))). Step 1 stops here as C,A?B, #0.

Step 2. Constructing a preliminary state transformation. Let X, be an appropri-
ately dimensional matrix such that

Xo
C.
T = 2.3.53
coa | ( )
C,A?
is non-singular. Then, define a new set of state variables z,
531 Xo Xo.’r
- 55'2 C* Yy
z=|. |=Tx= T = . 2.3.54
x3 C*A* J(y) ( )
Z4 C. A2 6*(y)

It is simple to verify that T" with Xo =[1 0 O 0] is a non-singular
matrix. Furthermore,

. . . 8. 5.
6(31) = 8%1 + B2 + 35 — 234 + u, (2.3.55)
6(29) = 3, (2.3.56)
6(z3) = 24, (2.3.57)
8(z4) = —~T2%y — 9%y — 27%3 + 10%4 — 6u. (2.3.58)

Step 3. Eliminating u in §(Z1). Equation (2.3.58) implies that

. 3. 9. 5. |
u= —12.’E1 e 5552 - 513 + 5 4 — 66(154) (2359)
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Substituting this into (2.3.55), we obtain

. . 1. 11, 1.
§(z1) = -4z, — 3%2~ Fﬁfa - -65(564). (2.3.60)

We have got rid of u in §(Z1). Unfortunately, we have also introduced an
additional 6(%,) in (2.3.60).

Step 4. Eliminating 6(Z4) in 6(Z1). Define a new variable Z; as follows,

Ty = 5?1 + '6'.’64. (2361)
We h
o 0(%) = 47 —li ——l—li +-2-5: (2.3.62)
1) — 1 2 2 6 3 3 4 <0,
and
6(534) = —T2%) — 9%o — 2713 + 2214 — 6u. (2363)

Step 5. Eliminating T3 and z4 in §(Z,). This step involves two sub-steps.

1. Letting X
Iil =T — -3'523, ) (2364)
we have . o
8(21) = —4x; — 5152 - -2-:53, (2.3.65)
and
(5(574) = —725)1 —_ 9512 — 7523 + 22124 — 6u. (2.3.66)
2. Letting 0
&y =21+ 50, (2.3.67)
we have 25
(%) = —4%, + —2—52, (2.3.68)
and
8(Z4) = =723, + 31525 — 753 + 2224 — 6u. (2.3.69)

Step 6. Forming the non-singular state, output and input transformations. Let

fiz = i‘z, 533 - 523, 13 - .’;33, (2.3.70)
or equivalently let
1
e=Ti=T,| ], (2.3.71)
3
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with
1 9/2 -2/3 1/6 1 o o o]y"!
0 1 0 0 0 3 -2 0
Ts=11o0 o 1 0l]l-2 -1 01 (2:3.72)
0 0 0 1 1 -1 -3 1
Also, let
u=rm=—?,y=ng=1w. (2.3.73)

Finally, we obtain the dynamic equations of the transformed system,

§(i1) = —4Z1 + -3§§52, (2.3.74)
8(%e) = 3, §= 2o, (2.3.75)
§(Z3) = %4, (2.3.76)
0{Z4) = —T2%1 + 315&; — T5Z3 + 22%4 + 4. (2.3.77)

The above structure is now in the standard form of the special coordinate
basis. #; is associated with X, and 5, T3 and Z4 are associated with Xj.
Both A} and X, are non-existent for the given X,.

Let us now examine the properties of Z,. Following Properties 2.3.1 to 2.3.6

of the special coordinate basis, it is simple to verify that 3, is controllable and
observable, and has an invariant zero at —4 as well as an infinite zero (relative
degree) of order 3. It is obvious that the given system is invertible as both z.

and x, are non-existent.

The geometric subspaces V (2.) and S (Z,) can be obtained as follows: for

A= —4,
3
VA(E,) = Im g , (2.3.78)
8
12 27
2 2 16
S\ (S)=Imq|3 3 ol ¢ (2.3.79)
4 9 70
and for A # —4,
Vi(Z,) = {0}, S\(Z,) =R (2.3.80)

The geometric subspaces V* (2. ) and S*(Z,) of L, can also be easily computed:
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1. If %, is a continuous-time system, then

3
V() = V(%) =Im § . VHE) = {0}, (2.3.81)
8
and
1 2 27
57(S.) = 8*(%,) = Im g g ;‘; , SHE) =RY (2.3.82)
4 9 70
2. If £, is a discrete-time system, then
3
Ve(s,) = V*(%,) =Im g . VO(z.) = {0}, (2.3.83)
8
and
1 2 27
$(2) =8 (%) =Imq |2 2 11 so() =R (2389)
4 9 70

Here we would like to note that the computation of the special coordi-
nate basis for a multiple-input-multiple-output system is of course much more
complicated than that for a single-input-single-output system, but the idea is
basically the same. &

Finally, we conclude this section by summarizing in graphical form in Fig-
ure 2.3.2 some major properties of the X-transformer of linear systems, which
combines the mechanisms of the special coordinate basis, the Jordan canonical
form and the Brunovsky canonical form. Such a transformer has been used in
the literature to solve many system and control problems such as the squaring
down and decoupling of linear systems (see e.g., Sannuti and Saberi [93}), lin-
ear system factorizations (see e.g., Chen et al [27], and Lin et al [64]), blocking
zeros and strong stabilizability (see e.g., Chen et al [28]), zero placements (see
e.g. Chen and Zheng [33)), loop transfer recovery (see e.g., Chen [10], Chen
and Chen [16], and Saberi et al [87]), H2 optimal control (see e.g., Chen et
al [29,31], and Saberi et al [88]), disturbance decoupling (see e.g., Chen [15],
and Ozcetin et al [74,75)), and control with saturations (see e.g., Lin [61]), to
name a few. This X-transformer will be used intensively throughout this book
to solve problems related to H,, control.
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X-Transformer

g SCB

Jordan, Brunovsky

HOOOOO®OE

Figure 2.3.2: An X-transformer of linear time-invariant systems.
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2.4. Proofs of Properties of Special Coordinate Basis

In this section, we provide detailed proofs for all the properties of the special
coordinate basis listed in the previous section. Somehow, these proofs were
missing in the original work of Sannuti and Saberi [93]. And unfortunately,
somehow, they are still missing in the literature. We would like to note that
although some of the properties of the special coordinate basis, e.g., the con-
trollability and observability, are quite obvious, some of them, e.g., the inter-
connections between the geometric subspaces and the subsystems of the special
coordinate basis, are not transparent at all to general readers. The goal of this
section is to give rigorous proofs to all these properties once for all.

We recall the following two lemmas whose results are quite well-known in
the literature. The first lemma is about the effects of state feedback laws.

Lemma 2.4.1. Consider a given system X, characterized by a constant matrix
quadruple (A, B., Cs, D,) or in the state space form of (2.3.1). Also, consider
a constant state feedback gain matrix F. € R™*". Then, X, characterized by
the quadruple (A, + B.F,, B,,Cs + D,F,, D,) has the following properties:

1. T,r is a controllable (stabilizable) system if and only if 3, is a controllable
(stabilizable) system;

2. The normal rank of X,r is equal to that of ,;

The invariant zero structure of £, is the same as that of X,;

- W

The infinite zero structure of £, is the same as that of X,;

5. T, is (left- or right- or non-) invertible if and only if X, is (left- or right-
or non-) invertible;
6. VX(Zur) = VX(Z.) and S*(Zsr) = S*(Z4); and
7. W(Zer) = Va(Z:) and S)(Zur) = Sa(Ts)-
Proof. Items 1 is obvious. Items 3, 4 and 5 are well-known as all the lists of
Morse, i.e., Z; to Iy, are invariant under any state feedback laws. Furthermore,
items 2 and 5 can be seen trivially from the following simple manipulations:
H*F(g) = (C* + D*F*)(CI - A, - B*F*)_IB* + D,
= (Cy + D,F,)(sI = A,)"*[I — B.F.(sI - A,)']7*B. + D,
= (Cy + D,F)(sI — A,) " 'By[I = Fu(sI - A)"'B.] ™! + D,
= [C*(CI - A*)—IB* + D*][I - F*(CI - A*)—lB*]_l
H,()[I - Fu(sI — A7 B (2.4.1)
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Since [I — Fy(sI—A.)™!B,] ™! is well-defined almost everywhere on the complex
plane, the results of items 2 and 5 follow.

For item 6, it is obvious from the definition of V*, it is invariant under
any state feedback laws. Next, for any subspace S that satisfies the following
conditions:

(A, + K,C,)SC S, (2.4.2)
Im (B, + K.D,) C S, (2.4.3)

we have
(A:u +K*C*+B*F*+K*D*F*)S = (A* ‘*'K*C*)S""(B* +K*D*)F*S g S.

Thus, S* is invariant under any state feedback laws as well.
Let us now prove item 7. Recalling the definition of V, we have

JueC™ :o:[A*’“B*F*“’\I B*}(<>}.

VA(E*F) = {C eC C.+ D.F, D, w

Then, for any ¢ € Vy\(Z«), there exist an w € C™ such that
0= A,.+B.,F, -\ B, ¢\ _|A.—-AI B, I 0|(¢
- Ci + D.F, D,|\w/) | C. D,||F I|\w)’

0= A, =M B,|[¢
- C, D, \© )’
where @ = Fy,{ +w. Thus, ¢ € V»(Z,) and hence V»(Z.x) C Vi (Z4). Similarly,

one can show that V\(Z.) C Va(Z.x), and hence V5 (2.) = Va(Z4r). The result
that Sx(Z.r) = S)(T.) can be shown using the similar arguments. &

or

The following lemma is about the effects of output injection laws.

Lemma 2.4.2. Consider a given system I, characterized by a constant matrix
quadruple (A., B.,C,,D,) or in the state space form of (2.3.1). Also, consider
a constant output injection gain matrix K, € R™*?. Then, X,x characterized
by the quadruple (A, + K.C., B, + K,D.,C,, D,) has the following properties:

1. ¥,k is an observable (detectable) system if and only if Z, is an observable
(detectable) system;

2. The normal rank of X, is equal to that of Z,;

3. The invariant zero structure of I, is the same as that of Z,;
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4. The infinite zero structure of L,k is the same as that of Z,;

5. L.k is (left- or right- or non-) invertible if and only if X, is (left- or right-
or non-) invertible;

6. VX(Z.x) = V¥(Z.) and S¥(Zu) = S*(Z.); and
7. V2(Tex) = Va(Zs) and 83 (Sax) = Sa ().

Proof. It is the dual version of Lemma 2.4.1.

Now, we are ready to prove the properties of the special coordinate basis.
Without loss of any generality but for simplicity of presentation, we assume
throughout the rest of this section that the given system X, has already been
transformed into the special coordinate basis of Theorem 2.3.1 or into the com-
pact form of (2.3.20) to (2.3.23), i.e.,

Asa LavCy 0 L.4Cy
0 App 0 LyaCy
* = B oCup, (2.4.4
4 BCEca chcb Acc Lcdcd + ,OC ,0 ( )
BiE4, BuEs ByEs Ahy+ BaEag+ LaiCy
BOa, O 0
Boy 0 0
* =15 w1] = ) 24.5
B, =[B.o Bu:] Bo. 0 B. (2.4.5)
Bog By 0
and

Coa Cop Coc Cod

c Im, 0 O

C, = [ C*"’] =lo0o o 0o cCul|, Di=|0 o0 o] (246
1 0 G 0 0 0 00

We further note that A%,, By and Cy have the following forms,

A%, = blkdiag {A,h vy Ag, } (24.7)

and
B, = blkdiag { Bayr++ By, } C4 = blkdiag {Cm vty Cans } (2.4.8)
where A,,, By, and C,,i=1,2, -+, mq, are defined as in (2.3.16).
Proof of Property 2.3.1. Let us define a state feedback gain matrix F, as
follows:
Coa Cob Coc Cod
F.=—-|E4w Ea FEi FEul. (2.4.9)

E. O 0 0
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Then, we have

Asa LapCy 0 LoaCy
0 Awp 0 LpaCa
0 LaC A L.4Cy
0 0 0 A, + LaCy

A, + B,F, = (2.4.10)

Noting that (A.c, B.) is completely controllable, we have for any A € C,

rank [A,. +B,F, -\ B*}

M Aga— A Loy Ch 0 Lo,q4Cq Boa O 0 7
0 A — AT 0 LyaCy Bg, O 0
= rank
0 LpCy,  Acc—M LyCy Boe 0 B.
L 0 0 0 A2d+deCd—/\I Byg By 0 J
M Aga—A  LapCh 0 L,iCy By, O 07
| 0 Aw-ar 0 LyaCla By 0 0O
= ran 0 0 Aw—A 0 0 0 B.
L 0 0 0 Azd'f'deCd"‘)\I Bog By 0
[ Acon =Ml 0 Bconlcd BconO 0 0
= rank 0 Acc—N 0 0 0 B. ,(2.4.11)
R 0 0 A§d+deCd—)\I Bogg By 0
where
[ Aaa Labe BOa Lad]
Acon = N Bcon = Bcon Bcon = . 2.4.12
| 0 A [ Beono 1] [ By, Lpg ( )

Also, noting the special structure of (A},, B4,C4), it is simple to verify that
[Ax+B.F.—AI B.]is of maximal rank if and only if [ Acon—A] Beon ] is of
maximal rank. By Lemma 2.4.1, we have that (A4, B) is controllable (stabiliz-
able) if and only if (Acon, Beon) is controllable (stabilizable).

Similarly, one can show that (A4, C) is observable (detectable) if and only if
(Aobs, Cobs) is observable (detectable). &

Proof of Property 2.3.2. Let us define a state feedback gain matrix F, as in
(2.4.9) and an output injection gain matrix K, as follows:

BOa Lad Lab
Boy Lea O

K, =— . 2.4.13
BOc Lcd ch ( )

Bog Lag O
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We have
0 0 0
0 Ay O 0
A,=A.+B.,F, +K.C, + K.D,F, =
+ + + { o 0 4. o |0 @41
0 0 A},
0 0 0
. 0 0 0
B:u - B* +K*D* = 0 0 Bc y (2.415)
0 B; 0
. 0O 0 0 o
C.=C,+D,F.=|0 0 0 C4if, (2.4.16)
0 Cy, 0 0
and
Imq 0 O
D,=D, = 0 0 (2.4.17)
00

Let 3, be characterized by the quadruple (A*,B*,C'*,D ). It is simple to
verify that the transfer function of £, is given by

Img 0 0
Hi()=Cu(sI — A)'B.+ D, = [ 0 Ca(sI—A%,)" !By o] . (2.4.18)
0 0 0

Furthermore, we can show that

1
ca
Ca(sI - A3)) By = . (2.4.19)
1
By Lemmas 2.4.1 and 2.4.2, we have
normrank {H,(s)} = normrank { H.(s)} = mo + ma. (2.4.20)

Next, it follows from Lemmas 2.4.1 and 2.4.2 that the invariant zeros of
T. and ¥, are equivalent. By the definition of the invariant zeros of a linear
system, i.e., a complex scalar a is an invariant zero of X, if

A*—aI B

rank [ e} D ] < n+normrank {H,(5)} =n+mo +mq, (24.21)
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and also noting the special structure of (A}, B4, C4) and the facts that (Aes, Cs)
is observable, and (A.., B:) is controllable, we have

rank { Py_(a)} = rank As—al g*
M Aga —al 0 0 0 0 0 0 7
0 Abb——al 0 0 0 0 0
0 0 Acc—al 0 0 0 B,
=rank 0 0 0 Aj;—al 0 Bg O
0 0 0 0 In 0 O
0 0 0 Cy 0 0 0
L o c, 0 o o o o]
=np + Nc + Ng + mp + mg +rank { Az, —al}. (2.4.22)

Clearly, the rank of Py (a) drops below n+mg+ mgq if and only if @ € A(Aqa)-
Hence, the invariant zeros of fJ*, or equivalently the invariant zeros of X, , are
given by the eigenvalues of Ag,, which are the union of A(A,,), M(A%,), and
MAZL,). This completes the proof of Property 2.3.2. B

Proof of Property 2.3.3. It follows from Lemmas 2.4.1 and 2.4.2 that the
infinite zeros of £, and ¥, are equivalent. It is clear to see from (2.4.18) and
(2.4.19) that the infinite zeros of ¥, or equivalently the infinite zeros of ¥,, of
order higher than 0, are given by

55(8) = S%(E) = {a,0,++, Gma }- (24.23)
Furthermore, ¥, or £, has my infinite zeros of order O. &

Proof of Property 2.3.4. Again, it follows from Lemmas 2.4.1 and 2.4.2 that
I, or H.(s) is (left- or right- or non-) invertible if and only if &, or H,(s) is
(left- or right- or non-) invertible. The results of Property 2.3.4 can be seen
trivially from the transfer function H,(c) in (2.4.18). &

Proof of Property 2.3.5. We will only prove the geometric subspace V*(X..),
ie.,

I.. ©
, 0 0
VE)=Xe@X=Im(T,| o (2.4.24)
0 o

Here I'; = I, as the given system X, is assumed to be in the form of the special
coordinate basis already. It follows from Lemma 2.4.2 that V* is invariant under
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any output injection laws. Let us choose an output injection gain matrix K,
as in (2.4.13). Then, we have

A‘ﬂa O 0 O
~ 0 A 0 0
A=A, + K. C, =
+ B.E. O i 0 . (2.4.25)
ByEy, BaEa ByEj A+ ByEgyq
and
0 0 O
s < _lo o o
B.=B.+K.D.=B.= | o o (2.4.26)
0 By 0

Let ¥, be a system characterized by (fi,.,, B,,C.,D,). Then it is sufficient to
show the property of V*(Z.) by showing that

I,, 0

e 0 0
V*(,) =Im 0 I (2.4.27)

0 0

First, let us choose a matrix F, as given in (2.4.9). Then, we have

A O 0 0
A - 0 Awp O 0
* *L'x — y 2428
A. + B.F, 0 0 A. 0 ( )
0 0 0 Ay,
and
0 0 0 O
C,+D,F,=]10 0 0 Cag}. (2.4.29)
0 C, 0 0
It is simple to see now that for any
I,, O
0 0
eXypX=Im 0 I , (2.4.30)
Ne
0 0
we have
Ca
c={21, (2.4.31)
Ce
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and
Aaala L, 0
(A, + B.F.)¢ = Aicc €Im 8 Igc X 0X, (2432
0 0 o
and
(Cy + D, F)C =0. (2.4.33)

Clearly, X, @ X, is a (fi* + E*F*)-invariant subspace of IR™ and is contained in
Ker (C. + D,F.). By the definition of V*, we have

X, ® X, CV*(E,). (2.4.34)

Conversely, for any { € V* (ZAI*), by Definition 2.3.2, there exists a gain
matrix F', € R™*" such that

(A, + B.F,)( € V'(5,), (2.4.35)

and
(Cy + D,F,)¢ =0. (2.4.36)

(2.4.35) and (2.4.36) imply that for any ¢ € V*(5,),
(Cv +D,F.)(A, + B,F.)*¢=0, k=0,1,---,n—1. (2.4.37)

Thus, (2.4.34) and (2.4.37) imply that

I., 0
(Cx + D, F,)(A, + B.F,)* 8 IO =0, k=0,1,---,n—1. (2.4.38)
0 0

Next, let us partition this F', as follows:

A Foo—Coa Fyo —Cop Feo—Coc Fao — Coa
F, = [Fad ~Ey Fog—Eg Foy—Eqe Fyq— Edd:! . (2.4.39)
Fac - Eca Fbc Fcc ch
We have
Foo Foo Fo Fyao
C.+D,F, = [ 0 0 0 Cy } , (2.4.40)
0 C O 0
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and
Ase 0 0 0
A A 0 Ay 0 0
AtBFe = b b BR. AwtB. BFal (2.4.41)
BiFya BaFypa BiFeq u
where A} = A}, + BaFaq. Then, using (2.4.38) with k = 0, we have
I.. ©
(C. + D.F.) 8 I?Lc =0, (2.4.42)
0 0
which implies
Fu =0, Fu =0, (2.4.43)
and '
0 « 0
C,+D,F, = [o 0 0 Cd} , (2.4.44)
0 C, 0 0

where #’s are some matrices of not much interest. Using (2.4.38) with k =1
together with (2.4.44), we have

CyByF,q =0, CyBg4F.4 =0, (2.4.45)
and
0 * 0 *
(C. + D, F,)(A. + B,F,) = [0 CiBysFya 0 CuA%; | . (2.4.46)
0 CrAup 0 0

In general, one can show that for any positive integer k,
Ca(ALS) ' BiFay =0, Ca(A3s)*'BiFu=0, (2.4.47)

and
0 * 0 *
(Cu + D.F,) (A, + B,F,)k = [0 * 0 cd(A;;)k] . (2448)
0 Co(Aw)* 0 0
As a by product, we can easily show that F,q = 0 and F.; = 0, because of
the fact that (A%, Ba, Cy) is controllable, observable, invertible and is free of
invariant zeros. Now, for any

(= e V*(%,), (2.4.49)
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it follows from (2.4.37) and (2.4.48) that
Co(Ass)*¢p =0, k=0,1,---,n—1, (2.4.50)
which implies ¢, = 0 because (App,Cs) is completely observable, and
Ca(A) 4% = Ca(AZ) ¢ =0, k=0,1,---,n—1, (2.4.51)

which implies {4 = 0 because (A}},Cq) is also completely observable. Hence,

Ca Ina 0
0 0 0
(= .| € mily o | (=0 (2.4.52)
0 0 o0
and
V(£ C X, 0. (2.4.53)

Obviously, (2.4.34) and (2.4.53) imply the result.

Similarly, one can follow the same procedure as in the above to show the
properties of the other subspaces in Property 2.3.5. &

Proof of Property 2.3.6. Let us prove the property of V\(Z,). It follows
from Lemmas 2.4.1 and 2.4.2 that V), is invariant under any state feedback and
output injection laws. Thus, it is sufficient to prove the property of V(X.) by
showing that

Xarn O

= 0 0
= 2.4.54
nmE)=mi| o | (2.4.54)

0 0

where 3, is as defined in the proof of Property 2.3.2, X,, is a matrix whose
columns form a basis for the subspace,

{Ca € C™|(M — Awo)la = 0}, (2.4.55)

and
Xcn = (Acc + B.F. - M) ' B, (2.4.56)

with F. being an appropriately dimensional matrix such that A.. + B.F, — I
is invertible.
For any ¢ € V,\(EV]*), by Definition 2.3.3, there exists a vector w € C™ such

that . .
[A* - M B*] (4) =0, (2.4.57)
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or equivalently,

Awa—M 0 0 0 0 0 0] ((a\
0 Ap— AT 0 0 0 0 0 b
0 0 A.—-M 0O 0 0 B, ¢
0 0 0 Ayuy=M 0 By 0| ¢ |=0 (2459
0 0 0 0 Ime 0 O wo
0 0 0 Cq 0 0 0 Wd
0 Ch 0 0 0 0 0] \w)/
Hence, we have
(Aga = A)¢e =0, (2.4.59)
which implies that ¢, € Im {X,:},
A — N
[ b ] G =0, (2.4.60)
Cy
which implies that ¢, = 0 as (A, Cs) is completely observable, and
Ay, - A B
{ ad d] (Cd ) =0, (2.4.61)
Cd 0 wd

which implies that {4 = 0 and wq = 0 as (A},, B4, Ca) is square invertible and
is free of invariant zeros. We also have

(Ace = M)¢e + Bew, =0, (2.4.62)
which implies that
(Ace + BeFe — M)¢e + Be(we — Fele) = 0, (2.4.63)
or
e = (Ace + BeFe = M) 7' Be(Fule — we) = Xea(Fele — we).- (2.4.64)
Hence ¢ € Im {X.»}. Clearly,
Xax O Xax O
cemi| o Xf’c |f = mE)cm : XOM (2.4.65)
0 0 0 0
Conversely, for any
Ca Xax 0
= ? cIm g Xod (2.4.66)

e 0o 0
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we have (, =0, (3 =0, {, € Im{X,,}, which implies that (Al — A.2){; = 0,
and (. € Im{X.,}, which implies that there exists a vector @. such that

(= Xea@e = (Ace + B.F, — A\I) "' B.,. (2.4.67)
Thus, we have
(Ace + B.F, — M)(. = B, (2.4.68)
or
(Ace = AI)¢e + Bo(Fele — @) = 0. (2.4.69)
Let

wo 0
w=|w | = 0 . (2.4.70)
We Fc(c - ‘Z’c

It is now straightforward to verify using (2.4.58) that

A.-M B, (¢
A5 B1(6) =0 e
By Definition 2.3.3, we have
Xo O
cen@®) = mi| % O |VlcneEy (2.4.72)
. 0 xulfS .) 4.
0 o0

Finally, (2.4.65) and (2.4.72) imply the result.

The proof of §(X.) follows from the same lines of reasoning. =



Chapter 3

Existence Conditions of Hs
Suboptimal Controllers

IN AN H,, OPTIMIZATION problem, the first fundamental issue one faces is
when, or under what conditions does a < suboptimal controller exist. For-
tunately, the problem regarding the existence conditions of «y-suboptimal con-
trollers for either the regular or singular type of continuous-time or discrete-time
systems has almost been completely solved in the literature. For the regular
continuous-time systems, the problem was solved by Doyle et al [39] and Tad-
mor [105]. For general singular continuous-time systems with no invariant zero
on the imaginary axis, the problem was solved by Stoorvogel and Trentelman
[104] and Stoorvogel [100]. In the situation when systems have invariant zeros
on the imaginary axis, the result was derived by Scherer [94-96]. The existence
conditions of «y-suboptimal controllers for discrete-time systems were reported
in Stoorvogel [100] and Stoorvogel, Saberi and Chen [102]. In this chapter, we
will recall the above mentioned results as they will form a base for the results
reported in the second part of this book.

3.1. Continuous-time Systems

We consider in this section a general continuous-time linear time-invariant (LTT)
system ¥ with a state-space description,
t=Az+ B u+ E w,
Y:y=Cz + Dy w, (3.1.1)
h=Cyz + D2 u + Dy w,
where z € R™ is the state, u € R™ is the control input, w € R? is the external
disturbance input, ¥ € R’ is the measurement output, and h € R’ is the

49
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controlled output of ¥. We also consider the following proper measurement
feedback control law,

» ‘{ﬂzAcmpv"“chpya (312)
cmp u= Ccmp v+ Dcmp Y.

For simplicity of presentation, we will first set the direct feedthrough term from
the disturbance w to controlled output 4 in (3.1.1) to be equal to zero, i.e.,
D22 = 0. For easy reference, we define T; to be the subsystem characterized
by the matrix quadruple (A4, B, Cs, D;), and X, to be the subsystem character-
ized by the matrix quadruple (A, E,Cy, D;), which respectively have transfer

functions:
Gp (S) = CQ(SI— A)_lB + Dag, (313)

and
Gq(s) = Ci(sI — A)'E + D;. (3.1.4)

We recall in this section some important results in the literature regarding the
existence conditions of y-suboptimal control laws for the continuous-time H,
optimization problem.

The first result given below is due to Stoorvogel [100]. Before we introduce
the theorem, let us define the following quadratic matrices,

A'P+ PA+ C,Cy +v 2PEE'P PB+C.D
F,(P) ::[ B,P2 12),07 i 2], (3.1.5)
+ 2V2 D2D2
and
AQ+QA’' + EE' +~+72QC)C. C! + ED/
G%Q)::[ Q+Q o 7 QG:G:Q QG , 1} (3.1.6)
1Q+D1E DlDl

It should be noted that the above matrices are dual of each other. In addition
to these two matrices, we define two polynomial matrices whose roles are again
completely dual:

L,(P,s):=[sI-A-~y"?EE'P -B], (3.1.7)

and

sI-—A- 7‘2QC§C2] (3.1.8)

-G

Now we are ready to introduce the following theorem which gives a set of
necessary and sufficient conditions for the existence of a y-suboptimal controller
for the continuous-time system (3.1.1) with D2; = 0 and with both subsystems

M’Y(Q, S) =

Lr and X4 having no invariant zero on the imaginary axis.
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Theorem 3.1.1. Consider the continuous-time linear time-invariant system of
(3.1.1) with Dy = 0. Assume that £, and I have no invariant zero on the
imaginary axis. Then the following statements are equivalent:

1. There exists a linear time-invariant and proper dynamic compensator
Zemp of (3.1.2) such that by applying it to (3.1.1) the resulting closed-loop
system is internally stable. Moreover, the H.-norm of the closed-loop
transfer function from the disturbance input w to the controlled output
h is less than .

2. There exist positive semi-definite matrices P and Q such that the following
conditions are satisfied:

(a) Fy(P) > 0.

(b) rank{F,(P)} = normrank {G»(s)}.

(c) rank [Lg'ffl,’;)} =n + normrank {Gx(s)}, Vs e C°U C™.

(d) Gy(@) = 0.

(e) rank{G,(Q)} = normrank {G4(s)}.

(f) rank[M,(Q, s), G,(Q)] = n + normrank {Gq(s)}, Vs € C° U C*.

(8) p(PQ) <~

Here Gp(s) and Gq(s) are respectively the transfer function of ¥, and
Y4, and “normrank” denotes the rank of a matrix with entries in the field
of rational functions. m

The following remark concerns the full information feedback and full state
feedback cases. It turns out that for the system with Dy; = 0, the existence
conditions of y-suboptimal controllers for the full information feedback case and
for the full state feedback case are identical.

Remark 3.1.1. For the special cases of full information and full state feed-
back, the solution to the linear matrix inequality (LMI), i.e., condition 2.(d)
of Theorem 3.1.1, which satisfies conditions 2.(e) and 2.(f), is identically zero.
This implies that condition 2.(g) is automatically satisfied. Hence, .the existence
conditions of y-suboptimal controllers for both the full information and the full
state feedback cases are reduced to conditions 2.(a)-2.(c). Moreover, it can be
shown that a y-suboptimal static control law exists.

The following corollary deals with the regular systems or regular case. It
was first reported in Doyle et al [39] and Tadmor, [105].
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Corollary 3.1.1. Consider the continuous-time linear time-invariant system
of (3.1.1) with Dy =0. Assume that £, and £ have no invariant zero on the
imaginary axis, D, is of full column rank and D; is of full row rank. Then the
following statements are equivalent:

1. There exists a linear time-invariant and proper dynamic compensator
Zemp Of (3.1.2) such that by applying it to (3.1.1) the resulting closed-loop
system is internally stable. Moreover, the H,-norm of the closed-loop
transfer function from the disturbance input w to the controlled output
h is less than 7.

2. There exist positive semi-definite matrices P and @ such that the following
conditions are satisfied:

(a) P is the solution of the Riccati equation:
A'P+PA+ CyCy +~*PEE'P
—(PB + CyDy)(DyDy) Y (B'P + DyCy) =0.  (3.1.9)
(b) A is asymptotically stable, where
Aap = A+~"2EE'P - B(DyD;) Y (B'P + D}yC).  (3.1.10)
(c) Q is the solution of the Riccati equation:

AQ+ QA + EE' ++4%QC5C5Q
—(QC; + EDy)(D1Dy)" Y (C1Q + D,E') =0. (3.1.11)

(d) Acdq is asymptotically stable, where
Acq = A+~772QC3C;, — (QCy + ED})(DyD})™Cy.  (3.1.12)
(e) p(PQ) <12.

If the given system (3.1.1) with nonzero Dy, term, then the general condi-
tions for the existence of y-suboptimal controllers are rather complicated. We
will derive these conditions later in Chapter 5. In what follows, we recall a
corollary that deals with a special full information feedback case when Dj is of
full column rank and £; has no invariant zero on the imaginary axis.

Corollary 3.1.2. Consider the continuous-time linear time-invariant system
of (3.1.1) with y = (2' w’)" and D being of full column rank. Assume that
¥r has no invariant zero on the imaginary axis. Then the following statements
are equivalent:
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1. There exist constant gain matrices F; and F; such that by applying u =
Fiz + Fw to (3.1.1) the resulting closed-loop system is internally stable.
Moreover, the Hy-norm of the closed-loop transfer function from the
disturbance input w to the controlled output h is less than ~.

2. The following conditions are satisfied:

(a) Djy (I — D2(D4D;3)~1D4) Doy < 421

(b) There exists a positive semi-definite solution P to the Riccati equa-
tion:

0=PA+AP+CyC; - [B'P+D'zcz ]' -1 [B’P+D’20]

E'P + D},C, E'P + D,,C
where
G = D,\D, D4 Doy
D£2D2 D’22D22 - ’)’21 ’

such that the matrix,

! I
tari=4-18 BlG | JETDIC],

E'P+ DyC
is asymptotically stable.

Note that the existence conditions of a y-suboptimal controller for the full
state feedback case with D; being of full column rank and ¥, having no invari-
ant zero on the imaginary axis, are similar to those in item 2 of Corollary 3.1.2
except one has to replace 2.(a) by D}, D2y < 72I.

Next, we will remove the restrictions on the invariant zeros of the subsystems
Yr and Zg, i.e., we will allow both ¥ and X, to have invariant zeros on the
imaginary axis. The following theorem is due to Scherer [96].

Theorem 3.1.2. Consider the continuous-time linear time-invariant system of
(3.1.1) with Dyy = 0. Then the following statements are equivalent:

1. There exists a linear time-invariant and proper dynamic compensator
Temp of (3.1.2) such that by applying it to (3.1.1) the resulting closed-loop
system is internally stable. Moreover, the Ho-norm of the closed-loop
transfer function from the disturbance input w to the controlled output
h is less than +.

2. There exist appropriate dimensional constant matrices F' and K, and pos-
itive definite matrices P > 0 and @ > 0 such that the following conditions
are satisfied:
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(a) (A+BF) P+P(A+BF)+y 2PEE'P+(Ca+DyF)(Cy+D,F) < 0.
(b) (A+KC1)Q+Q(A+KC1)'+772QC5C2Q+(E+KDy)(E+KD;)' < 0.
(c) p(PQ) <7 @

The above conditions 2.(a) and 2.(b) in Theorem 3.1.2 can be converted into
conditions of the existences of positive definite solutions for some reduced order
algebraic Riccati inequalities, which are independent of F and K. This can be
done by transforming the subsystems I, and £y of the given system into the
special coordinate basis as in Chapter 2.

3.2. Discrete-time Systems

We now consider in this section a general discrete-time linear time-invariant
(LTI) system ¥ with a state-space description

y(k) = Cy z(k) + Dy w(k), (3.2.1)

zk+1)= A z(k)+ B u(k) + E w(k),
b}
{ h(k) = C3 z(k) + Dy u(k) + D3y w(k),

where z € R"™ is the state, u € R™ is the control input, w € R? is the
disturbance input, y € R? is the measurement output, and h € R is the
controlled output of £. The following Xcnp is the controller considered:

{v(k+1) = Acmp ¥ + Bemp ¥y
Temp

(3.2.2)
u = cmp v + Dcmp y'

Again, as in the continuous-time case, we define X, to be the subsystem char-
acterized by the matrix quadruple (4, B, Cy, D), and X, to be the subsystem
characterized by the matrix quadruple (4, E,Ci, Dy), which respectively have
transfer functions:

Go(z) = Ca(2I — A)"'B + D, (3.2.3)

and
Go(2) = C1(2I - A)'E + D;. (3.2.4)

The following result is due to Stoorvogel, Saberi and Chen [102].
Theorem 3.2.1. Consider the system (3.2.1). Assume that the subsystems

Yp and X, have no invariant zero on the unit circle. Then the following two
statements are equivalent:
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1. There exists a linear time-invariant and causal dynamic compensator ¢pp
of (3.2.2) such that by applying it to (3.2.1) the resulting closed loop
system is internally stable and the closed loop transfer matrix from the
disturbance input w to the controlled output h is less than .

2. There exist symmetric matrices P > 0 and Q > 0 such that
(a) The following matrix R is positive definite,
R:=+%*I1-D},Dy — E'PE
+ (E'PB+ Dy, D)V (B'PE + DyD23) >0, (3.2.5)
where
V := B'PB + D;D,. (3.2.6)
(b) P satisfies the discrete algebraic Riccati equation:
P=A'PA+ 00, - [B'PA+D'202]’ - [B'PA+D'2C2

, (3.2.7
E'PA+D},C, E'PA+ D’22CJ ( )
where

G- [ D,D,+B'PB DyDyy+B'PE
’ D£2D2+E'PB E'PE+D§2D22—’YZI ‘
(c) For all z € € with |z| > 1, we have

(3.2.8)

zI-A -B —-E
rank[ B'PA+D)C; B'PB+D4D, B'PE+ D} Dy, }
E'PA+Dy,Cy E'PB+D}y,D; E'PE+D},Day—+°1
= n+ ¢+ normrank{G:(z)}.
(d) The following matrix S is positive definite,
S := ¥2I — Dy D}y — CoQC%
+ (C2QC1 + D3o D)) WT(C1QCy + D1 Dby) > 0, (3.2.9)
where
W := DD, + C,QC,. (3.2.10)
(e} Q satisfies the following discrete algebraic Riccati equation:
O=AQA' + EE' - [CIQA’+D1E’}’ T[(ch,)A’~1~D1E'

, (3.2.11
CzQA'-f‘DzzE' CzQA"'}‘ngE’} ( )
where

o [ D, D}+C,QCy D1 D}y, +C1QCy }

3.2.12
D22D11 +02QC{ CgQCé +D22D£2 —721 ( )
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(f) For all z € € with |z| > 1, we have
z2I-A  AQC{+ED; AQC3+ED;,
rank| -C; C1QCi+D1 D} C1QC5+ D, Dj,
—C2 C2QC1+DnD] C2QC;+ DDy =4I

= n + £ + normrank{Gq(2)}.

(8) p(PQ) <~

Here we should note that condition 2.(b) is the standard Riccati equation
used in discrete-time H,, optimization except that the inverse is replaced by a
generalized inverse. Condition 2.(c) is nothing other than the requirement that
P must be a stabilizing solution of the Riccati equation. Conditions 2.(b) and
2.(c) uniquely determine, if it exists, the matrix P. A similar comment can
be made about conditions 2.(d)-2.(f). Condition 2.(g) is as usual the coupling
condition. The solutions to the above mentioned P and @ can be obtained
by transforming the subsystems ¥; and ¥, into the special coordinate basis
as in Chapter 2 and then solving two standard discrete-time Riccati equations
without generalized inverses. These will be given later in Chapter 8.

The following remark concerns the full information feedback and full state
feedback cases.

Remark 3.2.1. For the special cases of full information and full state feedback
we can dispense with the second Riccati equation. More specifically:

1. Full information feedback case: In this case we know both the state
and the disturbance of the system at time k. It is easy to check that
Q = 0 satisfies conditions 2.(d)-2.(f). Moreover this guarantees that the
coupling condition 2.(g) is automatically satisfied. Therefore there exists
a stabilizing controller which yields a closed loop system with the Ho,
norm strictly less than + if and only if there exists a positive semi-definite
matrix P satisfying conditions 2.(a)-2.(c).

2. Full state feedback case: In this case, it is easy to see that a necessary
condition for the existence of a positive semi-definite matrix Q satisfying
conditions 2.(d)-2.(f) is that ||Da|| < . It is also easy to check that for
the full state feedback case,

Q = E(I -y Dy D},) ' F, (3.2.13)
satisfies conditions 2.(d)-2.(f). Condition 2.(g) then reduces to

¥2I — D3y D}y — E'PE > 0. (3.2.14)
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Moreover, condition (3.2.14) implies that condition 2.(a) is automatically
satisfied. Therefore there exists a stabilizing controller which yields a
closed loop system with the Ho, norm strictly less than v if and only if
there exists a positive semi-definite matrix P satisfying conditions 2.(b),
2.(c) and additionally condition (3.2.14).

Furthermore, it can be shown that either in the full information case or in the
full state feedback case, there always exists a <y-suboptimal static control law
whenever the above-mentioned conditions are satisfied. &l

The following corollary deals with the regular case in discrete-time H,
optimization and is due to Stoorvogel [100].

Corollary 3.2.1. Consider the system (3.2.1). Assume that the subsystem X,
is left invertible and has no invariant zero on the unit circle, and the subsystem
X4 is right invertible and has no invariant zero on the unit circle. Then the
following two statements are equivalent:

1. There exists a linear time-invariant and causal dynamic compensator Ecmp
of (3.2.2) such that by applying it to (3.2.1) the resulting closed loop
system is internally stable and the closed loop transfer matrix from the
disturbance input w to the controlled output h is less than ~.

2. There exist symmetric matrices P > 0 and @ > 0 such that
(a) The following matrices V and R are positive definite,
V:= B'PB+ DyD, >0, (3.2.15)
and
R :=~*I - D})yDy; — E'PE
+ (E'PB + D}y, D2)V ™' (B'PE + D3D32) > 0. (3.2.16)
(b) P éatisﬁes the discrete algebraic Riccati equation:

P_A,PA+C,C2_[B'PA+D502]' (P)_l[B'PA+D502]
= 2 b

E'PA+D},Cy E'PA+D},C
(3.2.17)
where
D,D,+B'PB DyDay+B'PE
G(P) ;=[ 202+ 5 et \ ] (3.2.18)
D}y,Dy+E'PB  E'PE+DjyyDay—v*1
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(c) The following matrix A.p is asymptotically stable,

B'PA + DC, ]
ar=A—[B E]GP)™! . 3.2.19
Acri= A =] JG(P) [E’PA + Dh,Co ( )

(d) The following matrices W and S are positive definite,
W .= DlDi + ClQC{ >0, (3.2.20)

and

S 1= %I - Doy D}, — C2QC;
+ (CzQCi + DgzDi)W—l (leCé + DlDlzz) >0. (3.2.21)

(e) @ satisfies the following discrete algebraic Riccati equation:

CIQA’+D1E']' _ [ClQA’+D1E’J
= '+ EE' — H ! ,
Q=404+ [CZQA'+D22E' (@7 |04 + DB
(3.2.22)
where
! ! DD} +C1QC)
H(@Q):= [D1D§+C‘chl - 2+ 1? ? } (3.2.23)
D22D1+02Q01 02Q02+D22D22~’7 I
(f) The following matrix Aqq is asymptotically stable,
ClQA'+D1E’ ! -1 [C}}
dg = A — H . 3.2.24
taai= A= | SO H@ ] e
(8) p(PQ) <7

It is interesting to note that all the conditions in Corollary 3.2.1 are related
to those in Corollary 3.1.1 by a properly defined bilinear transformation. This
will be shown later in Chapter 4. Finally, we conclude this chapter by noting
that if X or 4 or both have invariant zeros on the unit circle, one could use
the results of the bilinear and inverse bilinear transformations, which are to be
presented in Section 4.1 of Chapter 4, and follow Theorem 3.1.2 to derive a
similar result.



Chapter 4

Bilinear Transformations
and Discrete Riccati
Equations

IN THIS CHAPTER we will present several preliminary results which are instru-
mental to the main results dealing with the discrete-time H,, optimization
problems.

In Section 4.1, we will recall a recent result of Chen and Weller [32] on bilin-
ear and inverse bilinear transformations of linear time-invariant systems. Their
result presents a comprehensive picture of the mapping of structural properties
associated with general linear multivariable systems under bilinear and inverse
bilinear transformations. They have completely investigated the problem of
how the finite and infinite zero structures, as well as invertibility structures
of a general continuous-time (discrete-time) linear time-invariant multivariable
system are mapped to those of its discrete-time (continuous-time) counterpart
under the bilinear (inverse bilinear) transformation. It is worth noting that
we have added in this chapter some new results on the mapping of geometric
subspaces under the bilinear (inverse bilinear) transformation.

Section 4.2 recalls from Chen, Saberi and Shamash [30] non-recursive meth-
ods for solving the general discrete-time algebraic Riccati equation (DARE) and
the discrete-time algebraic Riccati equation related to the Ho, control problem
(Hs-DARE). In particular, they have cast the problem of solving a given He.-
DARE to the problem of solving an auxiliary continuous-time algebraic Riccati
equation associated with the continuous-time Hy, control problem (Ho.-CARE)
for which the well known non-recursive solving methods are available. The

59
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advantages of this approach are: it reduces the computation involved in the
recursive algorithms while giving much more accurate solutions, and it read-
ily provides the properties of the general H,-DARE. More importantly, the
results given in Section 4.2 build an interconnection between the discrete-time
and continuous-time H,, optimization problems.

The results of Sections 4.1 and 4.2 will be heavily utilized in the devel-
opment of algorithms for computing infima and solutions to the discrete-time
H,-optimization problems.

4.1. Structural Mappings of Bilinear Transformations

The bilinear and inverse bilinear transformations have widespread use in dig-
ital control and signal processing. As will be seen shortly, the bilinear trans-
formation is actually playing a crucial role in the computation of infima for
discrete-time systems as well as in finding the solutions to discrete-time Riccati
equations. The results presented in this section were first reported in Chen and
Weller [32]. In fact, the need to perform continuous-time to discrete-time model
conversions arises in a range of engineering contexts, including sampled-data
control system design, and digital signal processing. As a consequence, numer-
ous discretization procedures exist, including zero- and first-order hold input
approximations, impulse invariant transformation, and bilinear transformation
(see, for example [2] and [43]). Despite the widespread use of the bilinear trans-
form, however, a comprehensive treatment detailing how key structural proper-
ties of continuous-time systems, such as the finite and infinite zero structures,
and invertibility properties, are inherited by their discrete-time counterparts
is lacking in the literature. Given the important role played by the infinite
and finite zero structures in control system design, a clear understanding of the
zero structures under bilinear transformation would be useful in the design of
sampled-data control systems, and would complement existing results on the
mapping of finite and infinite zero structures under zero-order hold sampling
(see, for example, [1] and [46]).

In this section, we present a comprehensive study of how the structures,
i.e., the finite and infinite zero structures, invertibility structures, as well as
geometric subspaces of a general continuous-time (discrete-time) linear time-
invariant system are mapped to those of its discrete-time (continuous-time)
counterpart under the well known bilinear (inverse bilinear) transformations

s=a(z—1) and z=a+s’ (4.1.1)
z+1 a—s

respectively.
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4.1.1. Continuous-time to Discrete-time

In this subsection, we will consider a continuous-time linear time-invariant sys-

tem X, characterized by
t=Azxz+ Bu
DI ' 1.
{y=Cm+Du, (4.12)
wherez € R", y € R?, u € R™ and A, B, C and D are matrices of appropriate
dimensions. Without loss of any generality, we assume that both matrices
[C D]and [B' D'] are of full rank. I, has a transfer function

Ge(s)=C(sI — A)"'B+D. (4.1.3)

Let us apply a bilinear transformation to the above continuous-time system, by
replacing s in (4.1.3) with

_3 z—1 . z—1 414
S =r\ev1) T 4\Zx1) (4.1.4)

where T = 2/a is the sampling period. As presented in (4.1.4), the bilinear
transformation is often called Tustin’s approximation [2], while the choice
w1
a= —F——— 4.1.5
tan(w,7/2) ( )
yields the pre-warped Tustin approximation, in which the frequency responses
of the continuous-time system and its discrete-time counterpart are matched at
frequency w;. In this way, we obtain a discrete-time system

-1
‘- 11—A> B+D. (4.1.6)
z+1

Gi(z)=C (a

The following lemma provides a direct state-space realization of G4(z).
While this result is well known (see for example [43]), the proof is included
as it is brief and self-contained.

Lemma 4.1.1. A state-space realization of G4(z), the discrete-time counter-
part of the continuous-time system X, of (4.1.2) under the bilinear transforma-
tion (4.1.4), is given by

[ z(k+1) = A z(k) + B u(k),
e { y(k) = C (k) + D u(k), (417)
where
= (al + A)(al — A)71,
= V2 (ol - 4)7'B, (4.1.8)

VZa C(al — A)71,
D +C(al — A)~!B,

i
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or 3
A = (al + A)(al - 4)7, )
B = 2 I - A)?
B = 2a(al- 47, | (4.1.9)
C = C,
D = D+ C(al - A)™'B, )

or )
A = (al + A)(al - A)71, )
B=B
~ ’ 4.1.1
¢ = 2a Clal - 4)2, ( (4.1.10)
D = D+ C(al - A)7'B. )

Here we clearly assume that matrix A has no eigenvalue at a.

Proof. First, it is straightforward to verify that
z —
Z+
= (z+1)Cla(z = 1) — (z+ 1)A] 'B+D

= (z+1)C(al — A)"[2I - (al + A)(aI — A)~]'B+D

—1
Ga(2) =C’(a ib-A) B+D

= 2C(al - A)™! (zI«/i) "By [C’(aI-—A)“‘l (zI—/i)—lB+D] (4.1.11)

. -1
If we introduce G4(2) = 2C(al — A)™! (zl - A) B, it follows that

#(k+1) = A5(k) + (aI — A')1C"i(k), (4.112)
§(k) = BE(k+1) = B'A%(k) + B'(al — A)~1C"i(k), o
is a state-space realization of é:i(z), from which
~ [ T
Ga(z) = Clal — A)~? (z] - A) AB+C(al — A)1B. (4.1.13)

Substituting (4.1.13) into (4.1.11), we obtain
-1 .
Ga(z) = Clal - A)~* (zl - A) (A+I)B +[C(al — A)"'B + D]
~ -1 . ~
:C(zI—A) B+D,

and the rest of Lemma 4.1.1 follows. 2]
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The following theorem establishes the interconnection of the structural prop-
erties of . and X4, and forms the major contribution of this section.

Theorem 4.1.1. Consider the continuous-time system X. of (4.1.2) character-
ized by the quadruple (A4, B,C,D) with matrix A having no eigenvalue at q,
and its discrete-time counterpart under the bilinear transformation (4.1.4), i.e.,
¥4 of (4.1.7) characterized by the quadruple (4, B,C, D) of (4.1.8). We have
the following properties:

1. Controllability (stabilizability) and observability (detectability) of Z,:

(a) The pair (4, B) is controllable (stabilizable) if and only if the pair
(A, B) is controllable (stabilizable).

(b) The pair (4,C) is observable (detectable) if and only if the pair
(A, C) is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together
with state feedback and output injection laws:

(a) For any given nonsingular state, output and input transformations
Ts, T, and T;, the quadruple

(T7YAT,, T BTy, T, CT,, T, DT), (4.1.14)

is the discrete-time counterpart under the bilinear transformation
(4.1.4), of the continuous time system

(T7YAT,, T, BT, T, CT,, T, ' DT5). (4.1.15)

(b) For any F € R™*" with A + BF having no eigenvalue at a, define
a nonsingular matrix

Ti:=I1+F(al —A-BF)"'B
= [ - F(al — A)'B]"' e R™*™, (4.1.16)

and a constant matrix
F:=V2aF(al — A~ BF)™' e R™". (4.1.17)
Then a continuous-time system X.r characterized by

(A+ BF,B,C + DF,D), (4.1.18)
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(c)

is mapped to a discrete-time system X4, characterized by
(A+ BF,BT;,C + DF, DT,), (4.1.19)

under the bilinear transformation (4.1.4). Here we note that X is
the closed-loop system comprising ¥ and a state feedback law with
gain matrix F', and Iz is the closed-loop system comprising X4 and
a state feedback law with gain matrix F', together with a nonsingular
input transformation T';.

For any K € R™*? with A + KC having no eigenvalue at a, define
a nonsingular matrix

To:=[I+C(al ~A-KC) 'K]™! e RP*?, (4.1.20)
and a constant matrix
K :=V2 (al-A—- KC)'K. (4.1.21)
Then a continuous-time system Y., characterized by
(A+KC,B+ KD, C, D), (4.1.22)

is mapped to a discrete-time system X4x, characterized by

o] ~

(A+KG,B+KD,T,"¢,T.'D), (4.1.23)

under the bilinear transformation (4.1.4). We note that .« is the
closed-loop system comprising £, and an output injection law with
gain matrix K, and X4k is the closed-loop system comprising ¥4
and an output injection law with gain matrix K, together with a
nonsingular output transformation ’fo.

3. Invertibility and structural invariant indices lists 7, and Z; of Xg4:

(a)
(b)
(c)

Iz(zd) = IQ(EC), and Ig(zd) = 13(26)
Y4 is left (right) invertible if and only if 3. is left (right) invertible.

Y4 is invertible (degenerate) if and only if 3, is invertible (degener-
ate).

4. The invariant zeros of X4 and their associated structures consist of the

following two parts:
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(a) Let the infinite zero structure (of order greater than 0) of X. be given
by S, (2¢) = {¢1,¢2, - @my }. Then z = —1 is an invariant zero of
Y4 with the multiplicity structure S*,(24) = {q1,92," -, qm, }.

(b) Let s = a # a be an invariant zero of £, with the multiplicity struc-
ture Si(Zc) = {Na,1,Ma,2," -, Nayra }- Then z = B = (a+a)/(a—a)
is an invariant zero of ¥4 with the multiplicity structure S35(Z4) =

{na,l ) na,Z, e 7na,7'a }
5. The infinite zero structure of ¥4 consists of the following two parts:

(a) Let mgo be the number of infinite zeros of I, of order 0, i.e., mg =
rank (D), and let my be the total number of infinite zeros of £, of
order greater than 0. Also, let 7, be the geometric multiplicity of
the invariant zero of £, at s = a. Then the total number of infinite
zeros of X4 of order 0, i.e., rank (f)), is equal to mg + mq — 7,.

(b) Let s = a be an invariant zero of the given continuous-time system X,

with a multiplicity structure S} (2:) = {na1,7a,2, -, Ma,r. }- Then
X4 has an infinite zero (of order greater than 0) structure S*,(X,) =
{na,l y na,?y e ana,ra }

6. The mappings of geometric subspaces:

(@) V¥ (Zc) = S°(Za).
(b) S*(Ze) = VO(Ta).

Proof. See Subsection 4.1.3. &

We have the following two interesting observations. The first is with regard
to the minimum phase and nonminimum phase properties of X4, while the
second concerns the asymptotic behavior of £ as the sampling period T tends
to zero (or, equivalently, as a — 00).

Observation 4.1.1. Consider a general continuous-time system X. and its
discrete-time counterpart %; under the bilinear transformation (4.1.4). Then
it follows from 4(a) and 4(b) of Theorem 4.1.1 that

1. £, has all its invariant zeros inside the unit circle if and only if X has
all its invariant zeros in the open left-half plane and has no infinite zero
of order greater than 0;

2. %4 has invariant zeros on the unit circle if and only if £, has invariant
zeros on the imaginary axis, and/or X, has at least one infinite zero of
order greater than 0;
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3. X4 hasinvariant zeros outside the unit circle if and only if &, has invariant
zeros in the open right-half plane. ol

Observation 4.1.2. Consider a general continuous-time system ¥. and its
discrete-time counterpart ¥4 under the bilinear transformation (4.1.4). Then
a consequence of Theorem 4.1.1, X4 has the following asymptotic properties as
the sampling period T' tends to zero (but not equal to zero):

1. T, has no infinite zero of order greater than 0, i.e., no delays from the
input to the output;

2. ¥, has one invariant zero at z = ~1 with an appropriate multiplicity
structure if ¥, has any infinite zero of order greater than 0; and

3. The remaining invariant zeros of ¥, if any, tend to the point z = 1.
More interestingly, the invariant zeros of ¥, corresponding to the stable
invariant zeros of ¥, are always stable, and approach the point z = 1 from
inside the unit circle. Conversely, the invariant zeros of ¥, corresponding
to the unstable invariant zeros of ¥, are always unstable, and approach
the point z = 1 from outside the unit circle. Finally, those associated
with the imaginary axis invariant zeros of ¥. are always mapped onto the
unit circle and move towards to the point z = 1. Bl

The following example illustrates the results in Theorem 4.1.1.

Example 4.1.1. Consider a continuous-time system X, characterized by the
quadruple (A,B,C,D) with

1 1 00 1 07 0 0
01 1010 00
100 1010 _lo o
A=1o 0 0 310" B=|1 ol (4.1.24)
0 0 0001 00
1 1 111 1] [0 1
and
o 0 0 1 0 0] [1 0
0”000010_’ D“Loo (4.1.25)

We note that the above system X, is already in the form of the special coordinate
basis as in Theorem 2.3.1. Furthermore, ¥, is controllable, observable and
invertible with one infinite zero of order 0, and one infinite zero of order 2, i.e.,
S5 (2c) = {2}. The system 3, also has two invariant zeros at s =2 and s = 1,
respectively, with structures S3(X.) = {1} and S} (Z.) = {3}.
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1. Ifa = 1, we obtain a discrete-time system X, characterized by the quadru-
ple (4,B,

C,D), with
1 2 -3 1 0 -27 1 -2
-2 -1 2 0 0 0O 0 0
i-] 0 -2 1 0 o0 0| Bzx/_i 0 0
0 0 1 -2 0 0 2 -1 o)’
0 0 -2 0 -1 0 0 0
0 0 -2 0 -2 -1 0 o
g-Y2f00 1 -1 0 0] p_lf1 0
T 200 -2 0 0 0) ~ 200 of

Utilizing either the toolbox of Chen [9] or that of Lin [60], we find that =,
is indeed controllable, observable and invertible, with one infinite zero of
order 0 and one infinite zero of order 3, ie., SX(Z4) = {3}. &4 also has

two invariant zeros at z = —3 and z = —1 respectively, with structures
5%3(2a) = {1} and S%,(Z4) = {2}.

2. If a = 2, we obtain another discrete-time system X,, characterized by

0 -2 -5 3 -3 -3 3 -3
-2 -1 -2 2 -2 -2 2 -2

. -1 -2 0 1 -1 -1 - 1] 1 -1

A‘123—611’B"§—5 1’
-1 -2 -3 1 -2 -1 1 -1
-2 -4 -6 2 —6 -3 2 -2

and

~ 1 1 2 3 -5 1 1 = 11-1 1
=311 2 3 1 -1 —1]’ D“4[ 1 —1]’
which is controllable, observable and invertible with one infinite zero of
order 0 and one infinite zero of order 1, i.e., S% (X4) = {1}. It also has
two invariant zeros at z = 3 and z = -1 respectively, with structures
S3(Z4) = {3} and S*,(Z4) = {2}, in accordance with Theorem 4.1.1. E

4.1.2. Discrete-time to Continuous-time

We present in this subsection a similar result as in the previous subsection,
but for the inverse bilinear transformation mapping a discrete-time system to
a continuous-time system. We begin with a discrete-time linear time-invariant
system £, characterized by

5. {sc(k+1) = A z(k) + B u(k),

f . (4.1.26)
y(k) = C z(k) + D u(k),
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where z € R*,y € R?, u € R™ and A, B, C and D are matrices of appropriate
dimensions. Without loss of any generality, we assume that both matrices
[C D] and [ B D’] are of full rank. ¥, has a transfer function

Hy(z) =C(zI - A 'B+ D. (4.1.27)

The inverse bilinear transformation corresponding to (4.1.4) replaces z in the
above equation (4.1.27) with

o= 2*s (4.1.28)
a—sS

to obtain the following continuous-time system:

a+s
a—s

-1

H.(s) = C‘( I—/i> B+ D. (4.1.29)

The following lemma is analogous to Lemma 4.1.1, and provides a state-
space realization of H.(s).

Lemma 4.1.2. A state-space realization of H.(s), the continuous-time coun-
terpart of the discrete-time system ¥, of (4.1.26) under the inverse bilinear
transformation (4.1.28), is given by

~ r = A
5, {"’ 2+ Bu, (4.1.30)
y=Cz+ D u,
where - -
A=a(A+I)Y(A-1T), )
B = V2a (A+I1)7'B,
a(A+1) \ (4.1.31)
C = +V2aCA+I),
D=D-CA+DB, J
or - -
A= a(A+I)YA-1T), )
B = 2a (A+1)7?B,
= 4.1.32
c_a f (4.1.32)
D= D-CGA+I) B, )
or - .
A=alA+D)"Y(A-~1T), )
B =B, 4.1.33
C = 2a G(A+1)2, ( (4.1.33)
D=D-CA+I1)B. J
Here we clearly assume that the matrix A has no eigenvalue at —1.

The following theorem is analogous to Theorem 4.1.1.
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Theorem 4.1.2. Consider the discrete-time system 3, of (4.1.26) character-
ized by the quadruple (A,B,C’,b) with matrix A having no eigenvalue at
—1, and its continuous-time counterpart under the inverse bilinear transfor-
mation (4.1.28), i.e., E. of (4.1.30) characterized by the quadruple (A,B,C,D)
of (4.1.31). We have the following properties:

1. Controllability (stabilizability) and observability (detectability) of £.:

(a)

The pair (A4, B) is controllable (stabilizable) if and only if the pair
(A, B) is controllable (stabilizable).

(b) The pair (A,C) is observable (detectable) if and only if the pair

(A,C) is observable (detectable).

2. Effects of nonsingular state, output and input transformations, together
with state feedback and output injection laws:

(a)

(b)

For any given nonsingular state, output and input transformations
T, T, and T;, the quadruple

(T7YAT,, TS BT, T71CT,, T DTY), (4.1.34)

is the continuous-time counterpart of the inverse bilinear transfor-
mation, i.e., (4.1.28), of the discrete-time system

(T7YAT,, T BT, T, CT,, T, 1 DTy). (4.1.35)

For any F' € R™™ with A + BF having no eigenvalue at —1, define
a nonsingular matrix

T,:=1-F(I + A+ BF)"'BeR™™, (4.1.36)
and a constant matrix
F:=V2aF(I+ A+ BF)™ e R™". (4.1.37)
Then a discrete-time system idF characterized by
(A+ BF,B,C + DF, D), (4.1.38)
is mapped to a continuous-time counterpart S characterized by
(A+ BF, BT;,C + DF, DTy), (4.1.39)

under the inverse bilinear transformation (4.1.28). Note that Sae is
the closed-loop system comprising ¥, and a state feedback law with
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(c)

gain matrix F', and Z4; is the closed-loop system comprising £, and
a state feedback law with gain matrix F', together with a nonsingular
input transformation T;.

For any K € R™*P with A + K€ having no eigenvalue at —1, define
a nonsingular matrix

T,:=[I-C(I+A+KC)'K]™! e RP*?, (4.1.40)
and a constant matrix
K:=vV2a(I+A+ KC) K. (4.1.41)
Then a discrete-time system Y4« characterized by
(A+KC,B+KD,C,D), (4.1.42)
is mapped to a continuous-time ¥, characterized by
(A+ KC,B+KD,T,;*C,T,'D), (4.1.43)

under the inverse bilinear transformation (4.1.28). We note that ¥4,
is the closed-loop system comprising 4 and an output injection law
with gain matrix K, and . is the closed-loop system comprising
. and an output injection law with gain matrix K, together with a
nonsingular output transformation T,.

3. Invertibility and structural invariant indices lists Z; and Z3 of e

(a)
(b)
(c)

Ir(Z:) = T(Ea), and Z3(Ec) = I3(Za).
¥, is left (right) invertible if and only if 4 is left (right) invertible.

%, is invertible (degenerate) if and only if 34 is invertible (degener-
ate).

4. Invariant zeros of 5. and their structures consist of the following two

parts:

(a)

(b)

Let the infinite zero structure (of order greater than 0) of £4 be given
by 8%(24) = {q1,492,"*»qm,}. Then s = a is an invariant zero of
¥, with the multiplicity structure S*(£.) = {q1,¢2," - *qm, }-

Let z = a # —1 be an invariant zero of £4 with the multiplicity

structure SX¥(34) = {na,1,Ma2: "y Na,ro}- Then s = f = ag—;i

is an invariant zero of ¥, with the multiplicity structure Sg(f)c) =

{na,l,na,27 Ny, }
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5. The infinite zero structure of ¥, consists of the following two parts:

(a) Let mg be the number of infinite zeros of £4 of order 0, i.e., mg =
rank (D), and let my be the total number of infinite zeros of £4 of
order greater than 0. Also, let 7_; be the geometric multiplicity of
the invariant zero of 4 at z = —1. Then the total number of infinite
zeros of 3. of order 0, i.e., rank (D), is equal to mg + mq — 7_;.

(b) Let z = —1 be an invariant zero of the given discrete-time system £4
with the multiplicity structure S*, (‘Zd) ={n_11,n-1,2," ", Ne1,r_, }-
Then 5. has an infinite zero (of order greater than 0) structure
S;‘o(flc) ={n_1,1,M-1,2, "y N—1,r_, }-

6. The mappings of geometric subspaces:

(a) Vo(£q) = ST(Eo).
(b) S°(£q) = V*(Eo).
Proof. The proof of this theorem is similar to that of Theorem 4.1.1. &

We illustrate the result above with the following example.

Example 4.1.2. Consider a discrete-time linear time-invariant system £4 char-
acterized by the quadruple (/i,f?, C, D) with

r—1 0 010 1 0 0 0 07

0 -1 11011 000

0 0 -11011 oo o
A= o o 0101 1|, B=|0oo0 0}, (4.1.44)

1 1 11111 00 1

1 1 11111 100

L o0 1 111 1 1. L0 1 0l

and

_Jooo1o000 [0 0 0]
C=]0 000010}, D=0 0 of. (4.1.45)

0 0 00O0TO0?1 0 0 0]

Again the above system is already in the form of the special coordinate basis.
It is simple to verify that £4 is controllable, observable and is degenerate,
i.e., neither left nor right invertible, with two infinite zeros of order 1, ie.,
S%(Z4) = {1,1}, To(£4) = {1} and Z3(Z4) = {1}. It also has one invariant
zero at z = —1 with a structure S*,(£4) = {1,2}. Applying the result in
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Lemma 4.1.2 (with a = 1), we obtain £, which is characterized by (A,B,C,D)
with

r5 0 0 -2 0 -2 27 r1 -1 07
0 3 4 —2 2 -2 =2 1 1 -1
0 -2 3 0 0 0 0 0 0 0
A=| 0 o 2 -1 0o o of, B=v2| 0 0 o0,
-2 0 -2 2 -1 2 0 -1 0 1
-2 0 -2 2 0 1 0 0 0 0
. 2 0 -2 0 0 0 1l L 0 0 0l
and
00 -1 1000 000
c=+v2| 10 1 -100 0], D=0 0 0f.
-10 1 0000 000

Then, it is straightforward to verify, using the software toolboxes of Chen [9] or
Lin [60], for example, that ¥, is controllable, observable and degenerate with
an infinite zero structure SX (£.) = {1,2}, Tr(E.) = {1} and Tz(E.) = {1}.
Furthermore, 3, has one invariant zero at s = 1 with associated structure
S¥(£.) = {1,1}, in accordance with Theorem 4.1.2. El

Finally, we conclude this subsection by summarizing in graphical forms in
Figures 4.1.1 the structural mappings associated with the bilinear and inverse
bilinear transformations.

4.1.3. Proof of Theorem 4.1.1

We present in this subsection the detailed proof of Theorem 4.1.1. For the sake
of simplicity of presentation, and without loss of any generality, we assume that
the constant a in (4.1.4) is equal to unity, i.e., a = 2/T = 1, throughout this
proof. We will prove this theorem item-by-item.

1(a). Let 3 be an eigenvalue of 4, ie., f € MA). Tt is straightforward to verify
that B 3# ~1, provided A has no eigenvalueat a =1 and a = (8 -1)/(8 + 1)
is an eigenvalue of 4, i.e., & € A(A). Next, we consider the matrix pencil
[BI-4 B)=[BI-(I-A)"(I+4) V(- A) B

=([-A)7BI-A)-IT+A) V2B]

=(I-A)T*[B-I-(B+1A v2B]

— — -2 . (ﬂ + l)In 0

=T —-A)y " lal-A B][ 0 V3L,

Clearly, rank [fI-A B]= rank [aI-A B], and the result 1(a) follows. &
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ﬂ e aj:a
a—
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. - 23
invariant A invariant

zero -, S+ zero
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structure @ structure

infinite zero infinite zero
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structures ‘. " structures |
» e
@ @
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Continuous-time System Discrete-time System

Figure 4.1.1: Structural mappings of bilinear bilinear transformations.
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1(b). Dual of 1(a). &
2(a). It is trivial. ®
2(b). It follows from Lemma 4.1.1 that the discrete-time counterpart X4 of

the bilinear transformation of ., characterized by (A + BF, B,C + DF, D),
is given by (4g, By, Cr, Dy) with

Ac = (I+ A+ BF)(I-A-BF)™1,
B = V2 (I — A-BF)™'B,

Ce = V2(C+ DF)(I-A-BF)™,
Dy = D+ (C+ DF)(I-A-BF)™1B.

(4.1.46)

We first recall from the Appendix of Kailath [48] the following matrix identities
that are frequently used in the derivation of our result:

T+ XY) ' X=X(I+YX)?, (4.1.47)

and
-1

I+ X(sI-2)7'Y] =I1-X(sI-Z+YX)lY. (4.1.48)

Next, we note that

Ap = (I+A+BF)(I — A—- BF)™!

= (I+A+BF)(I—A)~'[I-BFI-A)"'

= [A+BF(I- A)™|[I - BF(I - 4)~']"!

=[A+BF(I- A)™Y[I + BF(I - A- BF)™]

= A+ABF(I- A— BF)™ 4+ BF(I— A)~![I + BF(I - A- BF)™]
A+ABF(I- A~ BF)™' + BF(I - A)~(I — A)(I - A- BF)™!
= A+ ABF(I- A— BF)™' + BF(I- A— BF)~!

A+(A+ID)BF(I - A-BF)™!

A+2(I-A)'BF(I - A-BF)™
+ BF,

Il
B

and

Be=Vv2 (I —-A-BF)'B
=V2[I—(I-A)"'BFI"}(I — A)~'B
=V2(I - A)B[I-F(I - A)'B]™
= BT;.
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Also, we have

Ce =V2(C + DF)(I - A— BF)™?
=V2(C + DF)(I - A}l - BF(I — A)™!]™!
=2 (C+ DF)(I-A)"'[I+BF(I - A- BF)™}
=Vv2C(I - A" + V2 DF(I - A)™?
+V?2(C + DF)I-A)"'BF(I — A- BF)™}
=C+V2 [DF(I-A)"'(I- A- BF)
+(C + DF)(I - A)"'BF|(I - A— BF)™!
=C+ V2 [DF-DF(I - Ay"'BF+C(I - A)"*BF+DF(I — A)"'BF]

x (I —A-BF)™!
=C+[D+C(I-A)"'BW2F(I - A—-BF)™!
=C + DF,
and
Dr=D+ (C+DF)I-A-BF)™'B
=D+ (C+DF)[I-(I-A)'BF]” (I-A)'B
=D+ (C+DF)I-A)'B[I -F(I-4)"'B]""
={D[I-F(I-A)™B]+(C+DF)(I-A)"B}T;
={D-DF(I-A)"'B+C( — A)™'B+DF(I - A)"'B}T;
= DT,
which completes the proof of 2(b). &
2(c). Dual of 2(b). ®

With the benefit of properties of 2(a)—2(c), the remainder of the proof is
considerably simplified. It is well known that the structural invariant indices
lists of Morse, which correspond precisely to the structures of finite and infinite
zeros as well as invertibility, are invariant under nonsingular state, output and
input transformations, state feedback laws and output injections. We can thus
apply appropriate nonsingular state, output and input transformations, as well
as state feedback and output injection, to ¥, and so obtain a new system, say
¥*. If this new system has T} as its discrete-time counterpart under bilin-
ear transformation, then from properties 2(a)-2(c), it follows that X} and X4
have the same structural invariant properties. It is therefore sufficient for the
remainder of the proof that we show 3(a)—5(b) are properties of 3.
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Let us first apply nonsingular state, output and input transformations I,
[, and T; to &, such that the resulting system is in the form of the special
coordinate basis as in Theorem 2.3.1, or, equivalently, the compact form in
(2.3.20)—(2.3.23) with A, and Cq, being given by (2.3.25), Ey4, and Ec, being
given by (2.3.26), and Boa, Lab and Lqg being given by (2.3.28). We will further
assume that A, is already in the Jordan form of (2.1.1) and (2.3.32), and that
matrices Aaq, Lad, Baos Eda, Coa, Eca and Ly are partitioned as follows:

— |46 0 — | Lad - | Bao = | Las
Aa.a. - [ 0 Aza] ) Lad - l:L;d} y BaO - [ ;O] b Lab - [L;b ¥ (4149)

Eio = [E:ila E;a] y Coa = [Cga C(‘;a]’ Eco = [Ega E:a]’ (4150)

where matrix A2, has all its eigenvalues at a = 1, i.e.,

0 Ii,-1 -+ O 0
0 0 -0 0
A, =T+ |: SRR : , (4.1.51)
0 0 0 I,
0 0 -0 0

and A}, contains the remaining invariant zeros of ¥.. Furthermore, we assume
that the pair (A, B.) is in the Brunovsky canonical form of (2.3.37), as is the
pair (A}, C;). Next, define a state feedback gain matrix

C(?a - Cg C(;a Cos Coc Coa
F=-T; E, —Ct E, Eup Eac Eaq F;l, (4.1.52)
EZ, E, 0 E. 0

and an output injection gain matrix

a a a a a
a0l — B2 ad Bl ab
* * *
BaO Lad L

ab
K=-I, By Lyg Ly F;l. (4.1.53)
BCO Lcd ch
Bao Laa 0

Here, E.. is chosen such that all +’s in (2.3.37) are cleaned out, i.e.,
A%, = Acc — BeEce, (4.1.54)

is in Jordan form with all diagonal elements equal to 0. Similarly, Ly, is chosen
such that

(A5)" = (A — LpsCs)', (4.1.55)
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is in Jordan form with with all diagonal elements equal to 0. Likewise, E44 and
L4 are chosen such that

Alg = Add — LaaCq — B4Eaa, (4.1.56)
is in Jordan form with all diagonal elements equal to 0, which in turn implies
CoI - A%y) By = Ip,. (4.1.57)

The matrices BY, B3, C{ and C3 are chosen in conformity with A2, of (4.1.51)
as follows:

0O 0 --- 0
0 1 .--0
B®:=[Bf Bf]:=|: oy, (4.1.58)
0 0 0
0 0 1
and
00 00
(4 1 0 00
c*:= = . . 4.1.59
[C{‘] A ( )
00 --- 10

This can always be done, as a consequence of the assumption that the matrix
A has no eigenvalue at @ = 1, which implies that the invariant zero at a =1 of
¥, is completely controllable and observable.

Finally, we obtain a continuous-time system X characterized by the quadru-
ple (A*B*C*,D*), where

A* = P7II'7Y(A + BF + KC + KDF)I,P

Ar, O 0 0 0
0 Ay O 0 0
=0 0 A 0 0 ,  (4.1.60)
0 0 0 Ay B.C¢
0 0 0 B{C; A%, +B$Cg
0 0 0
: 0 0 O
B* =P 'I';Y(B+KD)[;,=|0 0 B.|, (4.1.61)
0 B; 0
B 0 O
0 0 0 0 C¢
C*=T;Y(C+DF),P= [0 0 0 C; 01, (4.1.62)
0 C, 0 0 0
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and
I.,, 0 O
D*=T;'pr;=| 0 0 0f, (4.1.63)
0 00

where P is a permutation matrix that transforms A%, from its original position,
i.e., block (1, 1), to block (5, 5) in (4.1.60).
Next, define a subsystem (A;, B;,Cs, D,) with

As = [ Adg BiCt }, B, := [ 0 Bd] , (4.1.64)

B{Cy A%, +B3CS By 0
and
10 C3 | Ime O
com[8 G bl . e

It is straightforward to verify that with the choice of B* and C* as in (4.1.58)
and (4.1.59), A, has no eigenvalue at a = 1. Hence A* has no eigenvalue
at a = 1 either, since both A}, and A}, have all eigenvalues at 0, and A,
contains only the invariant zeros of ¥, which are not equal to a = 1. Applying
the bilinear transformation (4.1.4) to I}, it follows from Lemma 4.1.1 that we
obtain a discrete-time system X7, characterized by (A*,f?*,é’*,f)*), with

(I+A)I-AZ )"t 0 0 0
i 0 (I+A3)I-43,)" 0 0
0 0  (I+Ar)(I-A:)"' 0 '
0 0 0  (I+A,)I-A,)™1
(4.1.66)
0 0
- 0 0
B =v2 0 (I—4%)-1B, |’ (4.1.67)
(I-A,)"1B, 0
-+ =[0 0 0 C,(I—A,)!
¢ _\/5[0 Co(I-A)~" 0 o ] (4.1.68)
and
~ % — —1
D= [D”Cs(lo 4:)7' B, 8}. (4.1.69)

Our next task is to find appropriate transformations, state feedback, and output
injection laws, so as to transform the above system into the form of the special
coordinate basis displaying the properties 3(a)-5(b).

To simplify the presentation, we first focus on the subsystem (/L, B,,C,, Ds)
with

A= (I+A)T - A)™Y, B,:=v2(I — A,)™'B,, (4.1.70)
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and
Cy:=V2C,(I-4,)7", Dy:=D,+C,(I-A4,)"'B,. (4.1.71)

Using (4.1.57) in conjunction with Appendix A.22 of Kailath [48], it is straight-
forward to compute (I — A,)~! =
[ X, (I—A%) " BiCo (I~ Agy — B*C®)~!
(I-As—BeC*) 1BiCy(I-A%,) ! (I-Age—B2C?)™1 !
(4.1.72)
where

Xi=(I—-A%)"  + (- A) 'BiCY(I — Aaa — B*C*) 1 BC4(I — A%y)™!

I

and hence

A, = X

[2(I~Aza—Bacarlecd(I—A;d)“‘
-A3) " BaCR(I-Ag, -BeC) 1] | g
(I+42,+B°C)(I-A3,—Bec®)~ |* (&%

where

Xy = (I+434) (I—AGa) T +2(I-43,) ' BaCT (I-A5,~B°C*) T Bf Ca(I-Ajy) ™,

(I-A,~B*C*)~'Bg
(I~ A3) 7" BalI +C§ (I- A3, ~ B*C*) "' Bf]
(I An. " Begelipe , (4.1.74)

B, =2 [(I*Aéd)‘leCi‘(I—AZa —BeC®)~'B}

6. =3 | CsU—A5—BC*) ' BfCa(I-A3)™

’ [(I+C3(I-A;,-B*C®) ™' Bf]Ca(I- A7)~
Cs(I-A:, —B*C*)~!
Co(I— A8, —Bege)-1 | (4.1.75)

and

.= I+Cg(I-A2,-B*C*)"'Bs Cg(I-A% -B°C*)~'B¢ .
° Cg(I-A2,-BC*)"'Bg I+Cy(I-A%—-B*C®*)"'Bf
(4.1.76)
Noting the structure of A%, in (4.1.51), and the structures of B¢ and C® in

(4.1.58) and (4.1.59), we have

0 -1 .- 0 0
—Iny1 O e 0 0

(I = Age — B*C®*)™1 = ; SN ; s, @)
0 0 0 -1
0 0 I, 1 O
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C8(I — Apa — B°C*)™ B3 =0, C3(I~ Aga — B*C*)™'Bf =0, (4.1.78)

and

Co(I — Aaq — B*C®)"1B® = [g _? ] . (4.1.79)
Thus, B,, C, and D, are reduced to the following forms:
_ s (I-A3,) "' Bull +C(I- A%, ~B°C*) ™ By
(I-Ag, B“C“) 1Bg (I-A2, —B°C*)~'B® ’
(4.1.80)
= 0
Cs = a ava a * \—
\/_[[I+C’1 ¢(I—-A2,—B*C*) 1Bg]Cs(I- A5,
C¢(I- A2, — B*C?*)™1
Co(I— A% _pegej-1 |» (4181)
and
D= I+C¢(I- A2, —B*C*)"1Bg 0
° 0 I+C¢(I—-A2,—B*C*)~'Bf |*
(4.1.82)
Next, define
5o 0 0
Fy = ﬁ[_cd(I—A;d)”l 0} ’ (4.1.83)
and
o 0 —(I-A5,) 1By
K, =2 [0 5 , (4.1.84)

from which it follows that

A=A, B F+K,Co+K D F,
0
[ (I+A3a+B°C“)(I—AZa—B“C“)‘IJ ’

A= (T4 A3)(T- A3) ™ - 20~ A3) ™ BaCalI-A3) ™", (4.1.85)
By =B, +K,D, = 0 0
KD =VE| (1 gy Brcoying (1-d-pen)imr)

A A 2N 7 a(f_ Aa _ Raerey—1
CSC=CS+DSFS=\/§[0 C3(I—A2, — B°C) ]

0 Cp(I-Az,—B°C*)™!
Next, repartition B* and C° of (4.1.58) and (4.1.59) as follows:

B*=[0 B.] and C°= [CO] (4.1.86)
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where both B, and C, are of maximal rank. We thus obtain

A“z[éw (I+A“+BC)(I A2, —B,Co)! ]

0
B2 4 eon ]
and
= 0 U A _f — | Imotma—ra O
Csc—\/i[o Ca(I"Aaa"‘BaCa)_l]’ Dsc—Ds—[ 0 0 .
Using (4.1.51) and (4.1.77), straightforward manipulations yield
(I+ A% + B,C,)(I - A%, - B,C,)!
0 -2
[—217.“,1-1 ; }4,%,1 0
: . 0 L,
O b [—2Inu‘,’.a-—1 0 ] _Iﬂu‘ra
1 0
0 - 0
(I—A:a_Baéa)_IBa = - y
0o - 1
0 0
and
o1 .- 00
CalI-A3-B,Co) M=~ [t 1 - J :
0 0 --- 01

Moreover, it can be readily verified that each subsystem (/im-, Bai,é’ai), 1=
1,---,7,, with

. 0 ‘—2 5 . —l A . — —_—
Aat— Ina'i+["‘2lna,-—1 0 }, Ba.z"‘ [ 0]» Ca‘L"“[O 1]1
has the following properties:

CaiBai = éaiAaiBai == éai(“ia‘i)nu‘i—zéai = 0’

and
éai (Aui)na" -1 Bai # 0.
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It follows from Theorem 2.3.1 that there exist nonsingular transformations I',,,
I'.e and I';, such that

Ag=T7 I+ A2, + B.C)(I - A2, — BoCo)™"|Ta

* In,,l-—-l e 0 0
* * oo 0 0
=|: : T : ,  (4.1.87)
0 0 R Ina"_u_l
0 0 * *
0 0
1 -0
Bd:Fs_al[(I—Aga—éaéa)_léa]rm= -, (4'1’88)
0 0
0 1
and
1 0 --- 00
c"d=F;:[éa(I—Aza—Bac'a)-l]Psa=[z P ] (4.1.89)
0 0 --- 10

Now, let us return to X% characterized by (/i*, B*.C0",D") asin (4.1.66) to
(4.1.69). Using the properties of the subsystem (A,, B,,C,, D) just derived,
we are in a position to define appropriate state feedback and output injection
gain matrices, say F* and K *, together with nonsingular state, output and
input transformations T :, f‘: and f‘:, such that

*

A= () (A" + B'F +K°C+K'D'F) T
0

(I+A5)(I-Az)7 0 0 0
0 (T+AL)I-Ap) ™" 0 0 0
= 0 0 (I+A)I—AL)™" 0 0 | (4.1.90)
0 0 0 i, 0
0 0 0 0 Ag
with A, given by (4.1.85), and
00 0
3 0 0 0
Bion=()"(B"+K'D)[i=|0 0 (I-4:)7B|, (4191
0 0 0
LO Bd 0
[0 0 00 0
Clon = () (6" + D'F)Fi= |0 G- 43)7 0 0 01,
|0 0 00 C
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and

~ % Imo+m4—-r¢ 00
. (4.1.93)

Dl = ()DL = [ 0 00

0 00
Clearly, Z%., characterized by (A;CB, 3;03, C’;CB, E;CB) has the same structural
invariant indices lists as does I}, which in turn has the same structural invariant
indices lists as £4. Most importantly, however, Z%  is in the form of the special
coordinate basis, and we are now ready to prove properties 3(a)-5(b) of the
theorem.

3(a). First, we note that Z5(%4) = Z2(X%.,). From (4.1.90) to (4.1.93) and the
properties of the special coordinate basis, we know that Zo(X3,5) is given by
the controllability index of the pair

(T + 450 — AZ)7% (1= 42)7'Be) or ((I+ 42T = AL)™, Be).
Recalling the definitions of A, and B.:

0 Iy -0 0O 0 .- 0
0 0 .- 0 0 1 --- 0
0 0 - 0 I, 0 --- 0
0 0 -0 O 0 - 1

it is straightforward to verify that the controllability index of
((+ 450 - 43)7, B.)
is also given by {£1,---,lm._}, and thus Z5(Zq) = Ir(Z.).
Likewise, the proof that Z3(2,) = Z3(Z.) follows along similar lines.
3(b)-3(c). These follow directly from 3(a). &

4(a). It follows from the properties of the special coordinate basis that the
invariant zero structure of i;CB, or equivalently ¥4, is given by the eigenvalues
of /i:: and (I + A2,)(I - A%,)™1, together with their associated Jordan blocks.
Property 4(a) corresponds with the eigenvalues of A:; of (4.1.85), together with
their associated Jordan blocks. First, we note that for any z € C,

-4 = [(z = DI — (2 + 1) A%y + 2(I — Ah) " BaCa) (I- A3y) ™" (41.94)
Recall the definitions of A};, Bq and Cg:

0 Ing-1 - O 0 0 .- 0
0 0 .. 0 0 1 .-+ 0
= |: : RV : , Ba=1% . =,
0 0 - 0 I, 0 0
0 0 0 0 0 1
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10---00:|
00 - 10

(z = DI - (z+1)A34 + 2(I — A}y) "' BaCa = blkdiag {Q1(2), - -, Qi(2)},

and

Cq=

It can be shown that

where Q;(z) € C™*"% is given by

241 —(z+1) 0 -~ 0 0 .
2 z—1 —(z+1) .- 0 0
Qi(z)=| * 0 =l 0 0 . (4.1.95)
2 0 0 o z—=1 —(241)
L 2 0 0 0 z—1 J

for i = 1,---,mq. It follows from (4.1.94) that the eigenvalue of fi:z is the
scalar z that causes the rank of

blkdiag {Q1(2), - -, Qma4(2)},

to drop below ng = Y ;4 ¢;. Using the particular form of Q;(2), it is clear
that the only such scalar z € € which causes @Q;(z) to drop rank is z = —1.
Moreover, rank {Q;(—1)} = ng —1,1ie., Qi(—1) has only one linearly indepen-

dent eigenvector. Hence, z = —1 is the eigenvalue of fi::, or equivalently the

invariant zero of X4, with the multiplicity structure
Sil(zd) = {qu T 7qmd} = S;O(EC),

thereby proving 4(a). &

4(b). This part of the infinite zero structure corresponds to the invariant zeros
of the matrix (I + A%, )(I — A%,)~!. With A%, in Jordan form, Property 4(b)
follows by straightforward manipulations. 3]

5(a). It follows directly from (4.1.93). &

5(b). This follows from the structure of (44, By, C4) in (4.1.87) to (4.1.89), in
conjunction with Property 2.3.3 of the special coordinate basis. &

6(a)-6(b). We let the state space of the system (4.1.2) be X’ and be partitioned
in its SCB subsystems as follows:

X=X 0XoX o, 0 X. 00X, (4.1.96)
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We further partition X} as
X =xox, (4.1.97)

where X is associated with the zero dynamics of the unstable zero of (4.1.2)
at s =a =1 and X}, is associated with the rest of unstable zero dynamics of
(4.1.2). Similarly, we let the state space of the transformed system (4.1.7) be
X and be partitioned in its SCB subsystems as follows:

~ e ~0 ~ -~ ~ ~
X=X, 0¥ 0X 0¥ 0k 0, (4.1.98)
with /’\72 being further partitioned as
~0 ~ ~
P=2 e, (4.1.99)

where X 21 is associated with the zero dynamics of the invariant zero of (4.1.7)
at 2=—1and X 2* is associated the rest of the zero dynamics of the zeros of
(4.1.7) on the unit circle. Then, from the above derivations of 1(a) to 5(b), we
have the following mappings between the subsystems of &, of (4.1.2) and those
of ¥4 of (4.1.7):

XS = v )

Ay el -’?gh

XN e 2,

XL = v (4.1.100)
Xy il /\?b,

X, —_— X,

xh = X )

Noting that both geometric subspaces V* and S* are invariant under any non-
singular output and input transformations, as well as any state feedback and
output injection laws, we have

VHE) = XL exieXx. =X o Xy0 X =5°E), (4.1.101)
and
~— ~ - ~0
SHE) =X @A QX OXy= X, ® Xy @ X ®Xo = VO(Ta). (41.102)

Unfortunately, other geometric subspaces do not have such clear relationships
as above. &

This concludes the proof of Theorem 4.1.1 and this section. &
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4.2. Solutions to Discrete-time Riccati Equations

The discrete-time algebraic Riccati equation (DARE) has been investigated ex-
tensively in the literature (see, for example [7,51,54,77,82,99]). Here, most of
the work was based on the discrete-time algebraic Riccati equation appearing
in a linear quadratic control problem (hereafter we will refer to such a DARE
as the H,-DARE). Recently, the problem of H,, control and that of differential
games for discrete-time systems, have been studied by a number of researchers
including [4,47,59]. This work gives rise to a different kind of algebraic Riccati
equation (hereafter we call it an Hy-DARE). Analyzing and solving such an
H,-DARE are very difficult primarily because of an indefinite nonlinear term
and because we cannot a-priori guarantee the existence of solutions. In this
section, we recall the result of Chen et al [30] on a non-recursive method for
solving general DARE’s, as well as H-DARE’s and H,-DARE’s. We cast
the problem of solving a given DARE to the problem of solving an auxiliary
continuous-time algebraic Riccati equation (CARE). The latter can be solved
using the well known non-recursive methods available in the literature. The
advantages of this approach over the recursive method are three-fold: (a) it re-
duces the computation involved while giving much more accurate solutions, (b)
it brings a clear intuition to the conditions associated with the H,,-DARE, and
(c) some of the properties of the Ho,-DARE follow readily from the continuous-
time counterpart.

4.2.1. Solution to a General DARE

We first introduce in this subsection a non-recursive method for solving the
following discrete-time algebraic Riccati equation, which is even more general
than the Ho-DARE and which plays a critical role in solving the Hoo-DARE,

P =APA-(APM+ N)(R+M'PM)" " (M'PA+N')+Q, (4.2.1)

where A, M, N, R and Q are real matrices of dimensions n X n,nxXm,nxm,
m x m and n X n, respectively, and with Q and R being symmetric matrices.
We will show that the DARE of (4.2.1) can be converted to a continuous-time
Riccati equation. Assume that matrix 4 has no eigenvalue at —1. We define

F=(A+I)"YA-1),

G =2(A+1)M,

W=R+MA+DQA+I"M (4.2.2)
~N'(A+I)'M - M'(A’ + )"'N,

H:=-Q(A+I)"'M+N.
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We have the following theorem.

Theorem 4.2.1. Assume that matrix A has no eigenvalue at —1. Then the
following two statements are equivalent.

1. P is a symmetric solution to the DARE (4.2.1) and W is nonsingular.
2. P is a symmetric solution to the continuous algebraic Riccati equation,
PF+FP—-(PG+H)W Y(PG+H)+Q=0, (4.2.3)
and R+ 2G'(I — F')"'P(I — F)~1G is nonsingular.
Moreover, P and P are related by P = 2(A’ + I)"'P(A+I)~'.

Proof. First, let us consider the following reductions:

APA-P+Q=24A+DT'PA+DTTA-24/ +D)'P(A+ 1)1 +Q
=24+ )TAPAA+D) ™ —2(4' + D'PA+ D+ Q
= (A + )" (24'PA-2P) A+ D)1 +Q
=(A + )" A +)PA-T)+ (A - I)P(A + I)](A +0D7'+Q
=PA-D)A+D (A +1)"1(A -I)P
=PF+F'P+Q. (4.2.4)

(1. = 2.) Let us start with the following trivial equality,
APA—P+ (A+1PA+1I)— (A +I)PA-AP(A+1)=0,
which implies that
P—PA(A+I) ' —(A+DtA'P
+ (A +DTTAPAA+ ) = (A +D)TTP(A+ )7 =0
Then we have
W = R+M'(A'+I)"1Q(A+I)"1M—N’(A+I)‘1M—M’(A'+I)_1N
=R+M' (A +1)'QA+I)'M —N'(A+I)'M-M'(A'+I)"'N
+M'PM—M’PA(A+I)‘1M—M'(A’+I)‘1A’PM

+M'(A'+I)'A'PAA+I) ' M~ M'(A'+I)"'P(A+1)"'M
= R+M'PM —(M'PA+N')(A+I)"*M~M'(A'+I)" (A’ PM+N)
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+M (A +I)"Y(A'PA+Q-P)(A+]) "M (4.2.5)
= R+M'PM-(M'PA+N')(A+I)*M - M'(A'+1)"(A'PM+N)

+M'(A'+1) Y (A'PM+N)(R+M'PM)~Y(M'PA+N')

x (A+1)'M (4.2.6)
=[I[-M'(A'+I)"Y (A’ PM+N)(R+M'PM)™]

x (R+M'PM)[I—(R+M'PM)Y(M'PA+N')(A+I)"'M]. (4.2.7)

Here we note that we have used (4.2.1) to get (4.2.6) from (4.2.5). By the
assumption that W is nonsingular, we have

R+M'PM =[I - M'(A'+ D7 (A'PM + N)(R + M'PM)7']'W
x [I — (R+M'PM)"{(M'PA + N')(A+I)"'M]™".

Hence,

(A'PM+N)(R+M'PM)~ 1 (M'PA+N')
= (A'PM+N)[I-(R+M'PM)" (M'PA+N")(A+I)"*M]W*
X [I-(R+M'PM)™Y(M'PA+N")(A+I)"' M) (M'PA+N")
= [A'"PM—(A'PM+N)(R+M'PM)"{(M'PA+N"Y(A+I)*M+N]W 1
x [A'PM—(A'"PM+N)(R+M'PM)~Y(M'PA+N')

X (A+I)'M+NY (4.2.8)
= [A'PM+(P-A'PA-Q)(A+D) M+ NJW—1
x [APM+(P—A'"PA-Q)(A+I)"'M+NY (4.2.9)

= [(AP+P-Q)(A+I) "M+ NW (A P+P—-Q)(A+I)'M+N]
(A'+DPA+D)(A+I) M -Q(A+D) ' M+ NW !

x [(A+DP(A+I)(A+D)*M-Q(A+I)"*M +NY
= (PG+H)W " Y(PG+H)'. (4.2.10)

I

Again, we have used (4.2.1) to get (4.2.9) from (4.2.8). Finally, (4.2.1), (4.2.4)
and (4.2.10) imply that

PF+F'P - (PG+HW Y (PG+ H) +Q=0.
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(2. = 1.) It follows from (4.2.2) that
A=(I+F){I-F)!, ~
M =2(-F)%G,
H=-QUI-F)"'G+N,
P=(I-F)P(I-F)/2, ! (4.2.11)
W=R+G(I-F)1Q(U -F)"'G
-N'(I-F)"'G-G'(I-F)"'N,
R+ M'PM = R+2G'(I - F)"1P(I - F)~1G. J

Then we have

R+M'PM = R+G'(I-F) [ Q+(P-PF-Q)
+(P-F'P-Q)+(PF+F P+Q)|(I-F)™'G
=R+G'(I-F)'QU-F)"'\G-N'(I-F)"'G-G'(I-F")™'N
+G'(I-F)'PG~QU-F) '\G+N]+[PG-Q(I-F)"*G+NY}

x (I-F)"'G+G'(I-F)" Y (PF+F'P+Q)(I-F)"'G (4.2.12)
=W+G'(I-F")"Y(PG+H)+(PG+H)'(I-F)"'G
+G'(I-F)Y"YPG+HW Y (PG+H)'(I-F)~'G (4.2.13)

= [[+W Y PG+H)(I-F)'GI'W[I+W Y PG+H)(I-F)'G]. (4.2.14)

Here we note that we have used (4.2.3) to get (4.2.13) from (4.2.12).
By assumption, we have R + M’'PM nonsingular. Thus, we can rewrite

(4.2.14) as,
W=[I+GU~-F)YPG+HW YR+ MPM)
x [+ WY PG+ H)'(I - F)~'G]™..

We have the following reductions,

(PG+H)WY(PG+H)

= (PG+H)[I+W Y (PG+H)' (I-F)™'G]

x (R+M'PM) " [I+W Y (PG+H)' (I-F) ‘Gl (PG+H)'
= [PG+H+(PG+H)W Y (PG+H) (I-F)"'Gl(R+M'PM)™!

x [PG+H+(PG+HW Y (PG+H) (I-F)"'GY (4.2.15)
=[PG—Q(UI—-F)"'G+(PF+F'P+Q)(I-F)"'G+N)(R+M'PM)™*

x [PG—QI-F)"\G+(PF+F' P+Q)(I-F)"'G+NY (4.2.16)
= [+ F")P(I-F)"'G+N|(R+M'PM) G (I-F) ' PI+F)+N']
=(A'PM+N)(R+M'PM)"Y(M'PA+N"). (4.2.17)
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Again, we have used (4.2.3) to get (4.2.16) from (4.2.15). Finally, it follows
from (4.2.3), (4.2.4) and (4.2.17) that

A'PA— (APM + N)(R+ M'PM)"{(M'PA+N")+Q - P = 0.

This completes the proof of Theorem 4.2.1. &

4.2.2. Solution to an H.-DARE

In this subsection we present a non-recursive procedure that generates symmet-
ric positive semi-definite matrices P such that

V :=B'PB+ D,D; > 0, (4.2.18)
R:=~’I- D}, Dyy — E'PE
+ (E'PB + D4,D;)V~Y(B'PE + D} Dyy) > 0, (4.2.19)

and such that the following discrete-time algebraic Riccati equation (DARE) is
satisfied:

B'PA+DCy ' o1 [ B'PA+ DiC:
— ! ! _ 5 (o 1 LCs
where

" |DyyD; + E'PB E'PE+ DhyDay — %I | 2.

The conditions (4.2.18) and (4.2.19) guarantee that the matrix G is invertible.
We are particularly interested in solutions P of (4.2.18), (4.2.19) and (4.2.20)
such that all the eigenvalues of the matrix A.; are inside the unit circle, where

(4.2.22)

Ay:=A—[B E]G—I[B'PA“LDQCZ].

E'PA + D},C,

The interest in this particular Riccati equation stems from the discrete-
time Ho, control theory (see Corollary 3.2.1). Also, it is simple to see that
by letting £ = 0 and Dy = 0, (4.2.18), (4.2.19) and (4.2.20) reduce to the
well-known Riccati equation from linear quadratic control theory. For clarity,
we first recall the relation between the above Riccati equation and the discrete-

time full information feedback H, control problem. Let us define a system Xy,
by

sk+1) = A a(k) + B uk) + E wk),
So { wh = (1) o +(7) ww, @z
h(k) = Cz .’l?(k) + Dz u(k) + D22 ’U)(k)7
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where z € R" is the state, u € R™ is the control input, w € R the disturbance
input, h € R’ the controlled output and y € R™*? the measurement. Then the
following lemma follows from Corollary 3.2.1.

Lemma 4.2.1. Consider a given system (4.2.23). Assume that (A, B,C3, D,)
is left invertible and has no invariant zero on the unit circle. Then the following
two statements are equivalent:

1. There exists a static feedback u = K,z + Kow, which stabilizes ¥, and
makes the H, norm of the closed-loop transfer function from w to h less
than .

2. There exists a symmetric positive semi-definite solution P to (4.2.18),
(4.2.19) and (4.2.20) such that matrix A of (4.2.22) has all its eigenvalues
inside the unit circle.

In what follows, we provide a non-recursive method for computing the stabi-
lizing solution to the Ho-DARE for the full information problem, i.e., (4.2.18),
(4.2.19) and (4.2.20). We first define an auxiliary Ho-CARE from the given
system data and we connect the stabilizing solution for the given Ho.-DARE
to the stabilizing solution for the auxiliary H.-CARE, for which non-recursive
methods of obtaining solutions are available.

We first choose any constant matrix F such that A + BF has no eigenvalue
at —1. We note that this can always be done as (4, B) is stabilizable with
respect to €° U €®. Next, define an auxiliary Ho-CARE,

~1 =~ ~ 1 ~ ! ~] ~ ~f ~
~ o~ -t o~ ) ~ B P+ D,Cs ~—1 BP+D202
0=PA+AP+C,Co—| == -2~]G [~,~ P .|, (4.2.24
22 [E'P+D'2202 EP+ Dy,Co (42.24)

with the associated condition

Diy (I - D3(DyD2) ™' Dy) Doz <1, (4.2.25)
where
A =(A+BF+I)"'(A+BF-1I), )
B :=2A+BF+I1)72B,
o -2
E =2A4+BF+I)7°E, > (4226
Cy = Cy+ DyF,
Dy =Dy —Cy(A+ BF +1)7'B,
Dy := D, — Cy(A+ BF +I)7'E, )
and . .
3= | DaPe Dy D2 (4.2.27)

- E;2D2 13’221722—72]
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If matrix D is injective, then condition (4.2.25) implies G in (4.2.27) is invert-
ible. Again, we are particularly interested in solution P of (4.2.24) such that
the eigenvalues of fic; are in the open-left plane, where

~] ~l
B P+ DyCy ] (4.2.28)

do=A—[B B [ B P + DyC,

E P+ D,,Cy
We note that under the conditions when D, is injective, (A,E’, C3,D5) has
no invariant zero on the jw axis, and (4.2.25), the above H,.-CARE (4.2.24)
is related to the continuous-time H,, y-suboptimal full information feedback

control problem for the following system,
t= A z4+4 B u+ E w,

- I 0
EFI . Yy = 0 T + I w, (4229)
h = éQ z + Dz u + D22 w.

The following lemma follows from Corollary 3.1.2.

Lemma 4.2.2. Consider a given system (4.2.29). Assume that D is injective
and (A, B,C2,D,) has no invariant zero on the jw axis. Then the following
two statements are equivalent:

1. There exists a static feedback law u = K1z + Kow, which stabilizes S
and makes the H., norm of the closed-loop transfer function from w to h
less than v.

2. Condition (4.2.25) holds and there exists a symmetric P > 0 such that
(4.2.24) is satisfied and such that the matrix Aq of (4.2.28) has all its
eigenvalues in the open left-half plane.

Now, we are ready to present our main results.

Theorem 4.2.2. Assume that A has no eigenvalue at —1. Then the following
two statements are equivalent:

1. (A, B)is stabilizable and (4, B, C,, D) is left invertible with no invariant
zero on the unit circle. Moreover, there exists a symmetric positive semi-
definite matrix P such that (4.2.18), (4.2.19) and (4.2.20) are satisfied
along with the matrix A of (4.2.22) having all its eigenvalues inside the
unit circle.

2. (/i, B) is stabilizable, D is injective and (A, B, C3, D) has no invariant
zero on the jw axis, and (4.2.25) holds. Moreover, there exists a symmetric
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positive semi-definite solution P of the Ho-CARE (4.2.24) such that the
eigenvalues of Ay, where Ay is as in (4.2.28), are in the open left-half
complex plane.

Furthermore, P and P are related by P = 2(A' + I)"'P(A + I)~ 1.

Proof. We note that the constant matrix F, a pre-state feedback, is introduced
merely to overcome the situation when A has eigenvalues at —1. It is well-known
in the literature that a pre-state feedback law does not affect the solution of
the Riccati equation (4.2.20). Hence, for simplicity of presentation, we prove
Theorem 4.2.2 for the case that F =0 and vy = 1.

(1.=2.) It follows from Lemma 4.1.2 that the quadruple (/1, B,C’z,ﬁz) is
an inverse bilinear transformation of the quadruple (A, B,C2, D) with a = 1.
Hence, it follows from Theorem 4.1.2 that (fi, B) is stabilizable (see Item 1.a of
Theorem 4.1.2) and (A,B, éQ,Dz) is left invertible (see Item 3.b of Theorem
4.1.2) with no invariant zero on the jw axis (see Item 4 of Theorem 4.1.2) and
with no infinite zero of order higher than 0 (see Item 5 of Theorem 4.1.2).
Hence, D is injective as (4, B,Ca, D2) has no invariant zero at —1.

Next, we will show that (4.2.25) holds. Let

Mi=(B B, ~
= C3[Dy Ds],
B [DgDz D}Dss

1

S (4.2.30)

i

—Q(A+I)'M + N,
=R+MU+D)QUA+D'M-NU+I)M
— M'(A'+I)7IN,
X :=I—(R+MPM) Y (M'PA+N)YA+DM. )

T QN0 o =
.. TR
S

It is simple to verify that
W = ?’;-iz? ~ /D;..DQZ } .
DyyDo  DyyDoy —1

Then, (4.2.20) and (4.2.24) are, respectively, reduced to (4.2.1) and (4.2.3), and
(4.2.22) and (4.2.28) can be written, respectively, as

Ag=A-MQR+ M PM)"\(M'PA+N'), (4.2.31)
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and
Aq =F-GW™Y(PG + H)'. (4.2.32)

Noting that

det [X] =det [[ — (R+ M'PM)" ' (M'PA+ N')(A+I)"'M]
=det [[ — M(R+ M'PM)"\(M'PA+N')(A+1)7]
=det [I + Aa]-det [(A+1)71],

it follows that X is nonsingular provided that the eigenvalues of A, are inside
the unit circle. Recalling (4.2.7) in the proof of Theorem 4.2.1, we have W

nonsingular and
W™l=X"YR+MPM)I(X), (4.2.33)

which implies that the inertia of W~ is equal to the inertia of (R+ M'PM)~!

(see e.g., Theorem 4.9 of [3]). Again, noting that

(DyD2)~! 0 Hz Y]'
1 b

— [I Y] _
- 0 [5;2(1_1'72(15;152)—115;)1322_1] 0 I

0 I

and

R 11 | A

where Y = —(DyDy)~1 D, D4y and Z = V1B’ PE, together with (4.2.33)
and the facts that V > 0 and R > 0, it follows that

D3, (I - D2(D’21~72)_1D;) Dy <1
Using the fact that W is nonsingular, it follows from Theorem 4.2.1 that P is

a positive semi-definite solution of (4.2.24).

Finally, we are ready to prove that Ay has all its eigenvalues in the open
left-half complex plane. It follows from (4.2.10) in the proof of Theorem 4.2.1
that

Ay =F -GW™Y(PG + H)'
=F-GX YR+ M'PM)"Y{(M'PA+ N’)
= A+ A-1)-2(A+D2M[I - (R+ M'PM)"}(M'PA+ N')
x (A+D)'M]™Y(R+ M'PM)"}(M'PA + N')
=(A+D) Y {A-T-2[I-(A+D)'M(R+ M'PM)"'(M'PA+ N")]?
x (A+I)"'M(R+ M'PM)"'(M'PA+ N')}
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=(A+DN'{A-T-2[I+A- M(R+ M'PM)"'(M'PA+ N')|™!
x M(R+ M'PM)"'(M'PA+ N')}
=(A+ D) (Aa+ D) {I+ A - M(R+MPM)"(M'PA + N')|
x (A—1I)-2M(R+M'PM)~*(M'PA+N")}
=(A+ D)"Y (Aa+ D) (Aa-I)(A+ 1), (4.2.34)

which implies that the eigenvalues of A¢; are in the open left-half plane provided
that the eigenvalues of A are inside the unit circle.

(2. = 1.) First, following the results of Theorem 4.1.1, it is straightforward
to show that (A, B) is stabilizable and (A4, B,Cs, D,) is left invertible with no
invariant zero on the unit circle, provided that (A,B’) is stabilizable, D, is
injective and (/i, B, C3, D,) has no invariant zero on the jw axis. Next, noting
that

det[I + W~Y(PG + H)'(I - F)~"'G]
=det[I + GW ™Y (PG + H)'(I - F)™]
=det[l - F 4+ GW™Y(PG + H)'] -det [(I — F)™]
= det [1 - AC.] -det [(I - F)™Y),

and A has all its eigenvalue in the open left-half plane, it follows from (4.2.14)
that R+ M'PM is nonsingular. Thus, the condition in part 2 of Theorem 4.2.1
holds. The rest of the proof in the reverse direction of Theorem 4.2.2 follows
from an almost identical procedure as (1. = 2.). This completes our proof. &

Remark 4.2.1. We should point out that the left invertibility of (A4, B, Cz, D3)
is a necessary condition for the existence of the stabilizing solution to the H-
DARE for the full information problem (see [100]). Moreover, following the
proof of Theorem 4.2.2 and the properties of the continuous-time algebraic
Riccati equation, it is easy to show that the condition that (A, B, Cs, Ds) has
no invariant zero on the unit circle is also necessary for the existence of the
stabilizing solution to the H,,-DARE for the full information problem. &

Remark 4.2.2. From Theorem 4.2.2, a non-iterative method of obtaining the
stabilizing solution P to the Ho.,-DARE for the full information problem can
be established as follows:

1. Obtain the auxiliary H,-CARE;
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2. Obtain the stabilizing solution P to the H.-CARE using some well-

known non-iterative methods. For clarity, we recall in the following a
so-called Schur method (see [55]): Define a Hamiltonian matrix

Hyy  Hio
Hn= , 2.
[ e sz] (4.2.35)

[Dy Di] Co,
- O

H.,=-[B FE]G [B EJ,

8 [~, ! ' [~ _]_1 o (4.2.36)
Hy = -Co{I —[D2 D2n)G " [Dy Dai]}Cs,
Hyp=-{A-[B E)G'[D; Dy]Cs).

Find an orthogonal matrix Ty, € R>"*2" that puts Hy, in the real Schur

form

0 Sa

where S1; € R™*" is a stable matrix and Ss2 € R™*" is an anti-stable
matrix. Partition Ty, into four n x n blocks:

T le]
T = . 4.2.38
[TZI Ts2 ( )

T HyTp = [S“ 512] , (4.2.37)

Then P is given by P = Tp; Tj;".

. The stabilizing solution to the H,,-DARE for the full information problem

is given by P = 2(A’ + I)"'P(A + 1)1, ®

It is well-known that the H.-DARE is the generalization of the Hs-DARE.

Namely, by letting ¥ = 0o, or equivalently E = 0 and D, = 0, we obtain
the general Ho-DARE. For completeness, we give the following corollary that
provides a non-iterative method of solving the general H-DARE.

Corollary 4.2.1. Assume that A has no eigenvalue at —1. Then the following
two statements are equivalent:

1. (A, B) is stabilizable and (4, B, Cz, D) is left invertible with no invariant

zero on the unit circle. Moreover, there exists a positive semi-definite
matrix P such that

B'PB+D)D; > 0, (4.2.39)
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P = A'PA+ CyCy — (A'PB + CyD;)(DyDy + B'PB)~'(A'PB + C,Dy)’

(4.2.40)
and such that the eigenvalues of the matrix A, are inside the unit circle,
where

Aa = A-B(DyDy+ B'PB)~'(A'PB + C}D,)'. (4.2.41)

2. (A, B) is stabilizable, D, is injective and (A, B, C,, ﬁg) has no invariant
zero on the jw axis. Moreover, there exists a positive semi-definite solution
P of the following CARE

0=PA+ A'P+CyCy— (PB + CyDy)(DyDy) (PB + CyDy)', (4.2.42)

such that the eigenvalues of Ay are in the open left-half complex plane,
where

Aq = A- B(DyD,)"Y(PB + C,D,)". (4.2.43)
Furthermore, P and P are related by P = 2(A' +I)"1P(A + I)~1.

Lemmas 4.2.1 and 4.2.2, and Theorem 4.2.2 show the interconnection be-
tween the H, y-suboptimal control problem for the discrete-time system X,
and the continuous-time system $r. This connection is formalized in the fol-
lowing lemma.

Lemma 4.2.3. Assume that (A, B) is stabilizable and (A4, B, C3, D3) is left in-
vertible with no invariant zero on the unit circle. Then the following statements
are equivalent:

1. The full information feedback discrete-time system X, of (4.2.23) has at
least one -y-suboptimal control law. Namely, for a given <y, there exists a
static full information feedback v = K;z + Kow such that the closed-loop
transfer function from w to A has an H-norm less than +.

2. The full information feedback continuous-time system Yer Of (4.2.29) has
at least one y-suboptimal control law. Namely, for a given -y, there exists a
static full information feedback u = K1z + K,w such that the closed-loop
transfer function from w to h has an H.,-norm less than ~.

Remark 4.2.3. The results of Lemma 4.2.3 can easily be obtained by a dif-
ferent route. It is well known that the Hankel norm and the H,, norm of a
transfer function are invariant under a bilinear transformation (see e.g., [45]).
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Hence one can re-cast the H,, y-suboptimal control problem for the discrete-
time system X into an equivalent H,, y-suboptimal control problem for an
auxiliary continuous-time system obtained by performing bilinear transforma-
tion on Zg. It can be shown that one of the state space realizations of this
auxiliary continuous-time system, Ly, , is given by

:b=/ix+l§u+Ew,

(é) vt (%) u + (%“) w, (4.2.44)

z = éz r + Dg u 4+ Ezz w,

Yoo 1 Q¥

where D3 = —(A+I)"'B, Dy = —(A+I)"'E, and 4, B, E, C,, D, and Da,
are as defined in (4.2.26). Consequently the H,, ~y-suboptimal control problem
for the discrete-time i, has a solution if and only if the Hy, v-suboptimal
control problem for the continuous-time system X, has a solution. However,
we note that Xy, is not completely in the full information form. This difficulty
can easily be removed by redefining the measurement output in ¥, as

N (R ORTG S

It is now obvious that X5, with the new measurement output § is in fact the
same as Y. Also, it is easy to show that the H, «y-suboptimal problem for X,
has a solution if and only if the H,, y-suboptimal problem for &y, has a solution
and hence the result of Lemma 4.2.3 follows. It is important to note that
the bilinear transformation approach does not establish a relationship between
the stabilizing solution of the H.,-CARE associated with the continuous-time
system £y, obtained by performing a bilinear transformation on discrete-time
system X and defining the new measurement as in (4.2.45), and the Hq.-
DARE associated with the given discrete-time system Zg. In fact, the main
contribution of Theorem 4.2.2 is to establish such a relationship. &

We present in the following a numerical example to illustrate our results.

Example 4.2.1. Let us consider a discrete-time H..-DARE for the full infor-
mation problem with

1 1010 1 0 1
1 110 0 0 1 0

A=|0 1 0 1 0|,B=|1 0|, E=]|-1], (4.2.46)
0 01 1 1 0 1 0
0 -1 01 1 1 0 1
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0 0 00O 1 0 0
Co=11 010 1|,D;=]|0 0{,Dypu=14{20 }, (4.2.47)
01 010 00 0.5

and v = 1. It is simple to verify that (A, B, Cs, D5) is left invertible with an
invariant zero at 0. Following (4.2.26), we obtain the auxiliary H,,-CARE with

1 -2 6 -4 2 68 —50 r—-20
} -1 3 -8 6 -3 B -92 68 28
A=| 2 -4 11 -8 4|, B=|128 -94|, E=|-40],
-1 2 -4 3 -1 -52 38 16
0 0 -2 2 -1 -18 14 [ 6
) 0 0000 _ 1 0 3 [ 0.0
Ca=1]1 01 0 1}, Dy, =110 -8, Dy =1 —-4.01.
01 010 -9 6 3.5
Solving (4.2.3) in MATLAB, we obtain the stabilizing solution to the auxiliary

H.-CARE as

0.767767  1.110081 0.180720 -0.307296 —0.617828

1.110081  1.607297 0.260775 —0.448623 —0.897322

P =103 x 0.180720  0.260775 0.046343 -0.064704 —0.139318
—0.307296 -—0.448623 —0.064704 0.143150 0.264285

—0.617828 —0.897322 —0.139318  0.264285 0.511644

and the stabilizing solution to the Ho,-DARE for the full information problem
is given by,

127.143494  187.057481 1  —84.6718380 -—134.864680
187.057481  278.730887 0 —124.061419 —201.396153

P= 1 0 1 0 1
—84.671880 —124.061419 O 61.078015 92.569717
—134.864680 —201.396153 1 92.569717 147.982935

It is straightforward to verify that the above P satisfies (4.2.18), (4.2.19) and
(4.2.20). Moreover, the eigenvalues of A are given by {0.4125+50.0733,0,0, 0},
which are inside the unit circle.



Chapter 5

Infima in Continuous-time
Hso Optimization

IN THIS CHAPTER, we address the problem of computing infima in He, opti-
mization for continuous-time systems. The Ho-CARE based approach to this
problem simply provides an iterative scheme of approximating the infimum, v*,
of the Ho,-norm of the closed-loop transfer function. For example, in the regu-
lar measurement feedback case and utilizing the results of Doyle et al [39] (see
also Corollary 3.1.1), an iterative procedure for approximating v* would pro-
ceed as follows: one starts with a value of v and determines whether v > 4* by
solving two “indefinite” algebraic Riccati equations and checking the positive
semi-definiteness and stabilizing properties of these solutions. In the case when
such positive semi-definite solutions exist and satisfy a coupling condition, then
we have v > +* and one simply repeats the above steps using a smaller value
of 7. In principle, one can approximate the infimum v* to within any degree
of accuracy in this manner. However this search procedure is exhaustive and
can be very costly. More significantly, due to the possible high-gain occurrence
as vy gets close to v*, numerical solutions for these Ho,-CARE’s can become
highly sensitive and ill-conditioned. This difficulty also arises in the coupling
condition. Namely, as v decreases, evaluation of the coupling condition would
generally involve finding eigenvalues of stiff matrices. These numerical difficul-
ties are likely to be more severe for problems associated with the singular case.
So in general the iterative procedure for the computation of v* based on ARE’s
is not reliable.

Our goal here is to develop non-iterative procedures to compute exactly the
value of v* for a fairly large class of systems, which are associated with the
singular case and satisfy certain geometric conditions. The computation of v*

101
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in our procedure involves solving two well-defined Riccati and two Lyapunov
equations, which are independent of 4. The algorithm has been implemented
efficiently in a MATLAB-software environment for numerical solutions. The
results of this chapter are based on those reported in Chen [14] and Chen et al
[19,23-25].

The outline of this chapter is as follows: In Section 5.1, we will present a
non-iterative algorithm that computes the infimum, v*, for the continuous-time
H,, optimization problem under full information feedback, which is equivalent
to that under full state feedback if the direct feedthrough term from the dis-
turbance to the controlled output is equal to zero. Section 5.2 deals with the
computation of v* for the measurement feedback case. Both Sections 5.1 and 5.2
require the given systems having no invariant zero on the imaginary axis and
satisfying certain geometric conditions. Finally, in Section 5.3, we will remove
the constraints on the imaginary axis invariant zeros, i.e., we will present a
non-iterative computational algorithm for finding +* for systems with invariant
zeros on the imaginary axis.

5.1. Full Information Feedback Case

We consider in this section the H,, optimization problem for the class of
continuous-time systems characterized by

= A 4+ Bu+ E w,

y = (é) . N (?) w, (5.1.1)

h= Cy 2+ Dyu+ Dy w,

where z € R" is the state, v € R™ is the control input, w € R? is the external

disturbance input, y € R™"? is the measurement output, and h € R’ is the

controlled output of T. It is labelled a full information problem in the literature

because all information about the system, i.e., both z and w, are available for

feedback. For the purpose of easy reference in future developments, we define

Yp to be the subsystem characterized by the matrix quadruple (4, B, Cz, D3).
We first make the following assumptions:

Assumption 5.F.1: (A, B) is stabilizable;

Assumption 5.F.2: ¥, has no invariant zero on the imaginary axis;
Assumption 5.F.3: Im (E) C V™ (Zp) + S~ (Z5); and

Assumption 5.F.4: Doy = 0. &l
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Remark 5.1.1. Here we note that the first assumption, i.e., (A, B) is stabi-
lizable, is necessary for the existence of any stabilizing controller. The second
assumption will be removed in Section 5.3. Also, Assumption 5.F.3 will be
automatically satisfied if £p is right invertible. In fact, in this case, Assump-
tion 5.F.4 will be no longer necessary. This will be treated as a special case at
the end of this section (see Remark 5.1.4). &

We have the following non-iterative algorithm for computing the infimum,
~*, of the full information system (5.1.1).

Step 5.F.1. Without loss of generality, we assume that (A4, B, C2, D»), i.e., Zp,
has been partitioned in the form of (2.3.4). Then, transform I, into the
special coordinate basis as described in Chapter 2 (see also (2.3.20) to
(2.3.23) for the compact form of the special coordinate basis). In this
algorithm, for easy reference in future developments, we introduce an
additional permutation matrix to the state transformation I'; such that
the new state variables are ordered as follows:

zy
Tp
- 1. (5.1.2)

8]
Il
8

We also choose the output transformation I', to have the following form:

(I, ©
Fo_[ o F} (5.1.3)

where mo = rank (D,). Next, we compute

Ef
E,
I''E=|E;|. (5.1.4)
E.
E,
It is simple to verify from the properties of the special coordinate basis
that Assumption 5.F.3 is equivalent to E, = 0. Also, for economy of
notation, we denote n, the dimension of R"/S*(Z;), which is equivalent
to n} + ny. We note that n, = O if and only if the system I, is right
invertible and is of minimum phase.
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Step 5.F.2. Next, we define

Ay = [Aga Libbfb] y By = [g(z;;] , A1z = [igﬂ , (5.1.5)
Ca1 := Ty [8 C(')J , Ca3 =T, [Cdoc‘li] 1 (5.1.6)
and
Az = An1 — A13(Ch3C23) "1 Ch3Ca, (5.1.7)
BB, := By B}, + A13(C53Ca3)  Al3, (5.1.8)
CLC, := C5,Cy — Cy;C23(Ch3C33) " Ch3Cay. (5.1.9)

Then we solve for the positive definite solution S, of the algebraic Riccati
equation,
AzSy + S A, - B.B. + S;C.C.S; =0, (5.1.10)

together with the matrix T, defined by

Tz O
T,,.._[O o]’ (5.1.11)

where T, is the unique solution of the algebraic Lyapunov equation,
AL T, + T (AL) = EF(ET)". (5.1.12)

Here we should note that (—A,,C;) is detectable since —A}, is stable
and (A, Cy) is observable. Furthermore, Assumption 5.F.1 implies that
(Az, B;) is stabilizable. Hence the existence and uniqueness of the solu-
tions S; and Ty, follow from the results of Richardson and Kwong [83].

Step 5.F.3. The infimum, ~*, is given by

7 =\ Amax(TeSz ). (5.1.13)

It can be shown using the result of Wielandt [110] that all the eigenvalues
of T,S_! are real and nonnegative. &

We have the following theorem.

Theorem 5.1.1. Consider the full information system given by (5.1.1). Then
under Assumptions 5.F.1 to 5.F 4,

1. ~* given by (5.1.13) is indeed its infimum, and
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2. for v > «*, the positive semi-definite matrix P(7y) given by

(Sz — Tz/'y2)_1 0

r;t, 5.1.14
0 ol T3 (5.1.14)

P = (Y |

is the unique solution that satisfies conditions 2.(a)-2.(c) of Theorem 3.1.1.
Moreover, such a solution P(y) does not exist when v < ~*. @

Proof. As stated in Step 5.F.1 of the algorithm, we assume that ¥, has been
partitioned as in (2.3.4). Hence, the full information system of (5.1.1) can be
rewritten as

T = A .’13+[B0 31] (:j?)-l— FE w,

ho\ _ [Cap Img O] [uo D3z 0
(hl) - [02,1] T+ [ 0 O:I (Ul) + [D22’1:| w,

where in this proof, we consider both D330 = 0 and Dy2,; = 0. Let us apply a

(5.1.15)

pre-feedback law,
up = —Cy 0 T + vy, (5.1.16)

to the above system. Then it is trivial to write the new system as,

T (A—BQCZ()):E-F [Bo B1] (Zg) + E w,

()= el =+ 1% o ()

It follows from the theorem of the special coordinate basis, i.e., Theorem 2.3.1,
that there exist non-singular transformations, I, I, and I'; such that

(5.1.17)

zf
Vo Tp h ho
<U0>=Fi ug |, =T, z, |, (0)=FO ha |-
Uy hy h
Ue Zc b
Td

By Assumption 5.F.2, i.e., £; has no invariant zero on the imaginary axis, the
state component z2 is nonexistent and the transformed system is given by

&F Af, Lhc, 0 0 LICi1 [z
Ty 0 Apy 0 0 Ly3Cq Zp
i; | = 0 L,Cy, Az, 0 L_Cy zg
Te BCE;: L Cy BCEC_a Ace L.qiCy Zc

iq B4E}, ByEs BiE;, BaiEs A Td
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Bf, 0o o Ef
B 0 O o E,
+ By 0 O || uwa|+|E|w (51.18)
By, 0 B, U E.
By B; O E,
where E, =0, and
ot
ho I, © 0 0 00 O Th In, 0 0 Yo
hdz[ooF]OOOOCd z7 |+ 0 0 O uqg |-
ks or 0C, 00 0 T 0 0 04 \u.
Zd
(5.1.19)

The above transformation of the system with a pre-state feedback law,
Uy = —Cg,o T + vo,

along with the non-singular state and control input transformations does not
change our solution since it does not affect the value of v*. We need to introduce
the following lemmas in order to prove the theorem.

Lemma 5.1.1. Given the system of (5.1.1), which satisfies Assumptions 5.F.1,
5.F.2 and 5.F .4, and v > 0, then there exists a full information feedback control
law u = Fiz + Fw such that the resulting ||Thwllco < v and A(A+ BF) Cc C~
if and only if there exists a real symmetric solution P, > 0 to the algebraic
Riccati equation

P.A; + A\P, + P,E,E.P,/y* ~ P,B,B.P, + C'.C, =0, (5.1.20)

where A;, B, and C, are as defined in (5.1.7) to (5.1.9), and

Ey
with no restriction on E,. Note that E, = 0 if Assumption 5.F.3 holds.

E, = [E‘T] , (5.1.21)

Proof. Without loss of generality, we assume that the given system has been
transformed into the form of (5.1.18) and (5.1.19). Now let us define the new

state variables,
zt Ta
Ly = ( @ ), (332) = (zc) , (5.1.22)
Ty Z3
Zd

where z3 contains only the m, states of z; which are directly associated with
the controlled output hq while z; contains z, =, and the remaining states of
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zq. Hence, the dynamics of the transformed system in (5.1.18) and (5.1.19) can
be partitioned as follows,

il = A“.’El + [Bll Al3] (ZO) + E',w, (5123)
3
T2\ _ | A2z A (2 Bj, By An Vo E,
(-’ﬁ) [Aaz Aaa] (273) * [332 uet By Ay |\zm )7V Ey| "
(5.
ho _ 0 Imo 0 Vo
()=la]=+ % al(z). e

where A;;, By, A3, C21 and Cy3 are as defined in (5.1.5) to (5.1.6), while
Agg, Aaz, ---, Ej are the matrices with appropriate dimensions. It is now
straightforward to verify using the properties of the special coordinate basis
that the quadruple characterized by

Ay Az B,
, [0 I],0), 5.1.
([Aw As3 Bas, [ ] (5.1.26)
is right invertible and of minimum phase. Moreover, the state space Ao® X3

spans the strongly controllable subspace S*(Zp). On the other hand, the sub-
system characterized by the quadruple

0 L., 0
<A11,Bu, [021] ; [ 0 C23]> , (5.1.27)

is left invertible with no infinite zero and with no stable invariant zero. The
result of Lemma 5.1.1 follows from Corollary 5.2 and Theorem 6.2 of {104]. &

Lemma 5.1.2. Given the system of (5.1.1) which satisfies Assumptions 5.F.1
to 5.F.4, then the algebraic Riccati equation of (5.1.20) has a symmetric solution
P, > 0if and only if S, > T,/v?, where S, and T, are respectively given by
(5.1.10) and (5.1.11).

Proof. First, we note that T, of (5.1.11) is in fact the solution to the following

Lyapunov equation
AT, + T, A, = EE,, (5.1.28)

Ef
=[]

since Assumption 5.F.3 holds. Also note that

where

T,Cy1 =0 and T,C.C,T, =0. (5.1.29)
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Now, suppose that S; > T3 /v? and define a positive definite matrix,
X =8, - T. />
It follows from (5.1.10), (5.1.28) and (5.1.29) that
A X+ XA, + E,E./v* - BB, + XC.C,X =0. (5.1.30)
Now, let us pre- and post-multiply (5.1.30) by P, := X ™!, we obtain
P,A, + AP, + P,E,E.P,/v* - P,B,B.P, + C.C, =0. (5.1.31)

Hence, P, > 0 is a solution to (5.1.20).
Conversely, suppose that (5.1.20) has a solution P, > 0. Let X := P! > 0.

We have
A X+ XA, + E,E./v*-B,B. + XC.C,X =0. (5.1.32)
Also, let T, be the solution to the Lyapunov equation
AT, + T, A, = E,E., (5.1.33)

which has the special form as in (5.1.11). Thus, (5.1.29) holds. Next, we define
S; = T:/y* + X. Clearly, we have S, > T;;/y% and S, > X > 0. Then, we
have

A;S. +8,A, -B,B. +5,C.C.8, = A, (T /¥ + X)
+ (Tu/¥? + X)AL — BB, + (T /7% + X)C.Co(T:/¥* + X)
= (AT + T A, — E:E,) [+
+A.X + XA, +E.E./+* - B,B. + XC.C.X
=0,
which implies that S, > 0 is a solution of the Riccati equation (5.1.10). Since

(5.1.10) can only have one positive definite solution, thus we have S, = S, and
Sz > Tz /. This completes our proof of Lemma, 5.1.2. &

Now, let us get back to the proof of Theorem 5.1.1. Suppose that v > v*.

It is easy to verify that
(S: =Tz/¥*)™' 0
0 0
satisfies conditions 2.(a)-2.(c) of Theorem 3.1.1. Hence, there exists a state

feedback law u = Fz with F € R™*" (and obviously there exists a full infor-
mation feedback law u = Fyz + Fow) such that the H.-norm of the resulting

P(y) = (7Y rst
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closed-loop system from the disturbance w to the controlled output h, Thu(s),
is less than v and A(A+ BF)Cc C~.

The converse part of the theorem follows immediately from Lemmas 5.1.1
and 5.1.2 since the condition v > {Amax(T:S7")}} is equivalent to S; > T /2.
This completes our proof of Theorem 5.1.1.

The following remarks are in order.

Remark 5.1.2. For the continuous-time systems, the infimum for the full in-
formation system of (5.1.1) with Dy, = 0 is equivalent to the infimum for the
full state feedback system, i.e.,

t=Az+ Bu+ E w,
y = T (5.1.34)
h=Cyz + Dy u+ Dyy w.

Thus, the infimum for the above full state feedback system is also given by v*
in (5.1.13). @

Remark 5.1.3. If Assumption 5.F.3, i.e., the geometric condition, is not satis-
fied, then an iterative scheme might be used to determine the infimum. This can
be done by finding the smallest scalar, say 7*, such that the Riccati equation

P. Ay + ALP, + P.E,E,P,[/(3*)> — P.B,B,P, +CLC, =0, (5.1.35)

has a positive definite solution P, > 0. One could also apply the result of
Scherer [94] directly to the Riccati equation (5.1.20) to develop an iterative al-
gorithm of the Newton type to compute an approximation of v*. The algorithm
of Scherer has a quadratic convergent rate. ®

Remark 5.1.4. If ¥, is right invertible, then Assumption 5.F.3 is automat-
ically satisfied. Moreover, Assumption 5.F.4 is no longer necessary and the
infimum +* for the full information feedback system (5.1.1) can be obtained as

Dby D 0 3
v*=(Amx{[ - i ; 5_1]}) : (5.1.36)

where T, and S are the positive semi-definite and positive definite solutions
of the following Lyapunov equations,

follows:

AL T, +T.(AL) = (Ef — B, Daso— LT,T;Dys )
x (B} — B, Da2p — L}, L5 Dsa 1), (5.1.37)

A5, + 5.(A%) =Bf, (BL) + L0t (LAY, (5.1.38)
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respectively, and Dag ¢ and Dy, ; are as defined in (5.1.15) but for nonzero D,;.
On the other hand, the infimum for the full state feedback system (5.1.34) is
different from (5.1.36) and is given by

' H
'y‘ = <Amax { [DZL)ODzz 7“-, g;-—l ] }) 3 (51.39)

where T, and S, are again the positive semi-definite and positive definite so-
lutions of the Lyapunov equations (5.1.37) and (5.1.38), respectively. These
claims can be verified using similar arguments as in the proof of Theorem 5.1.1.
The detailed proofs can be found in Chen [14]. ]

We conclude this section with the following illustrative examples.

Example 5.1.1. Consider a full information system (5.1.1) and a full state
feedback system (5.1.34) characterized by

11101 0 0 O 5 1
01001 0 0O 0 0
11111 001 2 3
11110 010 1 4
and
00100 100
oo 0 o0 1 oo o0 N
©=1010 0 o] P2=|0 o of DP2=0 (5.1.41)
00100 0 0 0

It is simple to verify that the subsystem (A, B, C2, D3) is neither left- nor right-
invertible with one unstable invariant zero at s = 1. Moreover, it is already in
s = I5, Lor = I31 ng = 3,

the form of special coordinate basis with
11 1 00
1 0|, B:B.=|1 , CiC,=10 1 ,
10 1 00

AL, =1, Ef=[5 1].
0
01,
0

= Qo O

1
0
0

b
DN

and

Then solving equations (5.1.10) and (5.1.12), we obtain

S, =] 0185427 0.395142 0.231469

—0.305593 0.231469 1.217984

[en ¥ en I aw)

0556281 0.185427 —-0.305593 13
, To=1|0
0
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and for both systems (5.1.1) and (5.1.34), the infima are given by
7" = Amax (TS5 1) = 6.4679044. ®

Example 5.1.2. Consider a full information system (5.1.1) and a full state
feedback system (5.1.34) characterized by

3 0 0 1 1 0 0 4
1 101 {0 01 _ |3
A=17 T1 o00l" B=lo 1 ol' E=1|5]" (5.1.42)
0 01 0 0 0 0l 1
and
[1 0 0 O 1 0 0] 2
Cy = 0 001 , Do = 0 0 OJ, Dgz—[l]. (5.1.43)

It is simple to verify that the subsystem (A, B,C;,D;) or L, is controllable
and right invertible with one unstable invariant zero at 2 and one infinite zero
of order 2. Following Remark 5.1.4, we obtain

Fs = 14’ I107‘ = 1, Ny = 1, A:a = 2, .B(—)tl = 1,
LT, =1, E} =4, Dyp=2 Dy,=1,

and
S,=05, T,=0.25.

Then, the infimum for the full information feedback system is given

1
. Djy1 D221 0 z 1 0 b
7= (e ([0 552 ]}) = Co{lo a3]}) -
and the infimum for the full state feedback system is
1
. Dy,D2y 0 : 5 0 5 _
7= (e {[ %07 252 ]1) = O[S 03]} -
Clearly, they are different. E

5.2. Output Feedback Case

We present in this section an elegant well-conditioned non-iterative algorithm
for the exact computation of v* of the following measurement feedback system,

y=Ciz + D1 w, (5.2.1)

{:&:Aw+ Bu+ E w,
h=Cyx + Ds u+ Do w,
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where z € R" is the state, u € R™ is the control input, w € R? is the external
disturbance input, y € RP is the measurement output, and h € R’ is the
controlled output of . Again, for the purpose of easy reference, we define X,
to be the subsystem characterized by the matrix quadruple (4, B, C2, D) and
¥4 to be the subsystem characterized by the matrix quadruple (A, E, C1, D4).
We first make the following assumptions:

Assumption 5.M.1: (A, B) is stabilizable;

Assumption 5.M.2: ¥ has no invariant zero on the imaginary axis;
Assumption 5.M.3: Im (E) C V() + S~ (Tp);

Assumption 5.M.4: (A, Cy) is detectable;

Assumption 5.M.5: X, has no invariant zero on the imaginary axis;
Assumption 5.M.6: Ker (C2) DV~ (Z,) NS™(Z,); and

Assumption 5.M.7: Dgy = 0.

Remark 5.2.1. Here we note that Assumptions 5.M.1 and 5.M 4, i.e., (4, B)
is stabilizable and (A, C4) is detectable, are necessary for the existence of any
stabilizing controller. Assumptions 5.M.2 and 5.M.5 will be removed later in
Section 5.3. Also, Assumptions 5.M.3 and 5.M.6 will be automatically satisfied
if £p is right invertible and if Xq is left invertible. Moreover, in this case,
D3y = 0, ie., Assumption 5.M.7, can be removed without any difficulties (see
Remark 5.2.3 later in this section). ]

We have the following non-iterative algorithm for computing the infimum,
7*, of the general measurement feedback system (5.2.1).

Step 5.M.1. Define an auxiliary full information system

t= A z+Bu+ E w,

y = (?) z + (é) w, (5.2.2)

h = Cz $+D2U+ D22 w,

and perform Steps 5.F.1 and 5.F.2 of the algorithm as given in Section 5.1.
For easy reference in future development, we append a subscript ‘e’ to all
sub-matrices and transformations in the special coordinate basis associ-
ated with the system (5.2.2). In particular, we rename the state transfor-
mation of the special coordinate basis for 3, as ['yp, and the dimension
of R"/S8*(Z;) as n,p. Furthermore, S, of (5.1.10) and 7 of (5.1.11) are
respectively renamed to S;p and Typ.
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Step 5.M.2. Define another auxiliary full information system

I

H

A 4+ Clu+ C) w,

((I)) z + ({)) w, (5.2.3)

2= E z+ Dju+ Dy w,

]

y

and again perform Steps 5.F.1 and 5.F.2 of the algorithm as given in Sec-
tion 5.1 one more time but for this auxiliary system. To all sub-matrices
and transformations in the special coordinate basis of L, where £ is
the dual system of £, and is characterized by quadruple (A4’,C}, E’, D}),
we append a subscript ‘o’ to signify their relation to the system If. In
particular, we rename the state transformation of the special coordinate
basis for this case as s, and the dimension of R"/S+ (X)) as nzq. As
in Step 5.M.1, we also rename S, of (5.1.10) and T, of (5.1.11) as S,

and T.q, respectively.

Step 5.M.3. Partition
roirol) = [F *], (5.2.4)

*x %

where I is a nyp X n,q matrix, and define a constant matrix

(5.2.5)

M- {TWS;J + 0SS -Isd ] .

= TeqS;q 'S TeaS:g

Step 5.M.4. The infimum 7* for the measurement feedback system (5.2.1) is

then given by
’Y* =V /\ma.x(M)- (526)

It will be shown later in Proposition 5.2.4 that the matrix M of (5.2.5)
has only real and nonnegative eigenvalues.

The proof of the above algorithm is rather involved. We would have to
introduce several lemmas before proceeding to its final proof. Let us first define

1
7= Pmax(TeeSiHY and 7% = PDmax(Tee S50} 2 (5.2.7)

(SzP_ :L‘P/'Yz)'l OJ
0

0 I, (5.2.8)

P =R |

and
(Seq — Teg/¥9)! 0} r-t
5Q °

o . (5.2.9)

QM) = (T3 [

We have the following lemma.
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Lemma 5.2.1. Consider the system (5.2.1), which satisfies Assumptions 5.M.1
to 5.M.7. Then we have

1. For v > v}, the positive semi-definite matrix P(y) given by (5.2.8) is
the unique solution to the matrix inequality F,(P) > 0, i.e., condition
2.(a) of Theorem 3.1.1, and satisfies both rank conditions 2.(b) and 2.(c)
of Theorem 3.1.1. Moreover, such a solution P(y) does not exist when
¥ <%

2. For v > 43, the positive semi-definite matrix Q(y) given by (5.2.9) is
the unique solution to the matrix inequality G,(Q) > 0, i.e., condition
2.(d) of Theorem 3.1.1, and satisfies both rank conditions 2.(e) and 2.(f)
of Theorem 3.1.1. Moreover, such a solution Q(v) does not exist when
v <75

Proof. It follows from Theorem 5.1.1. 23

The next lemma gives an equivalence of the infimum, v*, for the measure-
ment feedback system (5.2.1).

Lemma 5.2.2. Let 73, := max{y;,75}. Then the infimum for the given
measurement feedback system (5.2.1) is equivalent to

v* = inf {'r € (Toqy ) | f(7) < 72}, (5.2.10)

where the scalar function

f = p{PMQRM}, (5.2.11)
and P(v) and Q(v) are given by (5.2.8) and (5.2.9) respectively.

Proof. It follows Lemma. 5.2.2 that v* > ¥+,. Next, for any ¥ € (744, 00) such
that £(3) <3, ie. p{P(%)Q(7)} <3, then the corresponding P(y) and Q(¥)
as given in (5.2.8) and (5.2.9) satisfy the conditions of Theorem 3.1.1. Hence,
4 > ~* and 7* is equivalent to that of (5.2.10). &

It is then straightforward to show that the scalar function f(v) of (5.2.11)
is given by

fly) = /\max{(s:cp - 'Y_zTa:P)—IF(SzQ - '7“2Tm)’1["}' (5.2.12)

The function f(y) of (5.2.12) is a well-defined mapping from (v}, 00) to [0, 00).
Its evaluation involves the computation of the maximum eigenvalue of a matrix
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of dimension n,p X ngp, which is normally of a much smaller dimension than
the original product P(y)Q(7). We establish some important properties of the
function f(-y) in the following propositions.

Proposition 5.2.1. f(v) is a continuous, nonnegative and non-increasing func-
tion of v on (734, 00). B

Proof. We first show that P;(v) := (Szp — v 2T;p)"! is non-increasing, i.e., if
72 > 1 then Pr(v2) < P,{(11) . Recall that S,p > 0 and T, > 0, we have for
all 12 > 71 > 75q

(7 =72 %)Ter 20,

which implies that
SzP - 71_2sz S Sz:P - 72-2T1P-

Hence,
Po(v2) £ Pe(m), forve>m.

Similarly, one can show that Q. () := (Szq —7 2Tkq) ! is non-increasing. This
implies that I'Q.(y)I" is also non-increasing. Then clearly f(+) is a continuous,
non-negative and non-increasing function of «y on (v, 00). &

The function f(v) defined above can be extended as a mapping from [v;4, 00)
to {0, 00) by setting

flree) = 733;(} f). (5.2.13)

It follows from Proposition 5.2.1 that the limit f(v;,) exists and could be finite
or infinite.

Proposition 5.2.2. f(y) = 42 has either no solution or a unique solution in
the interval (v}, 00). B

Proof. The result follows from Proposition 5.2.1 and the fact that 4?2 is strictly
increasing for positive . &

Proposition 5.2.3. If f(y) = 7% has no solution in the interval (v;4,0) then
7* is equal to vp5y. Otherwise, v* is equal to the unique solution of f(v) = v
in the interval (734, 00). 8

Proof. If f(7y) =~ has no solution in the interval (75,,00), then f(7) < 72

for all ¥ € (7}4,00) and hence according to Lemma 5.2.2, ¥* = 75q- On the
other hand, it is obvious that v* is equal to the unique solution of f(7) = 7
when such a solution exists. i
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At first glance, it seems that the solution of f(7) = 4% would involve the
rooting of a highly nonlinear algebraic equation in 7. Actually its solution can
be achieved in one step. Namely the problem of solving f(y) = 72, if such
a solution exists in the interval (v;4,00), can be converted to the problem of
calculating the maximum eigenvalue of a constant matrix, i.e., M of (5.2.5). In
fact, we would also show that, when f(y) = 72 has no solution in the interval
(72q> 00), the maximum eigenvalue of this matrix M is equal to 7;,, which is
~* as well. To prove this, we would have to introduce a matrix function of v,

N(®) = (Ser — 7~2TzP)—1F(SzQ - 7_2TzQ)~IFI - ’72[. (5.2.14)

‘We have the following propositions on the properties of the matrices M and
N(v).

Proposition 5.2.4. The eigenvalues of the matrix M of (5.2.5) are real and
non-negative. &)

Proof. First, we have

ST 0 ] [Tee+TS2Y -I'S;3][Se O
A{M}‘A{_O TmH -S;aT Sea 110 1

_) (St 0][I 0 ] [Ter +TSIY IS

T 0 1|0 T e Sz

o f[Sa32 0 [T +TS;D -TS3

,A{_ : TH et Terll e

Now, it is trivial to verify that both sub-matrices in (5.2.15) are symmetric and
positive semi-definite. Then, using the result of Wielandt [110] (i.e., Theorem
3), it is simple to show that the eigenvalues of M are real and nonnegative. &

Proposition 5.2.5.
1. N(y) has real eigenvalues for all v € (754, 00).

2. Amax{N(7)} = f(7) —~? is a continuous and strictly decreasing function
of v in (734, 00). 3]

Proof. Note that both (Szp —7 2T%p) ! and (Szq — 7 2Tke) ! are symmetric
and positive definite for all ¥ € (y34,00). Hence, all the eigenvalues of N(v)
are real for v € (v4g,00). The second item follows from Proposition 5.2.1. &

Proposition 5.2.6. The roots of det [N ()] = 0 are real. Moreover, the largest
root of det [N(7)] = 0 in the interval (v}, 00) is equal to {Amax(M )}E. i3



5.2. Output Feedback Case 117

Proof. Using the definition of N(v) in (5.2.14), we have
det[N(7)] = (=1)"=" - det [y’ I~ (Szp =7 *Tup) 'I(S2q =¥ 2Tiq) " 'I"]

_ (=1)n=r 2 2my 2 e
= T et [P Ser =T =70 Sea ~Te) ']
— (—1)7'-1? 'det 72S$p_sz F
det [Syp —7~2Tzp) - det [v2Szq—=Tzql 421 7251()“ »
_ (=1)"=P -det[S,s] - det [S;q] \
" det [Szp—v2Tup) - det [¥2S0q — Tiq) det [y*I-M]. (5.2.16)

Now it is simple to see that the roots of det[N(y)] = 0 are real since all the
roots of det [v2Szp — Typ] = 0, det [¥2Szq — Tug) = 0 and det [y2] — M] = 0
are real. Clearly, det[S;r — 77 2Tzp] # 0 and det [y2S,q — Tuq] # O for all
Y € (13q,00). Hence the largest root of det [N(y)] = 0 in (v, c0) is equal to
the largest root of det[y*] — M] = 0, which is equal to {Amax(M)}3. ®

Finally, we are ready to prove our algorithm for computing the infimum ~*
for measurement feedback systems. We have the following theorem.

Theorem 5.2.1. Consider the measurement feedback system (5.2.1), which
satisfies Assumptions 5.M.1 to 5.M.7. Then

¥ = v/ Amax(M), (5.2.17)
where M as defined in (5.2.5), is indeed its infimum.

Proof. First, we will show that 4* is equal to the largest root of det [N ()] =0
when f(v) = ¥* has a unique solution in (v},,00). It is simple to observe that
det [N(v*)] = O since Amax[N(v*)] = f(7*)—(v*)? = 0. Now suppose that there
exists a v such that det[N(vy;)] = 0 and ~; > v*. This implies that there exists
an eigenvalue of N (1), say Ai[N(71)], such that A;[N(71)] # Amax[N(71)] and
AN (v1)] = 0. Thus, we have

Amax[N(1)] > N[N (11)] = 0= Amax[N(v")], (5.2.18)

contradicting the findings in Proposition 5.2.5 that Amax[V ()] must be a non-
increasing function. Hence, v* is the largest root of det [N ()] = 0 and it is
equal to {Amax(M)}? as shown in Proposition 5.2.6.

Now we consider the situation when f(vy) = 72 has no solution in the interval
(¥2q,00). In this case, clearly we have v* = 7;, and 0 < f (13q) < (73¢)% The
last inequality and the definition of N(v) in (5.2.14) imply that

- (130)? S M[N (1ol 0. (5.2.19)
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Thus, the determinant of N(v;,) is bounded. Evaluating equation (5.2.16) at
Y = Ypq, We have

det [N(v;4)] - det [Sze ~ (74) *Taz] - det [(v5g)* Saq — Taa]
= (—1)"=" - det[Scp] - det [Saq) - det [(vio)*T - M]. (5.2.20)
Note that from (5.2.7) and the definition of 73, we have
det [Sep — (Yaq) ™ Trr] - det[(159)* Seq — Tea] =0, (5.2.21)
and since det [N(7;,)] is bounded, it follows from (5.2.20) that
det[(v2,)* - M] =0, (5.2.22)

or (v},)? is an eigenvalue of M. Furthermore since det [N(7)] = 0 and similarly
det [y2I — M] = 0 do not have a root in (7}, 00), hence 12 = {Amax(M)}3.
This completes the proof of Theorem 5.2.1. &

The following remarks are in order.

Remark 5.2.2. If Assumptions 5.M.3 and 5.M.6, i.e., the geometric condi-
tions, are not satisfied, then an iterative scheme might be used to determine
the infimum. This can be done by finding the smallest scalar, say 4%, such that
the Riccati equation

PoAgp+ AL Pt PoE o B P (7)) =Py Bap BL P +C.,.Cop = 0, (5.2.23)
has a positive definite solution P, > 0, the Riccati equation
Qo AsatA;qQutQs Boa BrqQu/(7')~Q: Boa Blq@u+CiqCaa = 0, (5.2.24)
has a positive definite solution Qz >0, and
Amax{ f’xFQzF'}< (7*)2. (5.2.25)

Here T is as defined in (5.2.4). Also, all sub-matrices with subscript ‘s’ are re-
lated to the special coordinate basis decomposition of ¥ and the system (5.2.2),
and all sub-matrices with subscript ‘o’ are related to the special coordinate basis
decomposition of £¥ and the system (5.2.3). &

Remark 5.2.3. If £; is right invertible and X is left invertible, then As-
sumptions 5.M.3 and 5.M.6, i.e., the geometric conditions, are automatically
satisfied. Moreover, Assumption 5.M.7, Das = 0, is no longer necessary and
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the infimum ~* for the measurement feedback system (5.2.1) can be obtained
as follows:

Djy 12 Daz e 0 0 0 }
el | 0 mesensesn sy o )
0 “TeaSoal'Sen  TeoSeq O
0 0 0 DjyiqD2z1a

where I' is as defined in (5.2.4), T.p and S.p are the positive semi-definite and
positive definite solutions of the following Lyapunov equations,
AIapTIP + T?:P (A:ap)’ = (E:P - B(-)’;PD”,OP - L:dpF;rlpD'b’?,lP)
x (Ef = Bi.pDazoe — Ly Tt Da2ie)’,  (5.2.26)

A:apgiﬂ’ + 57171:’ (A:aP)I = Bg-aP (Bf‘)'-aP)’ + L:dPP;TlP (L:dPrO—'l'll")” (5227)

and Tyq and S,q are the positive semi-definite and positive definite solutions
of the following Lyapunov equations,

At Toq + Teq (Ajao)' = (EX, — B3,qD22,0q — LLQF;TIQDzz,lq)
X (E:-Q _ B(_)';QD22,0Q - Ljdqr;_rlQD22,1Q)/’ (5228)

AtoSa + Sea(Ata) = Bliq (Blaa) + Lislom (LiqTara) - (5:2:29)

Here again all sub-matrices with subscript ‘»’ are related to the special coordi-
nate basis decomposition of ¥, and the system (5.2.2), while all sub-matrices
with subscript ‘q’ are related to the special coordinate basis decomposition of
¥% and the system (5.2.3). The detailed proof of the above claim is similar to
that of Theorem 5.2.1. It can be found in Chen [14].

We illustrate our results in the following examples.

Example 5.2.1. We consider a measurement feedback system (5.2.1) with A,
B, E, Cy, D4, Dy being given as in Example 5.1.1 of Section 5.1 and

/60 -2 -3 -2 -1 {10
a=[0 222 n= Y e
Step 5.M.1. It was computed in Example 5.1.1 that sy = I5, nzp = 3 and
0.556281 0.185427 —0.305593 13

00
Szp = 0.185427 0.395142 0231469|, T,(p=|[ 0 0 O
—0.305593 0.231469 1.217984 0 00
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Step 5.M.2. The subsystem (A, FE,C;,D;) is invertible and of nonminimum
phase with invariant zeros at {—1.630662, —3.593415, 0.521129 + ;0.363042}.
Following our algorithm, we obtain

~0.011218 —0.106028 —-0.906482 —0.212184 0.090909
0.185213 —0.745725 0.194520 —0.119195 0.181818
T,q = | —0.919232  0.096732  0.326906 —0.603079 0.272727 |,
0.279141  0.532936  0.087364 —0.581308 0.181818
~0.206551 —0.373195 0.161098  0.489027 0.090909
_ .+ _[0433179 —0.253237 _
Fora =1, AQ‘AaaQ‘[o.sswos 0.609080]’ fae =2,

, _ [ 0.033508 -0.018630 A
BQBQ"[-0.018630 0030289 |° “aCa= g o]
g+ - [—0.769496 0010023  0.448951 -0.769496
a2 = | ~0.090061 0.655677 —1.044466 —0.090061°

and

0.026333 —0.021114]
, T:

S = _ 1.274771 -0.555799
QT 1 -0.021114 0.043965 e '

—0.555799  1.764580

Step 5.M.3. The ngzp X ngq matrix I' is then given by

0.185213 -0.745725

—0.011218 -0.106028
I'= ,
—0.919232  0.096732

and

0.500695 —0.334250 0.245016 0.082332 0.052125

—0.442374  0.992368 -0.260321 0.032515 0.253182

M =10"x | 0616882 -0.513348 0.588766 0.501907 0.261525
1.074941 —1.295698 0.921909 0.622391 0.172484

—0.583103 1.526365 —0.286520 0.180099 0.487850

Step 5.M.4. Finally, the infimum for the measurement feedback system is given
by '
y* = 13.638725. 8

Example 5.2.2. We consider a measurement feedback system (5.2.1) with A,
B, E, C3, D,, Dy; being given as in Example 5.1.2 of Section 5.1 and

Ci=[1 -2 3 -4], D=0 (5.2.31)
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It is again simple to verify that the subsystem (A, E,Cy, D), i.e., Zq, is ob-
servable and invertible with two unstable invariant zeros at 0.5 & 50.5916 and
one infinite zero of order two. Hence, all assumptions are satisfied. Following
Remark 5.2.3, we obtain

Ngp =1, Szp =0.5, T,p =0.25,

FOTQ = 1, an = 2,

g+ _ [ 12230247 —0.5241535] . _ [-0.6289841
aa T | 11679942 09408842’ “eda T | 1.3756377]

At = 0.8842105 -0.5101735
ee@ ™ 1 0.9753892  0.1157895 ]’

B(.)ZQ = 0, D22,0Q = @, D22,1Q = [2 1] R

§ = 0.5274947 0.5264991 Foo= 0.5810175 0.9950273
e 10.5264991 3.7365053 |’ ?Q 7 10.9950273 3.2589825 |’

[ =[-1.2230247 1.1679942],

1 0 0 0 0
0 9.7252904 3.0610640 -0.7439148 O
M= |0 20766328 0.9724337 0.1292764 0|,
0 1.2428740 1.1820112 0.7056473 O
0 0 0 0 5
and finally the infimum for the given system,
4* = 3.2088448. B

5.3. Plants with Imaginary Axis Zeros

We present in this section a non-iterative computational algorithm for the mea-
surement feedback system (5.2.1) whose subsystems £, and/or Xq have invari-
ant zeros on the imaginary axis. The procedure is similar to the algorithm of the
previous section, although it is slightly more complicated. It involves finding
eigenspaces for the imaginary axis invariant zeros of £r and Xq and finding so-
lutions to two extra Sylvester equations. We consider the system (5.2.1) which
satisfies the following assumptions:

Assumption 5.Z.1: (A, B) is stabilizable;
Assumption 5.2.2: Im (E) C V™ (Zp) + S7(Zs);
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Assumption 5.Z.3: (A, C}) is detectable;
Assumption 5.Z.4: Ker (C3) D V™ (Zq) NS~ (Eq); and
Assumption 5.Z.5: Doy = 0.

We have the following step-by-step algorithm for computing v*. We note that
it has some overlaps with that in the previous section. However, this is merely
for completeness and to properly define matrices required in the computation
of the infimum ~*.

Step 5.Z.1. Transform the subsystem system X, i.e., (4, B,C3, D2) into the
special coordinate basis described in Theorem 2.3.1. To all sub-matrices
and transformations in the special coordinate basis of £;, we append the
subscript ‘¢’ to signify their relation to the system I,. We also introduce
an additional permutation matrix to the original state transformation
such that the transformed state variables are arranged as

+
Lap
Zpp

0
Go=| Tor |, (5.3.1)

:l"aP
Zcp
Tdp
Next, we compute
- E;}—p -
EbP
EQ.
Es
Ecr
, L Eyp |
Note that Assumption 5.Z.2 implies Ey» = 0. Then define the following
matrices:

I E= (5.3.2)

At Lt G 0 B Lt

aaP abpr OaP adp
A= 0 Apbe 0 |, Br:=|Bur Liuwr|, (533)
0 L9.Cp A BY., IO

aap OaP adp

E+

ap
Ep = EbP , (534)
E'O

ap
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and
0 0 0 Inge 0
Cp:=Top |0 0 0|, Dp:=T, 0 Cdpc‘lir, . (5.3.5)
By some simple algebra, it is straightforward to show that

0 0 o
CL[I - D+(D.D:)"' D] Cy = [0 CirCoe 0] , (5.3.6)
0 0 o

for some full row rank C’bp,

o~
Aler LopeCie 0

Ap — Bo(DLD:)™'DL.Co = | 0 Abse o |, (5.3.7)
0 I.0w A%,
and
B&;P f’idp Bg:zp f’:—dp l
Be(DuD:)7'Bi= | Bope Lpae | ' | Bow Lpar (5.3.8)
Bga.P I:gdp Bga? i’g,dp

N =0 = - =0
for some appropriate Lose, L,pp, L:dp, Lygp and L, 4.. Here we note that
it can easily be verified that the pair (Ape,Csp) is observable provided
that (Apse, Cip) is observable.

Step 5.Z.2. Define

=+ = =+
Agp = Aler L“?.PCbP , Bgp = By L:adP:| ) (5.3.9)
0 Apbe Bopp  Lpar
and i Bt
Cop:=[0 Chp], Eu:= [ “P] . (5.3.10)
Epp
Then we solve for the unique positive definite solution Sgp of the Riccati
equation,
AppSep + Sep AL, — Bep Bl + SipClpCopSar = 0, (5.3.11)
together with the matrix T,r defined by
Tozr O
Toe := [ OJ:P 0] ;
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where T,,» is the unique solution to the Lyapunov equation,
AL Tooe + Tuep(AL,,) = EL(EL). (5.3.12)
Next, solve the unique solution Y, of the following Sylvester equation,

1 r 70
(AzP + S PC P wP)YmP + YEP( aaP) + S:I:PC P(Lubp)l
— B [BY, I).] =0. (5.313)

Let us denote the set of eigenvalues of A%, with a non-negative imaginary
part as {jwp1,- -, jwpket and for i = 1,- - -, ks, choose complex matrices
Vie, whose columns form a basis for the eigenspace,

{:c € C™er | g% (jwpsd — A%,,) = 0}, (5.3.14)
where nl,, is the dimension of A2 .. Then define
Fio = V([ By L] B Lrge] + Lase(Lse)
— [ + CX] [(Eoa) +Co¥e]Var, (5.3.15)
fori=1,--,kp, and
F, := blkdiag { Fip, -+, Fipr } (5.3.16)

It is shown in [95] that Fp > 0. Also, define

Ge = blkdiag { Vi3 B, (E%) Vie, -+, Vi o 00 (B0, Vir }. (5:3.17)

Step 5.Z.3. Transform the subsystem I}, i.e., (4’, C1, E', D), into the special

coordinate basis described in Theorem 2.3.1. Again we add here the sub-
script ‘q’ to all sub-matrices and transformations in the special coordinate
basis of the system X7 and re-arrange the transformed state variables as
z¥,
be
0
z
fo=| "9 1. (5.3.18)
Toq
.’L‘CQ

:UdQ
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Next, we compute

_E:-Q -
Fiq
Ep
rCy=| " (5.3.19)
EZ,
E.q
-Edq—
Note that Assumption 5.Z.4 implies Epq = 0. Then define the following
matrices:
Az-aQ L:bQCbQ 0 Bg-aQ L:dQ
Ag:=1| 0 Apbq 0 |, Bo:=|Bowaq Lbaq|, (5320)
0 LngCbQ AgaQ BgaQ L?qu
E},
Eq:= | Ey | (5.3.21)
E?,
and
0 0 0 Imeq O
CQ = FOQ 0 0 0 ) DQ = FOQ 0 CdQCC’iQ . (53.22)
By some simple algebra, it is straightforward to show that
0o 0 0
CL[I ~ Do(DyDg) DY) Cq = | 0 CpqCoa 0|, (5.3.23)
0 0 0
for some full row rank C’bq, and
AIaQ EjbqébQ 0
Aq — Bo(DyDo) 'DCo = | 0 Apbg o |, (53.24)
0 i’gbqébQ AgaQ
and
~+ ~+ !
B(—)i_aq Lado B(-J':zq LadQ
Bqo(D4,Do)™ B}, = | Boba igdq | Boa  Lbaa (5.3.25)
BgaQ LadQ BgaQ LadQ

~ ~0 ~ 4 ~ ~0
for some appropriate Labq, Labg> Ladqr Lbda 304 Ladq- Here we note that

it can easily be verified that the pair (fibe,C‘bQ) is observable provided
that (Apsq, Chq) is Observable.
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Step 5.Z.4. Define

s+ x =+
pqi= | Ao LaaCia) g [ng I_’“Q} ,  (5.3.26)
0 Appq Bova  Lbdq

and ) Bt
Coq:=[0 Cbqy], Ezq= { “Q] . (5.3.27)

Eyq
Then we solve for the unique positive definite solution S;q of the Riccati

equation,

AzqSzq + SeqAiq = BeaBrq + S2aCrqCraSse =0, (5.3.28)

together with the matrix T,q defined by

TazQ O
Teq = ,
¢ [ 0 0]

where T,.q is the unique solution to the Lyapunov equation,
At o Tozq + Tasa(AdLy) = ERL(EL) . (5.3.29)
Next, solve the unique solution Y, of the following Sylvester equation,
0
(AwQ + SzQC;:QC;Q)YIQ + YTQ(AgaQ)’ + SEQC:,EQ(LabQ)'

~0 t
~ Baq By L, dQ] =0. (5.3.30)

Let us denote the set of eigenvalues of AS, ., with a non-negative imaginary

part as {jwaq1, - -, jwqkg} and for i =1, - - -, kq, choose complex matrices
Viq, whose columns form a basis for the eigenspace,

{a: € €™ | 2% (jwgid — A%,,) = o}, (5.3.31)

where nd,, is the dimension of A%, . Then define

aaQ"*

~0 ~0 i ~0 =0
Fiq =V ([BgaQ Lgaq ] [Bgaq LadQ] + Lasa(Lasa)'
70\ ! =0,
- [(Labq) + CQYQ] [(Labq) + CQYQDViQa (5.3.32)
fori=1,--+,kq, and
F = blkdiag { Fig, -+ Frga } (5.3.33)
Again, it can be shown that F, > 0. Also, define

Gq 1= blicdiag { Vi BS(B%) Viay -+, Vit o B (ES) Viga }- (5:3.34)
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Step 5.Z.5. Define

ngp := dim {R"/S*(Z;)}-nl,, (5.3.35)
and
Naq := dim {R™/S*(T%)}-nd,, (5.3.36)
and partition
11— ' «
I (ICR) = [ N *] , (5.3.37)
where I is of dimension n;p X nq. Finally, define a constant matrix
GpF;! 0 0 0
0 T.pS;2 + ISATYS Y -Is;d 0
M := S - . (5.3.38)
0 ~ToqS o TS T:qS:4 0
0 0 0 GoF3t
Step 5.Z.6. The infimum ~* is then given by
7* = e (M). (5.3.39)
This will be justified in Theorem 5.3.1 below.

We have the following main theorem.

Theorem 5.3.1. Consider the given measurement feedback system (5.2.1).
Then under Assumptions 5.Z.1 to 5.Z.5, its infimum is given by (5.3.39).

Proof. Following the results of Scherer [96], it can be show that

¥ > = max{ Vmax (TS5, \fAmax(Go ) } : (5.3.40)
if and only if the following algebraic Riccati inequality,

[Ap — Bo(DLD:) ' DpCp]X + X[Ap — Be(D,.Ds) ' D Cp]’
+7 2EoE, 4+ XC, [ - De(D}, D) "' D;] Co X — Bp(Dy D) ™' B, <0,

has a positive definite solution. Then it follows from the results of [95] and
[96] (see also Theorem 3.1.2) and some simple algebraic manipulations that for
v > 75, the positive semi-definite matrix P(y) given by

(SzP - W—ZTxP)—.l 0

0 0 | (5.3.41)

PO =03 |
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is the lower limit point of the set
{P >0|3F : (A+ BF)P+P(A+BF)+ v 2PEE'P
+ (Ca + DyF) (€2 + DoF) < 0}.

Moreover, such a P(-y) does not exist when v < ;. By dual reasoning, one can
show that

v > '72; = max { \//\max(TzQS;Ql), \//\max(GQFQ_I) } s (5342)

if and only if the following algebraic Riccati inequality,
[Aq — Bo(DgDq) "' DoCQ)Z + Z[Aq — Bo(DgDq) ™' DoCo'
+7Y 2EQE, + ZCq [I — Do(DyDq) ' D] CqZ ~ Bo(DyDq) By < 0,
has a positive definite solution. For v > 7§, the positive semi-definite matrix

Q(7) given by

(Szq = 7_2TzQ)_l 0 -1

r, 5.3.43
0 o| Fra (5.3.43)

QM) = (T
is the lower limit point of the set
{Q >0|3K : (A+ KC1)Q +Q(A+KCy) +v2QCCHQ
+(E+KD)(E+KDy)' < o}.

Again, such a Q(y) does not exist when v < 4. Now, let us define

Yiq = max { v/ Amax(Ter S,/ Amax(:rms;c})} , (5.3.44)
and
Veoup 1= SUP {7 € (Ypq: ) | p[P(M)Q(7)] < 72}, (5.3.45)

where P(v) and Q(v) are as given in (5.3.41) and (5.3.43), respectively. Then
following the results of Scherer [96], it can easily be shown that

7 =m0t {3y, VAl GF ), VA G} (5346)
Also, it follows from Theorem 5.2.1 that

7:oup = {Amax [ _ N _ _
- ZQS:chPlS:tPl T11=QSW:Q1

Hence, the result of Theorem 5.3.1 follows. &

Toe S 4TSS —Isoiy?
Frer 1 7Twa” Car Q]} (5.3.47)
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We illustrate our main result in the following example.

Example 5.3.1. Consider a given system characterized by

011 -11 00 1 1
0 00 01 00 00
A=]0 1 0 01, B={1 0, E=|0 0], (5.3.48)
1 11 01 0 0 2 1
1 11 10 01 1 2
C, = [— 11 -21.876238 —4.2239 —2.425699] Dy = 1 0
12 3 2 1 R R
(5.3.49)
and
0 0100 10
C2= 8 (; 8 8 (1) 5 D2= 8 8 3 D22 :O (5350)
0 0100 00

First, it is simple to verify that the subsystem X, is left invertible with two
invariant zeros at +j and Assumption 5.Z.2 is satisfied. Applying the special
coordinate basis transformation to X, we have

0 00 -1 0
1.3660254 0.3660254 0 0 O
I, = | 0.1988066 1.9900945 0 0 O],
0 01 00
0 00 01
Ao = [-0.1614784 0.2246812] B _[0.6040578 —0.1762197]
= = | 0.6026457 —0.8385216 |’ 7P 104723969  0.4878984 |’

o _ 13544397 0.2665382 5 -|0 0
P = 10.2665382 2.0058434 |’ bp = ’

_[o -1 P - 0.9489977  1.0485243
11 o]’ abP — | _(.9489977 —1.0485243|’

and L 0 1
0 1_10 0 _
[B(O)ap Ladp] - [0 _1] ! EGP - [_1 _1] :
Following Step 5.Z.2, we obtain

S = 0.6180716 —0.2516670 T = 0 0
TP T 1 -0.2516670  0.7339429 |’ 710 0]’

Y. = —0.6928337 —0.0822109
P = 1-0.3161228  0.3068152 ]’
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and
F, = 2.3885733, Gp = 3.5.

Next, the subsystem X, is invertible and of nonminimum phase with invariant
zeros at {0.078944, £52.302011, —4.095803 }. Hence, Assumption 5.Z.4 is au-
tomatically satisfied. Applying the special coordinate basis transformation to

3 we obtain

0.2148444  0.0018481  0.2169145  0.0698280 0.2
0.5503097  0.6645646 —0.6352193  0.8023543 0.4
[.q = | -0.7990597 —0.7456317 —0.5938518 —0.5805731 0.6 | ,
~0.0941402 -0.0440333  0.3437855  0.0892284 0.4
-0.0603521  0.0210926 —0.2803500 —0.0795282 0.2
Agzq = Al,, =0.0789442, B, =[2.3596219 —0.1725085], C,q =0,

aaQ

E},=[0.1593412 0.0009204 0.0116587 0.1593412]

and
AO —

aaQ T

0.8733954 —14.3566212
0.4222493 —0.8733953 |’

[BO i° ]= 13.8502316 —10.8089077
0aq adQ 0.3251762  —1.3752299|°

[——1.9958628 6.3511003 —0.7973732 —1.9958628]

0 _
E —0.5082606 0.0920508 —0.4908900 —0.5082606

aQ T
Following Step 5.Z.4, we have

Szq = 354527292, T.q = 0.3224810, Y,q = [—5.2529064 93.6614674],

and
F, = 8.4694885, G, = 35.4527292.

Finally, evaluate

1.4653098 0 0 0 0
0 —0.0000103 -0.0000451 0.0003744 0
M = 0 0.0000632  0.0002763 —0.0022958 0
0 —0.0002503 -0.0010946 0.0090961 0
0 0 0 0 0.2110284
We obtain

7" = vV Amax(M) = 1.2104998. E



Chapter 6

Solutions to Continuous-
time H-, Problem

THE MAIN CONTRIBUTION of this chapter is to provide closed-form solutions
to the H., suboptimal control problem for continuous-time systems. Here by
closed-form solutions we mean solutions which are explicitly parameterized in
terms of v and are obtained without explicitly requiring a value for v. Hence
one can easily tune the parameter v to obtain the desired level of disturbance
attenuation. Such a design can be called a ‘one-shot’ design. We provide these
closed-form solutions for a class of singular H,, suboptimal control problems
for which the subsystem from the control input to the controlled output and
the subsystem from the disturbance to the measurement output satisfy certain
geometric conditions and some other minor assumptions, namely, Assumptions
5.M.1 to 5.M.7 of Chapter 5. Moreover, for this class of systems we also provide
conditions under which the H,, optimal control problem via state feedback has
a solution. Explicit expressions for the solutions will also be given. Finally the
issue of pole-zero cancellations in the closed-loop system resulting from the Ho,
optimal or suboptimal state or output feedback control laws are examined.

Some significant attributes of our method of generating the closed-form
solutions in the H,, suboptimal control problem are as follows:

1. No H..-CARE’s are solved in generating the closed-form solutions. As a
result, all the numerical difficulties associated with the H.,-CARE’s are

alleviated.

2. The value for v can be adjusted on line when the closed-form solution to
the H, suboptimal control problem is implemented using either software
or hardware. Since the effect of such a ‘knob’ on the performance and the

131
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robustness of the closed-loop system is straightforward, it should be very
appealing from a practical point of view.

3. Having closed-form solutions to the H., suboptimal control problem en-
ables us to understand the behavior of the controller (i.e., high-gain, band-
width, etc.) as the parameter v approaches the infimum value of the Hy,
norm of T}, over all stabilizing controllers.

The above mentioned results were reported in Saberi, Chen and Lin [86]. In
the case when Assumptions 5.M.1 and 5.M.7 are not satisfied, a similar method
will also be adapted to compute y-suboptimal solutions. It is, however, no
longer a closed-form one. The outline of this chapter is as follows: Section 6.1
gives a closed-form solution to the H,, suboptimal state feedback control prob-
lem, while Section 6.2 provides a closed-form solution (full order controller) to
the H, suboptimal measurement feedback control problem. A reduced order
~v-suboptimal controller design method is introduced in Section 6.3. Finally, all
main results are to be proved in Section 6.4.

6.1. Full State Feedback

We consider in this section the H,, optimization problem for the following full
state feedback systems characterized by

zt=Az+Bu+ E w,
y = T (6.1.1)
h=Ciz+rsu+ Dy w,

where € R" is the state, u € R™ is the control input, w € R? is the external
disturbance input, and A € R’ is the controlled output of ¥. Again, we let Xp
be the subsystem characterized by the matrix quadruple (4, B,C3, D2). As in
Section 5.1 of Chapter 5, we first make the following assumptions:

Assumption 6.F.1: (A, B) is stabilizable;

Assumption 6.F.2: . has no invariant zero on the imaginary axis;

Assumption 6.F.3: Im (E) C V= (%;) + S~ (Zp); and

Assumption 6.F.4: Dss = Q.

We introduce a procedure for obtaining the closed-form solutions for the

H, suboptimal state feedback control problem utilizing an asymptotic time-
scale and eigenstructure assignment (ATEA). The concept of the ATEA design
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procedure was proposed originally in Saberi and Sannuti [90] and its complete
time-scale properties and Lyapunov stability analysis were done in Chen [10].
It uses the special coordinate basis of the given system (See Theorem 2.3.1).
We also give conditions under which the H,, optimal control problem has a
solution. Furthermore, explicit expressions for these optimal solutions will be
given. The following is a step-by-step algorithm to construct the closed-form
of the y-suboptimal state feedback laws, which are explicitly parameterized by
v > v* and a tuning parameter €.

Step 6.F.1: Transform the system I, into the special coordinate basis as given
by Theorem 2.3.1 in Chapter 2. To all sub-matrices and transformations
in the special coordinate basis of T, we append a subscript » to signify
their relation to the system X». We also choose the output transformation
I'oe to have the following form:

— |[Imer O
rop—[ " r] (6.1.2)

where mgr = rank (D;). Next, we compute

E,
EbP
E=T_E=|E.|. (6.1.3)

Note that Assumption 6.F.3 implies Epp = 0. Also, for economy of no-
tation, we denote n,p the dimension of R"/S*(Zs). Note that nge =0
if and only if the system X is right invertible and is of minimum phase.
Next, define

A+ Lt C Bt Lt
AllP — { aaP abp bP] ) Bup - [ Oap] , "413P = [ dr’] ,

0 Appp Bose Lyap
0 0 CurC, E}
Czlp = Par? [0 Cbp] ) C23P =T [ y P] ) E.r = [Eb: )

and
Agp = A11p — A13p (Ch30Ca30) ' C3,.Co1p,

BupBl, = Bi1pB}1p + A135(Ch3,Ca3p) "1 A,

Cl.Cup = C31,Co1p — C15C12(Cia5Ca30) ™' C3n.Cate.
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Step 6.F.2: Solve for the unique positive definite solution S, of the algebraic
matrix Riccati equation,

AgpSep + Sep ALy — BepBl, + SzpCl.CrpSep = 0, (6.1.4)
together with the matrix T, defined by
Ta.aP O
Tp = , 6.1.5
= 0] (615)

where Tpqp is the unique semi-positive solution of the algebraic matrix
Lyapunov equation,

A+

aapP

Toar + Tuar(AL,:) = EL(EL). (6.1.6)

Then it was shown in Section 5.1 of Chapter 5 that the infimum for the
given system (6.1.1) is given by

7" =\ Amax(TorSar)- (6.1.7)

Then, for any v > ~v*, we define

Fuly) = [ Fo(n) Fbo('Y)} _ [ By P } ’
FR(M Fuly) (C33p Ca3p) A3, Po+Ci3p Carr)
(6.1.8)
where
I A (6.1.9)
and define

Afip = A1p — [Buir Az | Fui(v).

We will show later on that the eigenvalues of A¢;, are in C~. Let us
partition [Ffj (v) Fy(v)] as,

Fi() Fyi(v)

(i) Fa]=| 200 FBeO) | (6.1.10)

F:i.mdp (7) Fblmdp (7)

where Ft.(y) and Fy1i(v) are of dimensions 1 x n}, and 1 X nge, respec-

ali

tively.

Step 6.F.3: Let A, be any arbitrary mcp X n.p matrix subject to the constraint
that

Ach = AccP - BCPACP’ (6111)

is a stable matrix. Note that the existence of such a A.; is guaranteed

by the property that (Accp, Ber) is controllable.
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Step 6.F.4: This step makes use of subsystems, i = 1 to myp, represented by
(2.3.14) of Chapter 2. Let A; = { A\i1, Az, -+, Aig, },© = 1 tomg,, be the
sets of g; elements all in €™, which are closed under complex conjugation,
where ¢; and mgy; are as defined in Theorem 2.3.1 but associated with the
special coordinate basis of Xp. Let Age := AjUAU---UAp,,. Fori=1
to mqpe, we define

qi
pi(s) := H(S - /\ij) =s% + F.;lsq‘"l + 4+ Figi—18+ Fy,,  (6.1.12)
J=1

and
- 1

Fi(E)Ai) = E_I [I?iq,'a EFiqi—ly Tty EQi—lﬂl] . (6113)

Step 6.F.5: In this step, various gains calculated in Steps 6.F.2 to 6.F.4 are
put together to form a composite state feedback gain for the given system

Yp. Let
[ Fli(V)Fg, [en .
F:1(7,5,Adp) = Fﬁz(’Y).F"zqz/&:‘?2 |
‘Fjlmp (V)F’"’dl’qmdp /etmar |
and
[ Fo1(7) Fig, /e -

. Fya(7)Faq, /€2
Fbl(’YaE,AdP) = . ‘12

».Fblmdp (’Y)Fmdpqmdp /Edep .

Then define the state feedback gain F(7,&,Agp, Acp) a8
F(’Y’ 6) Ad!’1 ACP) = _FiP (F—‘(,Y7 E: AdP1 ACP) + FO) Fs_Pl! (61'14)

where F(v,¢,Agp, Acp) is given by

Ffi(7) Feo(7) 0 0 0
Fr(rehw) Fn(ve,Aa) 0 0 Fale,Aa)|, (6.115)
0 0 0 Ay 0
Cg:xp CObP C(;;p COCP Codp
Fo=|El, Ear E;, Eir Euw |, (6.1.16)

Ef, Ear EL, 0 0
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and where
En -+ Eimg

Egp = . , (6.1.17)
Emdpl o EmdedP

and
Fu(e, Aup) = diag [F’l(s, A1), Fa(e, A2, -, Frnge(esAmee)]- (6118)
This completes the algorithm. @l
We have the following theorem.

Theorem 6.1.1. Consider the full state feedback system (6.1.1) which satisfies
Assumptions 6.F.1 to 6.F.4. Then with state feedback gain given by (6.1.14),
we have the following properties:

1. For any v > ~*, for any Ag C €~ which is closed under complex con-
jugation and for any A.p subject to the constraints that AS_ . is stable,
there exists an £ > 0 such that for all 0 < ¢ < &*, the state feedback
control law,

u=F(v,e,Aip, Acp)z, (6.1.19)

with F(vy,e, Agp, Acp) being given as in (6.1.14) is a y-suboptimal control
law for the given system (6.1.1). Namely, the closed-loop system com-
prising ¥, and the state feedback law (6.1.19) is internally stable and the
Ho,-norm of the closed-loop transfer function from the disturbance w to
the controlled output h is less than v, i.e., || Thwlloo < 7.

2. Moreover as € — 0, the poles of the closed-loop system, i.e., the eigenval-
ues of A+ BF(,¢€, Agp,Acp), are given by

AdP
€

’\(A;ap)’ /\(Ach), ’\( flp)+0(8) and +0(1))

Clearly, there are at least ngp poles of the closed-loop system have infinite
negative real parts as € — 0.

Proof. See Subsection 6.4.A. &

The following remarks are in order.

Remark 6.1.1. (Interpretations of ¢, Ayr and A.p). Theorem 6.1.1 shows
that the closed-loop system under H,, suboptimal state feedback laws, i.e.,
Thw, has fast eigenvalues Agp/e. So the set of parameters Agy in the Hy
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suboptimal gain F(v,&, Agp, Acr) of (6.1.14) represents the asymptotes of these
fast eigenvalues while € represents their time-scale. The closed-loop system
also has A(AS..) as slow eigenvalues. These eigenvalues can be assigned to
any desired locations in €~ by choosing an appropriate A... Hence, the set
of parameters A, in the H,, suboptimal state feedback gain prescribes the
locations of these slow eigenvalues. ®

Remark 6.1.2. (Regular Case). If D, is injective, it is obvious from our

algorithm that F(y,e,A4p,Acr) = F(v) does not depend on €, Agr and Agp,
and is given by

F(7) = T [Cp + Fo(7)  Cowe + Fro(1)  Cour 1T

This corresponds to the regular case, and is the central controller given in
Doyle et al [39]. Moreover, if v = oo, the result reduces to the solution of the
well-known LQG problem. &]

Remark 6.1.3. Finally, we would like to note that if Assumption 6.F.3, i.e.,
the geometric condition, is not satisfied, one can use the iterative procedure
in Chapter 5 to find an approximation of the infimum, say 5*. Moreover,
the algorithm for finding the y-suboptimal state feedback laws can be slightly
modified to handle this situation. To be more specific, one only needs to modify
Step 6.F.2 slightly as follows:

Step 6.F.2m: For any v > 4*, we define

F() Fbo(’)’)]
Fi(v) Fu(v)

where P, is the positive definite solution of the Riccati equation,

[ ilPP-‘E
(C335Ca3p) " [Al3p Pz +C3:Carr]

Fu(v) = [

PoAzp + AL Py + PEcp Bl Po[Y* — PiBep B,y Pe + Cp,Cor =0,
and define
Ay = Ane — [Bur  Ause] Fra(7)-
Let’s partition [ F; (7) Fu(v)] as,

F,()  F(y)

(FX(y) Fu(m]= F:u(’Y) Fbl?(’)‘)

Flime @ Foimae (7)

where F (v) and Fyyi(7) are of dimensions 1 x n, and 1 X nge.

alz
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The rest steps of the algorithm, i.e., Steps 6.F.1, 6.F.3 to 6.F.5, remain un-
changed. All results in Theorem 6.1.1 are valid for this situation as well. The
only difference is that the control law is no longer of closed-form. &

The following theorem deals with pole-zero cancellations in the closed-loop
system Th,, under the state feedback law u = F'(7y,&, Agp, Acp ).

Theorem 6.1.2. (Pole-zero Cancellations). A(A4;,,), the stable invariant
zeros of the system Y., and A(AZ,.) are the output decoupling zeros of the
closed-loop transfer matrix Tj,,. Hence, they cancel with the poles of Th,,. @

Proof. See Subsection 6.4.B. &
We illustrate our algorithm in the following example.

Example 6.1.1. Re-consider the system in Example 5.1.1, i.e., a full state
feedback system characterized by

1110 1 0 0 O 5 1
010 0 1 00 0 00
A=|011 0 1|, B=|1 0 o|, E=|0 0}, (6.1.20)
1111 1 00 1 2 3
11110 010 1 4
and
0010 O 100 00
1000 0 1 oo o _loo
62‘01000’D2‘000’D22‘00 (6.1.21)
001 0 O 000 00

It is easy to verify that (A, B) is stabilizable, and the system £, is neither
right nor left invertible and is of nonminimum phase with an invariant zero at
s = 1. Moreover, it is already in the form of the special coordinate basis with
nte =1,n; =nl =0, npp =2 and nee = ngp = 1. Also, it is simple to
see that Im (E) C V~(Z;) US™(Z;) since Epe = 0. Hence, all Assumptions
6.F.1 to 6.F .4 are satisfied. Moreover, it was obtained in Example 5.1.1 that
the infimum is given by

v* = 6.4679044.
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Figure 6.1.1: Maximum singular values of T}, (state feedback case).

Following the algorithm in this section, we obtain the closed-form solution of
the y-suboptimal state feedback gains, F(v,€, Aap, Acp), which is given by

i —0.16367372
0.132909+7 — 5.560084

0.185427~2 — 3.009097
0.132909+% — 5.560084

—0.318336~2 + 10.696930
0.132909~* — 5.560084

0.2947907* M\ gp 7
(0.1329094% — 5.560084)e

(0.102145v° — 12.824695) A 4p
(0.132909+ - 5.560084)¢
(0.1636737% — 2.127749) Mgp ,

_ -1
1+ (0.1329094% — 5.560084)e

-1+

-1

-1+

0 -1 "'Acr’
! 0 Age 0 |
(6.1.22)

where the scalars Agp < 0and A.p > 1 (note that A., must be greater than one
in order to have stable AS..). We demonstrate our results in Figure 6.1.1 by the
plots of maximum singular values of the closed-loop transfer function matrix
for several values of v and €. Note that in Figure 6.1.1, we choose parameters
Agp = —1 and A =3. ®
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6.2. Full Order Output Feedback

This section deals with H,, suboptimal and optimal design using full order
measurement output feedback laws, i.e., the dynamical order of these control
laws will be exactly the same as that of the given system. To be more specific,
we consider the following measurement feedback system

t=Az+ Bu+ E w,
y=Cz + D w, (6.2.1)
h=Cyz+ Dy u + Dy w,

where z € R" is the state, u € R™ is the control input, w € R? is the external
disturbance input, ¥y € IR? is the measurement output, and A € R’ is the
controlled output of ¥. Again, we let =, be the subsystem characterized by the
matrix quadruple (A4, B, C2, Dy) and T, be the subsystem characterized by the
matrix quadruple (A4, E, Cy, D;). The following assumptions are made first:

Assumption 6.M.1: (A, B) is stabilizable;

Assumption 6.M.2: T; has no invariant zero on the imaginary axis;
Assumption 6.M.3: Im (E) CV~(Zp) + S™(Zp);

Assumption 6.M.4: (A, C}) is detectable;

Assumption 6.M.5: T4 has no invariant zero on the imaginary axis;
Assumption 6.M.6: Ker (C;) D V= (Zq) NS~ (Zg); and

Assumption 6.M.7: Dyy = 0.

The class of output feedback controllers that we consider in this section are
basically observer based control laws and can be regarded as an extension of the
central output feedback controller that was proposed in Doyle et al [39] for the
regular case. We have modified the central output feedback controller of the
regular case to deal with the singular case. This modification will be discussed
later on. We assume that the infimum v* has been obtained using methods
given in Section 5.2 of Chapter 5. The procedure for obtaining the closed-form
of the H,, suboptimal output feedback laws for any v > 7* proceeds as follows.

Step 6.M.1: Define an auxiliary full state feedback system

y=

{a’c:Az+Bu+ E w,
h=Cyz+ Ds u + Dy w,
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and proceed to perform Steps 6.F.1 to 6.F.5 of Section 6.1 to obtain the
gain matrix F(v,€, Agp, Acp). Also, define

[(S,,, =¥ Tep)™! 0] o

P(y) := (T 0 0 (6.2.2)

Step 6.M.2: Define another auxiliary full state feedback system as follows,

t=Az+Clu+ C; w,
Zq {y—_- T (6.2.3)
h =FE z + D{u+ Dy w,

and proceed to perform Steps 6.F.1 to 6.F.5 of Section 6.1 but for this aux-
iliary system to obtain a gain F'(v, €, Adgq, Acq). Let K (v, €, Aaq, Deg) 1=
F(v,e,Adq,Acg)’- Also, define

' [(qu _7_2Tm)‘1 0

0 0 r,a. (6.2.4)

QM) = (T3
Step 6.M.3: Construct the following full order observer based controller,

) = Acm ch )
Semp : { ! p U+ Bemp y (6.2.5)

u=Cmpv+ 0 uy,
where
Acmp = A + 7_2EE’P(7) + BF(’)/’S’AdeACP)
+[1=772Q()PM] ™ { K (7,6, Aiay ) [C1 + ¥ 2D1E'P(7)]
+772Q()[A'P(v) + P(v)A + CyCa + v 2P (v)EE'P(y))

+772Q(M)[P(v)B + C3 D3] F(v,¢, As, Acp)}, (6.2.6)
Bemp = —[I = 772Q()P()] " K (7,6, Aday Aca), (6.2.7)
Cemp = F(7,6,Aap, Acp). (6.2.8)

It is to be shown that L.mp is indeed a v-suboptimal controller. Clearly,
it has a dynamical order of n, i.e., it is a full order output feedback

controller.

We have the following theorem.

Theorem 6.2.1. Consider the given measurement feedback system (6.2.1) sat-
isfying Assumptions 6.M.1 to 6.M.7. Then for any v > v*, for any A4 C Cc-
and Agq C €~ which are closed under complex conjugation, and for any Ace
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and A.q subject to the constraints that AZ . and AZ., are stable matrices,
there exists an e* > 0 such that for all 0 < € < ¢*, the control law Zn,
as given in (6.2.5) is y-suboptimal controller, namely, the closed-loop system
comprising ¥ and the output feedback controller L mp, is internally stable and
the H,-norm of the closed-loop transfer matrix from the disturbance w to the
controlled output A is less than 7, i.e, [|[Thwlleo < 7.

Proof. See Subsection 6.4.C. i

The following theorem deals with the issue of pole-zero cancellations and
the closed-loop eigenvalues in the y-suboptimal output feedback control.

Theorem 6.2.2. Consider the given measurement feedback system (6.2.1) sat-
isfying Assumptions 6.M.1 to 6.M.7 with the y-suboptimal control Ecmp as given
in (6.2.5). Then the following properties hold:

1. A(AZ,,), the stable invariant zeros of the system (4,B,C3,D2), and
A(A¢,,) are the output decoupling zeros of the closed-loop system Th.,.
Hence they cancel with the poles of Tho,.

2. A(AL,.), the stable invariant zeros of the system (4, E,C1, D), and

aaQ

A(AZ,,) are the input decoupling zeros of the closed-loop system Tha-

Hence they cancel with the poles of Thy,.

3. Ase — 0, the fast eigenvalues of the closed-loop system are asymptotically
given by Age/e + 0(1) and Agq/e + 0(1).

Proof. See Subsection 6.4.D. &

The following remarks are in order.

Remark 6.2.1. (Interpretations of &, Agp, Adq, Acr and Aq). Again, as
in Remark 6.1.1, the set of parameters Agr and A4q represent the asymptotes
of the fast eigenvalues of the closed-loop system while ¢ represents their time-
scale. The set of parameters A., and A.q prescribe the locations of the slow
eigenvalues of the closed-loop system corresponding to A(A%..) and A(Ag)-

The eigenvalues can be assigned to any desired locations in €~ by choosing
appropriate A, and Agq- ®

Remark 6.2.2. (Regular Case). If D; is surjective and D is injective, it
is simple to verify that F(v,e,Agp, Acp) = F() and K(v,¢,Adq, Acq) = K(7)
depend only on v. Moreover, we have

[P(7)B + CyD3) F(v) + [A'P(v) + P(y)A+ C5Cy + 7 *P(y)EE'P(v)] = 0.
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Hence, T, reduces to

® ‘ { v = Acn,,) v+ chp v,
cmp _
u = Ccmp v+ 0 Y

where

Ac,,,p = A +'y“"‘EE’P(7) + BF(v)
+ [ =v72Q(MP()] ' K(M)[Ci + 772D\ E' P(v)],

Bemp = — [I =77 2Q()P(1)] ™" K(v),
Ccmp = F(7)

This corresponds to the regular case, and is the central controller given in Doyle
et al [39]. ®

Remark 6.2.3. It is known that for a mixed sensitivity problem (see for ex-
ample, Kwakernaak [52] and Postlewaite et al [80]),

1. the H., design results in pole-zero cancellation between plant and con-
troller at all of the stable poles of the uncompensated plant;

2. the closed-loop poles include the mirror image positions of all unstable
poles of the plant.

We would like to point out that none of these behaviors arise in the class of
problem that we have considered. It is obvious that the class of mixed sensi-
tivity problem and our class of problem are disjoint since a mixed sensitivity
problem always involves a feedthrough term from the disturbance to the con-
trolled output. @]

Remark 6.2.4. Finally, we would like to note that if Assumptions 6.M.3 and
6.M.6, i.e., the geometric conditions, are not satisfied, one can use the itera-
tive procedure in Chapter 5 to find an approximation of the infimum, say ¥*.
Moreover, the algorithm for finding the «-suboptimal output feedback laws can
also be modified to handle this situation. To be more specific, one only needs
to modify Steps 6.M.1 and 7.M.2 slightly as follows:

Step 6.M.1m: Define an auxiliary full state feedback system
i= Az+ Bu+ E w,
y= =z
h=Cy x + Ds u+ Dy w,



144 Chapter 6. Solutions to Continuous-time H, Problem

and proceed to perform Steps 6.F.1, 6.F.2m, and 6.F.3 to 6.F.5 of Sec-
tion 6.1 to obtain the gain matrix F(-y, €, Agp, Acp) and P,. Let Ppp := P;.

Also, define
1y [Pee 0]
P(v) := (rﬂ}'[ 0" 0} r;l (6.2.9)

Step 6.M.2m: Define another auxiliary full state feedback system as follows,

y= =z

t=A'z+ Clu+ C w,
% {
h=FE"z + Dj u+ Dj w,

and proceed to perform Steps 6.F.1, 6.F.2m, and 6.F.3 to 6.F.5 of Sec-
tion 6.1 but for this auxiliary system to obtain F(v,e,Agp, Acp) and P;.
Let K(v,¢, Adq, Decq) = F(7,6,Adq, Acq)’ and Q.q := P;. Also, define

z 0
QM) = (T3 [QOQ O] r-t, (6.210)

The last step of the algorithm, i.e., Step 6.M.3, remains unchanged. All results
in Theorems 6.2.1 and 6.2.2 are valid for this situation as well. However, the
output feedback control law is not of closed-form any more. &

Again, we illustrate our results in the following example.

Example 6.2.1. Consider a given measurement feedback system characterized
by matrices 4, B, E, Ca, D and Dy, as given in Example 6.1.1 of the previous
section and
10 -2 -3 -2 -1 10
Cl_{l 5 3 9 1], Dl-—_[ ] (6.2.11)
We first note that the pair (4, C;) is detectable, and the system (A, E, Cy, D)
is invertible (hence Assumption 6.M.6 is satisfied) and of nonminimum phase

with invariant zeros at { —1.630662, —3.593415, 0.521129+50.363042 }. It was
obtained in Example 5.2.1 that

v* =13.638725.

The closed-form to the output feedback suboptirhal controllers as in (6.2.5) to
(6.2.8) with F(v,€, Aap, Acp) given by (6.1.22),

K (7,6, Mq,8cq) = [Ko  Ki],. (6.2.12)



6.2. Full Order Output Feedback 145

where

[ —43.917* 4+ 4257.869% — 97026.13
7.12v% — 790.42% + 19405.23
-12.45+4% + 372.6579% — 0.02
7.12v* — 790.42+% + 19405.23
Ko = —48.1%1474 + 1803.08+% + 0.02

7.129% — 790.424° + 19405.23 ’
62.577* — 1212.58+° — 38810.46

7.12v% — 790.424% + 19405.23
17.807* — 83.04~% — 19405.21

| 7.129% — 790.42+% +19405.23 |

and
- Aa (0.24v* — 10.14v%) A 1
—5 +0.090909248 — 49
€ (7.12+* — 790.427° + 19405.23)e
_ 4 2
 0.363636 — — 3.397 + 19(2).917 ) Ada
(7.12+* — 790.42¢% + 19405.23)¢

4 _ 2

Ky = — 0.3827%6 — (2.047* — 108.95v*) A aq

(7.12v% — 790.427* + 19405.23)¢ ’
(=1.137" + 14.869%) Mg
(7.127* — 790.42~2 + 19405.23)¢

A (0.699* — 74.56v%) A4
—1.272726 + 0.363636 222 — )
L + € (7.127% — 790.42+* + 19405.23)c

— 2.545451 + 0.272727%& -

1
P =
() = 513290972 — 5.560082 <

0.4277072 —0.29658+2 0.16367% 0
—0.2965872 —15.8338 + 0.5841572  3.0091 — 0.18543¢% 0
0.1636792  3.0091 — 0.185437y%> —5.1368 + 0.185437% 0
0

0

0] 0 0
0 0 0

O O O O

Q) = ik
0.0711937% — 7.904171+2 + 194.052288

("/2Q1 + Qo),
where

0.083104  0.124442 0.484459 —0.768087 —0.249208
0.124423  1.778706 0.340500 —1.759522 —1.184163

Q1 = 0.484459  0.340500 2.917279 -4.330299 —1.256601 |,
—0.768087 —1.759522 —4.330299  7.332315 2.613520
—0.249208 —1.184163 —1.256601  2.613520 1.160281
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Figure 6.2.1: Maximum singular values of Th,, (output feedback case).

and

-3.0576430 —3.7265760 —18.030782  27.934279  8.7345960
—-3.7265760 —122.50790 6.5460280  79.188507  70.727376

Qo = | —18.030781 6.5460280 -113.22255  153.81266  36.981101
27.934279 79.188509  153.81266 —272.47959 —102.79025
8.7345960 70.727376  36.981101 —102.79025 —55.552230

As in the previous example, we demonstrate our results in Figure 6.2.1 by the
plots of maximum singular values of the closed-loop transfer function matrix

for several values of v and €. Note that in Figure 6.2.1, we choose Agp = —1,
Ace =3 and M\jq = —1. Note that since £ for this example is left invertible,
the gain K(v,e, Aiq, Acq) depends only on 7y, € and Agq. El

6.3. Reduced Order Output Feedback

In this section, the H, control problem with reduced order measurement output
feedback is investigated. For the case that some entries of the measurement vec-
tor are not noise-corrupted, we show that one can find dynamic compensators
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of a lower dynamical order. More specifically, we will show that there exists a
time-invariant, finite-dimensional dynamic compensator Zcmp of the form

v = Acm + B y
Semp { p Y+ Zemp ¥ (6.3.1)

U = Cemp ¥ + Demp ¥,

and with a McMillan degree n — rank[{C;, D;]+ rank(D;) < n for T of (6.2.1)
such that the resulting closed loop system is internally stable and the closed loop
transfer function from w to h has an H, norm less than v > «v*. Moreover, we
give an explicit construction of such a reduced order compensator. The result
of this section was previously reported in [103] while the original idea for how
to construct a reduced order observer for a general system was given by Chen
et al [22].

Let v* be the infimum for the given system I of (6.2.1) and let v > ¥* be
given. Using the result of the previous section, one can easily find two positive

semi-definite matrices P and @ which satisfy
A'P+ PA+CLCy, + PEE'P/y* PB+ C4{D
F’Y(P) = 1] 2-2 Y] /7 ’ 2 2] Z 0,
B'P + D)C, D; D,

and

Go(@ = [N T QC3C:Q/7* QC} + ED; 20

G1Q + D E' D, D]
respectively, i.e., P and @ are the solutions of the quadratic matrix inequalities
F,(P) > 0 and G,(Q) > 0. Next, we define an auxiliary system,

Tpq = Apg Teq + Beq 4 + Epq Weq,

Yrq { y = Cip Tpq + Dipq Weq, (6.3.2)
hoq = C2p Tpq + Dap u,

where

[ CéP

or | 1€ Dul=rp), |2 1B Dival=61(@)

Dipq

and

Apq := A+ EE'P/v* + (v*I — QP)™'QC},Cap,
Brq := B+ (y?I - QP)™'QC}. Doy,

Eeq = (I - QP/y*) "1 Eq,

Cir = C1 + D1E'P/~2.

It can be shown (see e.g., [100]) that i) (Apq, Brq,Cor, D25) is right invertible
and of minimum phase; and ii) (Apq, Erq,Cir, Dipg) is left invertible and of
minimum phase.

(6.3.3)
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We will build the reduced order compensator upon the above auxiliary sys-
tem and show later that it works for the original system T of (6.2.1) as well.
Let us first eliminate states which can be directly observed and concentrate on
those states which still need to be observed. In order to do this, we need to
choose a suitable basis. Without loss of generality, but for simplicity of pre-
sentation, we assume that the matrices Ci» and Djpq are transformed in the
following form:

Cro = [0 01’02] and Dapq = [Daﬂ]. (6.3.4)

Thus, the system Tpq as in (6.3.2) can be partitioned as follows,
1) _ [Ann A (11 B, E,
(2)-[a 2] @)+ [B] e 2] »e

Yo 0 Chro T D1y (6.3.5)
)=l wlG) ]

hPQ = Cop Tpq + Dap wu,

where (), 7)' = Tpq and (yp, y;) = y. We observe that y; = z; is already
available and need not be estimated. Thus we need to estimate only the state
variable 2. We first rewrite the state equation for z; in terms of the output
y1 and state z; as follows,

71 = Anyr + A12z2 + Biu + Ejweq, (6.3.6)
where y; and u are known signals. Equation (6.3.6) can be rewritten as
§ = A1272 + E1weq = §1 — An171 — Biu. (6.3.7)
Thus, observation of x5 is made via (6.3.7) as well as by
Yo = C1,02%2 + D1 ,0Weq.

Now, a reduced order system suitable for estimating the state zo is given by

) A22  za +[An B:] (%)4- Ey  weq,

v\ _ | Cioz Do
(5)=[%2]- [ wee

Before we proceed to construct the reduced order observer, we present in the

(6.3.8)

following a key lemma which plays an important role in our design.
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Lemma 6.3.1. Let X denote the subsystem characterized by

— C1,02 Do
(AﬂaBvaRiDR) R (A229 E21 [A12 }, [ El .

Then we have

1. Eg is (non-)minimum phase if and only if (4sq, Epq, Cip, Dipq) is (non-)
minimum phase.

2. Ey is detectable if and only if (Apq, Erq, Cir, Dirq) is detectable.
3. Iy is left invertible if and only if (Arq, Frq,Cir, Dipq) is left invertible.
4. Invariant zeros of X are the same as those of (Arq, Erq, Cip, Dipq).

5. Orders of infinite zeros of the reduced order system, Xy, are reduced by
one from those of (4pq, Erq, Cir, Dirq)-

Proof. It follows from Proposition 2.2.1 of Chen [10]. &

Now, based on equation (6.3.8), we can construct a reduced order observer
of z9 as,

A a C ,\
Tg = Az + Anh + Bau + Ky ({y;:l - [ 1‘02] 1:2> ,

Ao
N 0 ~ I
Tpq = [In—-—k:] T2 + [5]?/1,

where Ky, is the observer gain matrix for the reduced order system and is chosen
such that

and

Ay

is asymptotically stable. In order to move the dependency on 91, let us partition
Ky = [Kro, Kr1] to be compatible with the dimensions of the output (y5, y1)’-
Then (see e.g. [53]), one can define a new variable v := Zo — Kr1y1 and obtain
a new dynamic equation,

C
Azz — Kr [ 1’02] ;

0 = (Az2 — KnoCr02 — KriA12)v + (B2 — KriB1)u
+ [KRO’ A21 - KR1A11 + (Azz - KROCL02 - KR1A12)KR1] (z(l)) . (6.3.9)

Thus by implementing (6.3.9), Tp can be obtained without generating y;.
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Theorem 6.3.1. Let T4 be given by (6.3.2). Then there exist for every € > 0,
a state feedback gain F and a reduced order observer gain matrix Ky such that
the following reduced order observer based controller,

¥ = (A22 — KroCi,02 — Kr1A12)v + (By — KriBi)u

+ [Kro, A21 — Kr1411 + (A22 — KaoCr02 — Kr1A12)Kri] v,

_ A 0 _ 0o I
u=—Fzpq = F[In_k]v F[O le]y’

Temp !

(6.3.10)
when applied to pq is internally stabilizing and yields an Ho, norm of the
closed-loop transfer matrix from wpq to hpq strictly less than e. Moreover, if
T cmp is applied to the original system ¥ of (6.2.1), then the resulting closed-
loop system comprising ¥ and Xy, is internally stable and the Ho, norm of
the closed-loop transfer matrix from w to h is less than . &

Proof. See Subsection 6.4.E. 5]

Remark 6.3.1. The gain matrix F and Ky can be found using a systematic
procedure given in Chapter 7. &

Remark 6.3.2. In the case that the given system X of (6.2.1) is regular, then
the controller (6.3.10) reduces to the well-known full order observer based con-
trol design for the regular Huo-optimization as given in [39]. &

We illustrate the above result with a numerical example.

Example 6.3.1. We again consider a given measurement feedback system
characterized by matrices A, B, E, Cy, D5 as in Example 6.1.1 and C,, D; as
in Example 6.2.1. The infimum for this problem is v* = 13.638725. In what
follows, we will construct a reduced order measurement output feedback control
law that makes the Ho, norm of the resulting closed-loop transfer matrix from
w to h strictly less that v = 14. Following the procedure, we obtain an auxiliary
system Y., of the form (6.3.2) with

4.2254 -0.7415 4.1946 0 14335

—11.8293 7.6804 —13.7917 0 -0.7102

Apg = 19.4695 -9.0672 22.8277 0 4.0975 |,
—17.4591 10.0905 —19.5135 1 -2.1038

1.2144  0.5197 1.4176 1 -—0.0983
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09327 0 O 18.5391 0.8299
—4.4755 0 0 —62.8474 —29.3560
Bpg=| 78569 0 0|, Epq=| 1029481 28.5462|,
-6.3735 0 1 -97.9601 —22.3008
01940 1 © —0.0958 3.1029
c _[0.1044 —2.0724 -29601 -2 —1]
r = 1 2 3 2 1|

C,. — | 30616 —0.9592 28464 0  0.6772
2» = 110146 —1.3601 0.6330 0 —0.7358]|°

D - [09409 -03383 _[0.9409 —0.3383
ir = 0 0| Dewa= 0 0l

It is simple to show that the transformation T and T,

1 -2 -3 -2 -1
o1 0 0 0

T,={0 0o 1 0 of, To=[é 0~104‘11],
0o 0 0 1 0
0o 0 0 0 1

will transform C; and D; to the following form,

_ 0|C 0| —2.2811 -3.2732 —2.2087 -1.1044
o= [ L% ][ |

I | 0 1| o0 0 0 0

and

- D 0.9409 -0.3383
o [5e]-[ 2]

0 0 0

Moreover, we have

- [ A1 | Are ]
T-1AT, =

s * | An I As

5.2714i —2.4247 —-8.32901 —-7.5428 2.7283
—11.8293 31.3390 21.6962 23.6586 11.1191
= 19.4695 | —48.0062 —35.5807 —38.9390 -15.3720 |,

—17.4591 | 45.0087  32.8639  35.9182 15.3553
1.2144 | —1.9092 -22257 —1.4289 ~-1.3127

29993 1 2

B Z44755 0 0
T;lB:[ B‘] 78569 0 O |,

2 -6.3735 0 1

0.1940 1 0



152 Chapter 6. Solutions to Continuous-time H, Problem

5.6724 —13.7425
B ~62.8474 —29.3560
T"lEz[ 1]: 102.9481  28.5462 |,
-97.9601 —22.3008
—0.0958  3.1029

and Ap = Ay, Ex = E3,

c. — —2.2811 -3.2732 —2.2087 -1.1044
BT —2.4247 -83291 —7.5428 2.7283]°

and
0.9409 ——0.3383]

Dr = [5.6724 —13.7425
Using the algorithm given in Chapter 7, we obtain a gain matrix F,

—1.5656 4.7579 2.1737 3.1311 1.5656
FT, = | -299.4859 555.2644 742.6408 597.9718 189.8014 |,
7.4811 -14.6842 -19.0100 -16.9623 —5.3773

and
93.5515 | —4.4388

—143.1777| 5.6013
133.7360 | —4.9145
—1.4788 | 0.2622

Finally, we obtain a reduced order output feedback controller of the form (6.3.1)
with

KR:[KROIKRI]z

—2.5903 -3.4139 —2.7089 -0.9269
3.3280  4.3868 3.4717  1.1995

—2.9478 -3.8917 -—-3.0775 -1.0641]|"°
0.6986  0.9299 0.7488  0.2393

4.7579 2.1737 3.1311 1.5656]

Acmp = 103 -

Cemp = | 555.2644 742.6408 597.9718 189.8014
—14.6842 -19.0100 —16.9623 -5.3773

and v
e 0 s
Bemp =10 | _ 2oz 47917 | Demp= |0 89439521,
' ' 0 -33.1683

0.0015 1.1362
which yields the poles of the closed-loop system, when it is applied to the given
system, at

—97.337,-34.72, —3.591, —1.848, —1.632, —0.248, —1.346, —0.765, —1.

Obviously, they are in the stable region. The singular value plots of the resulting
closed-loop transfer matrix T}, in Figure 6.3.1 also show that ||[Thuw|joo is indeed
less than 14, the given . El
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Figure 6.3.1: Max. singular values of T}, under reduced order output feedback.

6.4. Proofs of Main Results

6.4.A. Proof of Theorem 6.1.1

We need to recall the following two lemmas in order to proceed with our proof
of Theorem 6.1.1.

Lemma 6.4.1. Let an auxiliary system X,,x be characterized by

Iy = z Bz z Ea: ’
S ¢ { 22T Ae Ta b Betia t B v (6.4.1)
hy = Cz zo + Dy uy,
where Bt
A; = Anp, B =[Bi1r Aise], Ec = o |
and
0 0 I 0
C.=Tp|0 0|, Dy=Top|0 CarCy|.
0 CbP 0 0
Then T,ux comprising the state feedback law u, = —F11(7)z, is internally

stable, i.e.,

AMAS ) = MA11e — [Buie, A1ze]F11 (1)} = MA: - Bz Fu(v)} € C7, (6.4.2)
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and the resulting closed-loop transfer function from w, to h, has Ho, norm less

than 7, i.e.,
~Fu(y) ] -1 [E:p]
» = [T, I — AS <. 6.4.3
Thconlio = [For [ o gy | 6T = 5™ [ 57| <7 649)
That is u, = —F11(7)z, is a y-suboptimal control law for E,,x.

Proof. We first note that Ty is nonsingular and C4.Cj, = I which implies
that D, is injective. Furthermore, it is simple to verify that the invariant
zeros of (Az,B;,Cz, D) are given by A(A},.), and are not on the imaginary
axis. Hence Z,ux satisfies the assumptions of the regular Hy, control problem.
Moreover, it is straightforward to verify that for any v > 7v*,

P, = (Szp - 7_2sz)_1 >0,
is the solution of the following well-known H.,-CARE:

P,A, +A.P, + v ?P,E,E.P, + C.C,
— [PeB. + C.D;)(D.D;)  [B.LP, + D.C;] =0, (6.4.4)

with
AAS,) = MAx + 'y—zEzE;Pz - B,(D;DI)_I(B;PE) +D.Cz)}eC.
Then the results of Lemma 6.4.1 follow. &

Lemma 6.4.2. Let (A, B,C), where A € R**"™, Be R™™™ and C € RP*™,
be right invertible and of minimum phase. Let F(¢) € R™*" be parameterized
in terms of ¢ and be of the form,

F(e) = N(e)['(e)T (e) + R(e), (6.4.5)

where N(e) € R™*P, T'(e) € R?*?, T(¢) € R?*" and R(e) € R™*™. Also,
I'(e) is nonsingular. Moreover, assume that the following conditions hold:

1. A+ BF(e) is asymptotically stable for all 0 < € < £* where * > 0;
2. T(e) > WC as € — 0 where W is some p x p nonsingular matrix;

3. ase = 0, N(e) tends to some finite matrix N such that C(sI — A)"'BN
is invertible;

4. as e = 0, R(c) tends to some finite matrix R; and
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5. T ') 5 0ase 0.
Then as € — 0, we have ||C[s] — A — BF(¢)] !l = 0.

Proof. This is a dual version of Lemma 2.2 given by Saberi and Sannuti [91].
The proof of this lemma follows from similar arguments as in [91]. 53]

Now we are ready to proceed with the proof of Theorem 6.1.1. Note that
F(v,e,Agp, Agp) is constructed under the standard ATEA procedure. It can
be shown using the techniques of the well-known singular perturbation theory
as in Chen [10] that as e — 0, the eigenvalues of A + BF(v,&,Aqp, Agp) are
given by A(Az,:) € €7, MAL,) € €7, Age/e € € and A(A4§,,) € C (see
Lemma 6.4.1). Hence the closed-loop is internally stable. Moreover, following
the results of Chen [10], it can be shown that for any Ay € Agp/e € €™, the
corresponding right eigenvector, say W (e), satisfies

;i_% W) =W e ST(%p). (6.4.6)

In fact, following the same arguments, one can show that as € — 0, the eigenval-
ues of A+~y2EE'P(y)+BF(vy,e, Agp, Adp), where P(v) is as defined in (6.2.2),
are given by M(A;,.) € C7, A(AS..) € €7, Aipr/ec € €™ and A(AL,) € €. We
will use these properties later on in our proofs of other theorems. This proves
the second part of Theorem 6.1.1.

Next, we show that the state feedback law u = F(vy, &, Adp, Agp) yields
I Thollon = ||(C2 + DaF (6 Aar, Aar)l[sT — A= BF (., Aar, Aae)] E|_ <7

Without loss of generality but for simplicity of presentation, we assume that
the nonsingular transformations I'sp = I and [';; = I, i.e., we assume that the
system (A, B,T';,)C,,T;} D,) is in the form of the special coordinate basis. In
view of (6.1.14), let us partition F'(y, e, Agp, Ags) a5,

_ 0
F(77€,Adp,AdP) = FO(’Y) + F(’Y,E,AdP’AdP):l ’

where
C(;tzp + F:(—) (7) Cope + FbO('Y) C’(;-ap Cocr  Coar
Fo(v) = - 0 0 0 o o0 |,
0 0 0 0 0
and

F(’Y’E,AdP,AdP)z E+ E
cbp

capP
E Eycr F‘f (5, Adp) + Eyp
A 0

— [E;up + F:; (’7751AdP) Eape + Fbl (’)’,E,Adp)

dar

E-

cap

] . (6.4.7)
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Then we have

—F5(7) =Fn(y) 0 0 0
C =Co+DyF (7,6, Aap, Adp) =Top 0 0 0 0 Cul,
0 Ce 0 0 0O
and
0 0
0 0
A=A+BF»y), B=] 0 0 (6.4.8)
0 B
Be 0

With these definitions, we can write Th,, as
Thy = C [sI - A~ B F(v,&, Adp, Aap)] " E.
Then in view of (6.4.7), it can easily be seen that F(v,¢e, Agp, Agp) has the form,
F(v,e,Agp,Agp) = NT'(e)T'(¢) + R,

Inm
I'(e) = diag [-—1—— —}—,-'-, ! ], N=—{ dp],

edt ? £492 g9map

where

and + B
Re — [Edap Ewe E_j,. EBacr Edp]
Ef., Eww E; ., As 0]

while T'(¢) satisfies
T(e) » TCn,

as € — 0, where
T:dla’g [quu quz, Tty Fmdpqmdp]v

and
Cm =[Fi(v) Fu(y) 0 0 Cul. (6.4.9)

Using the same arguments as in Chen et al [27], it is straightforward to show
that the triple (A, B, C,y,) is right invertible and of minimum phase. Thus, it
follows from Lemma 6.4.2 that

”C’m [sI — A~ B F(y,e,Age, Adp)]q“oo -0,

as € = 0. We should also note that following the same line of reasoning, one
can show that the triple (A + Yy 2EE'P(v), B, Cy,) is right invertible and of
minimum phase, and moreover as € — 0,

”cm [sI-A—y2EE'P(y) - B F(v,e, Aap, Aas)] " ” 0. (6.4.10)
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Next, let
~ 0
C= 1-‘oP Cm + Cer
0
where
-FX(y) —Fo(y) 0 0 0
CC=FOP _Fa-,'i(')') _Fbl(’Y) 000
0 Chrp 0 0 O
We have

“Thw”oo

F(7,€, Ade, Agp)] E“

as € — 0. Following the procedures of Chen [10] or Saberi, Chen and Sannuti
[87], it can be shown that

Ce [SI—A—BF('Y’e’AdeAdP)]—lE = Lor [[—(-)FHCE )]} (sI-4i IP)—I [Eg-p] ’

pointwise in s as € — 0. Hence, the results of Theorem 6.1.1 follow readily from
Lemma 6.4.1. 25|

6.4.B. Proof of Theorem 6.1.2

Without loss of generality but for simplicity of presentation, we assume that
the nonsingular state and input transformations I's, = I and 'y = I, ie.,
the system (A, B,I';}C,, I, D) is in the form of the special coordinate basis.
Then it is trivial to show that

* 0 0 *
A+ BF(y,e,Age, A * A 0
+ 1 €y 3 = c )
('Y dp cp) * 0 ACCP *
* 0 0 *
and
* 0 0 O
Cy + DzF(”y,E, Agp, Acp) =T |{0 0 0O =%},
*+ 0 0 O

where +’s represent some sub-matrices which are of no interest to our proof.
Hence, for any a € A(AL,,) U A(AS.,), the corresponding right eigenvector is
in the kernel of Cy + DyF(v,€, Agp, Acp). This proves that « is an output

decoupling zero of Th,,. &
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6.4.C. Proof of Theorem 6.2.1

For the sake of simplicity in presentation, we drop in the following proof the
arguments of F(v,e, Agp, Acp) and K(v,€,Adq, Dcq). Also, we assume without
loss of generality that v = 1. Thus, we will drop the dependency of v in all the

variables.
First, it is simple to verify that the positive semi-definite matrices P of

(6.2.2) and Q of (6.2.4) satisfy
AP+ PA+CiCo+PEE'P PB+CiD
Fy(P):= ' 2r2 ! : 2]20’
B'P + D;C, D,D,

and

G.(Q) = [AQ + QA+ EFE' +QCiC,Q QCi+ED; 50

v C1Q + D, E' DDy |77

respectively, i.e., P and @ are the solutions of the quadratic matrix inequalities
FE,(P) > 0 and G,(Q) > 0. Moreover, the following auxiliary system,

y = Cip Tpq + Dipq Weq, (6.4.11)

i:pQ = APQ sz + BpQ u ‘+‘ EpQ wPQ,
e
hPQ = Cyp Tpq + Dop u,

where
!
C2P
!
D 2p

Eq

EI ! ,
DIPQ} { 9 IPQ]

FW(P)L‘[ ][Czp Do ], GA,(Q)=[

and
Apg = A+ EE'P+ (I"QP)—-IQCéPCQP,
Bpq := B+ (I - QP)7'QC3, D25,
Erq = (I — QP)'Ey,
Cip = C1 + DlE,P,

(6.4.12)

has the following properties: 1) the subsystem (Apq,Brq,Cop,Dap) is right
invertible and of minimum phase; and 2) the subsystem (4pq, Erq, C1r, Dirg)
is left invertible and of minimum phase.

The following lemma, is due to Stoorvogel [100].

Lemma 6.4.3. For any given compensator T¢mp of the form

By {4 w0 P
ome % = Cemp v + Demp ¥

The following two statements are equivalent:
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1. Xcmp applied to the system X defined by (6.2.1) is internally stabilizing
and the resulting closed-loop transfer function from w to h has an H,
norm less than 1, i.e., ||Thuw|leo < 1.

2. Xcmp applied to the new system X.q defined by (6.4.11) is internally
stabilizing and the resulting closed loop transfer function from wepq to
heq has an Hy, norm less than 1, ie., [Thpqueqlloo < 1.

Hence, it is sufficient to show Theorem 6.2.1 by showing that Z.p, of (6.2.5)
to (6.2.8) applied to X,q achieves almost disturbance decoupling with internal
stability. Observing that

C}.Cop = AP+ PA+ CyCy + PEE'P and Cj5.D2. = PB+CyDs,
it is simple to rewrite Acmp Of (6.2.6) as
Acmp = Apq + BeqF + (I - QP) 'K Cys.

Now it is trivial to see that X.mp of (6.2.5) is simply the well-known full order
observer based controller for the system Y., with state feedback gain F' and
observer gain (I — QP)~! K. Hence the well-known separation principle holds.
Also, noting the facts that (Apq, Beq, Cor, D2p) and (Apq, Erq,Cir, D1rq) are
of minimum phase, and right invertible and left invertible, respectively, it is
sufficient to prove Theorem 6.2.1 by showing that as € — 0,

1. Apq + BeoF is asymptotically stable;
2. ||[Cep + D2 FllsI — Apg — BeoF7!|| .= 0;
3. Apq + (I - QP)"'KC4» is asymptotically stable; and
4. ||[sI = Arq — (I = QP) ' KC1p] MEpq + (I — QP)'KDye| ,— O
We shall introduce the following lemma for further development.
Lemma 6.4.4. As ¢ — 0, we have
1. A+ EE'P + BF is asymptotically stable and
|[Cap + D2e F][sI — A— EE'P — BF]7}|| = 0; (6.4.13)
2. A+ QC5C,y + KC, is asymptotically stable and
[[[s] = A~ QC}Ca — KC1] ™ [Eq + K D1xal| ,, > 0 (6.4.14)
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Proof. It is shown in the proof of Theorem 6.1.1 that for ¢ = 0, the matrix
A+ EE'P+ BF is asymptotically stable. In what follows, we will show (6.4.13).
By some elementary algebra, it can be shown that

Cto+Flh Cor+Fo Coup Coce Coar

Copp =T0p F:i Fyy 0 0 Cap F;Pl,
0 0 0 0 0
and
I 00
Dy =Dy =Ty |0 0 0} T;h
0 0O
Moreover,

0
[Cop+Dyp FllsI-A— EE'P-BF|™' = [cm] [sI-A-EE'P-BF]™},
0

where A and B are as in (6.4.8), F is as in (6.4.7) and C,, is given by (6.4.9).
In view of (6.4.10), we have the result.

Ttem 2 of Lemma 6.4.4 is the dual version of item 1. Hence, the results
follow. This completes the proof of Lemma 6.4.4. &

Next, we will first show that A.q + Bpo F' is asymptotically stable for some
sufficiently small ¢ and

l[Cap + Do Fl[sI = Arq = BoqF] ™ loo = 0,
as £ = 0. In view of Lemma 6.4.4, we have

sl — Apq—Bpo F
= s[-A-EE'P—BF—(I-QP)™'QC},[Cop+ D F]
= {I-(I-QP) 'QC},[Cop+D,x F|[sI— A-EE'P-BF|™'}
[sI-A-EE'P—BF)
—sI-A—EE'P—-BF pointwise in s as € = 0.
This implies that Arq + BpoF' is asymptotically stable for sufficiently small €,
and
[C2p + DapFl[sI — Apq — Bpo FJ™!
= [Cop+Dop F)[sI-A-EE'P-BF]™!
A{I-(I-QP)™'QC;,[Cop+D,p F)[sI— A~EE'P-BF]™! }_1

-0, pointwise in s ase - 0. (6.4.15)
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Again, in view of Lemma 6.4.4 and
C3.C2p = A'P+PA+CyC,+ PEE'P,
EGE, = AQ+QA'+EE'+QC,C,Q,
we have the following induction:
(I — QP)[sI-Apq—(I—-QP)"'LCy;)
= [(I-QP)(sI-A—EE'P)-QC;3,Cop —LC, — LD, E'P)
= [sI-A-EE'P—-QC4,Cy,—LC,—LD,E'P—sQP
+QPA+QPEE'P]
= [sI-A-EE'P-Q (A'P+PA+C,C,+ PEE'P)
-LC,—LDE'P-sQP+QPA+QPEE'P]
= [s[-A-QC;C;— LC,— EE'P-LD,E'P—QA'P—5QP)
= [sI-A-QC;Cy~ LCy — (EqE,-AQ-QA' - QC3C,Q) P
-LD,E'P—-QA'P-sQP)
= [sI-A-QCy,Co— LCy —sQP+AQP+QC;C2QP—EGE LD, E'P]
= [(sI-A-QCjC2—LC:) (I~QP)~(Eq+LD1rq) E4P]
= [sI-A-QC;C2— LC4]
[(1-@P)— (sT-4-QC4C;-1C1) ™" (Eq+LDiva) By P
— [sI-A-QC}Cy— LC1] (I-QP), pointwise in s ase -+ 0.  (6.4.16)
Hence, Apq+(I—-QP) 1K C)» is asymptotically stable for sufficiently small e.
Now it follows from (6.4.16) that
[sI — Apq—(I~QP)"'LC1p] ' [Epq+(I-QP) ™' LD1rq)]
— (I-QP)V[sI-A—QC3C; ~ LGy (I-QP)[Epq+(I-QP) "' LD1rq]
= (I-QP) sI-A—QC5Cy~LC1|" [Eq+ LD15q]
— 0, pointwisein s as € = 0.

This completes the proof of Theorem 6.2.1. &

6.4.D. Proof of Theorem 6.2.2

As in the previous proofs, for simplicity, we will assume that v = 1 and let
F = F(v,6,A4p,Acp) and K = K (7,€,Adq,Acq). Then the closed loop system
Thw(s) is given by

[C2 DzF](SI‘[—(I—Qg)-lkcl /ﬁi])—l [ —(I——Qf’)‘lKDl]'



162 Chapter 6. Solutions to Continuous-time H,, Problem

It follows from the proof of Theorem 6.1.2 that for any

a € A(Azp) UMAL) € A(A + BF),
the corresponding right eigenvector, say W, i.e., (A + BF)W = oW, satisfies
(C2 + D;F)W = 0. Moreover, it is simple to verify that (Czp + Dep F)W = 0
and PW =0.

By duality, one can show that for any § € A(Az,q)UN(A%,), B € AM(A+KCy)
and the corresponding left eigenvector, say V, ie., V(A + KC;) = BV,
satisfies V¥(E + KD;) = 0 and V*Q = 0. In view of (6.2.6), we have

AcmpW =[A+ EE'P + BF + (I - QP)™'QC},(Cap + Dop F)
+(I -QP)"'KC1 + (I — QP)"'KD,E'PIW
=(I - QP)'KC,W + (A+ BF)W,

and

VH* Aemp = VE(I = QP)[A + EE'P + BF + (I — QP)™'QC),(Cap + Dop F)
+(I —QP)'KCi+(I - QP)"'KD,E'P)

=V"BF + V¥(A + KCy).
Therefore,
A BF [W]_{ (A+BF)W ]:a[W]
~(I-QP)'KC: Acmp | (W] ™ | AempW —(I—QP)"1KC; W’

and
[Cz DzF] [%} = (02 + Do FYW =0.

This shows that o is an output decoupling zero of Th.,(s). Similarly,

o . A BF
v ”V][—<I—QPY¢KQ Amm]
=[VE(I — QP)[A+(I-QP)~*KCi] V*(BF - Acmp)]
=g[ve —vu],
and E
v -vel [ -~ QP)‘lKDx] = VHE+ KD =0

This implies that § is an input decoupling zero of Th.({s).
The first part of item 3 in Theorem 6.2.2 can be verified easily by using
(6.4.6) and the fact that

Im (P) = [$*(Z)]
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The second part is the dual of the first case. This completes the proof of
Theorem 6.2.2. i3

6.4.E. Proof of Theorem 6.3.1

First, note that the subsystem i) (Apq, Brq, Cap, D2p) is right invertible and of
minimum phase; and ii) the subsystem (Apq, Erq, C1p, D1pq) is left invertible
and of minimum phase. It follows from Theorem 7.4.2 that there indeed exist
gain matrices F' and Ky such that the resulting reduced order output feedback
control law (6.3.10) internally stabilizes X, and makes the H, norm of the
closed-loop transfer matrix strictly less than any given . The second result of
Theorem 6.3.1 follows from Lemma 6.4.3.



Chapter 7

Continuous-time Hoo
Almost Disturbance
Decoupling

7.1. Introduction

WE CONSIDER IN this chapter the problem of H., almost disturbance decou-
pling with measurement feedback and internal stability for continuous-time lin-
ear systems. Although in principle it is a special case of the general H., control
problem, i.e., the case that +* = 0, the problem of almost disturbance decou-
pling has a vast history behind it, occupying a central part of classical as well
as modern control theory. Several important problems, such as robust control,
decentralized control, non-interactive control, model reference or tracking con-
trol, Hs and H,, optimal control problems can all be recast into an almost
disturbance decoupling problem. Roughly speaking, the basic almost distur-
bance decoupling problem is to find an output feedback control law such that
in the closed-loop system the disturbances are quenched, say in an £, sense,
up to any pre-specified degree of accuracy while maintaining internal stability.
Such a problem was originally formulated by Willems ([111] and [112]) and
labelled ADDPMS (the almost disturbance decoupling problem with measure-
ment feedback and internal stability). In the case that, instead of a measure-
ment feedback, a state feedback is used, the above problem is termed ADDPS
(the almost disturbance decoupling problem with internal stability). The prefix
H_, in the acronyms H.,-ADDPMS and H..-ADDPS is used to specify that
the degree of accuracy in disturbance quenching is measured in £;-sense.

165
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There is extensive literature on the almost disturbance decoupling prob-
lem (See, for example, the recent work [109], [74] and [75] and the references
therein). In {109], several variations of the disturbance decoupling problems
and their solvability conditions are summarized, and the necessary and suffi-
cient conditions are given, under which the H.,-ADDPMS and H.-ADDPS
for continuous-time linear systems are solvable. These conditions are given in
terms of geometry subspaces and for strictly proper systems (i.e., without di-
rect feedthrough terms from the control input to the output to be controlled
and from the disturbance input to the measurement output). Under these
conditions, [74] constructs feedback laws, parameterized explicitly in a single
parameter ¢, that solve the Ho,-ADDPMS and the H,-ADDPS. These results
were later extended to proper systems (i.e., with direct feedthrough terms) in
[75]. We emphasize that in all the results mentioned above, the internal stability
was always with respect to a closed set in the complex plane. Such a closeness
restriction, while facilitating the development of the the above results, excludes
systems with disturbance affected purely imaginary invariant zero dynamics
from consideration. Only recently was this “final” restriction on the internal
stability restriction removed by Scherer [96], thus allowing purely imaginary
invariant zero dynamics to be affected by the disturbance. More specifically,
Scherer [96] gave a set of necessary and sufficient conditions under which the
H_.-ADDPMS and the H..-ADDPS, with internal stability being with respect
to the open left-half plane, is solvable for general proper linear systems. When
the stability is with respect to the open left-half plane, the H,-ADDPMS and
the H.,~-ADDPS will be referred to as the general H.,-ADDPMS and the gen-
eral H,,-ADDPS, respectively. The explicit construction algorithm for feedback
laws that solve these general H.,-ADDPMS and H.,-ADDPS under Scherer’s
necessary and sufficient conditions has only appeared in a very recent paper of
Chen, Lin and Hang [20]. The objective of this chapter is to present: 1) easily
checkable conditions for the general Ho,-ADDPS and He-ADDPMS; and 2)
explicit algorithms to construct solutions that solve these problems. The latter
were reported in Chen, Lin and Hang [20].

More specifically, we consider the general H.,-ADDPMS and the general
H-ADDPS, for the following general continuous-time linear system,

t=Az+ B u+ E w,
DI y=Cz + D) w, (711)
h=Cyz+ D2 u + D3 w,

where & € R" is the state, u € R™ is the control input, y € R® is the mea-
surement, w € R? is the disturbance and h € RP is the output to be con-
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trolled. As usual, for convenient reference in future development, throughout
this chapter, we define £, to be the subsystem characterized by the matrix
quadruple (4, B,Cy, D3) and X, to be the subsystem characterized by the ma-
trix quadruple (A4, E, Cy, D,). The following dynamic feedback control laws are
investigated:

. =Ac. .+ Bc vy,
T, { i y (7.1.2)

u=C.z.+ D, y.
The controller X, of (7.1.2) is said to be internally stabilizing when applied to
the system L, if the following matrix is asymptotically stable:

A+ BD.C, BCC]

Aq = [ B.C, A (7.1.3)

i.e., all its eigenvalues lie in the open left-half complex plane. Denote by Th.,
the corresponding closed-loop transfer matrix from the disturbance w to the
output to be controlled h, i.e.,

A+BD.C; BC.1\ '[E+BD.D,
B.C; A, B.D,
+(D2DCD1+D22). : (7.1.4)

Thw = [Cz-l-DzDCCl DQCC] (SI—[

Then the general Ho,-ADDPMS and the general Ho,-ADDPS can be formally
defined as follows.

Definition 7.1.1. The H., almost disturbance decoupling problem with mea-
surement feedback and with internal stability (the Ho,-ADDPMS) for the con-
. tinuous time system (7.1.1) is said to be solvable if, for any given positive scalar
~ > 0, there exists at least one controller of the form (7.1.2) such that,

1. in the absence of disturbance, the closed-loop system comprising the sys-
tem (7.1.1) and the controller (7.1.2) is asymptotically stable, i.e., the
matrix A as given by (7.1.3) is asymptotically stable; and

2. the closed-loop system has an £;-gain, from the disturbance w to the
controlled output h, that is less than or equal to 7, i.e.,

IRl < vllwllz, Vw € £ and for (z(0), 2.(0)) = (0,0). (7.1.5)

Equivalently, the Hoo-norm of the closed-loop transfer matrix from w to
h, Thy, is less than or equal to v, i.e., || Thwlloo < 7-

In the case that C; = I and D; = 0, the general H.,-ADDPMS as defined
above becomes the general H.,-ADDPS, where only a static state feedback,
instead the dynamic output feedback (7.1.2) is necessary. Bl
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Clearly, the Ho,-ADDPMS for ¥ of (7.1.1) is equivalent to the general H,,
control problem for ¥ with v* = 0. As stated earlier, one of the objectives
of this chapter is to construct families of feedback laws of the form (7.1.2),
parameterized in a single parameter, say €, that, under the necessary and suffi-
cient conditions of Scherer [96], solve the above defined general Ho,-ADDPMS
and H.-ADDPS for general systems whose subsystems ¥, and £, may have
invariant zeros on the imaginary axis. The feedback laws we are to construct
are observer-based. A family of static state feedback laws parameterized in a
single parameter is first constructed to solve the general H,-ADDPS. A class
of observers parameterized in the same parameter ¢ is then constructed to im-
plement the state feedback laws and thus obtain a family of dynamic measure-
ment feedback laws parameterized in a single parameter ¢ that solve the general
H_,-ADDPMS. The basic tools we use in the construction of such families of
feedback laws are: 1) the special coordinate basis, developed by Sannuti and
Saberi [93] and Saberi and Sannuti [89] (see also Chapter 2), in which a linear
system is decomposed into several subsystems corresponding to its finite and
infinite zero structures as well as its invertibility structures; 2) a block diagonal
controllability canonical form (see also Chapter 2) that puts the dynamics of
imaginary invariant zeros into a special canonical form under which the low-
gain design technique can be applied; and 3) the H,, low-and-high gain design
technique. The development of such an H,, low-and-high gain design technique
was originated in [62] and [63] in the context of H.,-ADDPMS for special classes
of nonlinear systems that specialized to a SISO (and hence square invertible)
linear system having no invariant zero in the open right-half plane.

7.2. Solvability Conditions

In this section, we first recall the necessary and sufficient conditions of Scherer
[96] under which the general H,-ADDPMS and H.-ADDPS are solvable.
Then we will convert the geometric conditions of Scherer into easily check-
able ones using the properties of the special coordinate basis. The following
result is a slight generalization of Scherer [96].

Theorem 7.2.1. Consider the general measurement feedback system (7.1.1).
Then the general H., almost disturbance decoupling problem for (7.1.1) with
internal stability (Ho.-ADDPMS) is solvable, if and only if the following con-
ditions are satisfied:

1. (A, B) is stabilizable;
2. (A, () is detectable;
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3. D3 + D2SD, =0, where S = —(D3D,)' D}, D22 D} (D, D})t;
4. Im(E + BSD1) C S*(Zp) N {Nie coSr(Zr) }5

5. Ker(Cz + D2SC1) D V*(Zq) U {UsegoVa(Eq) }; and

. VHEQ) C 8 (Ze). m

=]

Remark 7.2.1. Note that if X, is right invertible and of minimum phase,
and X, is left invertible and of minimum phase, then Conditions 4 to 6 of
Theorem 7.2.1 are automatically satisfied. Hence, the solvability conditions of
the H,,-ADDPMS for such a case reduce to:

1. (A, B) is stabilizable;
2. (4,C,) is detectable; and
3. Dy + D3SD; =0, where S = —(DIZDz)TDéDzzD’I (DIDDT ®

Remark 7.2.2. It is simple to verify that for the case when all states of the
system (7.1.1) are fully measurable, i.e., C; = I and D; = 0, then the solvability
conditions for the general H.,-ADDPS reduce to the following:

1. (A, B) is stabilizable;
2. D3s =0; and
3. Im (E) C 8%(Ze) N {Nre goSa(Zk)}.
Moreover, in this case, a static state feedback law, i.e., u = Fz, where F'is

a constant matrix and might be parameterized by certain tuning parameters,
exists that solves the general H.,-ADDPS. &

Theorem 7.2.1 is quite elegant as it is expressed in terms of the well-known
geometric conditions. However, it might be hard to verify these geometric
conditions numerically. In what follows, we will present a simple method to
check the solvability conditions for the Ho,-ADDPMS for general continuous-
time systems.

Step 7.2.0: Let S = —(D4D3) DDy DY(Dy D). If Doy + D2SDy # 0, the
algorithm stops here. Otherwise, go to Step 7.2.1.

Step 7.2.1: Compute the special coordinate basis of Xp, i‘e., the quadruple
(A, B,C,,D;). For easy reference, we append a subscript ‘¢’ to all sub-
matrices and transformations in the SCB associated with Iy, e.g., I'sp is
the state transformation of the SCB of X, and AY,, is associated with
invariant zero dynamics of ¥, on the imaginary axis.
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Step 7.2.2: Next, we denote the set of eigenvalues of A%, with a non-negative
imaginary part as {we1,ws2, ", wpkp} and for ¢ = 1,2,---, kp, choose
complex matrices V;p, whose columns form a basis for the eigenspace

{x € €"r | g (wpil — A9,,) = o}, (7.2.1)
where n, is the dimension of X2,. Then, let
Vei=[Vie Vap -+ Vigpel. (7.2:2)

We also compute ngp := dim (X)) + dim (X}z), and
_ Ea} -
ES.
EY,
EbP
E.
| Egp |

;M E+BSD,) := (7.2.3)

Step 7.2.3: Let I, be the dual system of £, and be characterized by a quadru-
ple (4',C},E’,D]). We compute the special coordinate basis of L.
Again, for easy reference, we append a subscript ‘@’ to all sub-matrices
and transformations in the SCB associated with L3, e.g., I'sq is the state
transformation of the SCB of £}, and A9, is associated with invariant
zero dynamics of X7, on the imaginary axis.

Step 7.2.4: Next, denote the set of eigenvalues of AJ,, with a non-negative
imaginary part as {wq1,wq2, " Wakq } and for i = 1,2,---,kq, choose
complex matrices V;q, whose columns form a basis for the eigenspace

{x € ™0 | 2% (weil — A%, ) = o}, | (7.2.4)

where nJ, is the dimension of X0,. Then, let
Voi=[Vig Vaq +++ Vkgal (7.2.5)

We next compute n.q = dim (X)) + dim (X), and
-~ E;Q -
E2,
B
EbQ
E.q
L EdQ E

F;Ql(02 +DySCy) = (7.2.6)
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Step 7.2.5: Finally, compute

X0 x %
roedy=(« r x|, (7.2.7)
*  x Xq

where X;° and Xcq are of dimensions (n7, + nQ.) x (n;, +nd,) and
(ncp + ngp) X (neq + Nag), respectively, and finally I is a sub-matrix of
dimension nzp X Nzq. ®

‘We have the following proposition.

Proposition 7.2.1. Consider the general measurement feedback continuous-
time system (7.1.1). Then the H, almost disturbance decoupling problem for
(7.1.1) with internal stability (H.-ADDPMS) is solvable, i.e., 4* = 0, if and
only if the following conditions are satisfied:

1. (A, B) is stabilizable;

2. (A, Cy) is detectable;

3. D35 + D3SD, =0, where S = —(DéDg)TDéDzz.Di (DlDi)T;

4. EL, =0, By =0 and VFE?, =0;

5. E}, =0, Eyq =0 and VFEJ, =0; and

6. I'=0.
Proof. It is simple to see that the first three conditions are necessary for
the Ho,-ADDPMS for (7.1.1) to be solvable. Next, it follows trivially from
the properties of the special coordinate basis that the geometric condition,
Im (E + BSD;) C 8*(Zp) N {Nie geSr(Ze)} , is equivalent to Ef, =0, Fyp =
0 and VFE?, = 0. Dually, the geometric condition, Ker(C, + D2SC1) D
V() U{UseoVa(Zq) } , is equivalent to Ef, = 0, Eyq =0 and VIEQ, = 0.
Next, again following the properties of the special coordinate basis, we have

0
S*(Se) =Ker{[0 I, 0]TZ'}, V*(Sq)=Im { () [1} } :
0
Hence, it is straightforward to verify that V+(Zq) C S*(Z5) is equivalent to

0
—_ — !
[0 L. 0]T; () [IMQ] —T=o.
0

Thus, the result follows. &
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7.3. Solutions to Full State Feedback Case

In this section, we consider feedback law design for the general H., almost
disturbance decoupling problem with internal stability and with full state feed-
back, where internal stability is with respect to the open left-half plane, i.e.,
the general H,,-ADDPS. More specifically, we present a design procedure that
constructs a family of parameterized static state feedback laws,

u = F(e)z, (7.3.1)

that solves the general H.,-ADDPS for the following system,

T = Az+ Bu+ E w,
y= z (7.3.2)
h = Coz+ Dy u + Dy w.

That is, under this family of state feedback laws, the resulting closed-loop
system is asymptotically stable for sufficiently small € and the H,-norm of the
closed-loop transfer matrix from w to h, Th. (s, €), tends to zero as € tends to

zero, where
Thuw(s,e) = [C2 + DyF(e)][sI = A — BF ()] E + Dqs. (7.3.3)

Clearly, Dy; = 0 is a necessary condition for the solvability of the general
H.-ADDPS. We present an algorithm for obtaining this F(¢), following the
asymptotic time-scale and eigenstructure assignment (ATEA) procedure. We
first use the special coordinate basis of the given system (See Theorem 2.3.1) to
decompose the system into several subsystems according to its finite and infinite
zero structures as well as its invertibility structures. The new component here is
the low-gain design for the part of the zero dynamics corresponding to all purely
imaginary invariant zeros. As will be clear shortly, the low-gain component is
critical in handling the case when the zero dynamics corresponding to purely
imaginary invariant zeros is affected by disturbance. It is well-known that the
disturbance affected purely imaginary zero dynamics is difficult to handle and
has always been excluded from consideration until recently.
We have in the following a step-by-step algorithm.

Step 7.5.1: (Decomposition of £;). Transform the subsystem Zp, i.e., the
quadruple (A, B, C2, D,), into the special coordinate basis (SCB) as given
by Theorem 2.3.1 of Chapter 2. Denote the state, output and input
transformation matrices as ['sp, Top and I';p, respectively.
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Step 7.5.2: (Gain matrix for the subsystem associated with X.). Let F. be any
arbitrary m. x n. matrix subject to the constraint that

Aﬁc = A - B.F., (734)

is a stable matrix. Note that the existence of such an F, is guaranteed by
the property of SCB, i.e., (A, B.) is controllable.

Step 7.5.3: (Gain matrix for the subsystems associated with X} and X;). Let

+
F .= [;‘_’ i”"] , (7.3.5)
ad bd
be any arbitrary (mo + mg4) X (n} +n,) matrix subject to the constraint
that At LtC Bf Lt
AY = [ e [ 0s Tad|pt (7.3.6)
0 Ap Bop Lab

is a stable matrix. Again, note that the existence of such an F,; is guar-
anteed by the stabilizability of (4, B) and Property 2.3.1 of the special
coordinate basis. For future use, let us partition [F;'; Fyq] as,

FY.  Fa

Fl, Fyao

[FY Ful= (7.3.7)

k]
F, :-dm 4 F; bdmg
where F,. and Fyq; are of dimensions 1 x n} and 1 X n, respectively.

Step 7.S.4: (Gain matrix for the subsystem associated with X?). The construc-
tion of this gain matrix is carried out in the following sub-steps.

Step 7.5.4.1: (Preliminary coordinate transformation). Recalling the defi-
nition of (Acon, Beon), i-€., (2.3.27), we have

A 0 Al By, L
Acon - BconF:I; = 0 Aga Agab , Bcon = Bga, Lgd R
0 0 AI"C B(-)tzb L:bd
(7.3.8)
where
Bf L+
Fe=12e + = | Yad 7.3.9
Boa-b - [BOb] ) Labd [Lbd] ) ( )
A%, =[0 IL%Cy])~-[BY, LS,1F}, (7.3.10)
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and
aab = [O L;bcb] - {B&z L;d]F:l;' (7-3-11)
Clearly (Acon —ch,F:,',,Bcon) remains stabilizable. Construct the

following nonsingular transformation matrix,
I- 0 0o 17!
Fap=1] 0 0 ILs,n , (7.3.12)
0 I, 7O

where T? is the unique solution to the following Lyapunov equation,

AL TO —ToA%e =A%, (7.3.13)
We note here that such a unique solution to the above Lyapunov
equation always exists since all the eigenvalues of A2, are on the
imaginary axis and all the eigenvalues of A7y are in the open left-
half plane. It is now easy to verify that

Az, A, O
I (Acon — BenFR)Tao =1 0 AX 0 |, (7.3.14)
0 o0 A
By, La
I Beon = Bt, L . (7.3.15)

BY. +T2Bg,, L3y+T0LY,
Hence, the matrix pair (4%,, BY) is controllable, where
B =B, +T9Bg,, Lo+ToL%,].

Step 7.5.4.2: (Further coordinate transformation). Following the proof
of Theorem 2.2.2, find nonsingular transformation matrices I'?, and
9, such that (AY,, BY) can be transformed into the block diagonal
controllability canonical form,

Al 0 e 0
0 Ay - 0
@A = . TP, (7.3.16)
0 0 .- A
and
By Biz -+ By x
0 B .-+ By *
B =| . T (7.3.17)
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where [ is an integer and fori=1,2,---,1,

0 1 0 0 0

0 0 1 0 0

A= : , Bi=]:
0 0 0 1 0

~@,, —Qn,._; —On_y " —a) 1

We note that all the eigenvalues of A; are on the imaginary axis.
Here the +’s represent sub-matrices of less interest.

Step 7.5.4.3: (Subsystem design). For each (A, B;), let Fi(e) € R} *™
be the state feedback gain such that

MA; + BiFi(e)} = ~e+ M(A;) € C . (7.3.18)

Note that Fi(e) is unique.

Step 7.5.4.4: (Composition of gain matrix for subsystem associated with

X0). Let
Fi(e) 0 - 0 0
0 Fye) - 0 0
Fe):=T%, | = o I
© 0 - Fafe) O
0O 0 - 0  F)
0 0 0 0
(7.3.19)

where ¢ € (0, 1] is a design parameter whose value is to be specified
later.

Clearly, we have
lF2(e)l < fle, £ €(0,1], (7.3.20)

for some positive constant fO, independent of €. For future use, we define
and partition Fyy(e) € R(motma)x(netm) 59

0
Fb(é‘)_'[FabO(e)] _ [ Omoxnz Omaxtutmsy T ) by 7 g o)
¢ Fabd(s) Omd xn; Omdx(n;"«}-nb) Ft(z)d(s) ¢
and
Fasa1(€)
Fapaz(€)
Fapa(e) = : , (7.3.22)

Fabdmd (5)
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where F9(¢) and F2,(¢) are defined as

Foe) = [;‘338] (7.3.23)
We also partition F2,(e) as,
Flu(e)
Fye) = F‘?d?(s) (7.3.24)
Ffd;., (e)

Step 7.5.5: (Gain matrix for the subsystem associated with X;). This step makes
use of subsystems, i = 1 to my, represented by (2.3.14) of Chapter 2. Let
A = {1, Ai2, -+, Aigg }, 4 =1 to mg, be the sets of ¢; elements all in
€™, which are closed under complex conjugation, where ¢; and mg4 are as
defined in Theorem 2.3.1 but associated with the special coordinate basis
of ¥p. Let Ag := A UAU---UA,,,. For i =1 tomy, we define

q:
pi(s):= [ (s — Xij) = s% + Fus® ™' + .-+ Fy 15+ Fig,, (7.325)

3=1
and 1
Fi(e) = = FiSi(e), (7.3.26)
where
Fi= [Fiq-' F‘iQi“l e By ]’ Si(e) = diag{l,e,ez, T ,6q.'—1 }’
(7.3.27)

Step 7.5.6: (Composition of parameterized gain matrix F(¢)). In this step,
various gains calculated in Steps 7.S.2 to 7.S.5 are put together to form
a composite state feedback gain matrix F'(e). Let

Fopa1(€)Figq, [e®
Faale) = | Forx®F/e | (7.3.28)
Futim s () Frga, /€74
F i Fig [
e =| FeFrale® | (7.3.29)
F:tmdFm;qmd [eTma
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and
Fyg1Fiq, [N
_ F.o F a2
Fra(e) = | Trefemle (7.3.30)
demdFmded [eTma
Then define the state feedback gain F(e) as
F(e) := —Typ (ﬁ*;,,cd(e) + Fabcd(e)) ol (7.3.31)

where

Coo C8a CHAFL  Cow+Fwo Co.  Coa
- _ ~+ ~ P
wbeal€)=| Bz, ES, Ef+F,.(€) En+Fra(e) Eu Fule)+Eq

»

E, E2, E% 0 F. 0

(7.3.32)
Fabo(€) 0 07

Fupea(e) = | Faae) 0 0, (7.3.33)
0 0 Ol
and where .

Ey -+ Eimg

E’mdl ot Emdmd__

Fale) = diag{ﬁ‘l (@), Fae), -+, Fom, (E)}. (7.3.35)

We have the following theorem.

Theorem 7.3.1. Consider the given system (7.3.2) that satisfies all the con-
ditions in Remark 7.2.2. Then the closed-loop system comprising (7.3.2) and
the static state feedback law u = F(e)z, with F(¢) given by (7.3.31), has the
following properties: For any given « > 0, there exists a positive scalar e* > 0
such that forall 0 <e < ¥,

1. the closed-loop system is asymptotically stable, i.e., \{A+BF(e)} C €~

2. the Ho-norm of the closed-loop transfer matrix from the disturbance w
to the controlled output h is less than v, i.e., ||Thw(s, )|l <7

Hence, by Definition 7.1.1, the control law u = F'(¢)x solves the general Hoo-
ADDPS for the given system (7.3.2).

Proof. See Subsection 7.5.A. B
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We illustrate the above result in the following example.

Example 7.3.1. Let us consider a given system of (7.1.1) characterized by
Cl =1 y D1 =0 and

010 001 0 0 10

001 002 0 0 5 0

000 003 1o o 1o o
A=1000 -1 3 4|° B=]o o|" E=|o of > (7330

000 04535 10 00

123 456 01 3 1

00 0 0 1 2 1 0 0 0
C,={000 0 0 1|, Dy=|0 0|, Du=|0 0]. (7337

0000 10 0 0 00

The subsystem ¥p is already in the form of the special coordinate basis. It is
simple to verify that: i) (4, B) is stabilizable; ii) £, has three invariant zeros
at 0 and one stable invariant zero at —1; iii) ¥, has one infinite zero of order
zero and one infinite zero of order one; iv) Xp is left invertible; and v)

1 0 000
01 000
00100
-+ —
S*(Zp) =Im 000 1o0lf (7.3.38)
0 0 0 00
0 0 0 01
and
1 000
0100
00 0
Meee$(E)=mm 3§ |0 (1’ 0 (7.3.39)
0 000
0 0 01
Hence,
1000
0100
0 000
SH(Ee) N {Nre goSA(Ep)} = Im 0010 (7.3.40)
0 000
0 001
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Figure 7.3.1: Max. singular values of Th,, — State feedback.

Obviously, Im (E) C S*(Z:) N {Nxe goSx(T6)} and by Remark 7.2.2, the Hoo-
ADDPS is achievable for the given system. Following our algorithm, we obtain
a state feedback gain matrix

F(e) = 0 0 0 0 -6 -2
T | -€?/3-1 2e2/9—e-2 2/3-€?/27—4 -4 -5 -1/e—6]’
(7.3.41)

which places the closed-loop poles of A + BF(¢) asymptotically at -1, —2, —¢,
—e, —¢ and —1/e. The maximum singular value plots of the corresponding
closed-loop transfer matrix Thq,(8,¢) in Figure 7.3.1 clearly show that the Hoo-
ADDPS is attained as € tends smaller and smaller. E

7.4. Solutions to Output Feedback Case

We present in this section the designs of both full order and reduced order
output feedback controllers that solve the general Ho,-ADDPMS for the given
system (7.1.1). Here, by full order controller, we mean that the order of the
controller is exactly the same as the given system (7.1.1), i.e, is equal to n.
A reduced order controller, on the other hand, refers to a controller whose
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dynamical order is less than n. We will assume without loss of any generality
that Dy =0 in the given system (7.1.1) throughout this section.

7.4.1. Full Order Output Feedback

The following is a step-by-step algorithm for constructing a parameterized full
order output feedback controller that solves the general H,,-ADDPMS:

Step 7.F.C.1: (Construction of the gain matrix Fp(¢)). Define an auxiliary
system

y= =z (7.4.1)

{a’;: Az+ Bu+ E w,
h=Coxz+ Dyu+ Dypw,

and then perform Step 7.5.1 to 7.5.6 of the previous section to the above
system to obtain a parameterized gain matrix F(e). We let Fr(e) = F(e).

Step 7.F.C.2: {Construction of the gain matrix K(g)). Define another auxiliary
system

y= =z (7.4.2)

{:i: = Az+ Clu+ C) w,
h = E' 2+ D] u+ Dy w,

and then perform Step 7.5.1 to 7.5.6 of the previous section to the above
system to get the parameterized gain matrix F(e). We let Kq(e) = F(e)'.

Step 7.F.C.3: (Construction of the full order controller £zc(g)). Finally, the
parameterized full order output feedback controller is given by

. T = AFC(E) z. + BFC(E) Yy
Zrcle) {u = Cocle) 2o + Dcle) 3, (7.4.3)
where
Fc(e) = A+ BFP(E) + Kq( )Cl,
Bro(€) := —Kq(e),
CFC () = (s), (74.4)

Drcfe) =
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We have the following theorem.

Theorem 7.4.1. Consider the given system (7.1.1) with Dy = 0 satisfying
all the conditions in Theorem 7.2.1. Then the closed-loop system comprising
(7.1.1) and the full order output feedback controller (7.4.3) has the following
properties: For any given v > 0, there exists a positive scalar e* > 0 such that
for all 0 < e < ¢*,

1. the resulting closed-loop system is asymptotically stable; and

2. the Hy-norm of the resulting closed-loop transfer matrix from the distur-
bance w to the controlled output A is less than v, i.e., | Thu(s,€)|loo < 7.

By Definition 7.1.1, the control law (7.4.3) solves the general H,,-ADDPMS for
the given system (7.1.1).

Proof. See Subsection 7.5.B. &
We illustrate the above result in the following example.

Example 7.4.1. We re-consider the system (7.1.1) with A, B, E, C2, D and
Dy, as in Example 7.3.1 but with

[—1 —10111] [1 0}
¢Ci=| 0 0 0010}, Di=]0 0f. (7.4.5)
0 0 0 001 0 0

Using the software toolboxes of Chen [9] and Lin [60], we can easily obtain
the following properties of £q: i) (4,C)) is detectable; ii) £, has two stable
invariant zeros at —1 and —0.5616, one imaginary axis invariant zero at 0, and
one unstable invariant zero at 3.5616; iii) £, has one infinite zero of order zero
and one infinite zero of order one; iv) I is left invertible; and v)

1.2808

VH(Zg) =Im

coco ¥~

2
1
2
, UAe.DUVA(EQ) = Im 0 . (7.4.6)
0
0

It is straightforward to see that Ker(Cz) D V¥ (Zq) U {Urego Vs (Zq)} and
V+(S4) C 87(Zs). By Theorem 7.2.1, the Hoo-ADDPMS is solvable for the
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Figure 7.4.1: Max. singular values of Th,, — Full order output feedback.

given system. Following our algorithm, we obtain a full order output feedback
controller of the form (7.4.3) with Fp(¢) as given in (7.3.41) and

2.4375 1 01813
2.4028 2 —0.0808
0 0 -3.1758

Ko(e) = 0 3 S E (74.7)
0 —8.2462 -5
-3 -2 —1/e-3

which places the closed-loop eigenvalues of A + Kq(e)C; asymptotically at
—0.5616, —1, —4.2462, —4.2787, —¢ and —1/e. The maximum singular value
plots of the corresponding closed-loop transfer matrix Thy(s,€) in Figure 7.4.1
show that the H..-ADDPMS is attained as e tends to zero. [

7.4.2. Reduced Order Output Feedback

In this subsection, we follow the procedure of Chen et al [26) to design a re-
duced order output feedback controller. We will show that such as a controller
structure with appropriately chosen gain matrices also solves the general H.-
ADDPMS for the system (7.1.1). First, without loss of generality and for
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simplicity of presentation, we assume that the matrices C; and D, are already
in the form,

_ 10 Cio D
G = [Ik g ] and D1=[ 6‘0], (7.4.8)

where k = { —rank(D;) and D, is of full rank. Then the given system (7.1.1)
can be written as

( (E1) _ A A2 z1 By E,

() =lan aa] ()< [3] e [B] =

%)_|0 Cio2 T Do

(m)‘{u ; ] <x2) +[ 1 ]w, (7.4.9)

h = [02,1 02,2] (i;) + Dy u+ Dy w,

A

\

where the original state x is partitioned into two parts, z; and z2; and y is
partitioned into yo and y1 with y; = z;. Thus, one needs to estimate only
the state z, in the reduced order controller design. Next, define an auxiliary
subsystem Zgx characterized by a matrix quadruple (Ag, Eg, Cr, Dg), where

C D
(ARvER»CRaDR) = (A227E25 [ Al;(;z] ) [ é;ojl) . (7410)

The following is a step-by-step algorithm that constructs the reduced order
output feedback controller for the general Ho-ADDPMS.

Step 7.R.C.1: (Construction of the gain matrix Fp(e)). Define an auxiliary
system

= Az+ Bu+ E w,

= oz (7.4.11)

h = Cyz+ Dyu+ Dy w,

< 8

and then perform Step 7.S.1 to 7.5.6 of Section 7.3 to the above system
to get the parameterized gain matrix F (). We let Fp(e) = F(e).

Step 7.R.C.2: (Construction of the gain matrix K (¢)). Define another auxiliary
system
z = Ayz+ Chu+ Cy, w,
y= (7.4.12)
h = E.z+ D, u+ Dj w,
and then perform Step 7.S.1 to 7.5.6 of Section 7.3 to the above system
to get the parameterized gain matrix F(e). We let Kg(e) = F (e).
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Step 7.R.C.3: (Construction of the reduced order controller £oc(g)). Let us
partition F.(¢) and Kjy(e) as,

e)=[Fp1(e) Fp2(e)] and Kg(e) =[Krole) Kri(e)] (7.4.13)

in conformity with the partitions of z = (il) and y = (zo ) , respec-
2 1
tively. Then define

Gr(e) = [—Kro(e), An + Kri(e)A11 — (An + Kn(€)Cr) Kni(e) ]

7.4.14
Finally, the parameterized reduced order output feedback contr(oller iz
gt be = Anc(e) e + Bucle) 1
Trole) : { . = c:: ©) o + Docle) y (7.4.15)
where
Arc(e) := Ar + BaFp2(€) + Kn(€)Cr + Kri(€) BiFra(e),
Brc(€) := Gr(e) + [B2 + Kn1(€) B1]1[0, Fpi(e) — Feo(e)Kri(e)],
Crc(€) := Fra(e),
Drc(e) := [0, Fri(e) - Fra(e) Kr1(e) ]
(7.4.16)

We have the following theorem.

Theorem 7.4.2. Consider the given system (7.1.1) with Dy = O satisfying
all the conditions in Theorem 7.2.1. Then the closed-loop system comprising
(7.1.1) and the reduced order output feedback controller (7.4.15) has the fol-
lowing properties: For any given v > 0, there exists a positive scalar ¢* > 0
such that for all 0 < € < g*,

1. the resulting closed-loop system is asymptotically stable; and

2. the Hy-norm of the resulting closed-loop transfer matrix from the distur-
bance w to the controlled output A is less than v, ie., |Thw (8, €)|lec < 7-

By Definition 7.1.1, the control law (7.4.15) solves the general Hoo-ADDPMS
for the given system (7.1.1). '

Proof. See Subsection 7.5.C. &
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We illustrate the above result in the following example.

Example 7.4.2. We again consider the given system as in Examples 7.3.1
and 7.4.1. As all the five conditions of Theorem 7.2.1 are satisfied, the Hoo-
ADDPMS for the given system can be solved using a reduced order output

feedback controller. We will construct such a controller in the following. First,

it is simple to show the transformation T, and T,

001 000
000100
1 11
00 0010 _
Ts_000001’T°‘[g(1)?J’
100 000
01 0000
will transform C; and D; to the form of (7.4.8), i.e.,
0 0]-1 -1 0 1
To“lClTs:[}) 010’02}= 10{ 0 00 0],
k 01/ 0 0 00
and L o
To*lDl:[%ﬁ—}: 0 0 |.
0 0
Moreover, we have
4 510 00 0
56/1 2 3 4
- A1 | Ar2 0 1/0 1 0 O
1 — —
T ATS'—[Azl Az |0 2(0 0 1 o0
030 0 0 0
3 4/0 0 0 -1
1 0 0 0
0 1 31
By 0 0 -1 E, 10
-1 = = = o=
TSB—[B2}— OO’TSE[Ez] 5 0
0 0 00
0 0 0 0

(7.4.17)

(7.4.18)

(7.4.19)

(7.4.20)

(7.4.21)

(7.4.22)
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Following our algorithm, we obtain

Fo(e)Ts = [ Fri(e) I Fra(e) ]

[ -6 -2 0 0 0 0
T =5 —1/e—6|—€?/3~-1 2e2/9-c-2 2/3—€%/27—4 -4
(7.4.23)
and
1.20004-0.1219¢ | 0 —0.6663+0.4025¢
0.8187—0.0609¢ | 0 —0.8534—0.2012¢
Kx(e) = [ Kro(e) | Kmfe) | = ~0.1219 | 0 ~0.4025¢ |’
00 0
(7.4.24)

which place the eigenvalues of Ag + Kr(e)Cr at —0.5616, —1, —3.8303 and —¢.
Also, we obtain a reduced order output feedback controller of the form (7.4.15)
with all sub-matrices as defined in (7.4.18) to (7.4.24), and with Bgc(e) and
Drc(€) being slightly modified to

Brc(e) = Gr(e)T; ! + [By + Kni(€) B1] [0, Foi(e) = Fr2(e) Kr1(e) 17572,
(7.4.25)
and
Dre(e) = [0, Fe(e) — Fra(e)Km(e) T, Y, (7.4.26)

respectively. The maximum singular value plots of the corresponding closed-
loop transfer matrix T, (s, ) in Figure 7.4.2 also show that the H..-ADDPMS
is attained as ¢ tends to zero. B

7.5. Proofs of Main Results

We present the proofs of all the main results of this chapter in this section.

7.5.A. Proof of Theorem 7.3.1

Under the feedback law u = F(e)z, the closed-loop system on the special coor-
dinate basis can be written as follows,

iy = Aj,x7 + By,ho+ L;ha + L hy + EJw, (7.5.1)
i = A%, 2% + BY ho + LO;hg + L8, hy + Edu, (7.5.2)
i = Afy aay — By Fao(e)lza + To7,]

+ Labd[Fad7 Fylael, + LY, sha + Ew, (7.5.3)
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Figure 7.4.2: Max. singular values of T;,, — Reduced order output feedback.

hy = [0, xn» Cblz s, (7.5.4)

G = A%, + Leoho + Leshy + Legha + Ecw, (7.5.5)

ho = —[F}, Folzt, — Foo(e)(ze + Tozh), (7.5.6)

. 1

&; = Ag;zi + Lioho + Ligha - EJTB‘“ [F:,'i,-ﬂq,. a7 + FpaiFig, b
+F2,(e) Fig, [z + Txh] + FiSi(e)xi] +Ew, (7.5.7)

h‘i:quxia 7’ = 1, 27"'7md1 (758)

where z}, = [(z})',z})’ and B, and L},, are as defined in Step 7.S.4.1 of
the state feedback design algorithm. We have also used Condition 2 of Re-
mark 7.2.2, ie., Dy = 0, and E;, EC, E},, By, E. and E;, i = 1,2,---,my,
are defined as follows,

r;E=[(B;) (B9 (E}) E. By Ej - E,]. (759
Condition 4 of the theorem then implies that

E} =0, (7.5.10)

and
Im(E2) € S(A2,) = Nuerag,)Im{wl — A3,}. (7.5.11)
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To complete the proof, we will make two state transformations on the closed-
loop system (7.5.1)-(7.5.8). The first state transformation is given as follows,

Tap = I Tan, (7.5.12)
I =z, (7.5.13)
Ta = T + Fhel + Fize + FOu(e) el + Tz,
1=1,2,-,maq, (7.5.14)
Tij =Tij, §=2,3, 0,5, 1 =1,2,--,my, (7.5.15)

where zq, = [(x7), (z8), (z})') and Zap = [(Z7)',(2F,), (22)'). In the new

state variables (7.5.13)-(7.5.15), the closed-loop system becomes,

iy = AnZs + ALY — (B LLFY(€)30 + Lyha+ Eyw,  (1516)

f:b = A:bcf:b - [B(-Jtzba L:bd]Fg(s)i'g + L:bd’_lm (7.5.17)
70 = (A%, — BOF2(e)zl + (L8 + T2 LY, )ha + Edu, (7.5.18)
be = 453 + (Lal0, G - [Lo, Leal F; )74

—[Leo, LedlFy(€)33 + Leaha + Ecw, (7.5.19)
ho = =[Ffy, Fyolz}, — Fio(e)zg, (7.5.20)

T = Ag,&i — E—lc;Bq,»FiSi(E)fi + L, ()34 + L () F (e)Za
+L92(e)F(e) A3, Fo + Lia(€)ha + Ei(e)w, (7.5.21)
Ri = hi + [F,, Faaileh, + FO,20 = Couiy i=1,2,--,myg,  (7.5.22)
ha=[h1, b2, -+, Am,] . (7.5.23)
where A_,, A%,,, B2 and L},, are as defined in Step 7.5.4.1 of the state

feedback law design algorithm, and L}, (), L% (), L%(e), L;q(e) and E;(e)

iab

are defined in an obvious way and, by (7.3.20), satisfy

ILEo N < Uy, LN <198, L2 <12, (7.5.24)
and
| Lia(e)ll < L, [1Ei(e)|l < &, €€(0,1], (7.5.25)

for some nonnegative constants I}, 19}, 192 &; and I;4, independent of «.
We now proceed to construct the second transformation. We need to recall

the following preliminary results from [63].

Lemma 7.5.1. Let the triple (4;, B;, F;(¢)) be as given in Steps 7.5.4.2 and
7.5.4.3 of the state feedback design algorithm. Then, there exists a nonsingular
state transformation matrix Q;(c) € R™ ™ such that
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1. Qi(e) transforms A; — B;F;(¢) into a real Jordan form, i.e.,
Q7' (0)[4: = BiF(9)]Qule) = Ji(e)
= blidiag{ Jo(e), Ju(€), Jia (e),+, I, (6)},

where

- 1
Jio(€) = ; . 1 ’
—€ Ti0 XTi0
and for each j =1 to p;,
JE(e) Iz
Tle) = =]
JZ;(E) 12 _ﬂz]
J;}(E) 275 X275

with 8;; > 0for all 7 = 1 to p; and §;; # Bix for j # k.

2. Both ||Q;(¢)|| and [|Q; (¢)|| are bounded, i.e.,
1Qs()Il < 6:, 107 @Il < 6:, € (0,1,

for some positive constant 6;, independent of .

3. If E; ¢ R™*? is such that
Im(E,‘) C ﬂweA(Ai)Im(wI — Ai),
then, there exists a §; > 0, independent of &, such that
1Q7 (©)Ell < é:, € € (0,1],

and, if we partition Q; '(¢)E; according to that of J;(¢) as,

E(e) Ei01(¢)
e i e el
E,-,,;(s) EiOr;o(E) riox1
and Eiji(e)
By = | DO ,

Eij"ij (6) 27 X1

(7.5.26)

—€

Bij]

(7.5.28)

(7.5.29)

(7.5.30)

(7.5.31)

(7.5.32)

(7.5.33)
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then, there exists a §; > 0, independent of ¢, such that, for each j =0, t0
i,
[B:jri; ()| < Bie. (7.5.34)

4. If we define a scaling matrix S;;(¢) as
Suile) = blkdiag{Sam(e), Sai1(€), Saia(€),++, Saip; (€) } , (7.5.35)

where
Sein(e) = dia,g{s""o”l , é:r.’o—?, - 1}, (7.5.36)

and for j = 1 to p;,
Saij(€) = blkdiag{eﬂj—-lIz, ™2, - el [2}, (7.5.37)

IF:(e)Q:i(e) S e)l < kie, |Fi(e)AiQi(e)S (6)] < ke (7.5.38)

then, there exists a k; > 0 independent of e such that,

Proof. This is a combination of the results of [63], and (2.2.13) of [61]. &

Lemma 7.5.2. Let

Ji(e) = blkdiag{jm, Jae), I (5)}, (7.5.39)
where
-1 1
Jo = , 7.5.40
0 11 (7.5.40)
-1 Ti0 XTio
and for each j = 1 to p;,
J5e) I
7 P z -1 Bij/e
Ji'(E:‘ . s J:E.-:[ 7 ])
& J,-*Jv(e) I ]() ~Biile -1
J;::l (6) 27 X275
(7.5.41)

with §;; > 0 for all j =1 to p; and B; # B for j # k. Then the unique positive
definite solution P; to the Lyapunov equation,

Jie) P + P, Ji(e) = -1, (7.5.42)
is independent of ¢.

Proof. See [63]. &
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We now define the following second state transformation on the closed-loop
system,
i, =17, I}, =z}, (7.5.43)
50 = [(#01), (8%2), - (3] = Sa(e)Q ™M (e)(9,) 120, (7.5.44)
Sa(e) = blkdiag{ Saie), Saale), -, Sar(e) },
Q(e) = blkdiag{ Q1(e), Q:(e), -, Qu(e) },
i, = ez, (7.5.45)
&g = (81,85, &0, )y &= Si(€)Ti, 1 =1,2,---,my, (7.5.46)

under which the closed-loop system becomes,

T, = Ands + A, () + A7)(9)E2 + Lha + Ejw,  (7.5.47)

Ty = AL ES, + AL (82 + Lhoha, (7.5.48)
i = J(e)22 + B(e)3° + L2y(e)ha + E2 (e)w, (7.5.49)
Fo = A% F. + e[AL,5h + A2,(6)F0 + Legha + Ecw), (7.5.50)
ho = ~[F35, Fbo]fi;’}, - F‘go(e)ig, (7.5.51)
€%; = (Ag — B, Fy)%: + el ()3}, + L8, (e)7°
+eLia(e)ha +cEi(e)w, (7.5.52)
hi = hi = hi + [F;, Foaili}, + Foy,(e)39 = Cp. i, (7.5.53)
ha=lhi, b2, Bm,) s (7.5.54)
where
AD(e) = —[Bf,, Lol F2(e)l2.Q(€)S; (e), (7.5.55)
Atpa(€) = (Bl Ll Fa(e)T5Q()S: (6), (7.5.56)
J(e) = blkdiag{ejl (€),ea(e), ,sjl(s)}, (7.5.57)
0 Biz(e) Bus(e) -+ Bu(e)
Bo=| 0 BmE o BEN (7.5.56)
0o 0 0 . 0

Bjk(e) = Sa;(€)Q; (€)Bix Fi(€)Qr(€) S, (¢),
j:1’2,...,l’k=j+1’j+2’...’l,
I2.(e) = Sale)Q 1 (e)(T2) " (L8 + TOLE, ), (7.5.59)
E2(e) = Su(e)Q 7 (e)(T2,) 'Y
=[(E% () (E%(e)) - (BYE)'], (7.5.60)
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Afab=[ [0, Cs] = [Leo, Lea) F, (7.5.61)
A% (e) = —[Lco, Lea] Fo(e) saQ(E)S; (e), (7.5.62)
Fo(e) = Fao(e) 87 (€)Q(e) %, (7.5.63)
Fo(e) = Si(e)LE,(e), (7.5.64)
L%,(e) = Si(e) (L3 () F2(e) + L2 (e) F2 (e) A% ITS.Q(e) S M (),  (7.5.65)
Li(e) = Si(e) Luale), (7.5.66)
Ei(¢) = Si(e) Eile), (7.5.67)
F2(6) = FLu(e)I%Q()S; (o), (75.68)

and where, for i = 1 to I, Ji(¢) is as defined in Lemma 7.5.2.
By (7.3.20), (7.5.24), (7.5.25), and Lemma 7.5.1, we have that, for all ¢ €
(0,1],

IIA;I,(E)II <agy L@l < B5q, 1A%, 1 < afy, (7.5.69)
422 < az2e, NI4T @ < adde, 1A% @ < ade, 1FD ()] < e,
(7.5.70)
for i =1 to mgy,
ILE,@) < Iy 1L () < Be, (7.5.11)
and
I Zia(ll <lay 1)l < fles 1Bie)] <&, (7.5.72)
fori=1tol,
IE2.(e)]] < &%, (7.5.73)

and finally, for j = 1tol, k=j+1to [,

IBji ()l < bjie, (7.5.74)

where a,,, 19y, at,, a70, a0, &, a2, FO, I}, 10,04, f°,, & and bj;, are some
positive constants, independent of €.

We next construct a Lyapunov function for the closed loop system (7.5.47)-
(7.5.54). We do this by composing Lyapunov functions for the subsystems. For
the subsystem of Z, we choose a Lyapunov function,

Vo (&) = (&) Pri;, (7.5.75)
where P, > 0 is the unique solution to the Lyapunov equation,

(As) Py + Py Az, =1, (7.5.76)
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and for the subsystem of :E:'b, choose a Lyapunov function,
Vi (Eh) = (&4) PhEl,, (7.5.77)
where P;i > 0 is the unique solution to the Lyapunov equation,
(AXSYPE + PRAYS = —1. (7.5.78)

The existence of such P, and P; is guaranteed by the fact that both A, and
A}Y are asymptotically stable. For the subsystem of

[(xa.l) ( ) PR (5’21)’]', (7579)

we choose a Lyapunov function,

1 -
070 _Z(ag)’ ' o 0 =0
Va (xa.) - ——;—_(zaz) Pa at? (7580)

=1

where of is a positive scalar, whose value is to be determined later, and each
PY, is the unique solution to the Lyapunov equation,

Ji(e)' P + PoJi(e) = —1, (7.5.81)

which, by Lemma 7.5.2, is independent of €. Similarly, for the subsystem Z.,
choose a Lyapunov function,

Ve(i.) = i, P, e, (7.5.82)
where P, > 0 is the unique solution to the Lyapunov equation,
(AS)P. +PAS, = —1. (7.5.83)

The existence of such a P, is again guaranteed by the fact that AS. is asymp-
totically stable. Finally, for the subsystem of Z4, choose a Lyapunov function

Mg
Va(za) = ) %P, (7.5.84)
where each P, is the unique solution to the Lyapunov equation
(A — Bg; Fi)'Pi+ Pi(Ay, — B, Fi) = —1. (7.5.85)

Once again, the existence of such P; is due to the fact that Ay, — B, F; is
asymptotically stable.
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We now construct a Lyapunov function for the closed-loop system (7.5.47)-
(7.5.54) as follows.
V(jc:’i:baig’jc’ id) = Va—(- ) + V+ (xab) + Vo( ) + VC(‘%C) + adVd('id)y
(7.5.86)
where oy, = 2||P;||*(a_,,)? and the value of ay is to be determined.

Let us first consider the derivative of V.9(0) along the trajectories of the
subsystem 72 and obtain that,

l
2@ =3 |~ar e 3 B ey,

=1 J=i+1

+22(a [ Y PSLS4(e)ha + (@) PRES()w].  (1.587)

Using (7.5.74) it is straightforward to show that there exists an a8 > 0 such
that, ,

e ) ag .. .

Vo (22) < —glal + ?lllx‘ill NHhall + aallwli?, (7.5.88)

for some nonnegative constants oy and as, independent of .
In view of (7.5.88), the derivative of V' along the trajectory of the closed-loop
system (7.5.47)-(7.5.54) can be evaluated as follows,

V= ~(82)87 +2(2;) Py Ay ()], +2(87) P A20(e) &)
+2(37) Py Ly ha +2(30) Py Efw - o, (&4)'5H,
+2aab(mab) P+A:ISL( )x + 2aab(wab) P Labdhd

3 . N r
——le°H2 + —Hz‘ill Nhall + azljwl|? - &z,
+2eZ P[AL, 3} + A2, (e)32 + Leghg + E.u)

1
+aq Z [— —EiE; + 28 PLY, (e)3T,
i=1

+ 28, P,LY, ()3° + 2%, P; Lig(e)hg + 2azgp,~E,-(e)w]. (7.5.89)

Using the majorizations (7.5.69)-(7.5.73) and noting the definition of o,
(7.5.86), we can easily verify that, there exist an ag > 0 and an e} € (0,1] such
that, for all € € (0, €1},

V< =2lz"12 =<2 2 =012 = 2 2
< 2" 2l ” Al 2”:6,,“ —2€“zd” + azljw||?, (7.5.90)

for some positive constant a3, independent of ¢.
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From (7.5.90), it follows that the closed-loop system in the absence of dis-
turbance w is asymptotically stable. It remains to show that, for any given
7 > 0, there exists an €* € (0,¢}] such that, for all € € (0,¢*],

lIAll2 < yllwll2. (7.5.91)

To this end, we integrate both sides of (7.5.90) from 0 to co. Noting that V' > 0
and V(t) =0at t = 0, we have,

llhall2 < (V2aze) lwll2, (7.5.92)

which, when used in (7.5.88), results in,

- 200
[P ( ; : +a2) llwll2- (7.5.93)

Viewing hy as disturbance to the dynamics of 7, also results in,

”"2:6”2 S (a‘i\/E) ”w”527 (7594)

for some positive constant ay, independent of €.
Finally, recalling that

h = Toplha - Ffil, — Fra(e)20), (7.5.95)
where
Fadl( )
- F
FO(e) = “‘“( ) , (7.5.96)

with each F,4(e) satisfying (7.5.71) and (7.5.72), we have,

[1Rll2 < |IToe]| <\/2a35 + aq||[FLIIVE + asy/2a3aze + a2€2> lwllz, (7.5.97)

for some positive constant o independent of €.
To complete the proof, we choose e* € (0,e}] such that,

[ITopl (v2a36 + 4[| F5lIVeE + asy/203aze + a262> <7. (7.5.98)

For use in the proof of measurement feedback results, it is straightforward to
verify from the closed-loop equations (7.5.47)-(7.5.54) that the transfer function
from E%w to h is given by

TO (s) = Tao(s,e) [sI - A%, + BSFO(e)] ", (7.5.99)

where T,,(s,€) = 0 pointwise in s ase — 0. &
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7.5.B. Proof of Theorem 7.4.1

Tt is trivial to show the stability of the closed-loop system comprising the given
plant (7.1.1) and the full order output feedback controller (7.4.3). The closed-
loop poles are given by AM{A + BF; ()}, which are in C™ for sufficiently small
¢ as shown in Theorem 7.3.1, and A{A + Kq(¢)C1}, which can be dually shown
to be in €~ for sufficiently small ¢ as well. In what follows, we will show that
the full order output feedback controller achieves the Ho,-ADDPMS for (7.1.1),
which satisfies all 5 conditions of Theorem 7.2.1. Without loss of any generality
but for simplicity of presentation, hereafter we assume throughout the rest of
the proof that the subsystem ;, i.e., the quadruple (4, B, C2, D2), has already
been transformed into the special coordinate basis as given in Theorem 2.3.1.
To be more specific, we have

" AL, 0 0 L ,C 0 L ,Cq]
0 A%, 0 L% Cy 0 L3,Cy |
+ + +
A = BoCao + 0 0 At LT.C, 0 LT.Cq
0 0 0 A 0 LyqCy
BCEc—a BCEga, BcE;tl chCb Acc Lchd
| BiE;, BuE, BaE}, BiEs BiFac Add |
= ByC3,0 + A, (7.5.100)
B, 0 07 r By,
By, 0 0 B,
Bf 0 +
B=| 0 0 , By= Boa , (7.5.101)
By 0O 0 By
Bee 0 B, By,
L Boy By 0 L By
C2,0=[Co—a C(())a CBZ Co() Coc C()d], (7.5.102)
Coa C8a Cf, Cov Coc Cod I 00
Co=10 0 0 0 0 Cyq|, Dy=|0 0 0f, (7.5103)
0 0 0 C 0O 0 0 0 0
I 000
0 I 00
+ _ 0 0 00
ST(Zp) =Im 0000 (7.5.104)
0 010
0 0 0 1[I
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It is simple to note that Condition 4 of Theorem 7.2.1 implies that

FE‘;'
E?

a

E= g . (7.5.105)

E
Eq |

Next, for any ¢ € Vx(Eq) with A € €°, we partition ¢ as follows,

G
@
+
¢=1>"1. (7.5.106)

(b
(e
¢

Then, Condition 5 of Theorem 7.2.1 implies that Co( = 0, or equivalently

CZ,OC =0, C, =0 and Cy3y=0. (7.5.107)

By Definition 2.3.3, we have

[AEIM 1])31] (g) =0, (7.5.108)

for some appropriate vector 7. Clearly, (7.5.108) and (7.5.105) imply that

(A—=M)¢=-En= (7.5.109)

* X © O * %

where *’s are some vectors of not much interests. Note that (7.5.107) implies

(A=A)¢ = (BoCapo+ A=) =(A— ,\f)g
*

*
(AF, — M\ + LCoG + LT, Cala
- (App = M) + LoaCala

*
*
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- . -

*

(A;’-a - ’\I)C:

T | w-ang | (7.5.110)

*

L * B

(7.5.109) and (7.5.110) imply

(A}, —AD¢H =0 and (Ass — M) =0. (7.5.111)

Since A}, is unstable, (A}, — AI)¢(} = O implies that ¢} = 0. Similarly, since
(Ass, Cy) is completely observable, (Asy — AI)¢ = 0 and Cy(p = 0 imply ¢ =0.
Thus, ¢ has the following property,

Ca
&

(= g € SH(Sy). (7.5.112)
e

Ca
Obviously, (7.5.112) together with Condition 6 of Theorem 7.2.1 imply

SH(Be) DV (EQ) U {UnegoVa(Za)} - (7.5.113)

Next, it is straightforward to verify that A — sI can be partitioned as

A—-sl=X; + X3Cs + X3+ X, (7.5.114)
where
An—sI 0 0 LG 0  L,Ca
0 0 0 0 0 0
Xy = 0 0 0 0 0 0
' 0 0 0 0 0 0 ’

BCE;, BcEga BcE;:, chCb Acc sl Lchd
B4E;, BiE}, B4Ef, BaEs BiEi Aaqa— sl

(7.5.115)
(B;, 0 0]
By, LYy L3,
+ + +
X; = Boa Loy Lay , (7.5.116)
Bo, Lya O
Boc 0 0
| Boy O 0|
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0 0 0 0 00
0 0 0 0 0 0
P 0 0 A} -sI 0 0 0
710 o 0 Ap—-sI 0 0]’ (7.5.117)
0 o0 0 0 0 0
00 0 0 00
and
0 0 0000
0 A% -sI 0 0 0 O
0 0 0000
X4 = 5.1
‘“Jo 0o 0000 (7.5.118)
0 0 00 00O
0 0 0000
It is simple to see that
Im (X1) C §*(Z) N{MregoSr(Zr)}, (7.5.119)
and
Ker (X3) D S*(Zp) 2 VH(Zq) U {Ure go Va(Za)} - (7.5.120)
It follows from the proof of Theorem 7.3.1 that as € —+ 0
[[Ca + DaF(e)][sI — A- BF:(e)] ||, < K, (7.5.121)

where k; is a finite positive constant and is independent of . Moreover, under
Condition 4 of Theorem 7.2.1, we have

[Ca + Do Fp(e)|[s] - A— BFs(e)]7'E - 0, (7.5.122)
and
[Co+ Do Fy(€)][sI — A- BF:(e)] ' X1 — 0, (7.5.123)
pointwise in s as € = 0. By (7.5.99), we have
[Ca+ Do Fe(€)][sI — A- BF:(e)] 71 X4 — 0, (7.5.124)

pointwise in s as ¢ & 0. Dually, one can show that
”[sI - A— Kq(e)Ci]7YE + Kq(e) Dy ] ”oo < Kq, (7.5.125)

where & is a finite positive constant and is independent of ¢. If Condition 5 of
Theorem 7.2.1 is satisfied, the following results hold,

ColsI — A — Kq(e)C1] ' [E + Kq(€)D1] = 0, (7.5.126)

and
X3[sI — A — Kq(e)C1] 7} E + Ko(e) D1} — 0, (7.5.127)

pointwise in s as € — 0.
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Finally, it is simple to verify that the closed-loop transfer matrix from the
disturbance w to the controlled output h under the full order output feedback
controller (7.4.3) is given by

Thw(s,€) = [Co+D2Fy(e)|[sI-A—BFp(e)]'E
+ Ca[sI- A—Kq(e)C1]  [E+ Kq(e)D1]+[Ca+ D2 Fr(¢)]
-[sI— A=BF(e)]  (A—sI)[sI - A-Kq(¢)C1]  [E+ Kq(e)Dy).

Using (7.5.114), we can rewrite Ty (s,€) as

Thw(s,€) = [Co+DyFp(e)|[sI—A— BF;(e)]'E
+ Ca[sI-A—-Kq(e)C1]  [E+Kq(e) Dy
+ [Ca+DaFo(e)][s] — A— BFo(€)] "} (X1 + X2Co + X3+ X4)
[sI—A-Kq(e)C1] " [E+ Kq(¢)D1].

Following (7.5.121) to (7.5.127), and some simple manipulations, it is straight-
forward to show that as € — 0, Thy (s, &) — 0, pointwise in s, which is equiva-
lent t0 || Thwlloo — O as € — 0. Hence, the full order output feedback controller
(7.4.3) solves the H,,-ADDPMS for the given plant (7.1.1), provided that all
five conditions of Theorem 7.2.1 are satisfied. i3]

7.5.C. Proof of Theorem 7.4.2

Again, it is trivial to show the stability of the closed-loop system comprising
the given plant (7.1.1) and the reduced order measurement feedback controller
(7.4.15) as the closed-loop poles are given by MA + BFr(g)} and M4s +
K (e)Cr}, which are asymptotically stable for a sufficiently small e. Next, it is
easy to compute the closed-loop transfer matrix from the disturbance w to the
controlled output h under the reduced order output feedback controller,

Thw(s,€) = [C2 + DaF(e))[sI — A — BF,(¢)]'E
+ [Cy + DyFy(e)|[sI — A — BFy(e)] (A — sI) ( 0 k>

“[sI — Ax — K (¢)Cr] ™ [Ex + Kr(€)Dg]
+ C2 ( O_ ) [SI — AR - KR(E)CR]_I[ER + Kn(g)DR]_

n

It was shown in Chen [10] (i.e., Proposition 2.2.1) that

(Ino_k> V¥ (Zqr) =V (Z)- (7.5.128)
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Following the same lines of reasoning as in Chen [10], one can also show that
0
(I —k ) UAGCO V,\(EQR) = UAE COVA(EQ)- (7.5.129)

Hence, we have

0
(In_k) (V+(EQR) U {U)\GCOV)\(EQR)} )= V+(2Q) @] {Uxecovx(zq)} .
(7.5.130)
The rest of the proof follows from the same lines as those of Theorem 7.4.1. &



Chapter 8

Infima in Discrete-time Ho
Optimization

IN THIS CHAPTER, we present computational methods for evaluating the infima
of discrete-time H,, optimal control problems. The main contributions of this
chapter are the non-iterative algorithms that compute exactly the values of
infima, for systems satisfying certain geometric conditions. If these conditions
are not satisfied, one might have to use iterative schemes based on certain
reduced order systems for approximating these infima. Most of the results of
this chapter were reported earlier in Chen [13], and Chen, Guo and Lin [17].

8.1. Full Information Feedback Case

The main result of this section deals with the non-iterative computation of
the infimum for the following full information feedback discrete-time system
characterized by:

zk+1)= A zk)+ B ulk) + E wk),

y(k) = (é) z(k) + (?) w(k), (8.1.1)
h(k) = (Cq CE(k) + D, u(k) + Do 'w(k),

where z € R" is the state, u € R™ is the control input, w € R? is the external
disturbance input, y € R™"7 is the measurement output, and h € R’ is the
controlled output of £. For ease of reference in future development, we define
T to be the subsystem characterized by the matrix quadruple (4, B, C3, D>).
We first make the following assumptions:

203
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Assumption 8.F.1: (4, B) is stabilizable;

Assumption 8.F.2: X, has no invariant zero on the unit circle;

Assumption 8.F.3: Im (E) C V®(Xs) + S°(Zs); and

Assumption 8.F.4: Dy; =0.

In what follows, we state a step-by-step algorithm for the computation of
the infimum ~*.

Step 8.F.1: Without loss of generality but for simplicity of presentation, we
assume that the quadruple (A4, B, C2, D,), ie., Zp, has been partitioned
in the form of (2.3.4). Then, transform I, into the special coordinate
basis as described in Chapter 2 (see also (2.3.20) to (2.3.23) for the com-
pact form of the special coordinate basis). In this algorithm, for ease of
reference in future development, we introduce an additional permutation
matrix to the state transformation I'; such that the new state variables

are ordered as follows:
T
T,
z} |. (8.1.2)
T4
Tp

(SH
Il

Next, we compute
E.

IL'E=|EF|. (8.1.3)

Note that Assumption 8.F.3 is equivalent to E; = 0. Also, for economy of
notation, we denote n, the dimension of R"/V°(X;), which is equivalent
tony = n} + ng +n,. We note that n, = 0 if and only if the system Zp
is right invertible and is of minimum phase with no infinite zero of order
higher than zero.

Step 8.F.2: Define A, B;, By, Bz1, E., C; and D, as follows:

A}, Ltcs LYo EF
Az = |B4Ef, Aia BuEa|, E.:=|Es |, (8.14)
0 LuCa  Aw E,
Bf, 0©
B:c = [B:CO le] = BOd Bd ) (815)

By 0
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0 0 0 I 0
C.:=T,|0 C; 0|, D.=T,|0 0]. (8.1.6)
0 0 G 00

It follows from the property of the special coordinate basis that the pair
(A, B,) is stabilizable. Next, we find a matrix F, such that A, + B, F,
has no eigenvalue at —1. Then define A,, B,, E., C., D, and Dy, as:

Ay = (A; + B.F, + )™ (A, + B, F, — I), w
2 = 2(Az + Bz F: +I)™%B,,

s = 2(A; + B F, +I)72E,,

C,:=C, + D, F,,

D, =D, — (Cy + D, F,)(A; + B F, + I)"'B,,
D3 := Dyy — (Cy + D.F,)(Ay + B, F, + I)~'E,.

3 o

r (8.1.7)

Step 8.F.3: Solve the following continuous-time algebraic Riccati equation and

algebraic Lyapunov equation, both independent of +:

~ o el o~ ~l ~ ~ ~ - ~ ~ 1 o~ ~r ~ 77
0= [Az—Bz(DzDz)_lD;CI] 5o +5, [Az—Bz(DzDz)‘lD;CI]
—B,(D.D,) 'B.+3, [C’;C’z—é'zbz(b;bz)-lﬁ;éz] 5., (8.18)
- - - - - - - - - - - - - - !
0= [A,,—Bx(D;Dz)”lD;Cz Tot T, [Ax—Bx(D;Dz)‘ID;CI]

~ - - - ~ - ~ -~ - ~ - - 1
- [Ez-—Bm(D;Dz)‘lDzDgz] [Ez—Bz(D;Dz)_lD;Dn] . (8.1.9)
for positive definite solution S’z and positive semi-definite solution Tz.
For future use, we define
Sy = (Ag + B F, + )5, (A, + F'B., +1)/2, (8.1.10)

and

T, := (Ay + BoFy + T, (A, + F.B, + I)/2. (8.1.11)

Step 8.F.4: The infimum, ~*, is given by

7 =V Amax (o5 ) = 1/ Amax (Te557). (8.1.12)

This completes the algorithm for computing ~* for the full information
feedback case.

We have the following theorem.
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Theorem 8.1.1. Consider the full information system given by (8.1.1). Then
under Assumptions 8.F.1 to 8.F.4,

1. v* given by (8.1.12) is indeed its infimum, and

2. for v > *, the positive semi-definite matrix P(y) given by

P(y) = (T;1) [8 (S, _12/72)_1] r;i, (8.1.13)

is the unique solution that satisfies conditions 2.(a)-2.(¢) of Theorem 3.2.1.
Moreover, such a solution P(+y) does not exist when v < v*. @

Proof. First, we note that it follows from Theorem 2.3.1 and Property 2.3.4 of
Chapter 2 that (A, B;,C,, D;) is left invertible with no invariant zeros on the
unit circle. Following the results of Stoorvogel et al [102] and Lemma 4.2.3, it
is straightforward to show that the following three statements are equivalent;:

1. There exists a v suboptimal controller for the full information system
(8.1.1).

2. There exists a -y suboptimal controller for the following auxiliary system
z(k+1)= A zo(k) + B; uz(k) + E; w(k),

vo (k) (?) 22 (k) + (é) we(k),  (8.114)
he(k) = C; z(k) + D, uy(k) + Da2 wg(k),

where A,, B;, E,, C, and D, are defined as in (8.1.4) to (8.1.6). Note
that D3a = O by the assumption.

3. There exists a 7 suboptimal controller for the following auxiliary system

T = Az iz"‘émaz”‘ Eac W,

) VNS P

hz = C‘m Ex + Dz '&x + D22 wxv

N
8
|

where A, B,, E., C’z, D, and Dy, are as defined in (8.1.7).

For future use, we denote £, and ¥, the matrix quadruples (Az, Bz,Cz,Dg)
and (4;, B;,C,, D,), respectively. Note that by Theorems 3.1.1 and 3.2.1,
items 2 and 3 above are also equivalent to the following:
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1. There exists a solution P; > 0 to the following discrete-time algebraic
Riccati equation,

P, = A,P,A, + CLC; — [B;P"A”D;Cr ] oo [BiPxAﬁD;Cx]

E.P,A, E,P, A,
(8.1.16)
where
DD, + B.P,B, B, P, E,
G, = , (8.1.17)
E.P.B, E.P.E, — v°I
such that the following conditions are satisfied
Vy := BLP, B, + D,D, >0, (8.1.18)
R, :=+*I — E.P,E, +E.P,B,V,1B.P,E, > 0. (8.1.19)

2. There exists a solution P, > 0 to the following continuous-time algebraic
Riccati equation,

~/ ~ ~/ ! ~f ~ ~t =~
0=Phot APy +CL0, — | Bl=tDeCe | g7t | Bl DeCe )
E;P;+DyCo EP;+D3,Co
(8.1.20)
with
DiolI — Do(D,D,) " D)1 Dag < 41, (8.1.21)
and L .
5, o= | DePe | Dl , (8.1.22)
DgyDz Dyy Do —~°I

Furthermore, the solutions to the above Riccati equations, if they exist, are

related by
P, =2(A, +D)7'P (A, + )7L, (8.1.23)

Thus, it is equivalent to show that v* given by (8.1.12) is the infimum for the
full information system (8.1.1) by showing that it is an infimum for the auxiliary
system in (8.1.15). This can be done by first showing the properties of the
auxiliary system of (8.1.15) and then applying the results of Chapter 5. We note
that the matrix F, in Step 8.F.2 of the algorithm is a pre-state feedback gain,
which is introduced merely to deal with the situation when A, has eigenvalues
at —1 and the inverse of I + A, does not exist. For the sake of simplicity but
without loss of generality, we will hereafter assume that A, has no eigenvalue
at —1 and F, = 0. We will first show the following two facts associated with



208 Chapter 8. Infima in Discrete-time H,, Optimization

the auxiliary system (8.1.15): There exists a pre-disturbance feedback to the
system in (8.1.15) in the form of,

iy = Fyg + g, (8.1.24)
such that
1. Do + ﬁzf’w =0, and
2. Im(E, + B.F,) CV°(E;) + S°(Z.).

In fact, we will show that such an F, is given by

Fu=—(D.D;)1D. D (8.1.25)
In order to make our proof simpler, we first apply a pre-state feedback law
0 0 0
Uy = Fozy +v, = — [EL 0 Edb] Tz + Vg, (8.1.26)

to the system in (8.1.14) such that the resulting dynamic matrix A; + B.F;
has the following format,

0 Agq 0
0 LpaCa Am

[ Af, LE.Cy L;QC;,J

, (8.1.27)
while the rest of the system matrices in (8.1.14) remain unchanged. Hence, it
is without loss of generality that we assume that A, is already in the form of
(8.1.27). Also, we assume that both A4y and A have no eigenvalue at —1.
Then it is simple to verify that

(Aja. + I)—l Xl X2
(A +D)7t = 0 (Aga + 1) 0 :
0 —(Aps + I) 7 LpaCa(Aaa + )™ (Aw +1)7}
(8.1.28)

where
X1 =~(A%, + D7 [LY - L, Co(Ass + 1) Log) Ca(Aaa + 1), (8.1.29)
Xo=—(A%, + DL Cy(Aw + )7L, (8.1.30)
and
D.,=D, - C.(A, +)7'B,

I 0
=T, [ ~ C4(Aaa+ 1) Bog —Ca(Aaa+I)7' By )
X3 Co(App + 1) LygCa(Aga + I) 1By
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where

X3 = Cy(Aw + 1) ' LoaCa(Aga + I) ! Bog — Cy(Ass + 1)~ By, (8.1.31)

Define
I 0 0
I, =T, | —Ci(Ada+ I)"1Bog —C4(Aga + I)7'By 0
X3 C’b(Abb+I)_1Lbdcd(Add+I)_le I
(8.1.32)

We note that T', is nonsingular. This follows from the property of the special
coordinate basis (see Theorem 2.3.1) that the triple (Aqq, Ba, Cy) is square and
invertible with no invariant zero, and hence Cy(Agq + I)7!By is nonsingular.
Then we have

_ [f o
D.=F,|0 1], (8.1.33)
00
and
0 0
ng = —~Cz(Aa;+I)_1Ez = - Cd(Add + I)_lEd = Fo X4 s
Cb(Abb-}-I)”lLded(Add+I)—1Ed 0
(8.1.34)
where
Xy = [Ca(Aga + 1) By Ca(Aaa + I) 7 E,. (8.1.35)

It is now obvious to see that the following pre-disturbance feedback law to

(8.1.15)
0

a,=ﬁwwz+az:_[X4] We + Vg, (8.1.36)

guarantees that ng + Dmﬁ’w = 0. We also have

E}
E,+BF,=2A,+I)"%(E, + B, F,)=2(A, + )" | E3 |, (8.1.37)
0
where
E} = Ey— By[Ca(Aaqa + )7' By 'Ca(Aga + I) ' Ea. (8.1.38)

This shows the first fact. Since D, is of maximal column rank, it follows that
- 1~ ~ 1 ~

the above F', is also equivalent to —(D,D,)"1D_D2,. Next, let us proceed to

prove the second fact, i.e.,

Im(E, + B.F,) CV°(5,) + S°(Z.).
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We will have to apply several nonsingular state transformations to the system
i‘:c = A~w I, + B:c Ug + (Em+Bzﬁw) 'J)zy
. . _ (8.1.39)
hzzczzz'*‘Dz Ve ,

and transform it into the form of the special coordinate basis as given in The-
orem 2.3.1. First let us define a state transformation

T, = (A + )72 (8.1.40)
In view of (8.1.28), it is straightforward, although tedious, to verify that
(Af,+1) * *
Ty = { 0 (Aga + )72 0 , (8.1.41)
0 Xs (Ap +1)~2

where «'s are matrices of not much interest and

Xs = ~(Aep + I) 7 LpaCa(Aga + 1)~ + (A + 1) ' LyaCa)(Aga + )7,

(8.1.42)
and
Ay =T A, Ty = (Ae—D)(Ag+ D)1 (8.1.43)
(Ar, DAL +D)™! * 2(A,+ 1) LY, Co(Ap+1)7!
= 0 (Aga—1I)(Aga+I)7? 0 ,
0 2(Ap+I) " LyaCa(Aga+1)™" (Apy—I)(App+1)7!
Bf ©
_ ~—1 =~
Bw = Tz Ba: = 2Bz =9 [BOd Bd] s (8144)
By, 0
E}
E; = T:(Em +B.F,)=2 E; |, where E, =0, (8.1.45)
Ey
C,:=C,T,
_To 0o 0
=T,|0 -—[Cd(Add-l-I)"le]_ICd(Add-f-I)_z 0 , (8.1.46)
0 —~Co(A+I)"2LpaCa(Aga+I)™  Co(App+I)72

. _[ro
D,:=D,=T, |0 I|. (8.1.47)
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In order to bring the system of (8.1.39) into the standard form of the special
coordinate basis, we will have to perform another state transformation that will
cause the (3, 2) block of C, in the right hand side of (8.1.46) to vanish. The
following transformation T, will do the job,

~ I 0 0
T.=10 I 0 . (8.1.48)
0 LpaCi(Ada + I)—l (Aps + 1)2

It is quite easy to verify this time that

~

A, =T (8.1.49)
(AL, -1) A+ - +1)~1 x 2(A, +I)" Lt Cy(Aps +1)
(Aga—I)(Ag+I)1 0 ,
2(Aps+1)"2L4Co(Aga+I)"2 (Aw+I) " (Aps—1I)
Bf, 0
Bz = Bzo = T;lém =2 |:Bo¢1 By :I , (8.1.50)
x  —(Aw+I)"2LpaCa(Aga+1)"' By
E, =T 'E,
Ef Ef
=2 E; =2|E; |, (8.1.51)
(Awy + I)—z[Eb -— Lded(Ajd + I)'IEE] 0
Cpi= [qzo] =C, T,
C:cl
0 0 0
=T | 0 —[Ca(Aaa + D) B 'Co( A+ D)~ 0 |, (8.1.52)
0 0 Cy
D, := D, =D,. (8.1.53)

Then we have
(A:-a. - I)(Aja + I)_l * 2(A;,i—a, + I)—IL:be(Abb + I)
:z:()é:z() = 0 A;a 0 y

0 0 (App + I)—I(Abb )
(8.1.54)

>

A,
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where

A%, = (Aga — I)(Aaa+ 1) + 2B4[Ca(Aua + 1) ' Ba] ' Ca(Aga + 1)72

(8.1.55)
Define another nonsingular state transformation,
. I o T,
T:=10 I 0}, (8.1.56)
0 0 I

with T, being a solution to the following general Lyapunov equation
(I-AL)T+AL) T AT (A + 1) " (A —1) = 24, = 1) "L L},Co(An+1).

It follows from Kailath [48] that such a solution always exists and is unique if
At and Ay have no common eigenvalue. Then it is straightforward to verify
that it would transform the (1, 3) block of fim - Bzoéw in (8.1.54) to 0 while
not changing the structures of other blocks. Hence, f‘z would also transform
the system (fim, Bz, (:‘x, 13,,) and E‘z into the standard form of the special coor-
dinate basis as given in Theorem 2.3.1 since the pair {(Aps + 1)~ (Asp —I),Cs}
is completely observable due to the complete observability of (Aps,Cs). It is
now clear from the properties of the special coordinate basis that

Im (E,) C VO(E,) +8°(5,),
where £, is characterized by (/i,,, B; R é’z, ﬁ,), which is equivalent to
Im(E; + B.F.) C VO(5,) +8°(Zs).

This proves the second fact.
Next, let us apply a pre-disturbance feedback law,

iy = F ol + 9, = —(D,D;) "D, Dby + U (8.1.57)

to the auxiliary system (8.1.15). Again, this pre-feedback law will not affect
solutions to the H,, problem for (8.1.15) or to the solution P, of (8.1.20)-
(8.1.22). After applying this pre-feedback law, we obtain the following new
system

~ ~f ~ ~1 ~

Go= Ay &+ B s+ [Ew - Bz(DxDz)"DzDgg] e,
§, = (?) &y + (é) @,, (8158)
he = Cp %o+ Dy iy + 0 Wy
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Then it follows from Corollary 3.1.1 that the existence condition of a v subop-
timal controller for (8.1.58) is equivalent to the existence of a matrix P, > 0
such that

0= Pod, + AP, + CLCy = (BuBa+C.D.) (D Da)"\(P,Bs + CLD.Y
. (- it - Z - - . . - e 1
+P, [B. - Bo(D, D;)™ D, D] [E. - Bo(D,D.)"' D, Dna| Pu/¥,
is satisfied. Note that the solution P, to the above Riccati equation is identical
to the solution that satisfies (8.1.20)-(8.1.21).
Now, it follows from Theorem 4.1.2 that (/iz, B.,C,, D.) is left invertible,
and is free of infinite zeros and stable invariant zeros as well as invariant zeros
on the unit circle. Also, in view of the second fact of the auxiliary system of

(8.1.58), it satisfies Assumptions 5.F.1 to 5.F.4 of Chapter 5. Following the
results of Chapter 5, we can easily show that

7 = Vmax(@255 ), (8.1.59)

and for any v > 7*, the positive definite solution P, of (8.1.20)-(8.1.22) is given
by

P, =(8,-T,/v*)~L. (8.1.60)
It then follows from (8.1.23) that for any v > v*, the positive definite solution
P, of (8.1.16)-(8.1.19) is given by

P, =2(AL +I)7Y8, - T./v*) Y (A, + )7, (8.1.61)
and hence 7* can also be obtained from the following expression,
7* = /\max(TzSa:_l)y (8162)

where S, and T} are as defined in (8.1.10) and (8.1.11), respectively. Moreover,
it is straightforward to verify that ‘

P(y) = (F;I)’ [g (S, _1-2/,},2)—1] I-:I:

is the unique solution that satisfies conditions 2.(a)-2.(c) of Theorem 3.2.1.
Finally, note that (A, B.,C.,D,) is left invertible, and is free of infinite
zeros and stable invariant zeros as well as invariant zeros on the unit circle. It
follows from Richardson and Kwong [83] that the solution S, to the Riccati
equation (8.1.8) is positive definite because (Ag, B.) is controllable, and the
solution T, to the Lyapunov equation (8.1.9) is positive semi-definite. In fact,
both of them are unique. This completes the proof of our algorithm. s}

The following remarks are in order.
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Remark 8.1.1. For the case when D32 # 0, Assumption 8.F.3 should be re-
placed by the following conditions:

1. Dyy := Dag — C(A; + )71 E, is in the range space of D., and
2. Im [E, — Bo(D,D.)7 D, Das| € V°(E2) +8°(5:).

Then our algorithm would carry through without any problems. We would also
like to note that if (4, B,Cy,D;) is right invertible, then (A, B.,C,,D,) is
invertible and D, is square and nonsingular, and V°(£;) + S°(%,;) = R".
Hence, the above two conditions will be automatically satisfied. Such a result
was first reported in Chen [13]. ®

Remark 8.1.2. If Assumptions 8. F.3 and 8.F.4 are not satisfied, then one
might have to approximate iteratively the infimum v* by finding the smallest
non-negative scalar, say 4* > 0, such that the Riccati equation (8.1.20) and
(8.1.21) are satisfied. B

We illustrate the above results in the following example.

Example 8.1.1. Consider a full information system (8.1.1) characterized by

1 1 111 0 01 1
0 0 011 0 00 1
A=|0 0 1 11|, B=1]|10 0|, E=]|1], (8.1.63)
1 1 111 010 1
0 0 011 0 00 0
and
00 -1 00 1 00 0
Co=1|0 0 0 10|, Dy=1{0 0 0], Dga=]0]|. (8164
0 0 0 01 0 00 0

It is can be verified that (4, B) is controllable and (4, B, Cs, D3) is neither right
nor left invertible, and is of nonminimum phase with two invariant zeros at 0
and 2, respectively. Moreover, it is already in the form of the special coordinate
basis as given in Theorem 2.3.1 and Assumption 8.F.3 is satisfied as E, = 0.
Hence, Assumptions 8.F.1 to 8.F.4 are all satisfied. Following the algorithm,
we obtain

O =N
[
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) Dzz[

i 0.25 025 0.25
A, =| 05 -050 0.50],
-0.25 075 —0.25

i 0.125
, E,=| 0750

0
0
1

; 0.3125 -0.1875
B, = | —-0.6250 1.3750

0.4375 —-1.0625 —0.625
and
) _ 1.000 0.000 _ 0.00
C,=C,, D,= 0.250 -0.7501 , Dyy = | -0.501 .
-0.125 0.375 0.25

It is simple to verify that (fiz, B,,C.,D.) is left invertible with two invariant
zeros at 1 and 1/3, respectively. Solving Riccati equations (8.1.8) and (8.1.9),

we obtain
0.227615 -0.207890 0.019725
S, =|—0.207890 1.202254 —1.005636 |,
0.019725 -1.005636 1.014089
and
0.09375 —0.062500 0.031250
T, = | —0.06250  0.041667 —0.020833 | .
0.03125 -0.020833 0.010417

Finally, we get

0.562306 —0.145898 —0.145898 1/3 0 0
S, = | —0.145898 0.618034 -0.381966(, T,={ 0 0 Of,
—0.145898 —0.381966 0.618034 0 0 O
and the infimum
4* =0.934173. E

8.2. Output Feedback Case

We present in this section a well-conditioned non-iterative algorithm for the
exact computation of v* of the following measurement feedback discrete-time

system X,

)
)

e(k+1) = A z(k) + B u(k) + E w(k),
{ k) =0 z(k) + D2 u(k) + Dao w(k),
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where ¢ € R™ is the state, u € R™ is the control input, w € R? is the
external disturbance input, y € R? is the measurement output, and h € R is
the controlled output of £. Again, for easy reference, we define L, to be the
subsystem characterized by the matrix quadruple (4, B, Cs, D3) and I, to be
the subsystem characterized by the matrix quadruple (A, E, Cy, D). We first
make the following assumptions:

Assumption 8.M.1: (A, B) is stabilizable;

Assumption 8.M.2: L, has no invariant zero on the unit circle;
Assumption 8.M.3: Im (E) C V°(5;) + S°(Zp);

Assumption 8.M.4: (A,(C}) is detectable;

Assumption 8.M.5: £, has no invariant zero on the unit circle;
Assumption 8.M.6: Ker (Cy) D V°(Zq) NS°(Z,); and

Assumption 8.M.7: Dy =0.

As in the previous section, we outline a step-by-step- algorithm for the com-
putation of v* below:

Step 8.M.1: Define an auxiliary full information problem for
z(k+1)= A z(k)+ B ulk)+ E w(k),
y(k) (?) z(k) + (é) w(k), (82.2)
h(k) Cy z(k) + D u(k) + Dag w(k),.

i

and perform Steps 8.F.1 to 8.F.3 of the algorithm given in the previous
section. - For future use and in order to avoid notational confusion, we
rename the state transformation of the special coordinate basis for X, as
I'sp and the dimension of A, as n,p. Also, rename S, of (8.1.10) and T}
of (8.1.11) as S,p and T, respectively.

Step 8.M.2: Define another auxiliary full information problem for
z(k+1)= A z(k) + Cj ulk) + C; w(k),
y(k) (‘,’) z(k) + (é) w(k), (8.2.3)
h(k) = E z(k) + Dy ulk) + D3y w(k),

and again perform Steps 8.F.1 to 8.F.3 of the algorithm given in Sec-
tion 8.1 one more time, but for this auxiliary system. Let 3} be the dual
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system of £, and be characterized by (A’, Ci, E', D}). We rename the
state transformation of the special coordinate basis for T, as I',o and the
dimension of A; as nzq, and S; of (8.1.10) and T of (8.1.11) as S, and
T=zq, respectively.

Step 8.M.3: Partition
7 () = [: ;] , (8.2.4)

where I is a ngp X nzq matrix, and define a constant matrix

_ [TIPS;PI +TS 'S, —ISzd ] ' (825
~TeoSal'S; TeaSid '
Step 8.M.4: The infimum ~* is then given by
7" = VAmax (M), (8.2.6)
where M has only real and non-negative eigenvalues.

Proof of the Algorithm. Once the result for the full information case is
established, the proof of this algorithm is similar to the one given in Section 5.2
of Chapter 5. &

The following remarks are in order.

Remark 8.2.1. Consider the given discrete-time system (8.2.1) that satisfies
Assumptions 8.M.1 to 8. M.7. Then for any v > v*, where v* is given by (8.2.6),
the following P(vy) and Q(7),

N .— (p=1y |0 0 -1
P(y) := (I, [0 (Sun zp/72)_1J I, (8.2.7)
and
Q) = (T | ° 0 r;l (8.2.8)
. = 0 (Siq-— IQ/"/2)—-1 sQ’ o
satisfy conditions 2.(a)-2.(g) of Theorem 3.2.1.

Remark 8.2.2. For discrete-time H, control, v* for the full information feed-
back system is in general different from that of the full state feedback system
regardless of D22 = 0 or not. For the state feedback case, i.e., C; = I and
D; = 0, we note that the subsystem X, is always free of invariant zeros (and
hence free of unit circle invariant zeros) and left invertible. Thus, as long as ¥p
is free of unit circle invariant zeros and satisfies Assumption 8. M.1 to 8.M..3, one
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can apply the above algorithm to get the infimum, »*. For this special case I';q,
Nzq, Szq and Tzq in Step 8.M.2 of the above algorithm can be directly obtained
using the following simple procedure: Compute a nonsingular transformation
[sq such that

0
[E = [E*,} , (8.2.9)
where E is a nizq X Nzq nonsingular matrix. Then S,q and Tyq are respectively
given by
A-1\! A—1
Suq = (E ) E7  and T,e=0, (8.2.10)
and hence )
v = Pnax (Ter Son +TS,0TS2H] 2. (8.2.11)
Note that in general, 7* > {Amax(TerS5t)}2. &]

Remark 8.2.3. For the case when Ds3s # 0, Assumptions 8.M.3 and 8.M.6
should be replaced by the conditions given in Remark 8.1.1, which is associated
with the full information system of (8.2.2), and a set of conditions similar to
those in that remark, but for the full information system of (8.2.3). Then our
procedure would again carry through and yield the correct result. Note that if
Yp is right invertible and X, is left invertible, then all these conditions will be
automatically satisfied. The result will then reduce to that of Chen [13]. &

Remark 8.2.4. If Assumptions 8.M.3 and 8.M.6, i.e., the geometric condi-
tions, and Assumption 8.M.7 are not satisfied, then an iterative scheme might
be used to determine the infimum. This can be done by finding the smallest
scalar, say ¥*, such that all the following conditions are satisfied:

1. The Riccati equation

- - ~ - 4
0= Pm"‘izp + A;Ppm + C’;Pézp - ..B {3 ..D; C:
E o Pzt 02 Cep
Dz,,l'jﬂ, D, Dage B 1§ Po+D,Con
D22p zP DzzpDzzp“(’Y )21 E p P2+ Dy Cop ’

has a positive definite solution P, > 0, which satisfies
~ ! ~ ~ ~ ~1 .~ o
D22P[I - DEP(D;PDZP)-IDW]DWP < ('7 )21-

Here we note that all the sub-matrices in the above Riccati equation are
defined as in (8.1.7) but for the auxiliary system (8.2.2) of Step 8.M.1.
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2. The Riccati equation

~f -~ ~ 1 - 1
0= QzAzQ + /i;QQ-;: + é;qézq - .B,IQ.Q:: +.D,xQC.'.IQ J
E.qQ:+D33qCzq
~ 1 ~ ~ - -1 “ - ~ -
% l: DzQDxQ DI:QD22Q ] [ B;c)Qz+D;QCIQ ]
~ 7 ~ ~1 = — ~ o~ ~ ~ ’
D22QD=Q D22QD22Q_("/ )2I EzQQz+D22QC:cq

has a positive definite solution Q~,c > 0, which satisfies
5! > A A 17 A ~\2
Dyoql = D2o(DyqD2q) ' Do) Da2q < (3*)*1.

Similarly, we note that all the sub-matrices in the above Riccati equation
are defined as in (8.1.7) but for the auxiliary system (8.2.3) of Step 8.M.2.

3. Finally, the coupling condition holds, i.e.,
,\max{i)xrc}zr'}< (32, (8.2.12)
where I is as defined in (8.2.4). ®

The following example illustrates our computational algorithms.

Example 8.2.1. We consider a discrete-time measurement feedback system
(8.2.1) with A, B, E, Ca, D, and Dy, being given as those in Example 8.1.1
of the previous section. We consider the full state feedback case first, i.e.,
C, = I and D, = 0. Following the algorithm and the simplified procedure in
Remark 8.2.2, we obtain those matrices as in the full information case and

1 1 10 1
-1 0 00O
Isq = 0 -1 00 0|, mngp=1l,

0 0 -100
0O 0 010

1

Szq=1, Typ=0, I'=]|1],
0
and

* = 3.181043.

Now, we consider the computation of v* for the given system with an output
measurement characterized by

c;=[0 00 0 1], D=0 (8.2.13)
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It can be shown that (4,C;) is detectable and (4, E, Cy, D) is invertible with
three invariant zeros at 0, 0.618 and —1.618, respectively, and one infinite zero
of order 2. Hence, Assumption 8.M.6 is automatically satisfied. Following the
algorithm, we obtain

52.08746  76.55250 66.46233 —0.95905 2.61803 -4.23607

92.57546 13846401 120.13777 -1.65303 5.23607 -7.85410
28.03444  42.12461 36.88854 -0.69398 2.61803 -2.61803

M= 19.20270  29.28949 24.96658 0 0 —1.44097 |’

0 0 0 0 0 0

—46.97871 -T70.77709 —61.686918 0.95905 —3.61803  4.23607
and

~* = 15.16907. &

8.3. Plants with Unit Circle Zeros

We discuss in this section a norn-iterative computational algorithm for the mea-
surement feedback system (8.2.1) whose subsystems X, and/or £, have invari-
ant zeros on the unit circle. We assume that (4, B) is stabilizable and (4, C1)
is detectable. Let F' and K be matrices of appropriate dimensions such that
A+ BF and A + KC; have no eigenvalue at —1 and define

Ay = (A+BF + I)"Y(A+BF - 1), \
By :=2(A+BF +I)"'B,
E. :=2A+BF + I)"1E,
Cap = (Cy + D.F)(A + BF +1)71,
Doy := Dy — (Cy + Do F)(A+ BF +I)"1B,
Dyop := Dyy — (Co + Dy F)(A+BF + I)~1E, )

\ (8.3.1)

and .
Aqg = (A+KC +I)"Y(A+ KC, - I), )

Ciq :=2C1(A+ KCy + I)1,
Caq = 203(A+ KCy + 1)1,
Eq = (A+KCy + I)"Y(E+KDy),
Diq =D -Ci(A+ KCy +I)"Y(E+ KDy),
Dasq i= Dyy — Co(A+ KCy +I)"HE+ KDy). )
Let £, denote the system characterized by (AP,BP,C’zp, D,:) and Sg denote

the system characterized by (/i;,é/m, Elq, D’lQ). We also make the following
assumptions:

| (8.3.2)
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Assumption 8.Z.1: Im (D3;) C Im (Dap);
Assumption 8.2.2: Im [EP - BP(D;PEQP)U_.?;PI.)QZP] CV (L) + S (Tp);
Assumption 8.Z.3: Im (D;zq) CIm (f)llq);

Assumption 8.Z.4: Im [C’;Q - C’;Q(ElqbllQ)?Dllezzu] c V‘(f];)+8‘(§;).

It can be shown that Assumptions 8.Z.1-8.Z.4 are independent of the choice
of F and K in (8.3.1) and (8.3.2). The computation of 4* for a plant whose
subsystems have invariant zeros on the unit circle can be done by slightly mod-
ifying the algorithm given in Section 5.3 of Chapter 5. In particular, I, in
Steps 5.Z.1 and 5.Z.5 should be replaced by . and Equation (5.3.2) should be
replaced by the following

- E:’p 5
Epp
E((l)l’
El;P
Ecr
L Fgp |

Fs—Pl [EP - BP(ﬁ;pEZP)TE;pD22P] = (8.3.3)

Also, X7 in Steps 5.Z.2 and 5.2.5 should be replaced by f)g and Equation
(5.3.19) should be replaced by

B
Ey,
EY,
E,
E.q
L Egq

(8.3.4)

The rest of the algorithm does not need to be changed at all.



Chapter 9

Solutions to Discrete-time
H~ Problem

THIS CHAPTER IS concerned with the discrete-time H,, control problem with
full state feedback, full information feedback and general measurement feed-
back. The objective is to present a solution to the discrete-time H,, control
problem. One way to approach this problem is to transform the discrete-time
H ., optimal control problem into an equivalents continuous-time H., control
problem via bilinear transformation (see Chapter 4). Then the continuous-
time controllers that are solutions to the auxiliary problem can be obtained
and transformed back to their discrete-time equivalent using inverse bilinear
transformation (see again Chapter 4). Another way is to solve this problem
directly in discrete-time setting and in terms of the original system’s perfor-
mance. This approach leaves the possibility of directly observing the effect of
certain physical parameters. Finally, a novel aspect of this chapter is that we
show that if certain states or disturbances are observed directly, then this yields
the possibility of deriving a reduced order controller. This result corresponds
with the continuous-time reduced order controller structure of Chapter 6. The
main results of this chapter are similar to those in [102], but the presentation

is quite different.

223
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9.1. Full Information and State Feedbacks

We first consider in this section the following full information feedback system,
zk+1)= A z(k)+ Bulk)+ E w(k),

y(k) (é) z (k) + (?) w(k), (9.1.1)

h(k) Cy x(k) + Dq u(k) + Dag w(k),
where z € R™ is the state, u € R™ is the control input, w € R7 is the external
disturbance input, y € R™7 is the measurement output, and h € R’ is the
controlled output of . Asusual, we define ¥; to be the subsystem characterized
by the matrix quadruple (4, B, Ca, D2). We assume that T, has no invariant
zero on the unit circle and its infimum is given by v*. We are interested in
designing a full information feedback control law

u(k) = Frz(k) + Bwk), (9.1.2)

such that when it is applied to the given system (9.1.1}, the resulting closed-loop
system is asymptotically stable and the resulting closed-loop transfer matrix
from w to h has an H.-norm less than a given v > v*.

In what follows, we state a step-by-step algorithm for the computation of
F] and Fz.

Step 9.F.1: Without loss of generality but for simplicity of presentation, we
assume that the quadruple (A, B, Cs, D;), i.e,, Tp, has been partitioned
in the form of (2.3.4). Then, transform &, into the special coordinate
basis as described in Chapter 2, i.e., find non-singular transformations
s, T'; and T, such that

i Acc B::E;l BcEj;; Lchd chCb

0  An 0 LCi L3Gh
I7HA = BoCoo)ls=| 0 0 AL L7,Ca L{HG |,
ByEy. BuE;, BiE,  Aas BuEa
| 0 0 0 LyaCa  Aw
c [Coc Cp, Cg; Cov Cod
-3 2,0
r, [ }I‘s= 0 0 o0 Ci 0 |,
Co
. 0 0 0 0 G
_B()c 0 Bc
By, 0 0 Imy 0 0
;Y [By Bii={B, o0 o, I7'DeTs=1] 0 0 of-
Boa By 0 0 0 0
Bey 0 0O
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Note that an additional permutation matrix to the state transformation
has been introduced here to the original SCB such that the new state
variables are ordered as follows:

Zc
z,
t=|zF |. (9.1.3)
T4
Ty
Next, we compute
EC
E;
IJ'E/ly=|E}]. (9.1.4)
Eq4
E,

Step 9.F.2: Let F, be any appropriate dimensional constant matrix such that
all the eigenvalues of A.. — B.F; are on the open unit disc. This can be
done as (Acc, B.) is completely controllable.

Step 9.F.3: Define A,, B;, E,, C; and D, as follows:

AL, Ljdcd ijcb Ef
A, = | B4E}, Aw BiEw |, Ez:=|Es|, (9.1.5)
0 LysCqy  Aw E,
Bf 0
B, := | Boa Ba|, Da2z:= D/, (9.1.6)
By O
0 0 0 Img O
C,=T,|0 ¢, 0|, D.=T,| 0 of. (9.1.7)
0 0 G 0 0

Step 9.F.4: Solve the following discrete-time algebraic Riccati equation:

B'P,A,+D.C. 1 B.P, A+ D.C,
PzzA;PzAx—i-C;Cz—[ zFodat D, ] -1[ oFods+ Dy ]

E.P,A; + D}y, Cy * |E.P,A; + D%y, C,
(9.1.8)
where
D' D, + B! P, B, B.LP,E,
Go=| ° + 5 ] s (9.1.9)
E.P.B, E,P,E; + D}y Do, — I

for P, > 0. Note that because (A;, By, Cz, D) is left invertible and
only has unstable invariant zeros, such a P, always exists provided that
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v > «*. In fact, one can use the very accurate method given previously in
Chapter 4 to obtain this P;. For future use in the output feedback case
we compute

1

X =TT [g 19] ot (9.1.10)
Step 9.F.5: Next, compute
Fi, = (B.P,B, + D'.D,)"\(B.P, A, + D'.C.), (9.1.11)
and
Fy = (BLP,B, + D\, D) (B.P,E, + D, Das,). (9.1.12)

Then, partition Fy, as follows:

F(;t;z FOdm FOb:c]
Fr o Fuw Fipel’

daz

F, = [ (9.1.13)

Step 9.F.6: Finally, the gain matrices F; and F; are respectively given by

Coc C; Cff, + Fyt, Coa+Foaz Cob + Fobe

F,=-T;|E. E, Ff, Fige Fao |17
F, « * * *
(9.1.14)
and
Fy =T [F:x} 7 (9.1.15)

where «’s are some arbitrary matrices with appropriate dimensions.

We have the following theorem.

Theorem 9.1.1. Consider the full information feedback discrete-time system
(9.1.1). Then under the full information feedback law,

u(k) = Frz(k) + Fw(k), (9.1.16)

with F; and F3 given by (9.1.14) and (9.1.15), respectively, the closed-loop
system is asymptotically stable and the H.-norm of the closed-loop transfer
matrix from the disturbance w to the controlled output A is less thany. @
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Proof. It is straightforward to verify that the poles of the closed-loop sys-
tem comprising the given full information system (9.1.1) with the control law
(9.1.16) are given by A.. — B.F., A;, and A, — B, F;,. We note that both
Acc — B.F. and A;, are asymptotically stable. Hence, the closed-loop system
is stable if and only if A, — B, F), is stable. Moreover, it is also simple to show
that its closed-loop transfer matrix from w to k, say Thy, is equal to YT, .,
where T}, ., is the transfer matrix from w; to h, of the closed-loop system
comprising the following auxiliary system,

Ty = Ay 2 + B, up + E;. w.,

I 0
Yo = (0) Ta + (I) W, (9.1.17)
h:r: = Cx Zz + Dz Uz + D22r We,

with a full information control law,
Uy = —F1.0; — Forwg. (9.1.18)

Because (A;, Bz, Cz, D) is left invertible and has only unstable invariant zeros,
it follows from the result of [100] that the solution to the Riccati equation (9.1.8)
is indeed a positive definite one provided that v > ~*. Moreover, we also have
A, — B, Fy; is asymptotically stable and ||Th_w, |jco < 1. Hence, the result of
Theorem 9.1.1 follows. &

We illustrate the above result with a numerical example.

Example 9.1.1. Let us consider a discrete-time full information system (9.1.1)
with matrices A, B, E, C3, D3 and Do, are as given in Example 8.1.1 of Chapter
8. The infimum for this problem was computed in Example 8.1.1 and is given
by v* = 0.934173. Let us choose a v = 0.934174, which is slightly larger than
~*. Following the above algorithm, we obtain

0 0 -—0.745354 —1.078688 —1.078688
F=]-1 —1 -1412022 -1.872678 -1.872678] ,
-1 0 0 0 0
and
—0.872677
F = —1.206011}.
0

The closed-loop poles, i.e., A\(A + BF) = {0,0,0,0,0.38197}. The singular
value plot of the closed-loop transfer matrix from w to h in Figure 9.1.1 clearly
shows that its H.-norm is less that the given v = 0.934174. E
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Figure 9.1.1: Singular values of T}, under full information feedback.

As was shown in Chapter 8, for discrete-time systems, the infimum associ-
ated with the given full information feedback system is in general different from
that associated with its corresponding full state feedback system, i.e.,

z(k+1)= A (k) + B wk)+ E w(k),
y(k) z(k) (9.1.19)

h(k) =Cs x(k) + Dy u(k) + D22 w(k).
Let v* be the infimum associated with the full state feedback problem. Then, for
any given v > «*, the following algorithm will produce a static state feedback

law that achieves the closed-loop stability as well as the required H,-norm
bound of the closed-loop transfer matrix from w to h.

Step 9.5.1 t0 9.S.4: These steps are identical to Step 9.F.1 to 9.F 4, respectively.
Step 9.5.5: Compute
Hg := B,P,B, +D,D; + (BLP,E, + D,Ds3;)
x (I = Djy, Dz — B, P E,) Y (E.P,B, + D}y, D),  (9.1.20)
and
Fy = H! [B;};Az +D.C, + (B.P,E, + D\, Daa.)

X (I = Dip,Daze — By P E,) ™ (ByPoAs + D, C)|. (91:21)
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Then, partition F, as follows:

+
FOaz FOd:: FObz

= . 9.1.22
F}. Fiaz Faz ( )
Step 9.5.6: The gain matrix F is given by
Coc Cou Coo+Fgy Cod + Fouz Cob + Fobe
F= _I‘i Edc E;a Fé:,x Fdda: dez F;l,
F, * * * *
(9.1.23)

where «’s are some arbitrary matrices with appropriate dimensions.

Following the lines of reasoning similar to the proof of Theorem 9.1.1, one
can show that the static control law,

u(k) = Fa(k), (9.1.24)

with F given by (9.1.23), will i) achieve the closed-loop stability, and ii) make
the H..-norm of the resulting closed-loop transfer matrix from w to h less than
the given v. We illustrate this in the following example.

Example 9.1.2. Let us consider a discrete-time full state feedback system
(9.1.19) with matrices A, B, E, Cy, Dy and D22 are as given in Example 8.1.1
of Chapter 8. The infimum for this problem was computed in Example 8.2.1
and is given by v* = 3.181043. Let us choose a y = 3.181044, which is slightly
larger than v*. Following the above algorithm, we obtain

0 0 -—0.432563 -0.885373 —0.885373
F=j-1 -1 -1479753 -1.914538 -1.914538] .
-1 0 0 0 0

The closed-loop poles, i.e., A(A + BF) = {0,0,0,0.27093,0.38197} and the
singular value plot of the closed-loop transfer matrix from w to h in Figure 9.1.2
clearly shows that its Ho-norm is less that the given v = 3.181044.

9.2. Full Order Output Feedback

We construct solutions to the discrete-time Ho, control problem for the follow-
ing measurement feedback discrete-time system X,

s(k+1) = A a(k) + B u(k) + E w(k),
{ y(k) = Cialk) + Dy w(k), (9.2.1)
h(k) = Cy .’E(k‘) + Do u(k) + Doy w(k),
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Figure 9.1.2: Singular values of T}, under full state feedback.

where z € R™ is the state, u € R™ is the control input, w € IRY is the external
disturbance input, y € R? is the measurement output, and h € R’ is the
controlled output of X. Again, for the purpose of easy reference, we define ¥p
to be the subsystem characterized by the matrix quadruple (A4, B,C2, D;) and
¥, to be the subsystem characterized by the matrix quadruple (A, E,Cy, D4).
We assume in this section that both subsystems Xp and X have no invariant
zero on the unit circle.

Let v* be the infimum for the given ¥ of (9.2.1). Given a positive scalar
v > v*, the following algorithm will produce a measurement feedback control
law that achieves i) internal stability for the closed-loop system, and ii) the
resulting || Thow|loo < 7-

Step 9.M.1: Define an auxiliary full information problem for
z(k+1)= A z(k)+ Buk)+ E w(k),
y(k) (?) o (k) + (é) w(k),  (922)
h(k) Cy z(k) + D; u(k) + D2z w(k),

and perform Steps 9.F.1 to 9.F.4 of the algorithm given in the previous
section to get a positive semi-definite matrix X. Let P := X and compute

]

V := B'PB + D,Ds, (9.2.3)
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and

R:=+9*I - D}, Dy3 — E'PE + (E'PB + D}, D,)V(B'PE + D} D»,),
(9.2.4)
where 1 denotes the Moore-Penrose (pseudo) inverse. It can be shown
that R > 0. Next, compute

A, :=A-BVY(B'PA + D,C,), (9.2.5)
C, :=Cy — D,VI(B'PA + D,Cy). (9.2.6)
and calculate
Ap:=A+ER™Y(E'PA,+D),C.),
E.:=ER™%,
Cip:=C+D1 R~ (E'PA,+D)),C,),
Coo:=(VH)! [B'PA+D’202+(B’PE+ D4 Dyy)R™NE'PA, +D;203)] ,
Dip:=D\R"%,
Dap:=V1,
Dagw:=(VH1(B'PE + DyDy)R™%.

Step 9.M.2: Define another auxiliary full information problem for
k+1) = A z(k) + C u(k) + C; w(k),
y(k) = (?) z(k) + (é) w(k), (9.2.7)
h(k) = E' z(k)+ D] u(k) + D3 w(k),

and again perform Steps 9.F.1 to 9.F.4 of the algorithm in the previous
section to get another positive semi-definite matrix X and let Q := X.

Also, let
Y := (I -QP)" Q. (9.2.8)
Step 9.M.3: Next, compute
W, := D1z D}, + C1oYCly, w
Sp := (CopY Cip + Daze D} )W3 (C1pY Cap + D12 Dige)
+ 42T — Dayp Dy — ConY Cho, y(9.2.9)

Az = AP - (APYC{P + EPD'IP)W}ICIPv
E, = Ep — (ApY Cl, + Eo D)W Dy, J
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and
Apy :=Ap+(A;YCy + E. D5y ) S 1 Cop, )
Bey :=B+(A;YCap+ E.Dj3,)S; ! Dse,
Epy = [(A,ch,,w,p;m,, )S7Y(CopY Crp+ Dage D)

1
+ A YCl .+ Ep D}, | (W),
P ir P IP]( P ) ? (9.2‘10)

Cary =55 2o,
Dipy := Wp%,
Dapy = S;%sz,
D22py := S;%(CngC{,, +D22pDip)(Wp%)T- J

It can be shown that i) the quadruple (Apy, Bpy, C2py, D2py) is right in-

vertible and of minimum phase with no infinite zero, and ii) the quadruple
(Apy, Epv, Cip, D1py) is left invertible and of minimum phase with no in-
finite zero. Moreover, there exists an appropriate constant matrix Xpy
such that Dopy + Dopy Xy D1py = 0.

Step 9.M.4: Let

Fipy = =D}, Cap + (I - D}, Dy ) Fy, (9.2.11)

Fapy := —D} ., Dasey, : (9.2.12)

where Fp is such that Ap + BF1py = Apy+ BpyFipy has all its eigenvalues
inside the unit circle. Also, let

Kipy := ~EpyDlpy + Kol = D1zy Dl ), (9.2.13)

Koy :=—-D1_, (9.2.14)

where Ky is such that Apy + K1pvCip is stable. We would like to note

that a more systematic procedure to compute the above gain matrices
will be given in the next chapter.

Step 9.M.5: Finally, we obtain a measurement output feedback control law,

k+1) = cm ch k )
Semp {v( ¥ 1) = Acmp (k) + Bemp (k) (9.2.15)
u(k) = Cemp v(k) + Dcmp y(k),
with
Dcmp = —F2PYK2PYv
cmp = Fpy — DcmpCIP) (9216)

chp = BPYDCmp — Kipy,
Acmp = Apy + prCCmp + K1pyCip.
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Clearly, v € R", i.e., the obtained controller Ty, has the same dynamical
order as that of the given system X. Y]

We have the following theorem.

Theorem 9.2.1. Consider the given discrete-time system I of (9.2.1) and the
controller Lemp of (9.2.15) with Acmp, Bemp, Cemp and Demp being given by
(9.2.16). Also, let v > v* be given. Then, we have

1. the resulting closed-loop system comprising ¥ and Zn,;, is asymptotically
stable; and

2. the Hy-norm of the closed-loop transfer matrix from the disturbance w
to the controlled output h is less than +. @

Proof. The proof of the above theorem can be carried out in two stages: The
first stage involves showing that the following two statements are equivalent:

1. The closed-loop system comprising the given system ¥ of (9.2.1) and the
controller Xcpmp of (9.2.15) is internally stable and its transfer matrix from
w t0 b, Thy(X X Eemp), has an Hy,-norm less than .

2. The closed-loop system comprising an auxiliary system Zpy, where Zpy

is given by
Toy(k+1) = Apy Zpy(k) + Boy u(k) + Epy wey(k),
y(k) = Crp zov(k) + Dipy wey(K), (9.2.17)
hey(k) = Caey Tpy(k) + Dapy u(k) + Dagey wpy(k),

and the controller Tcmp of (9.2.15) is internally stable and its transfer
matrix from wey t0 Apy, Thpyuwpy (Zey X Tcmp), has an Hoo-norm less
than 7.

The second stage involves showing that the transfer matrix from wey to Apy
of the closed-loop system comprising Zpy and Ecmp is internally stable and is
in fact identically zero for all frequencies, i.e., Thpywpy (Ery X Scmp) = 0. It is
obvious that | Thpywpy (Epy X Zemp)lloc =0 < v. Hence, L X Temp 18 internally
stable and [|[Thy(E X Zcmp)llo < 7. We refer interested readers to [102] for
more detailed proofs of the above two facts (stages). &

Remark 9.2.1. It is clear from the above proof that the design of a ~y-sub-
optimal control law for the original system (9.2.1) is equivalent to the finding of
a control law that solves the H, disturbance decoupling problem with internal
stability for the auxiliary system (9.2.17). One can use a more systematic
procedure given in Chapter 10 to find such a control law. 2
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The following is an illustrative example.

Example 9.2.1. Let us consider a discrete-time system (9.2.1) with matrices
A, B, E, C3, D, and D, are as given in Example 8.1.1 of Chapter 8 and

¢,=[0 0 0 0 1], D;=0. (9.2.18)

The infimum for this problem was computed in Example 8.2.1 and is given
by v* = 15.16907. Let us choose a positive scalar v = 15.17. Following our
algorithm, we obtain a full order output feedback control law (9.2.15) with

1.005710  1.003529 —9.516228
0.005710  1.003529 -3.303781

[ o Y o i o i o]
OO OO

Acmp = 0.691710 0.191432 -1.876073 |,
-0.310193 —0.809744  3.217071
0 1 —3.281899
10.519757
4.307309 -4.043756
Bemp = | 2067505 | , Demp = | —14.546573 |,
—4.026815 0
4281899
and
0 0 -0.314000 -0.812097 3.231659
Cemp=1]-1 -1 -1.315903 -1.813273 12.733300 | .
-1 0 0 0 0

The plot of the singular values of the closed-loop transfer matrix from w to h
in Figure 9.2.1 shows that

1 Thw(E X Bemp)lloo <7y =15.17. (9-2.19)
The poles of the closed-loop system are given by
-0.596025, 0.618045, 0.433068, 0.382376, —0.237186, —0.000212, 0, 0,0, 0,

which are all inside the unit circle. E

9.3. Reduced Order Output Feedback

In this section we show that for the singular H,, control problem, we can
always find a suboptimal solution which has a dynamical order less than that
of the plant and is of a reduced order observer-based structure. This result
is analogous to that obtained in Chapter 6 for the continuous-time problems.
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Figure 9.2.1: Singular values of T}, under full order output feedback.

Without loss of generality, we develop such a reduced order observer-based
controller for the system Xy defined in the previous section, i.e.,

:pr(k-l-l) = Apy xPY(k) + Bpy U(k) + Epy wpy(k),
y(k) CIP xPY(k) + D]py wa(k), (9.31)
hpy(k) = Capy xPY(k) + Daey U(k) + Dagpy wpy(k)-

There exists a constant output pre-feedback law Xpvy such that after applying
this pre-feedback law, namely setting

u — Xevy + U, (9.3.2)

the direct feed-through term from wey from hpy disappears. Hence without
loss of generality, hereafter we assume that Dagpy = 0.
There exists an ‘optimal’ state feedback gain Fhy in the sense that

(C2PY + DZPYFPY)(SI — Apy — BPYFPY)—lEPY =0.

with Apy + BpyFey stable. We need to construct an observer of low order.
Without loss of generality but for simplicity of presentation, we assume that
the matrices Cip and D;py are already in the form

_| 0 Cie — | Dro
Cip = [Ip—mo 0 ] and Dipy = [ 0 ]a (9.3.3)
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where mg is the rank of Dipy and D, g is of full rank. Then the given system
ey can be written as,

1\ _ |An A ) E; By
5(0)= [ al (B)+ [B] wm e [3]w
Yo\ _ 0 Cio2 Ty Dy
@) -0 ] @) Pl o
hpy = Capy (il) + Dopy u,
2
where
I Yo
= d =y, 9.3.5
(Iz) Tpy aN <yl) Y ( )

We note that y; = z;. Thus, one needs to estimate only the state z in the
reduced-order estimator. Then following closely the procedure given in [22], we
first rewrite the state equation for x; in terms of the measured output y; and
state zo as follows,

y1(k + 1) = Any (k) + Ar222(k) + Erwey (k) + Bru(k), (9.3.6)
where y; and u are known. Observation of z; is made via yo and
§1(k) = A1axa(k) + Eywpy (k) = y1(k +1) — Ay (k) — Bru(k). (9.3.7)
A reduced-order system for the estimation of state x5 is given by
{zz(k +1) = Ag 22(K) + En wou(k) + [A2 Ba] (yl(k)> ,
u(k) (9.3.8)

yR(k) = Cx z2(k) + Dx wpv(k)a

where

D
Ag 1= A227 Ey :=E,;, Cgr = [C;;;O;] s Dy = [ é;o] . (9-3'9)

Based on (9.3.8), one can construct a reduced-order observer for z; as,

Zy(k+1) = ArZa(k) +[An  Ba] (?ﬁ((:))> + Kz [Ckiz(k) - yn(k)], (9.3.10)

where Ky, is the observer gain matrix which must be chosen such that Az +KxCr
is asymptotically stable and

(2] = Ap — KxCr) ™} (Ex — KxDg) = 0. (9.3.11)

Following the result of Chen [10], i.e., Proposition 2.2.1, one can show that the
quadruple (Ag, Eg,Cr,Dy) is left invertible and of minimum phase with no



9.3. Reduced Order Output Feedback 237

infinite zero, provided that the quadruple (4;y, Epy, Ciey, Dipy) is left invert-
ible and of minimum phase with no infinite zero. The computation of Ky can
systematically be done using the procedure given in the next chapter.

At this moment we have a reduced-order observer and an optimal state
feedback. However, yn contains a future measurement, i.e., the term y; (k + 1)
in (9.3.7). We apply a transformation to remove this term. We partition the
reduced order observer gain Ky = [Kgo, Kr1] compatible with the dimensions
of the outputs (y), 71)’, and at the same time define a new variable,

v i= 5:2 + Kﬁlgl'
We then obtain the following reduced order estimator based controller,

v(k+1) = (Ar+KrCr) v(k) + (By+KriB1) u(k) + Gr y(k),

it = [, 0 ] o+ [0 ]

In—p+fno

’U,(k) = pr E/'P\((k) + XPY y(k)a
(9.3.12)

where
Gr = [~Kno, Azt + Kai A — (Ar + KoC)Kni],

and F,y is state feedback gain and X, is the output pre-feedback gain.

Remark 9.3.1. 1t is interesting to point out that the state space representa-
tion of ‘the reduced order estimator based controller in (9.3.12) might not be
minimal and hence the McMillan degree of this controller might be less than
the dynamical order of its state space representation (9.3.12). This is mainly
due to the stable dynamics which become unobservable in the controlled output
hey after the preliminary outpht feedback law (9.3.2).

A very interesting example is the state feedback case for C; = I and D; =0.
In this case, the preliminary output feedback Xpy in (9.3.2) can be chosen such
that after this preliminary feedback Cpy = 0 and A,y is stable. Hence we
can choose Fpy = 0 but this implies that the reduced order estimator based
controller (9.3.12) has a McMillan degree equal to zero and it reduces to the
static state feedback solution, u = Xpyy. &

Finally, we note that the reduced order output feedback control law (9.3.12)
can be written in the following standard form,

5 ) { v(k+1) = Aemp v(k) + Bemp ylk),
cmp

(9.3.13)
u(k) = Cemp v(k) + Dcmp y(k),
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with
0 3\
Acmp = (AR + KRCR) + (Bz + KRIBI)FPY [I] s
0 I
chp = (B2 + KnlBl) FPY _ + XPY + GR,
0 KRI
0 b (9.3.14)
Ccmp 1= Fpy [1] s
0 I
Demp = Fry [0 “Knl} + Xev. J

We have the following theorem.

Theorem 9.3.1. Consider the given discrete-time system ¥ of (9.2.1). Also,
let v > v* be given. Then, there exist gain matrices Xpy, Fpy and Ky such
that the resulting controller Ecpp of (9.3.13) with Acmp, Bempy Cemp and Demp
being given as in (9.3.14) has the following properties:

1. the resulting closed-loop system comprising & and Xcmp is asymptotically
stable; and

2. the Hoo-norm of the resulting closed-loop transfer matrix from the dis-
turbance w to the controlled output A is less than ~. f

Proof. It is quite obvious because Tpy has the following properties:
1. There exists a constant matrix Xpy such that Dopy + Dopy XpyDipy = 0;

2. (Apy, Bey, Capy, Dopy) is right invertible and of minimum phase with no
infinite zero;

3. (Apyv, Epy, Cip, D1py) is left invertible and of minimum phase with no
infinite zero.

A systematic procedure for computing the gain matrices Xpy, Fpy and Ky can
be found in Chapter 10. &

The following example illustrates the result of this section.

Example 9.3.1. Consider a discrete-time system of the form (9.2.1) with

Az[; ;] B=[‘f], E:{” (9.3.15)

01—_-[(1) (1)} D1=[(1)], (9.3.16)
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and
Cz = [08 09], D2 = 0, D22 =1. (9317)

It is simple to verify that the subsystem (A, B, C,, D5) is invertible with an
unstable invariant zero at 1.5714 and the subsystem (A4, E,C;, D;) is left in-
vertible with an unstable invariant zero at 2. By utilizing the algorithm for
computing v* in the previous chapter, we obtain an exact value of the infimum

v* = 3.9631638.

In what follows, we will design a ~y-suboptimal measurement output control law
with v = 3.963164. Following the above procedures, we obtain an auxiliary
system (9.3.1) with

4 _[114353033 1.18520854) )
PY T 1934861499 3.46328599 |° TFY T |0.96422578 | °
B, — 107, [1:65382390) . _ [0.14353033 118520854
4.83262217|° 1 0]°
Dipy =103 - [1‘65382398] , Daopy = —3297.4252,

Copy = [—1.74280115 -2.36309110], Dapy = 0.30400789,

and finally the controller parameters,
Acmp =0, Bemp =[0.06254887 0.05328328],

and
Cemp =0, Demp = [6.55844429 4.79141397].

The poles of the closed-loop system comprising the given plant and the above
controller are given by 0 and 0.4878 + j0.1199. Clearly, they are stable. The
plot of the singular values of the closed-loop transfer matrix from w to h in
Figure 9.3.1 shows that ||Thw(E X Semp)lloo is indeed less than the given 7.
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Figure 9.3.1: Singular values of T}, under reduced order output feedback.



Chapter 10

Discrete-time Hoo Almost
Disturbance Decoupling

10.1. Introduction

IN THIS CHAPTER, we consider the problem of H, almost disturbance decou-
pling for general discrete-time plants whose subsystems are allowed to have
invariant zeros on the unit circle of the complex plane. The stability region
of a discrete-time system considered in this chapter is defined as usual as the
open unit disc. In contrast to the continuous-time case, the problem of almost
disturbance decoupling for general discrete-time systems is less studied in the
literature. In 1996, Chen, Guo and Lin [17] gave a set of solvability conditions
for the H,-ADDPMS for the special case when a given plant whose subsys-
tems do not have invariant zeros on the unit circle. Only very recently, has the
necessary and sufficient conditions under which the H.,-ADDPMS for general
discrete-time systems been derived by Chen, He and Chen [18]. Solutions to
such a general problem have just been reported by Lin and Chen [65]. The
results of [18] and [65] form the core of this chapter.

To be more specific, we consider the following standard linear time-invariant
discrete-time system ¥ characterized by

zk+1) = A z(k) + B u(k) + E w(k),
DI y(k) = C; z(k) + Dy w(k), (10.1.1)
h(k) = Cs z(k) + D2 u(k) + D22 w(k),

where £ € R™ is the state, u € R™ is the control input, y € R’ is the measure-
ment, w € RY is the disturbance and h € R? is the output to be controlled.

241
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As usual, we denote Ip and X, as the subsystems characterized by matrix
quadruples (A, B,C3,D;) and (A, E, Cy, Dy), respectively. The following dy-

namic feedback control laws are investigated:
5 te(k+1) = Acmp 2c(k) + Bemp y(k),
cmp u(k) = Ccmp xc(k) + Dcmp y(k)a
The controller Xcmp of (10.1.2) is said to be internally stabilizing when applied
to the system X, if the following matrix is asymptotically stable:

A . — [A + BDCIan]. Bocmp}
< chpcl Acmp ’

i.e., all its eigenvalues lie inside the open unit disc of the complex plane. Denote
by Thw the corresponding closed-loop transfer matrix from the disturbance w
to the controlled output h. Then, the solvability of the H,, almost disturbance
decoupling problem for general discrete-time systems can be defined as follows.

(10.1.2)

(10.1.3)

Definition 10.1.1. The general H, almost disturbance decoupling problem
with measurement feedback and with internal stability (H.,-ADDPMS) for
(10.1.1) is said to be solvable if, for any given positive scalar v > 0, there exists
at least one controller of the form (10.1.2) such that,

1. in the absence of disturbance, the closed-loop system comprising the sys-
tem (10.1.1) and the controller (10.1.2) is asymptotically stable, i.e., the
matrix A as given by (10.1.3) is asymptotically stable;

2. the closed-loop system has an Lj-gain, from the disturbance w to the
controlled output h, that is less than or equal to v, i.e.,

lIRll2 < 9llw|l2, Yw € L2 and for (z(0),z.(0)) = (0,0). (10.1.4)

Equivalently, the H,,-norm of the closed-loop transfer matrix from w to

h, Thq, is less than or equal to v, i.e., |[Thulleo < 7. Bl

The problem of H,, almost disturbance decoupling with state feedback or
with full information feedback can be defined in a similar and obvious way. The
goal of this chapter is to identify the solvability conditions for these problems
and to construct their solutions, if they are existent. The rest of this chapter
is organized as follows: In Section 10.2, we give solvability conditions under
which the proposed H,,-ADDPMS for general discrete-time systems is solvable.
Sections 10.3 and 10.4 give constructive algorithms that would yield solutions
to the general discrete-time Hoo-ADDPMS, if such solutions exist. All proofs of
the main results of this chapter are given in Section 10.5 for the sake of clarity
of presentation.
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10.2. Solvability Conditions

We give in this section the solvability conditions for the general H., almost
disturbance decoupling problems with internal stability for the following three
cases: the full information feedback, the full state feedback and the measure-
ment feedback. These conditions are characterized in terms of some well de-
fined geometric subspaces. We also develop a numerical algorithm that will
check these conditions without actually computing any geometric subspaces.
The proofs of the main results of this section are given in Section 10.5.

Let us first examine the full information case. We have the following result.

Theorem 10.2.1. Consider the given discrete-time linear time-invariant sys-
tem I of (10.1.1) with the measurement output being

y=($), or Cl=(é), D1=((}), (10.2.1)

i.e., all the state variables and the disturbances (full information) are mea-
surable and available for feedback. The H., almost disturbance decoupling
problem with full information feedback and with internal stability for the given
system is solvable if and only if the following conditions are satisfied:

(a) (A, B) is stabilizable;
(b) Im (Dy3) C Im (D3), i.e., Doz + DyS = 0, where S = —(DyD2)T D4 Dao;
(c) Im (E + BS) € { V°(Se) + BKer (D2)} N { N1 $1(50)}.

Proof. See Subsection 10.5.A. &

The result for the general measurement feedback case is given in the next.

Theorem 10.2.2. Consider the given discrete-time linear time-invariant sys-
tem X of (10.1.1). The Ho, almost disturbance decoupling problem with mea-
surement feedback and with internal stability (Ho-ADDPMS) for (10.1.1) is
solvable if and only if the following conditions are satisfied:

(a) (A, B) is stabilizable;
(b) (A, C) is detectable;
(C) Dys + DySD; =0, where S = —(DéDz)TD'zDzzD'l(DlDi)f;

(d) Im (E + BSD;) C {VO(EP) + BKer (Dz)} n {r\m=1 sA(zp)};
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(¢) Ker (Cz + D28C1) 3 {8°(£a) N C7H{Im (D)} } U {Ujycs MZa) b
(f) 5°(Zq) C VO(Ss). g
Proof. See Subsection 10.5.B. &

The following remarks are in order.

Remark 10.2.1. Note that if 3, is of minimum phase and right invertible
with no infinite zeros, and ¥, is of minimum phase and left invertible with no
infinite zero, then Conditions (d) to (f) of Theorem 10.2.2 are automatically
satisfied. Hence, the solvability conditions of the Ho,-ADDPMS for such a case
reduce to:

(a) (A, B) is stabilizable;
(b) (A, Cy) is detectable; and
(C) Dgys + D3SDy =0, where S = —(DéDz)TD’zDzzDi(DlD;)f

Remark 10.2.2. For special case when all the states of the system (10.1.1) are
measurable and available for feedback, i.e., y = z, it can be easily derived from
Theorem 10.2.2 that the H,, almost disturbance decoupling problem with full
state feedback and with internal stability for such a system is solvable if and
only if the following conditions are satisfied:

(a) (A, B) is stabilizable;
(b) Doy = 0; and
(c) Im (8) C V(25) N {Mjpjcs S50} 2

Next, we proceed to develop a numerical algorithm which verifies the solv-
ability conditions of Theorem 10.2.2 without computing any geometric sub-
spaces of X or X,.

Step 10.2.0: Let S = —(D4D3)t Dy D4y Dy (D D). If Doz + D2SDy # 0, the
H.-ADDPMS for (10.1.1) is not solvable and the algorithm stops here.
Otherwise, go to the next step.

Step 10.2.1: Compute the special coordinate basis of %5, i.e., the quadruple
(A, B, Cs,D;). For easy reference, we append a subscript ‘¢’ to all sub-
matrices and transformations in the SCB associated with Xp, e.g., I'sp
is the state transformation of the SCB of ¥y, Bgp is replacing the sub-
matrix By, and AY . is associated with invariant zero dynamics of Z; on
the unit circle.
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Step 10.2.2: Next, we denote the set of eigenvalues of A%, with a non-negative
imaginary part as {wei,wp2, " ,wekp} and for i = 1,2,---, kp, choose
complex omatrices Vip, whose columns form a basis for the eigenspace
{z € €™r | 2"(wpil — A%,,) = 0}, where nQ, is the dimension of X2,.
Then, let

Ve i=[Vie Vap -+ Vipr]. (10.2.2)
We also compute ngp := dim (X¥}) + dim (X,p) + dim (X4s), and

FE..

Ee

-1 EgP

' (E+ BSD,) = . (10.2.3)

Eg,

Ebp

LEdP-

Step 10.2.3: Let £f be the dual system of £, and be characterized by a
quadruple (A’,C{, E', D}). We compute the special coordinate basis of
X%. Again, for easy reference, we append a subscript ‘@’ to all sub-
matrices and transformations in the SCB associated with X3, e.g., I'sq
is the state transformation of the SCB of £, Byq is replacing the sub-
matrix By, and A9, is associated with invariant zero dynamics of X7 on
the unit circle.

Step 10.2.4: Similarly, we denote the set of eigenvalues of A?,, with a non-

negative imaginary part as {wq1,wq2, - -, Wakq} and for 1 =1,2,---, kg,
choose complex matrices V;q, whose columns form a basis for the eigenspace
{z € e | 2% (wail — A%,,) = 0}, where nQ, is the dimension of X2,
Then, let

Vo:=[Vie Vea - Vkgal- (10.2.4)

We next compute nzq := dim (X],) + dim (Xsq) + dim (X4q), and

B
Eg,
I';a(Ca+ DaSCy) o= Faq . (10.2.5)

Ef,
Epq
EdQ
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Step 10.2.5: Finally, compute

I () = [: 1*“] , (10.2.6)

where I is a ngp X nzq constant matrix. @

The following proposition summaries the result of the above algorithm. It
also gives a set of necessary and sufficient conditions, in terms of sub-matrices
associated with the SCB’s of £, and X, for the solvability of the H,,-ADDPMS
for the general discrete-time system X of (10.1.1).

Proposition 10.2.1. Consider the given discrete-time linear time-invariant
system ¥ of (10.1.1). The Ho, almost disturbance decoupling problem with
measurement feedback and with internal stability (Hoo-ADDPMS) for (10.1.1)
is solvable if and only if the following conditions are satisfied:

(a) (A, B) is stabilizable;

(b) (A, C1) is detectable;

(C) D22 — Dz (DéDz)TDéngDi (D1D1)1D1 = 0;

(d) VEES, = 0, Ef. =0, Eyp = 0, Im (Eg) C Im (Bap);

(e) VEES, =0, E}, =0, Eyq =0, Im (Eyq) C Im (Byg); and
)T =0.

Note that all the matrices in (d)-(f) are well-defined in Steps 10.2.0 to 10.2.5 of
the algorithm. E]

The above result can be directly verified using the properties of the special
coordinate basis of Chapter 2 and the result of Theorem 10.2.2 (see also Chapter
7 for a similar result for continuous-time systems).

10.3. Solutions to State and Full Information Feedback
Cases

In this section, we consider feedback control law design for the general H,
almost disturbance decoupling problem with internal stability as well as with
both full state feedback and full information feedback, where internal stability
is with respect to the open unit disc. More specifically, we will first present a
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design procedure that constructs a family of parameterized static state feedback
control laws,
u(k) = F(e)x(k), (10.3.1)
which solves the general Ho,-ADDPMS for the following system,
z(k+1) = A z(k) + B u(k) + E w(k),
y(k) = =z(k) (10.3.2)
h(k) = C; z(k) + Dy u(k) + Dqg wik).
That is, under this family of state feedback control laws, the resulting closed-
loop system is asymptotically stable for sufficiently small € and the Hoo-norm
of the closed-loop transfer matrix from w to h, Thq(2,€), tends to zero as ¢
tends to zero, where

Thw(2,6) = [Co + D2F(e)][2I — A— BF(¢)]™'E + Day. (10.3.3)
‘We have the following algorithm for constructing such an F(e).

Step 10.S.1: (Decomposition of ¥;). Transform the subsystem %, i.e., the
matrix quadruple (A4, B, Ca, Ds), into the special coordinate basis (SCB)
as given by Theorem 2.3.1. Denote the state, output and input transfor-
mation matrices as I'sp, op and I';p, respectively.

Step 10.5.2: (Gain matrix for the subsystem associated with ;). Let Fe be any
constant matrix subject to the constraint that

AS, = A, — B.F, (10.3.4)

is a stable matrix. Note that the existence of such an F, is guaranteed by
the property of the special coordinate basis, i.e., (Ac, B.) is controllable.

Step 10.5.3: (Gain matrix for the subsystem associated with X+, X and Ay).
Let

0 0 FJf Fo F

Fapa = [ L, e d"] , (10.3.5)

Eda, Eda Fad de Fdd

where R F
Fi i=|7a0 %0 “0] : (10.3.6)
¢ FY Fug Faa

is any constant matrix subject to the constraint that

AL, LEG LCa Bg, 0
Adpy = 0 Avb Lbdcd] - I:BOb 0 | Frba (10.3.7)

BdE:i'; BdEdb Add BOd Bd

is an asymptotically stable matrix. Again, the existence of such an F ;Zd
is guaranteed by the property of the special coordinate basis.
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Step 10.S.4: (Gain matrix for the subsystem associated with A9_). The construc-
tion of this gain matrix is carried out in the following sub-steps.

Step 10.5.4.1: (Preliminary coordinate transformation). Noting that

Ase  LasCh  LoyCa By 0
Acon = 0 Awe  LegCq |, Beon:= | By 0 |,
ByEj. BaEa, Aaa Bys Bg
we have
Az, 0 AL, By, 0
Acon_BconFabd: 0 Aga Agbd ) Bcon= Bga 0 ’
0 0 AIbcd BaLabd Bd
(10.3.8)
where
Bg; i 0
Bfya= | Bos |, Ba=|0 |, (10.3.9)
Boy Bq
Agbd=[0 Lgbcb Lgdcd]‘[Bga O]F;z;d’ (10'3-10)
and
An,=10 L,Cy L;,Ciq]-[B;, O]FL,. (10.3.11)

Clearly, the pair (Acon — Beon Fabd, Beon) remains stabilizable. Construct
the following nonsingular transformation matrix,

I- 0 0 -t
Tawa=| 0 0 L+, in, , (10.3.12)
0 I 0

where T is the unique solution to the following Lyapunov equation,

AS T2 — TOATS, = AS,. (10.3.13)

aa— a

We note here that such a unique solution to the above Lyapunov equation

always exists since all the eigenvalues of A%, are on the unit circle and all

the eigenvalues of A’ are on the open unit disc. It is now easy to verify

that
Aa_a A;ab 0
F;bld(Acon —BeonFabd)Taba = | 0 Ajbcd 0 ) (10.3.14)

6 0 A2,
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and
By, 0
[} Beon = B}, By |. (10.3.15)
By, +T°Bf,,, TOB,

0

0., BY) is controllable, where

Hence, the matrix pair (A

By =B}, +TBf,,, TOBa. (10.3.16)

Step 10.5.4.2: (Further coordinate transformation). Use the results of Chap-

ter 2 to find nonsingular transformation matrices 'Y, and I'?, such that
(A9, B%) can be transformed into the block diagonal controllability canon-
ical form,

A O oo 0
(o) THAZ TS, = (;) A;2 (:) , (10.3.17)
00 - A
and
By Bz -+ By *
(T%a) 7' BelG, = B:z Bfl T, (10.3.18)
0 0 - B =

where [ is an integer and fori=1,2,---,1,

0 1 0 0 0
0 0 1 0 0
A= : , Bi=
0 0 0 1 0
—aii _a;,’—l ““Z,--z e —af 1

We note that all the eigenvalues of A; are on the unit circle. Here, the x’s
represent sub-matrices of less interest.

Step 10.5.4.3: (Subsystem design). For each (A;, B;), let Fi(¢) € R**™ be the

state feedback gain such that
MA; + BiF(e)} = {1 —e)e?® -+ (1 —g)e®ni },

where e/t ¢ = 1,2, n,, are the eigenvalues of 4;. Clearly, all the
eigenvalues of A; + B, F;(c) are on the open unit disc and F;(e) is unique.
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Step 10.5.4.4: (Composition of gain matrix for subsystem associated with X?).

Let
0 Fy(e) -~ 0 0
FO(e):=T% | © & "+ 1 1oyl (10319
( 0 - R 0 (Tea) ( )
0 0O -+ 0 F()
0 o .- 0 0

where € € (0,1] is a design parameter whose value is to be specified later.
For future use, we partition

0 _ F:?o(f‘?)
Fa (5) - [F(?d(f)} 3 (10320)

and o 0 0
FO(E)TO _ [Fa0+ (e) Faﬂb(€) FaOd(E)] .
e F£d+(5) Fue) Foyale)
Step 10.S.5: (Composition of parameterized gain matrix F'(¢)). In this step,

various gains calculated in Steps 10.S.3 to 10.S.5 are put together to form
a composite state feedback gain matrix F(¢). It is given by

(10.3.21)

F(e) :== =T [Fo + Fu(e)]T, (10.3.22)
where
Cpo O CEH +Fh Cow+Fo Coc Coi+Fua
Fy=|E, Ej F} Fyq Ej. Faq ,
E_, E?a Ej‘; 0 F, 0
(10.3.23)
and
0 Ffo(s) Fgo+(5) Fc?Ob(E) 0 FSOd(E)
Fi(e)=|0 Fl(e) F2, () Fl) 0 F2,(e)|. (10.3.24)
0 0 0 0 0 0

This completes the construction of the parameterized state feedback gain
matrix F'(e).

We have the following theorem.

Theorem 10.3.1. Consider the given system (10.3.2) in which all the states
are available for feedback. Assume that the problem of H., almost disturbance



10.3. Solutions to State and Full Information Feedback Cases 251

decoupling with internal stability for (10.3.2) is solvable, i.e., the solvability con-
ditions of Remark 10.2.2 are satisfied. Then, the closed-loop system comprising
(10.3.2) and the full state feedback control law,

u(k) = F(e)x(k), (10.3.25)

with F'(e) given by (10.3.22), has the following properties: For any given v > 0,
there exists a positive scalar €* > 0 such that for all 0 < e <¢*,

1. the closed-loop system is asymptotically stable, i.e., \{A+ BF'(g)} are on
the open unit disc; and

2. the Ho-norm of the closed-loop transfer matrix from the disturbance w
to the controlled output h is less than «, i.e., ||Thw(2,€)llc < 7.

Hence, by Definition 10.1.1, the control law of (10.3.25) solves the Ho.-ADDPMS
for (10.3.2).

Proof. The proof of this theorem is somewhat similar to that of its continuous-
time counterpart, i.e., Theorem 7.3.1. We refer interested readers to [65] for
further details. &

Next, we proceed to design a parameterized control law,
u(k) = Fy(e)z(k) + Fow(k), (10.3.26)

which solves the Hoo almost disturbance decoupling problem with internal sta-
bility for the following full information system,

t(k+1) = A z(k)+ B u(k) + E w(k),

y(k) ) z(k) + (?) w(k), (10.3.27)
h(k) = C; z(k) + Da u(k) + Dao w(k).

i
~
O ~

That is, under the above full information feedback control law, the resulting
closed-loop system is asymptotically stable for sufficiently small ¢ and the He-
norm of the closed-loop transfer matrix from w to h, Thu(2,€), tends to zero
as ¢ tends to zero, where

Thw(z,e) = [Cg + Do F, (6)][2[ —A- BFI(E)]—l (E + BFw) + (Dzz -+ Dsz).

The following is a step-by-step algorithm for constructing F;;(¢) and F.
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Step 10.F.1: (Computation of S). Compute
S = —(D}D,)' Dy Dy,. (10.3.28)

Step 10.F.2: (Computation of F.(e)). Follow Steps 10.S.1 to 10.S.5 of the
previous algorithm to yield a gain matrix F(¢). Then, let

F,(e) = F(e). (10.3.29)

Also, we need to retain the transformation matrices I'sp and Tz, as well
as the sub-matrix By of the SCB of ¥, in order to compute F,, in the
next step.

Step 10.F.3: (Construction of gain matrix F,). Let
-Ea— -
EO
E}
Ey
E.
LE, ]

I (E+BS)= (10.3.30)

Then, the gain matrix F,, is given by
0
Fy=-Tie | (B)By)'BLEs | + S. (10.3.31)
0
It is interesting to note that the first portion of matrix F, is used to clean
up the disturbance associated with E; and in the range space of By, while

the second portion is used to reject disturbance entering into the system
through Das.

We have the following result.

Theorem 10.3.2. Consider the given system (10.3.27) in which all the states
and the disturbances are available for feedback. Assume that the problem
of Hy almost disturbance decoupling with internal stability for (10.3.27) is
solvable, i.e., the solvability conditions of Theorem 10.2.1 are satisfied. Then,
the closed-loop system comprising (10.3.27) and the full information feedback
control law,

u(k) = Fy(e)z(k) + Fyw(k), (10.3.32)

with F;(¢) and F,, being given by (10.3.29) and (10.3.31), respectively, has the
following properties: For any given v > 0, there exists a positive scalar * > 0
such that for all 0 < e < ¢,
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1. the closed-loop system is asymptotically stable, i.e., \{A + BF.(€)} are
on the open unit disc; and

2. the Ho-norm of the closed-loop transfer matrix from the disturbance w
to the controlled output h is less than ~, i.e., |[|[Thw(z,6)]lo < 7.

Hence, by Definition 10.1.1, the control law of (10.3.32) solves the Ho,-ADDPMS
for (10.3.27).

Proof. See Subsection 10.5.C. &
We illustrate the results of this section with the following example.

Example 10.3.1. Consider a discrete-time system characterized by (10.1.1)
with

1 1 1 1 0 0 0 1
0 1 1 1 0 0 0 0
A= 0 0 01 1 0|, B=j0|, E=|0 0}, (10.3.33)
0 0 0 0 1 0 0 0
01 01 0.1 0.1 01 1 a. 0
where a. is a scalar, and
00 0 1 0 _ |0 |00
Cy = [0 01 0 O} , Dg= [0] , Dog = [0 0] . (10.3.34)

We will consider both the state feedback case and the full information feedback
case in this example. Using the toolbox of Chen [12], we can verify that (4, B)
is controllable and Zy, i.e., (A4, B,Ca,D2), is left invertible with two invariant
zeros at z = 1 and one infinite zero of order 2. Moreover,

1 0 0
0 1 0
VO(Zp) =Im 0 0|3}, BKer(Dy) =Im< |0] 7, (10.3.35)
0 0 0
0 0 1
and
1 0 O
0 0 0O
() $i(Z)=Img|0 0 0 (10.3.36)
|Al=1 0 1 0
0 0 1
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Also, we have

A |=1

VO(xp)n{ N sk(zp)} =Im

OO O

and

{Vo(zp) +BKer(D2)} N { N sx(zp)} =1Im

[Al=1

OO OO
|l = == =R o]

It is clear to see now that the Ho, almost disturbance decoupling problem
with internal stability (Ho,-ADDPS) using state feedback for the given system
is solvable if and only if o, = 0 and the H,-ADDPS using full information
feedback for the given system is always solvable. Following the algorithms of
this section, we obtain the following parameterized gain matrices,

—0.526316(c — 1)2 — 1.052632(c — 1) — 0.626316
—0.775623(c — 1)% — 2.603878(c — 1) — 1.928255
(

Fo(e) = | —0.798061(c — 1)2 — 2.763490(c — 1) — 2.066429 | ,  (10.3.37)
~(e—1)2 —4.2( - 1) -3.31
—2(e — 1) -22

which places the eigenvalues of A 4+ BF,(¢) around at 0, 0, 0,1 —cand 1 —¢,
and
F, =[-a 0]. (10.3.38)

The maximum singular value plots of the corresponding closed-loop transfer
matrix Th, (2, €) in Figure 10.3.1 clearly show that the Ho,-ADDPS using full
information feedback (or state feedback when a. = 0) is attained as € tends
smaller and smaller. E

10.4. Solutions to Measurement Feedback Case

We present in this section the designs of both full order and reduced order
output feedback controllers that solve the general Ho,-ADDPMS for the given
system (10.1.1). Here, by full order controller, we mean that the order of the
controller is exactly the same as the given system (10.1.1), i.e, is equal to n.
A reduced order controller, on the other hand, refers to a controller whose
dynamical order is less than n.
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Figure 10.3.1: Max. singular values of T, — Full information case.

10.4.1. Full Order Output Feedback

The following is a step-by-step algorithm for constructing a parameterized full
order output feedback controller that solves the Hoo-ADDPMS for (10.1.1).

Step 10.F.C.1: (Computation of N). Utilize the properties of the SCB to com-
pute two constant matrices X and Y such that V°(%;) = Ker (X) and
S°(Zq) =Im (Y'). Then, compute

XAY XE]

N=—(B'X'XB+DyD,)'[B'X" Dj] [ C2Y Dy
2

Y'C}
X [ D;l] (CLYY'C, + D1 D). (10.4.1)

Step 10.F.C.2: (Construction of the gain matrix Fy(¢)). Define an auxiliary

system
z(k+1) = A z(k) + B u(k) + E w(k),
{ yk) = z(k) (10.4.2)
h(k) =C; x(k) + D2 u(k) + 0 w(k),
where

A=A+ BNC, (10.4.3)
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E := E+BND;, (10.4.4)
C~'2 :=C3+ DyNCy, (10.4.5)

and then perform Steps 10.S.1 to 10.8.5 of the previous section to the
above system (10.4.2) to obtain a parameterized gain matrix F(e). We
let Fp(e) = F(e).

Step 10.F.C.3: (Construction of the gain matrix K4(g)). Define another auxiliary
system

z(k+1) = A z(k) + C| u(k) + C4 w(k),
y(k)y = z(k) (10.4.6)
hk) = E z(k) + D, ulk) + 0 w(k),
and then perform Steps 10.S.1 to 10.S.6 of the previous section to the

above system to get the parameterized gain matrix F'(¢). Similarly, we
let Kq(e) = Fl(e)'.

Step 10.F.C.4: (Construction of the full order controller $zc(¢)). Finally, the
parameterized full order output feedback controller is given by

Seole) : Zc(k +1) = Arc(e) zc(k) + Brc(e) y(k), (10.4.7)
u(k) = Crcle) zc(k) + Drc(e) y(k),

where

(10.4.8)

We have the following theorem.

Theorem 10.4.1. Consider the given system T of (10.1.1). Assume that the
problem of H, almost disturbance decoupling with internal stability for (10.1.1)
is solvable, i.e., the solvability conditions of Theorem 10.2.2 are satisfied. Then,
the closed-loop system comprising (10.1.1) and the full order measurement feed-
back controller (10.4.7) has the following properties: For any given v > 0, there
exists a positive scalar ¢* > 0 such that forall0 < e < ¥,

1. the closed-loop system is asymptotically stable; and
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2. the Ho-norm of the closed-loop transfer matrix from the disturbance w
to the controlled output h is less than -, i.e., |Thw(2,€)]lo0 < 7-

Hence, by Definition 10.1.1, the contro! law of (10.4.7) solves the Hoo-ADDPMS
for (10.1.1).

Proof. See Subsection 10.5.D. &
We illustrate the above result in the following example.

Example 10.4.1. We now consider a discrete-time system characterized by
(10.1.1) with A, B, E, C>, D, and D,; being given as in Example 10.3.1, and

C}Z

05 0.1 05 02 0.1}’ Dlz[l 0}. (10.4.9)

1 o 0 0 o0 0 0

For simplicity, we let a. = 1 in matrix E. Using the toolbox of Chen {12]
again, one can verify that (A4,Ci) is observable and £, ie., (4, E, Cy, D), is
invertible with one infinite zero of order one and four invariant zeros at —0.6554,
0.3777 £ j0.6726, and 1. Moreover,

1 1
0 0
S®(Te)=Im < |0} }, Ci{Im(D1)} =Im< {0} }, (10.4.10)
0 0
0 0
and
0
1
U »@o)=Im ¢ |0 (10.4.11)
IAl=1 0
0
Hence,
10
01
{SO(ZQ)nC;l{Im(Dl)}}u{U V,\(ZQ)}zlm 0 0] %. (10412
Al=1 0 0
00

1t is ready to see now that all conditions in Theorem 10.2.2 are satisfied. Hence,
the H..-ADDPMS for the given system is solvable. Following the algorithm of
this subsection, we obtain a full order output feedback controller of the form
(10.4.7) with

N=[~1 04], (10.4.13)
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Figure 10.4.1: Max. singular values of T},, — Full order output feedback.

—0.526316(c — 1)2 — 1.052632(c — 1) — 0.5263167"
—0.775623( — 1)2 — 2.603878(c — 1) — 1.828255

Fo(e) = | —0.798061(c — 1)2 — 2.763490(c — 1) 1.566420 | ,  (10.4.14)
—(e—1)2 - 42(5—— 1)-3.11
Z2(e—1)-21

which places the eigenvalues of A + BF,(¢) around at 0, 0, 0,1 —¢ and 1 — ¢,
and

-10 4
—10e 5¢
Kq(e) = 0 01, (10.4.15)
0 0
0 0

which places the eigenvalues of A + Kq(¢)Cy at —0.6554, 0.3777 £ j0.6726, 0
and 1 — . The maximum singular value plots of the corresponding closed-
loop transfer matrix Ty, (2,€) in Figure 10.4.1 show that the H.,-ADDPMS is
attained as & tends to zero. &

10.4.2. Reduced Order Output Feedback

In this subsection, we follow the procedure of Chapter 7 to design a reduced
order output feedback controller. We will show that such a controller structure
with appropriately chosen gain matrices also solves the general Ho,-ADDPMS
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for the discrete-time system (10.1.1). First of all, without loss of generality
but for simplicity of presentation, we assume that the matrices C) and D, are
already in the form,

0 G, D
Clz[lk 1002] and D1=[ 60] (10.4.16)

where k = £ —rank(D;) and D, is of full rank. Next, we follow Steps 10.F.C.1
and 10.F.C.2 of the previous subsection to compute the constant matrix N, and
form the following system,

z(k+1) = A z(k) + B u(k) + E w(k),
y(k) = C1x(k) + Dy w(k), (10.4.17)
h(k) = Cq (k) + Dy u(k) + 0 w(k),

where A, E and C; are defined as in (10.4.3)-(10.4.5). Then, partition (10.4.17)
as follows,

(o) = [an ae] (20) + [B]uw s [2] v
(5?%3) = [.gc Cldoz] (i;Eii) ¥ [Dg"’] w(k),
h(k) =[C21 Cap] <2;E]8> + Dy uk)+ 0  w(k),

where the state z of (10.4.17) is partitioned to two parts, z; and x2; and y
is partitioned to yo and y; with y; = z;. Thus, one needs to estimate only
the state z; in the reduced order controller design. Next, define an auxiliary
subsystem Xy characterized by a matrix quadruple (Ag, Ex,Cr, Dr), where

o D
(Ag, Ex,Cr, Dg) = (Azz,Ez, [ f;;‘f] , [ EI{OD' (10.4.18)

The following is a step-by-step algorithm that constructs the reduced order
output feedback controller for the general discrete-time H,,-ADDPMS.

Step 10.R.C.1: (Construction of the gain matrix Fy(e)). Define an auxiliary
system

y(k) = z(k) (10.4.19)
h(k) =C,z(k) + D2 u(k) + 0 w(k),
and then perform Steps 10.S.1 to 10.S.5 of the previous section to the
above system to obtain a parameterized gain matrix F(e). Furthermore,
we let Fr(e) = F(¢g).

{m(k+1) = A z(k) + B u(k) + E w(k),
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Step 10.R.C.2: (Construction of the gain matrix K (€)). Define another auxil-
iary system
z(k+1) = Ay z(k) + Cy u(k) + Cj 5 w(k),
y(k) = z(k) (10.4.20)
hk) = El xz(k) + D] uk) + 0 w(k),
and then perform Steps 10.S.1 to 10.S.5 of the previous section to the

above system to obtain a parameterized gain matrix F(e). Similarly, we
let Kr(e) = F(e)'.

Step 10.R.C.3: (Construction of the reduced order controlier Lpc(e)). Let us
partition F;(e) and Kg(e) as,

Fo(e) =[Fpoi(e) Fpa(e)] and Ki(e) = [Krole) Krile)]
(10.4.21)

in conformity with the partitions of z = <i1> and y = (Z()), respec-
2 1
tively. Then define
GR(E:) = [“KRO(E), Az + Ky (E)An - (AR -+ KR(E)CR)Km(E)].

(10.4.22)
Finally, the parameterized reduced order output feedback controller is
given by
T(k+1) = Agrc(e) z.(k) + Bre(e k),
See(e) - { (k+1) rc(€) zc(k) + Bre(e) y(k) (104.23)
u(k) = Crc(e) 2c(k) + Drc(e) y(k),
where

Arc(e) := Ag + BoFpa(e) + Ku(e)Cr + Kgi1(e) By Fpa(e),
Bre(€) = Gr(e) + [B2 + Kri1(€)B1][0, Fr1(e) — Fra(e)Krile)],
Crc(e) = Fpale),

DRC(E) = [0, FPI(E) — FP2(5)KR1(5)]+N~
(10.4.24)

We have the following theorem.

Theorem 10.4.2. Consider the given system T of (10.1.1). Assume that the
problem of H, almost disturbance decoupling with internal stability for (10.1.1)
is solvable, i.e., the solvability conditions of Theorem 10.2.2 are satisfied. Then,
the closed-loop system comprising (10.1.1) and the reduced order measurement
feedback controller (10.4.23) has the following properties: For any given v > 0,
there exists a positive scalar e* > 0 such that forall 0 < e < ¥,
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1. the closed-loop system is asymptotically stable; and

2. the Ho,-norm of the closed-loop transfer matrix from the disturbance w
to the controlled output h is less than «, i.e., || Thw(2,€)[le0 < 7-

Hence, by Definition 10.1.1, the control law of (10.4.23) solves the Ho,-ADDPMS
for (10.1.1).

Proof. See Subsection 10.5.E. &
We illustrate the above result in the following example.

Example 10.4.2. We again consider the given system as in Example 10.4.1.
In what follows, we will construct a reduced order output feedback controller.
We first partition

11 1 10
01 1 10
A:[i” ﬁ“’]: 0[0 0.1 10, (10.4.25)
222 010 0 0 1
00 —0.4 —01 0
0 0 1
0 00
Bz{gl] 0!, E:[gl] 0 0, (10.4.26)
2 0 2 00
1 00
and Ar = Agy, Ex = E», and
0.1 05 02 0.1 10
= = . 10.4.27
Cr [ 1 1 1 0}’ Dr [0 1] ( )

Following our algorithm, we obtain

' [ FPI(E)'
Fo(e) = W}
C _0.526316(c — 1)? — 1.052632(e — 1) — 0.526316
T0.775623(c — 1)° — 2.603878(c — 1) — 1828255
= | —0.798061(c — 1)° — 2.763490(c — 1) — 1.566429 | , (10.4.28)
—(e-1)?%-42(e —1) —-3.11
~2e-1)—2.1

and

Kn(e) = [ Knole) | Krile) ] = (10.4.29)

[en B e I en B e
oo o m
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Figure 10.4.2: Max. singular values of T}, — Reduced order output feedback.

which places the eigenvalues of Ax + Kr(e)Cr at —0.6554, 0.3777 £ j0.6726,
and 1 — e. Also, we obtain a reduced order output feedback controller of the
form (10.4.23) with all sub-matrices as defined in (10.4.24). The maximum
singular value plots of the corresponding closed-loop transfer matrix Thy(2,€)
in Figure 10.4.2 show that the H..-ADDPMS is attained as ¢ tends to zero. El

10.5. Proofs of Main Results

10.5.A. Proof of Theorem 10.2.1

We show the result of Theorem 10.2.1, i.e., the solvability conditions of the
Hy.-ADDPMS for the following full information system,

2(k+1)= A z(k) + Buk)+ E w(k),
Te 0 4 yk) (é) (k) + (‘I’) wk),  (105.1)
h(k) = (Cy :c(k) + D, U(k) + Dog w(k)

We first define the following auxiliary continuous-time system,

~

= A i+ Bui+ E w,

- (g) 5 " (?) @, (105.2)

= Cy #+Dyu+ Dy w,

8¢

Ler

wR¢

<



10.5. Proofs ’of Main Results 263

where A, 15‘, E‘, Cs, D, and Doy, are defined as
A :(A+BF0 -I-I)'"I(A-}-BF()—-I), 3
B =V2(A+ BFy +I)™'B,
E =v2(A+ BF, +I)'E,

Gy = V2(Cz + DaFo)(A+ BFy + I)™1, [ (10.5.3)
Dy = Dy = (Ca + D2 Fy)(A+ BFy + I)~1B,
Dgg = Dyg — (C2 + D2Fy)(A+ BFy + I)™'E, )

and where Fp is chosen such that A + BFy has no eigenvalue at —1. This
can always be done provided that (A4, B) is stabilizable. For future use, we
denote 3, as the subsystem characterized by (fi, B, C’Q,ﬁg). It was shown in
Glover [45] (see also Chapter 4) that the infimum of H,, optimization for the
discrete-time system (10.5.1) is equivalent to that of H,, optimization for the
auxiliary continuous-time system (10.5.2). Thus, as a direct consequence, the
H.-ADDPMS for the discrete-time system (10.5.1) is solvable if and only if the
H.-ADDPMS for the continuous-time system (10.5.2) is solvable. Following
the results of Scherer [95,96], one can show that the Ho,-ADDPMS for (10.5.2)
. is solvable if and only if the following conditions are satisfied:

(a) (4, B) is stabilizable;
(b) there exists a matrix S such that Doy + DS = 0; and
(¢) Im (B + BS) c S*(Sp) N {nxecu SA(E:P)} :

It is simple to show that (A, B) is stabilizable if and only if (4, B) is stabilizable.
Hence, it is sufficient to show Theorem 10.2.1 by showing that the following two
statements are equivalent:

1. The first statement:

(a) There exists a S such that Doy + D2S = 0;
(b) Im(E+ BS) € {Vo(S,) + BKer (D2) } N M= 53 (Se) }-

2. The second statement:

(a) There exists a S such that Daz + D,S =0;
(b) Im(E + BS) c S+(£,) n {nAeCO sk(i,,)} .
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Statement 1 => Statement 2: It is without loss of any generality to assume that
matrix D22 in (10.5.1) is equal to 0. Also, by the definitions of the geometric
subspaces VX, 8%, V) and Sy, it is simple to verify that they are all invariant
under any state feedback, output injection laws, and non-singular input as well
as non-singular output transformations. Hereafter, we will assume that the
subsystem Xp, i.e., the quadruple (A, B,C;,D;), is in the form of the special
coordinate basis of Theorem 2.3.1. For easy reference in future development,
we further assume that the state space of £, has been decomposed as follows:

X=X"0X dX. 90X 0 X d Xy X, (10.5.4)

where X9! is corresponding the zero dynamics of £, associated with the in-
variant zero at z = —1 and X2* is corresponding to the zero dynamics of ¥
associated with the rest invariant zeros on the unit circle. More specifically, we
let

- A0 0 0 0 L%C, L%Cs 0 ]
0 Az, 0 0 LG L,Ca O
B.E% B.E;, Ac. B.EY LyChb LcgCq B.ES
A= 0 0 0 Af, LHG L3Ca O | BoCa,
0 0 0 0 Ap  LyaCa O
B4EY: BuE;, BuEic B4E} BuEy Aaa BuE3
0 o 0 0 I%C, L%Cs A%
] ©(105.5)
[BY* 0 0] [ Eo* ]
By, 0 0 ES
By 0 B E.
B=[B, Bil=|Bf, 0 o|, E=|E}|[, (10.5.6)
By, 0 0 E,
Byg By O Ey
| B 0 0] | B3
I 00
D=0 0 0f, (10.5.7)
0 00
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and
o1 [O% Ca G Ci Co Cu G
2,0
Cz=[ ]= 0 0 0 0 ©0 Ci 0], (1058
0 0 0 0 Cy O 0
where A% has all its eigenvalues at —1 and A9 has all its eigenvalues on the

unit circle, but excluding the point —1. Then, the condition in Statement 1(b)
is equivalent to that

Ef =0, E,=0, El'=(I+A3)X2, E.=BiX (10.5.9)
for some appropriately dimensional X! and X4, and
E¥ =Y X0, (10.5.10)

where Y0 is a matrix whose columns span Ngex(40s)Im (af — A%;) and X2* is
an appropriately dimensional matrix.
Let us now choose Fp as,

C Con Coc Cf, Cob Coa Cos
~01
Fob=-|E}: E;, Es& Ej, Ex 0 EJ-E;]|. (10.5.11)
Ex E, 0 EL 0 0O 0

Then, we have

TA% 0 0 0 L%C, L¥%C: 0 ]
0 A, 0 0 L,C, L Ci O
0 0 Ae O LuGCy LaCi O
A=A+BFR,=| 0 0 0 Af, Lhec, Lo 0 |,
0 0 0 Aw LuCi O
0 0 0 0 4w BBy,
L 0 0 0 Loc, 1%c; A%

*(105.12)

and
0000 O 0 0

Cp=Cy+DFo=10 000 0 Cy 0f. (10.5.13)
0000 C, 0 0

For simplicity, we further assume that A.., As and Ags have no eigenvalue
at —1. Otherwise, some additional pre-state feedback will relocate them to
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~01 ~
somewhere else. Also, E;, is chosen such that A has no eigenvalue at —1.

Next, it can be computed that

'(I+A22)— 0 0 0 Xis X

0 (I+A ) -19 0 Xas  Xog

0 0 (I+Acc)_1 0 X35 Xz

(A+ BFo+ 1) = 0 0 0 (I+AF)™! X4s Xss
0 0 0 0 Xss  Xsg

0 0 0 0 Xes Xes

| 0 0 0 0 Xrs Xpg

where

X177
Xo7
Xar
X7 |,
Xs7
Xe7
X7 |
(10.5.14)

Xes = (14 Ap) ™ {I-LoaCall+ Aaa) B A7 LACy (T+ Au) ™'}, (10,5.15)

Xs6 = -—(I+Abb)_1Lbd{I+Lded(I+Add)—leE2iA"l
x [Lgfi-—LﬂOb(I+Abb)'1Lbd]}Cd(I+Add)_l,
X7 = (I+Abb)—lLded(I+Add)—leégiA_l,
Xes = (I+ Aaa) " BaBgo A~ L Cy(I+Aw) ™,
Xog = (I+Aga)™ ! x

~01
{ BaBots™ [L8-LUC, (I + An) " Lud] Call + Aaa) 41},

Xer = -(I+Add)—leE'3iA_1,
Xrs = —ATTLRC,(I+ Aw) ™1,
Xr6 = ALY Co(I+Apw) ™ Lya— L] Cu(I+4aa) Y,
X =A"1

Xis = —(I + ALY (L% Coy Xss + LYCyXes),

Xis = —(I + A2;) 7 (L%Cs X56 + L23CuXss),

)
)
),
)

)L
Xir = —(I + AL) (L% Co Xs7 + LO5CuXer
X25 - “'(I + Aaa) 1(

CbXss + L, ,CiXes5),

(10.5.16)

(10.5.17)

(10.5.18)

(10.5.19)

(10.5.20)
(10.5.21)
(10.5.22)
(10.5.23)

(10.5.24)
(10.5.25)
(10.5.26)

(10.5.27)
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Xo6=—(I+A;,) ' (L;,CsXs6 + L ;CaXes), (10.5.28)
Xor=—(T+A;,) Y (L;,CoXs7 + L;,CaXer), (10.5.29)
X35 = —(I + Acc) ' (LesCo X5 + LeaCaXes) (10.5.30)
X36 = —(I + Acc) 1 (LcvCoXs6 + LeaCaXes) (10.5.31)
X37 = —(I + Acc) "1 (LevCoXs7 + LeaCaXer), (10.5.32)
Xes = —(I+ A%)™ (L3,CsXs5 + L3,CaXes), (10.5.33)
Xao = —(I + AL) 7" (L3,CoXs6 + LsCaXes), (10.5.34)
Xar = —(I + AL) " (L3,CoXs1 + L} CaXer), (10.5.35)
and where

~01
A=TI+A%+ [LBC,(I + Aps) "Ly — L] Ca(I + Aga) 'BaE 4. (10.5.36)

Furthermore, we have

T (I+A%%) " BYs+X15Bos+ X16 Boa +X17B3;  X16Ba
(I+AZ,) By, +Xa5Bos+ X26 Boa+ X27B):  X26Ba
(I4+Acc) ' Boc+Xs5Bos+ X36 Boa+ X37By:  X36Bg
(I+A},) 1By, + X4sBoy+ X46 Boa+ X47Bjy Xa6Ba
Xs5Bos+ Xs6 Boa+ Xs7Bj, Xs6Ba
XesBos+Xe6Boa+ Xe7Bgs XeeBa
XrsBos+X76Boa+X71By:  X16Ba

¢
il
S
oooo{?‘:oo
O

10.5.37)

~

where ch = (I+ Acc)mlBCa

F(I+ A% ) LY 0 XO* 4 Xy By X g+ X17(1+A%) X0 T
(I+A7) YE; +X9BaXa+ Xor(I+A2
(I+Ace)™ 1B+ X36BaXq+ Xar(I+ A%

X16BaXa+ Xar(I+A
AY
A°

o
I
5

., (10.5.38)
Xs6BaXa+ Xs7(I+
XesBaXa+ Xer(I+
Xr6BaXq+ Xa7(I+ A%

)XOI
)XOI
)XOI
)XOI
)XOI
)XOI

a -
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I 0 0
Dy = | —Ca(XesBos+XeeBoa+XerB),) —CaXesBa 0|, (10.5.39)
— Cy(Xs5Bos + Xs6 Boa+ Xs7Bj;) —CsXseBa 0
and
0
Dy = | — Ca[Xee BaXa + Xer(I+A3)X2'] | . (10.5.40)

- Cy[XseBaXa + Xsr(I + ALL) X Q']
Next, let us define

0
§ .= ["‘Xd +E‘31Xg1} : (10.5.41)
0

Noting that
~01
I+ A% = A — [LUCy(I + Aps) ™ Lyg — LB)Ca(I + Aaa) "' BiEy,, (10.5.42)

it is straightforward to verify that

0
; oo 01
Doz + D28 = | = CalXer(I + AL X + XesBaE 4, X2 | =0, (10.5.43)
- Cy[Xs7(I + AR) X + XssBdEZiX;)l]

which shows that Statement 2(a) holds, and

((I+A°*)‘1Y°*X°*+XleBdEdaX°1+X1 (I+A%) X1 ]
(I+AD,) 'E; +XszdEdaX 01 4 o (I4+A%) X0
(I+A.) 'E, +XseBdEdaX01+X 7(I+A%) X
E+BS =2 X4eBdEdaX°1+X 7(I+A0) X!
XSGBdEdaX O Xsr(I+A%) X!
XGGBdEdaXOI Xer(I+A%) X
X76BdEdaX01+X77( +AR) X |
(1+A°Z) WYX
*
*
=2 0 , (10.5.44)
0
0
L * o
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where x’s are matrices of not much interest. Let the state space of ip, i.e., the
matrix quadruple (fi, B,C 2, 132), be decomposed as follows:

X=XoX ol ol oX,0X ok, (10.5.45)

where X 2, X ;, X e X » and X are the usual subspaces defined in the special
coordinate basis of 35, while ¥ :l is corresponding to the zero dynamics of £,
associated with the invariant zero at s = 1, and X :' is corresponding to the
zero dynamics of 3 associated with the rest unstable invariant zeros (excluding
the point s = 1). It was shown in Chapter 4, i.e., (4.1.100), that X of £, and
X of I; are related by

Xo=x, Xo=x7, =X, X=xr (10.5.46)
and
Y ptl v 01
Xy = A, Xa =Xy, Xag= Xa . (10.5.47)

Moreover, the zero dynamics of PR corresponding to the imaginary axis invari-
ant zeros are fully characterized by the eigenstructure of the following matrix,
<0

A, =A% +1)71(A%: — D). (10.5.48)
Noting (10.5.10), it is ready to verify that
m{(I+A%)7'Y%}= () Im{BI-A4.,}. (10.5.49)
BEN(A,)

It is now straightforward to see from (10.5.44) and the properties of the special
coordinate basis that

Im(E + BS) c $*()n {me Cosx(i:,,)} , (10.5.50)
i.e., Statement 2(b) holds.

Statement 2 = Statement 1: It follows by reversing the above arguments using
the well-known bilinear transformation and the results of Chapter 4. Thus, it
is omitted. This completes the proof of Theorem 10.2.1. ®

10.5.B. Proof of Theorem 10.2.2

For simplicity of presentation, we assume throughout this proof that matrix A
has no eigenvalue at —1. Then, we define the following auxiliary continuous-

time system,

i=Ai+ B u+ E w,
£ {y=¢3s + By w, (10.5.51)
5’=é253+ﬁ2'ﬁ+Dv2211),
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where fi, B, E‘, C’l, Dl, Cs, D, and 1522 are defined as

A =@A+DH(A-1), )

B =\/§(A+I)_le

E =v2(A+I)7'E,

C, =V20,(A+ 1)1,

! Vi 4+ D , (10.5.52)
D, =D1—01(A+I)"1E,

2 =\/§CZ(A+I)_1,
2 =Dy = Co(A+I)71B,
Dy = Dyy — C2(A + I)7E. J

G( Q¢

For easy reference later on, we let 3 denote the subsystem characterized by
(4,B,C2, D3) and ¥, denote the subsystem characterized by characterized by
(A,E,C1, D), respectively. Following the result of Glover [45], one can show
that the following two statements are equivalent:

1. The H.-ADDPMS for the originally given discrete-time system ¥ of
(10.1.1) is solvable.

2. The H..-ADDPMS for the auxiliary continuous-time system ¥ of (10.5.51)
is solvable.

It was shown in Scherer [95,96] that the second statement above is also equiv-
alent to the following conditions (see also Theorem 7.2.1):

(a) (A4, B) is stabilizable.
(b) (A,C,) is detectable.
(c) Doy + D,SD; = 0, where S = ~(D;D2)Tﬁ;ﬁ22ﬁ;(ﬁ1ﬁ;)1-

v v v

(d) Im (B + BSD1) € $*(E0) n {Nyegn S1(En) }-
(e) Ker (G2 +028C1) > V+(£) U{Ure go W1 (Ea) }-
() V*(Eq) C SH(Es).
First, it is simple to check that the triple (/i, B, é’l) is stabilizable and de-
tectable if and only if the triple (A, B,C) is stabilizable and detectable. Next,

following the proof in Subsection 10.5.A, we have the following equivalent state-
ments:
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1. Statement I:

(a) D22 + DzSDl = 0, where S = —(DéDg)fDéDuD’l(DlDi)T;
(b) Tm (£ + BS) € {V°(Ss) + BKer (D2) } n {Njyes SH(Ze) }-

2. Statement II:

(a) Doz + D2SDy =0, where § = —(D, D) Dy Do Iy (D1 DY)

v v v

(b) Im(E + BSD,) c $*(E:)n {nAeCo SA(S:,,)}.

Dualizing the arguments of Subsection 10.5.A, we can show that the following
two statements are also equivalent:

1. Statement A:

(a) Dy + Dy SD; =0, where S = -—(DéDz)TDéDzzD’l(DlDIl)T;
(b) Ker (Cz+ D2SC1) O {SO(EQ)ﬂCfI{Im (Dl)}}U{UIM:l vA(EQ)}.

2. Statement B:
(a) Dyy + D2SDy =0, where S = —(D},D3)t Dy Day D) (Dy DY)
(b) Ker (€2 + D28C1) 5 W+ (£9) U {Uje go 1 Ea)}-
Finally, it was shown in Chapter 4 that
VO(Tp) =8H(E:), S8°(Z:) = VH(E:), (10.5.53)

and

VO(Sq) =8F(E,), 8°(Bq) = VH(Ey). (10.5.54)
Hence, the following two statements are equivalent:
1. 8§°(Zq) C V°(Zs).
2. V+H(E,) € 8T(Ep).

Thus, the result of Theorem 10.2.2 follows. &
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10.5.C. Proof of Theorem 10.3.2

Without loss of any generality, but for simplicity of presentation, we assume that
the matrix quadruple (4, B, Cy, D2} is in the form of the special coordinate basis
of Theorem 2.3.1. It is simple to verify that if Condition (b) of Theorem 10.2.1
holds, we have

I 00 0
Dog +DyFyy =Dy +D:S5— |0 0 0 (B&Bd)wlBéEd =0. (10.5.55)
0 0 ¢ 0
Also, Condition (c) of Theorem 10.2.1 implies that
[ Eo ]
E]
E+BS= 8 , (10.5.56)
E,
| BaXa |
with an appropriately dimensional X, and
E2 =v2X0, (10.5.57)

where Y is a matrix whose columns span Naex40,)Im (al — AJ,) and X7 is
an appropriately dimensional matrix. Next, it is simple to verify that

I E; i B
E° E?
E + BF, = 8 =] 071, (10.5.58)
E. E.
_BdXd - Bd(B"in)_lB:inXdJ B 0 ]
Hence, we have
Im (E + BF,) C V°(Ze) N {Npx=18:(Z2) } (10.5.59)
and the result follows from Theorem 10.3.1. &

10.5.D. Proof of Theorem 10.4.1

We are to examine the result of Theorem 10.4.1. Let us first apply a pre-output
feedback control law,

u=28y+a, (10.5.60)
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with § = —(D3D;)! D} D4y D (D1 D})!, to the given system £ of (10.1.1). Under
Condition (c) of Theorem 10.2.2, we have Dy + £5,5D; = 0. We also have a
new system,
z(k+1) = (A+BSC:) z(k)+ B u(k) + (E+BSD,) w(k),
y(k) = C1 z(k) + D w(k), (10.5.61)
h(k) = (Co+D2SD,) z(k) + Dy u(k) + 0 w(k).
We denote &, and iQ the subsystems characterized by the matrix quadru-

ples (A + BSC,,B,Cs + DzSC1,D2) and (A + BSC,,E + BSD,,C,, D), re-
spectively. Recalling the definitions of V°® and S©, which are invariant un-

der any state feedback and output injection laws, we have V°(E,) = VO(%,),
5°(Sq) = V°(£5), and

[C’:igfgél] VO(Zp) C (vo(zp)ea {0}) +Im {[52]} (10.5.62)

as well as

[A+BSC, E+BSD;] {(SO(EQ)@JR‘I) NKer {[C1 Di]}} C S°(Za).
(10.5.63)
Furthermore, it can be easily verified that Condition (d) of Theorem 10.2.2
implies

Im {[E+135D1] } C (VO(EP)@{O}) +Im {[52]}, (10.5.64)

and that Condition (e) of Theorem 10.2.2 implies
(SO(EQ) ® Rq) NKer{[C; D;]} C Ker{[C; 0]}. (10.5.65)

Next, it is ready to show that (10.5.62) and (10.5.64) together with Condition
(f) of Theorem 10.2.2 imply that

[cfigfgcla E“;SDl] (s°Ea)er?) c (VO(Sr) @{0}) +Im {[52]},
(10.5.66)

and that (10.5.63) and (10.5.65) together with Condition (f) of Theorem 10.2.2
imply that

A"'BSCl E+BSD1 o q
{Cfrz)zsc1 0 }{(3 (Sa) ®R?) N Ker{[C) D}

c (v@(zp) ® {0}). (10.5.67)
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Finally, (10.5.66) and (10.5.67) imply that there exists a matrix N, which sat-
isfies the following condition,
A+BSC, E+BSD; B} - ® q
([c'2+1725131 0 ] + [DQ]N[CI Dy ]> (s°(50) 0 Re)
C(VO(EP)&){O}). (10.5.68)

It is simple to verify that matrix N := N — S, where N is given as in (10.4.1),
is one of the solutions to (10.5.68). Following the result of [101], one can show
that matrix N of (10.4.1) or N = N + 8§ with N being any solution of (10.5.68)
has the following properties:

Im (E + BND;) C V°(%5), (10.5.69)
Ker (Cz + D2 NC;) D 8°(2g), (10.5.70)

and
(A+ BNC1)S8%(Xg) C Vo(%;), DyND;, =0. (10.5.71)

Noting that DoND; = 0, it can be further showed using the compact form of
the special coordinate basis that

Im (E+ BNDy) C Vo(Z:) N {Np=18r(Ze) } (10.5.72)
and
Ker (C; + D2NCy) D S°(Zq)u {UI,\|=1V)‘(EQ)} . (10.5.73)

Now, let us apply the following pre-output feedback law, u = Ny + @, to the
system (10.1.1). We obtain

z(k+1) = A z(k) + B (k) + E w(k),
y(k) = C (k) + Dy w(k), (10.5.74)

h(k) = Ca x(k) + Dy (k) + 0 w(k),
where A, E and C; are as defined in (10.4.3) to (10.4.5). Clearly, it is sufficient
to prove Theorem 10.4.1 by showing the following controller
e(k+1) = Arc(e) z(k) + Brc(e) y(k),
u(k) = Crcle) zc(k) + 0  y(k),
with Aec(e), Brc(e) and Crc(€) being given as in (10.4.8), solves the H-

ADDPMS for (10.5.74). For simplicity of presentation, we denote £p the sub-
system,

Trcle) ¢ { (10.5.75)

(A, B,C’g,Dg) = (A + BNCy,B,Cy + DQNCI,DQ), (10.5.76)
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and denote £, the subsystem,

(A, B, Ci, Dl) = (A +BNCE + BNDl,c,,Dl). (10.5.77)

It is simple to see that (fi, B, C)) remains stabilizable and detectable. Also, it
is trivial to show the stability of the closed-loop system comprising the given
plant (10.5.74) and the controller (10.5.75). The closed-loop eigenvalues are
given by AM{A + BFy(e)}, which are in €° for sufficiently small £ as shown in
Theorem 10.3.1, and A{A + Kq(e)C;}, which can be dually shown to be in C°
for sufficiently small £ as well. In what follows, we will show that the controller
(10.5.75) achieves the H.,-ADDPMS for (10.5.74), under all the conditions of
Theorem 10.2.2. By (10.5.71)-(10.5.73), and the fact that V°, S®, V, as well
as Sy are all invariant under any state feedback and output injection laws, we
have that Conditions (d) to (f) of Theorem 10.2.2 are equivalent to the following
conditions:

(@ Im(B) ¢ V(&) N { Ny S(E9) }5

(). Ker (€2) 3 5°(£a) U {Upm WEa) 5
(f)- 8°(£q) C VO(Es); and
() A8°(Zq) C VO(Ee).
Next, without of loss any generality but for simplicity of presentatioil, here-
after we assume throughout the rest of the proof that the subsystem g, i.e.,

the quadruple (A,B,C'z,Dg), has already been transformed into the special
coordinate basis as given in Theorem 2.3.1. To be more specific, we have

A7, 0 0 LG 0  L7,Ca)
0 A%, 0 ’c, o L%.Cq
- 0 0 A * 0o LYC
A = ByCyo + aa LG adCd
0 0 0 App 0 LyqCy
BcEc_a BcEga BCE;:, chcb Acc Lcdcd
| B4E;, B4ES, B4E} ~BiEsw BiEi Add |
= B()Cz,() + A_., (10.5.78)
By, 0 07 B, T
B, 0 0 B,
+ +
B=|Bu 0 0| g _|Bu| (10.5.79)
BOb 0 0 BOb
Bg. 0 B, By,
| Bgs B; 0 | Bgg 4
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C(:J:z Cga. C(_)tz, COb C’Oc COd T
C~'2 = 0 0 0 0 0 Cd )
0 0 0 G o0 0

I 00
Ca0 = [Cq, Cga Cg; Cob Coc Cod]l, D2=10 0 0
[0 0 0
d
o I00
010
= 0 00
) —
VO (3p) =Im 00 0
0 0 I
00090
It is simple to note that Condition (d) implies that
FE‘_I__ b
EO
E=|0
0
E,
L 0 ]
Next, for any ¢ € Vy(5q) with A € €°, we partition ¢ as follows,
G
CO
+
¢=|"%
G
Ce
Ca

Then, Condition (€) implies that C3( = 0, or equivalently
C20(=0, Cp¢ =0 and Cylq=0.
By Definition 2.3.3, we have

A=A EY(¢\ _
e al()=e

b

(10.5.80)

(10.5.81)

(10.5.82)

(10.5.83)

(10.5.84)

(10.5.85)

(10.5.86)

for some appropriate vector n. Clearly, (10.5.86) and (10.5.83) imply that

(A= AD)¢ =-En=

O ¥ O O % »*

(10.5.87)
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where *’s are some vectors of not much interests. Note that (10.5.85) implies

(A= AI)¢ = (BoCap+ A= AI)C = (A = M)C
[ *
*
(AY, - AN+ LECoG + LE,Cala
(App = AI)Co + LpaCala
*
L (Add — /\I)Cd + BdCz
r *
*
(A:a - )‘I)C:.
= (Ao — AD)Gy , (10.5.88)
*
| (Aga = M)(a + Ba

where

G =Ep (s + ELQ+EL( + Ean + Eacle. (10.5.89)
(10.5.87) and (10.5.88) imply
(Af, = AD¢H=0, (Ap — AI)G =0, (10.5.90)

and
(Add - )\I)Cd + BdCa: =0. (10.5.91)

Since A7, has all its eigenvalues in C®, (A}, — AI){} = 0 implies that ¢} =0.
Similarly, since (Aspp, Cp) is completely observable, (A, —AI)(; = 0and Cp(p =0
imply ¢, = 0. Also, (10.5.91) and Cy(y = 0 imply that

Aga—-M Bg) (¢ _
[ ddc,i od] (C:) =0. (10.5.92)

Because (Aq4, B4, Cq) is invertible and is free of invariant zeros, (10.5.92) implies
that (4 =0 and {; = 0. Thus, we have

(e Ker {Bu[Ej, B, Ef, Ea FEu 01}, (10.5.93)
and hence

Va(Eq) C Ker {Bd[E;a ES Ef Eu Ea 0}}. (10.5.94)
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Moreover, ¢ has the following property,
Ca
CO
(= 8 € V°(Zs). (10.5.95)

Ce
0

Obviously, (10.5.95) together with Condition (f) imply
Ve(5,) D SO (Sq) U {UAECDVA(EQ)} . (10.5.96)

Similarly, for any £ € §°(£4), Conditions (¢) and (§) imply that C3¢ = 0 and

*
*
- 0
A=, (10.5.97)
*
0
Now, it is straightforward to show that
gexer{Bd[E;a ES, EI Eu EBa 0]}, (10.5.98)
and hence
SO(EQ)cKer{Bd[EL ES, E} Eg Ea o]}. (10.5.99)

(10.5.94) and (10.5.99) imply that

Ker { By|Ej, E, E}, Ea Fu o]}35@(2Q)u{umccvx(iq)}.

(10.5.100)
Next, we partition A — zI as follows,
A-2l=X1 + XoCo + X3+ X4 + Xs, (10.5.101)
where
AT —zl 0 0 L,,Cy 0 L ,Cq
0 0 0 0 0 0
— 0 0 0 0 0 0
X1 = 0 0 0 0 0 0 , (10.5.102)
BCEc_n. BCEgg, BCE;, LGy Acc — 21 LeaCy
0 0 0 0 0 0
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By, 0 0]

Xz = , 10.5.103
Boy Lea O ( )
Bye 0 0
(B 0 0
0 0 0 0 0 0
00 0 0 0 0
|00 At -z 0 0 0
3= 19 0 0 Ap—2zI O 0 , (10.5.104)
0 0 0 0 0 0
00 0 0 0 Add -zl
0 0 0 0 0O
0 A% -2 0 0 0 0
0 0 0 0 00
X4 =
=1y o 0 ool (10.5.105)
0 0 0 0 00
0 0 0 0 00
and
0 0 0 0 0 0
0 0 0 0 0 0
| o 0 0 0 0 0
Xs=1| | 0 0 0 0 0 (10.5.106)
0 0 0 0 0 0
B4E;, B4E), B4E}, BaEs BaEs 0
It is simple to see that
Im (X;) C V°(5:) N {n,k,zl&(ip)} , (10.5.107)
Ker (X3) D VO (£5) D 8°(5q) U {uM':lvA(iQ)} . (10.5.108)
Also, (10.5.100) implies that
Ker (X5) D S°(£q) U {U,M:lvx(ia)} . (10.5.109)
1t follows from the proof of Theorem 10.3.1 that as ¢ =0
162+ D2Fe(e)llzT - A~ BE ()] ” < ke, (10.5.110)

where K, is a finite positive constant and is independent of e. Moreover, under

Condition (d), we have

(G2 + Dy Fe(e)|lz] — A~ BF(e)] 1 E = 0, (10.5.111)
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and
[Cy + DoFy(e)][2I — A — BFy(e)] ™' X1 — 0, (10.5.112)

pointwise in z as ¢ = 0. It was proved in [65] that
[C2 + DyFo(e)][2] — A — BF:(e)] "' X4 — O, (10.5.113)

pointwise in z as € = 0. Dually, one can show that
”[z[ _A-Kq(e)C]YE + KQ(E)Dl]“w < Kq, (10.5.114)

where kq is a finite positive constant and is independent of €. If Condition (€)
is satisfied, the following results hold,

Calzl — A - Kqo(e)Ch] 7 [E + Kq(e)D1] — O, (10.5.115)

Xs[zI — A= Kq(e)C1] 7 E + Kqo(e)D4] — 0, (10.5.116)
and

Xs[2I — A~ Kq(€)C1]7HE + Kqo(e)D1] — 0, (10.5.117)

pointwise in z as e = 0.

Finally, it is simple to verify that the closed-loop transfer matrix from the
disturbance w to the controlled output A of the closed-loop system comprising
the system (10.5.74) and the controller (10.5.75) is given by

Thw(2,€) = [Ca+DyFp(e)|[2I — A— BF,(e)] ' &
+ GZ[ZI_A*KQ (E)CI]—I[E*‘KQ(E)Dl] + [é2 +D2Fr(e)]
[2I=A-BFy(e)] Y (A—2D)[z] - A= Ko () C1] " [E+Kq(e) D1).

Using (10.5.101), we can rewrite T, (z,¢€) as

Thu(z,€) = [Co+D2Fy(e)][2] — A—BF,(e)]'E
+ Col2l - A~ Kqo(e)C1]  [E+Kq(e) D1 ]
+[Co+DyFy(e)][2] — A—BFo(e)] 1 (X1 + X2C2+ X3+ X4+ X5)
[2I-A-Kq(e)C1]HE+Kq(e)Ds).

Following (10.5.110) to (10.5.117), and some simple manipulations, it is straight-
forward to show that as ¢ = 0, Thq(2,¢) — 0, pointwise in z, which is equiva-
lent to ||Thwl||eo — 0 as e = 0. Hence, the full order output feedback controller
(10.4.7) solves the H,,-ADDPMS for the given plant (10.1.1), provided that all
the conditions of Theorem 10.2.2 are satisfied. &



10.5. Proofs of Main Results 281

10.5.E. Proof of Theorem 10.4.2

It is sufficient to show Theorem 10.4.2 by showing that the following controller,

Srele) : {IC(k +1) = Anole) (k) + ?“C(e) (&), (10.5.118)

(k) = Cacle) z.(k) + Dgpcle) y(k),

with Arc(€), Brc(€), Crc(€) being given as in (10.4.24), and
Drc(e) = [0, Frile) - Fra(e)Kna(e)], (10.5.119)

solves the Ho.-rADDPMS for (10.5.74). Again, it is trivial to show the stability
of the closed-loop system comprising with (10.5.74) and the controller (10.5.118)
as the closed-loop poles are given by \M{A + BFy(e)} and MAr + Kg(e)Cr},
which are asymptotically stable for sufficiently small . Next, it is easy to
compute the corresponding closed-loop transfer matrix from the disturbance w
to the controlled output A,

Thuw(z,€) = [C2 + DoFy(e)|[z] - A — BF(e)]'E
+[C2 + DyFy(e)][z] = A — BF;(e)]" (A - 2I) (1 O_k )

[2I — Ag — Kn(€)Ca] " [Ex + Kr(e)Dy)
+C, (1 O_k ) [2I — Ax — K (€)Cr] ™ [Er + Kn(e) Dx].

Following the result of Chen [10] (i.e., Proposition 2.2.1), one can show that

(Ino_k ) S°(Zqr) = 8°() N Cy H{Im (Dy)}, (10.5.120)

and 0
(In_k ) U=t Va(Zan) = Upsj=1Va(Ea)- (10.5.121)

Hence, we have

(12,) (5°Ean v Uphr(Ea)})
- {SO(EQ) nCrYIm (Dl)}} U {u|A,=1vA(2Q)}
c 895U {Um:lV,\(iQ)} . (10.5.122)

The rest of the proof follows from the same lines as those of Theorem 10.4.1. &



Chapter 11

A Piezoelectric Actuator
System Design

11.1. Introduction

WE PRESENT IN this chapter a case study on a piezoelectric bimorph actuator
control system design using an H, optimization approach. This work was
originally reported in Chen et al [21].

Piezoelectricity is a fundamental process in electromechanical energy con-
version. It relates electric polarization to mechanical stress/strain in piezoelec-
tric materials. Under the direct piezoelectric effect, an electric charge can be
observed when the materials are deformed. The converse or the reciprocal piezo-
electric effect is when the application of an electric field can cause mechanical
stress/strain in the piezo materials. There are numerous piezoelectric materials
available today with PZT (Lead Zirconate Titanate), PLZT (Lanthanum mod-
ified Lead Zirconate Titanate), and PVDF (Piezoelectric Polymeric Polyvinyli-
dene Fluoride) to name a few (see Low and Guo [66]).

Piezoelectric structures are widely used in applications that require elec-
trical to mechanical energy conversion coupled with size limitations, precision,
and speed of operation. Typical examples are micro-sensors, micro-positioners,
speakers, medical diagnostics, shutters and impact print hammers. In most
applications, bimorph or stack piezoelectric structures are used because of the
relatively high stress/strain to input electric field ratio (see Low and Guo [66]).

The present work is motivated by the possibility of applying piezoelectric
micro-actuators in magnetic recording. The exponential growth of area densities
seen in magnetic disk drives means that data tracks and data bits are being
placed at closer proximity than ever before. The 25,000 TPI (tracks-per-inch)

283
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track densities envisaged at the turn of the century mean that the positioning
of the read/write (R/W) heads could only tolerate at most 1 to 2 micro-inch
error in track following. The closed loop positioning servo will also be required
to have a bandwidth in excess of 1 to 2 kHz to be able to maintain this accuracy
at the high spindle speeds required for channel data transfer rates, which will
be in excess of 200 Mbits/s. Such a performance is clearly out of reach with the
present voice coil motor (VCM) actuators used in disk drive access systems.

A dual actuator was successfully demonstrated by Tsuchiura et al of Hitachi
[107]. In [107]}, a fine positioner based on a piezoelectric structure was mounted
at the end of a primary VCM stage to form the dual actuator. The higher
bandwidth of the fine positioner allowed the R/W heads to be accurately po-
sitioned. There have been other instances where electromagnetic (see Miu and
Tai [69]) and electrostatic (see Fan et al [41]) micro-actuators have been used
for fine positioning of R/W heads.

The focus of this chapter is to concentrate on the control issues involved in
dealing with the nonlinear hysteresis behaviour displayed by most piezoelectric
actuators. More specifically, we consider a robust controller design for a piezo-
electric bimorph actuator as depicted in Figure 11.1.1. A scaled up model of
this piezoelectric actuator, which is targeted for use in the secondary stage of
a future dual actuator for magnetic recording, was actually built and modelled
by Low and Guo [66]. It has two pairs of bimorph beams which are subjected
to bipolar excitation. The dynamics of the actuator were identified in [66] as a
second order linear model coupled with a hysteresis. The linear model is given
by

mEy + by + kzy = k(du — 2), (11.1.1)

where m, b, k and d are the tangent mass, damping, stiffness and effective piezo-
electric coefficients, while u is the input voltage that generates excitation forces
to the actuator system. The variable z; is the displacement of the actuator and
it is also the only measurement we can have in this system. It should be noted
that the working range of the displacement of this actuator is within £1um.
The variable z is from the hysteretic nonlinear dynamics [66] and is governed
by

z = adi — Blu|z — vilz|, (11.1.2)
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Figure 11.1.1: Structure of the piezoelectric bimorph actuator.
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control input displacement

Piezo Actuator

Controller

reference

Figure 11.1.2: Piezoelectric bimorph actuator plant with controller.

where «, 3 and v are some constants that control the shapes of the hystere-
sis. For the actuator system that we are considering in this paper, the above
coefficients are identified as follows:

= 0.01595 kg, ~

1.169 Ns/m,

4385 N/m,

= 8.209 x 10~" m/V, r (11.1.3)
0.4297,

0.03438,

= —0.002865. J

I

R W@ a o 3
I

For a more detailed description of this piezoelectric actuator system and the
identifications of the above parameters, we refer interested readers to the work
of Low and Guo [66]. Our goal in this chapter is to design a robust controller,
as in Figure 11.1.2, that meets the following design specifications:

1. The steady state tracking errors of the displacement should be less than
1% for any input reference signals that have frequencies ranging from 0
to 30 Hz, as the actuator is to be used to track certain color noise type of
signals in disk drive systems.

2. The 1% settling time should be as fast as possible (we are able to achieve
a 1% settling time of less than 0.003 seconds in our design).

3. The control input signal u(¢) should not exceed 112.5 volts because of the
physical limitations of the piezoelectric materials.

Our approach is as follows: we will first use the stochastic equivalent lin-
earization method proposed in Chang [8] to obtain a linearized model for the
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nonlinear hysteretic dynamics. Then we reformulate our design into an H
almost disturbance decoupling problem in which the disturbance inputs are the
reference input and the error between the hysteretic dynamics and that of its
linearized model, while the controlled output is simply the double integration
of the tracking error. Thus, our task becomes to design a controller such that
when it is applied to the piezoelectric actuator, the overall system is asymptot-
ically stable, and the controlled output, which corresponds to the tacking error,
is as small as possible and decays as fast as possible.

The outline of this chapter is as follows: In Section 11.2, a first order lin-
earized model is obtained for the nonlinear hysteresis using the stochastic equiv-
alent linearization method. A simulation result is also given to show the match
between the nonlinear and linearized models. In Section 11.3, we formulate
our controller design into a standard almost disturbance decoupling problem
by properly defining the disturbance input and the controlled output. Two
integrators are augmented into the original plant to enhance the performance
of the overall system. Then a robust controller that is explicitly parameterized
by a certain tuning parameter and that solves the proposed almost disturbance
decoupling problem, is carried out using a so-called asymptotic time-scale and
eigenstructure assignment technique. In Section 11.4, we present the final con-
troller and simulation results of our overall control system using MATLAB
SIMULINK. We also obtain an explicit relationship between the peak values
of the control signal and the tuning parameter of the controller, as well as an
explicit linear relationship of the maximum trackable frequency, i.e, the corre-
sponding tracking error can be settled to 1%, vs the tuning parameter of the
controller. The simulation results of this section clearly show that all the design
specifications are met and the overall performance is very satisfactory.

11.2. Linearization of the Nonlinear Hysteretic Dynamics

We will proceed to linearize the nonlinear hysteretic dynamics of (11.1.2) in
this section. As pointed out in Chang [8], there are basically three methods
available in the literature to linearize the hysteretic type of nonlinear systems.
These are i) the Fokker-Planck equation approach (see for example Caughey
[34]), ii) the perturbation techniques (see for example Crandall [36] and Lyon
[67]) and iii) the stochastic linearization approach. All of them have certain
advantages and limitations. However, the stochastic linearization technique has
the widest range of applications compared to the other methods. This method
is based on the concept of replacing the nonlinear system with an “equivalent”
linear system in such a way that the “difference” between these two systems is
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minimized in a certain sense. The technique was initiated by Booton [6]. In
this chapter, we will just follow the stochastic linearization method given in
Chang [8] to obtain a linear model of the following form

z= k1ﬁ+k22, (1121)

for the hysteretic dynamics of (11.1.2), where k1 and k2 are the linearization
coefficients and are to be determined. The procedure is quite straightforward
and proceeds as follows: First we introduce a so-called “difference” function e
between z of (11.1.2) and 2 of (11.2.1),

e(ki, k2) = adia — Blujz — vilz| — (k14 + kez). (11.2.2)

Then minimizing E[e?], where FE is the expectation operator, with respect to

k1 and k2, we obtain
OFE[e?] OEl[e?
= =0, 11.2.
Ok Ok, ( 3)
from which the stochastic linearization coefficients k; and kg are determined.
It turns out that if 4 and % are of zero means and jointly Gaussian, then k; and
k, can be easily obtained. Let us assume that h and % have a joint probability

density function

faz(0,2) = v exp {_‘712122 — 204,02 U2 +03u2}
T e /T T~ )
(11.2.4)

where pg. is the normalized covariance of & and z, and oy and o, are the
standard deviation of 4 and z, respectively. Then the linearization coefficients
k; and kg can be expressed as follows:

k1 = ad - fei — e, (11.2.5)

and
kz = ——ﬂ03 — YC4, (1126)

where c1, ¢z, c3 and ¢4 are given by
-1 Vv 1- p2
¢1 = 0.797884560, cos |tan! | Y— iz ) [ (11.2.7)
Piz

¢y =0.797884560,, ¢4 =0.79788456p,,0, (11.2.8)

and

V1—p2.
cs = 0.797884560; {1 — P2, + pisCoS [ta,n'l <—1—pu—>} } (11.2.9)

Puz
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After a few iterations, we found that a sinusoidal excitation % with frequencies
ranging from 0 to 100 Hz (the expected working frequency range) and peak
magnitude of 50 volts, which has a standard deviation of o; = 35, would
yield a suitable linearized model for (11.1.2). For this excitation, we obtain
0, =5%1077, py, =5 x 1073

c1 =1.9947x107°, ¢ = 3.9894 x 1077, (11.2.10)
c3 = 279260, c4 = 0.1396, (11.2.11)

and
ky =3.5382x 1077, ko = —0.9597. (11.2.12)

The stochastic linearization model of the nonlinear hysteretic dynamics of (11.1.2)
is then given by

5 = Kyt + ky? = 3.5382 x 10~ 74 — 0.95973. (11.2.13)
For future use, let us define the linearization error as
e, =2— 2. (11.2.14)

Figure 11.2.1 shows the open-loop simulation results of the nonlinear hysteresis
and its linearized model, as well as their error for a typical sine wave input
signal u. The results are quite satisfactory. Here we should note that because
of the nature of our approach in controller design later in the next section, the
variation of the linearized model within a certain range, which might result in
larger linearization error, e,, will not much affect the overall performance of
the closed-loop system. We will formulate e, as a disturbance input and our
controller will automatically reject it from the output response.

11.3. Formulation of the Problem as an H,-ADDPMS

This section is the heart of this chapter. We will first formulate our control
system design for the piezoelectric bimorph actuator into a standard He al-
most disturbance decoupling problem, and then apply the results of Chapter 7
to check the solvability of the proposed problem. Finally, we will utilize the
results in Chapter 7 to find an internally stabilizing controller that solves the
proposed almost disturbance decoupling problem. Of course, most importantly,
the resulting closed-loop system and its responses should meet all the design
specifications as listed in Section 11.1. To do this, we will have to convert the
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Figure 11.2.1: Responses of hysteresis and its linearized model to a sine input.
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Figure 11.3.1: Augmented linearized model with controller.

dynamic model of (11.1.1) with the linearized model of the hysteresis into a
state space form. Let us first define a new state variable

v=2—ku. (11.3.1)
Then from (11.2.13), we have
b =2 — kit = ko3 = kav + krksu. (11.3.2)

Substituting (11.2.14) and (11.3.1) into (11.1.1), we obtain

¥ + P—a’cl + —k—zl + —]—c—v = E@—_—kl)-u - —k—ez (11.3.3)
m m m m m

The overall controller structure of our approach is then depicted in Figure

11.3.1. Note that in Figure 11.3.1 we have augmented two integrators after e,

the tracking error between the displacement z; and the reference input signal

r. We have observed a very interesting property of this problem, i.e., the more
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integrators that we augment after the tracking error e, the smaller the tracking
error we can achieve for the same level of control input u. Because our control
input u is limited to the range from —112.5 to 112.5 volts, it turns out that two
integrators are needed in order to meet all the design specifications. It is clear
to see that the augmented system has an order of five. Next, let us define the
state of the augmented system as

z=(x1 21 v 4 x5)', (11.3.4)

and the measurement output

v T
y=\{y | =24}, (11.3.5)
Ys Ts

i.e., the original measurement of displacement z; plus two augmented states.
"The auxiliary disturbance input is

w= (‘;) : (11.3.6)
and the output to be controlled, h, is simply the double integration of the
tracking error. The state space model of the overall augmented system is then

given by
= Az+ Bu+ FE w,

I y=0C =z + D; w, (11.3.7)
h=Csz+ Dyu,

with
r 0 1 0 00
-k/m —b/m -k/m 0 O
A=| 0 0 k, 00
1 0 0 00
L 0 0 0 10
0 1 0 00
-274921.63 —73.2915 -274921.63 0 0
= 0 0 -09597 0 0, (11.3.8)
1 0 0 00
! 0 10
k(d - kl)/m 012841
B= k1k2 —339561><10—7 , (11.3.9)
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0 0 0 0
—~k/m 0 —274921.63 0
E = 0 0f = 0 0l, (11.3.10)
0 -1 0 -1
) 0 0 0
[1 0 0 00
Ci=1|0 0 01 0f, (11.3.11)
|0 0 001
[0 0
D=0 o0f, (11.3.12)
[0 0
Co=[0 0 0 0 1], (11.3.13)
Dy, =0. (11.3.14)

For the problem that we are considering here, it is simple to verify that the
system ¥ of (11.3.7) has the following properties:

1. The subsystem (A, B,C», D,) is invertible and of minimum phase with
one invariant zero at —1.6867. It also has one infinite zero of order 4.

2. The subsystem (A, E,C;,D;) is left invertible and of minimum phase
with one invariant zero at —0.9597 and two infinite zeros of orders 1 and
2, respectively.

Then it follows from Theorem 7.2.1 or Theorem 7.2.1 that the H.,-ADDPMS
for (11.3.7) is solvable. In fact, one can design either a full order observer based
controller or a reduced order observer based controller to solve this problem. For
the full order observer based controller, the order of the disturbance decoupling
controller (see Figure 11.3.1) will be 5 and the order of the final overall controller
(again see Figure 11.3.1) will be 7 (the disturbance decoupling controller plus
two integrators). On the other hand, if we use a reduced order observer in the
disturbance decoupling controller, the total order of the resulting final overall
controller will be reduced to 4. From the practical point of view, the latter is
much more desirable than the former. Thus, in what follows we will only focus
on the controller design based on a reduced order observer. We can separate

our controller design into two steps:

1. In the first step, we assume that all five states of ¥ in (11.3.7) are available
and then design a static and parameterized state feedback control law,

u= F(e)z, (11.3.15)
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such that it solves the almost disturbance decoupling problem for the
state feedback case, i.e., ¥ = z, by adjusting the tuning parameter ¢ to
an appropriate value.

2. In the second step, we design a reduced order observer based controller.
It has a parameterized reduced order observer gain matrix Ks(e) that
can be tuned to recover the performance achieved by the state feedback
control law in the first step.

We will use the asymptotic time-scale and eigenstructure assignment (ATEA)
design method of Chapter 7 to construct both the state feedback law and the re-
duced order observer gain. We would like to note that in principle, one can also
apply the ARE (algebraic Riccati equation) based Ho, optimization technique
(see for example Zhou and Khargonekar [116]) to solve this problem. However,
because the numerical conditions of our system ¥ are very bad, we are unable
to obtain any satisfactory solution from the ARE approach. We cannot get any
meaningful solution for the associated Ho-CARE in MATLAB. In this sense
and at least for this problem, the ATEA method is much more powerful than
the ARE one. The software realization of the ATEA algorithm can be found in
the Linear Systems and Control Toolbox developed by Chen [12]. The following
is a closed form solution of the static state feedback parameterized gain matrix
F(e) obtained using the ATEA method.

F(e) = [(2.1410>< 10° - 62.3004/¢2) (570.7619 — 31.1502/e)

2.1410 x 108 —62.3004/¢3 —31.1502/54} ,(11.3.16)

where € is the tuning parameter that can be adjusted to achieve almost dis-
turbance decoupling. It can be verified that the closed-loop system matrix,
A+ BF(g) is asymptotically stable for all 0 < ¢ < oo and the closed-loop
transfer function from the disturbance w to the controlled output z, T;u(e, s),
satisfying

I T2 (e, $)lloo = |[C2 + Do F(€)][sI — A— BF(e)] *Elloc = 0,  (11.3.17)

ase — 0.

The next step is to design a reduced order observer based controller that
will recover the performance of the above state feedback control law. First, let
us perform the following nonsingular (permutation) state transformation to the
system ¥ of (11.3.7),

z =T%, (11.3.18)
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where
100 00
00 0 10
T=10 0 0 0 1], (11.3.19)
01 0 0 O
001 00O
such that the transformed measurement matrix has the form of
100 0 O
CIT= 01000 '—"[I3 0]. (11.3.20)
0010 O}

Clearly, the first three states of the transformed system, or z;, z4 and zs of
the original system X in (11.3.7), need not be estimated as they are already
available from the measurement output. Let us now partition the transformed
system as follows:

[ A5 | A
T—lAT - 11 12 :I
| Az l Az
i 0 0 0 1 0
1 0 0 0 0
= 0 1 0 0 0 , (11.3.21)
—27492163 0 0| —73.2915 -274921.63
i 0 0 0 0 —-0.9597
i 0
_ B 0
T 'B= Bl ] = 0 , (11.3.22)
L ~2 0.12841
| -3.39561x 107
[ 0 0
0 -1
T-1E = [ gl } = 0 01. (11.3.23)
2 —274921.63 O
i 0 0

Also, we partition
Fe)T = Fi(e) | Fa(e) ] (11.3.24)
= [(2.1410 x 100 — 62.3004/e2) —62.3004/e3 —31.1502/e* |

(570.7619 — 31.1502/) 2.1410x 106] . (113.25)

Then the reduced order observer based controller (see Chapter 7) is given in

the form of .
5. . {v = Ac(e) v + Be(e) v, (11.3.26)

u=C.(e) v + D.(€) y,
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with

Ac(e) = Ayp + K2(e) A2 + BoFa(e) + Ka(e)B1 Fa(e),  (11.3.27)
Be(e) = A + K2(€) A1 — [Azz + K2 () A12] Ka(e)

+ (B2 + Ka(e)Bi][Fi(e) — Fa(e)Ka(e)], (11.3.28)
Cc(e) = R(e), (11.3.29)
D.(e) = Fi(e) — F2(e)Ka(e), (11.3.30)

where K2 () is the parameterized reduced order observer gain matrix and is to
be designed such that Az2 + K2(€)A2 is asymptotically stable for sufficiently
small £ and also

[[sI — Ags — Ko(€) A12] Bz + K2(e) E1]lloo — O, (11.3.31)

as € — 0. Again, using the software package of Chen [12], we obtained the
following parameterized reduced order observer gain matrix

73.2915-1/c 0 0]. (11.3.32)

Ka(e) = [ 0 00

Then the explicitly parameterized matrices of the state space model of the
reduced order observer based controller are given by

A(e) = 732915 -4/ — 1/¢ 0
)= | —1.9381x107% + 1.0577x10~5/ —-1.6867 |’

C.(e) = [570.7619 — 311502/  2140967],

D.(e) = [2099135.4+2853.8095/c —93.4506/c? —62.3004/¢3 —31.1502/¢*],

B.(e) = Y1 -8/e’ —4/et
¢ Yo 2.1155x1075/e®  1.0577x107%/¢* |’

where
Y1 = —5731.6533 — 13/¢? + 439.7492 /¢, (11.3.33)

and
o = —0.7128 + 3.1732x 1075 /? — 9.6904 x 10™*/e. (11.3.34)

The overall closed loop system comprising the system X of (11.3.7) and the
above controller would be asymptotically stable as long as ¢ € (0,00). In fact,
the closed loop poles are exactly located at —1.6867, two pairs at —1/e+j1/e,
~0.9597 and —1/e. The plots of the maximum singular values of the closed
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Figure 11.3.2: Max. singular values of closed loop transfer function T%,(e, s).

loop transfer function matrix from the disturbance w to the controlled output
z, namely T,. (e, s), for several values of g, i.e.,, ¢ = 1/100, € = 1/400 and
e = 1/3000, in Figure 11.3.2 show that as € becomes smaller and smaller, the
H,, norms of T, (e,s) are also smaller and smaller. Hence, almost distur-
bance decoupling is indeed achieved. These are the properties of our control
system in the frequency domain. In the next section, we will address its time
domain properties, which are of course much more important as all the design
specifications are in the time domain.

11.4. Final Controller and Simulation Results

In this section, we will put our design of the previous section into a final con-
troller as depicted in Figure 11.1.2. It is simple to derive the state space model
of the final overall controller by observing its interconnection with the distur-
bance decoupling controller () of (11.3.26) (see Figure 11.3.1). We will also
present simulation results of the responses of the overall design to several dif-
ferent types of reference input signals. They clearly show that all the design
specifications are successfully achieved. Furthermore, because our controller
is explicitly parameterized by a tuning parameter, it is very easy to adjust to
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meet other design specifications without going through it all over again from
the beginning. This will also be discussed next.

As mentioned earlier, the final overall controller of our design will be of the
order of 4, of which two are from the disturbance decoupling controller and two
from the augmented integrators. It has two inputs: one is the displacement z,
and the other is the reference signal r. It is straightforward to verify that the
state space model of the final overall controller is given by

Voe = Aoc(€) Vo + Bocle Goc 1y
Toc(e) : { e = Aoc() oc () &1 + Goc 1 (114.1)
u = Cocl€) Voc + Doele) 71
where Aoc(€) is given by
73.2915 - 5/¢ 0 ~8/e3 -4/et
—0.0002 + 1.0577x10~5/ —1.6867 2.1155x10~5/e3 1.0577x1075/e*
0 0 0 0 !
0 0 1 0
0 1
0
Goc = 11 Boc(E) = 1112 s
0 0

with 11 and ¥, given by (11.3.33) and (11.3.34), respectively,
Coc(e) = [570.7619 — 31.1502/ 2140967 —62.3004/63 -31.1502/¢*],

and
D,.(¢) = 2099135.4 — 93.4506/¢2 + 2853.8095c.

There are some very interesting and very useful properties of the above param-
eterized controller. After repeatedly simulating the overall design, we found
that the maximum peak values of the control signal u are independent of the
frequencies of the reference signals. They are only dependent on the initial error
between displacement, z;, and the reference, r. The larger the initial error is,
the bigger the peak that occurs in u. Because the working range of our actuator
is within +1um, we will assume that the largest magnitude of the initial error
in any situation should not be larger that 1um. This assumption is reasonable
as we can always reset our displacement, z;, to 0 before the system is to track
any reference and hence the magnitude of initial tracking error can never be
larger than 1pm. Let us consider the worst case, i.e., the magnitude of the ini-
tial error is 1um. Then interestingly, we are able to obtain a clear relationship
between the tuning parameter 1/e and the maximum peak of u. The result is
plotted in Figure 11.4.1. We also found that the tracking error is independent
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Figure 11.4.1: Parameter 1/e vs max. peaks of u in worst initial errors.

of initial errors. It only depends on the frequencies of the references, i.e., the
larger the frequency that the reference signal r has, the larger the tracking error
that occurs. Again, we can obtain a simple and linear relationship between the
tuning parameter £ and the maximum frequency that a reference signal can
have such that the corresponding tracking error is no larger than 1%, which is
one of our main design specifications. The result is plotted in Figure 11.4.2.

Clearly, from Figure 11.4.1, we know that due to the constraints on the
control input, i.e., it must be kept within +112.5 volts, we have to select our
controller with € > 1/3370. From Figure 11.4.2, we know that in order to meet
the first design specification, i.e., the steady state tracking errors should be less
than 1% for reference inputs that have frequencies up to 30 Hz, we have to
choose our controller with ¢ < 1/2680. Hence, the final controller as given in
(11.4.1) to (11.4) will meet all the design goals for our piezoelectric actuator
system. i.e., (11.1.1) and (11.1.2), for all £ € (1/3370,1/2680). Let us choose
€ =1/3000. We obtain the overall controller as in the form of (11.4.1) with

—14926.7085 0  —2.16 x 10''  3.24x 104
0.0315 —1.6867 5.7118 x 10° 8.5677 x 108
Ape = 0 0 o 0 , (1142)

0 0 1 0
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Figure 11.4.2: Parameter 1 /& vs max. frequency of r that has 1% tracking error.

—1.1569 x 108 0
By = 281.19699 ’ Goc = _? ) (1143)
0 0

Coc = [ —92879.9041 2140967 —1.6821x 10'2 —2.5232x 10'5], (11.4.4)

and
D, = —8.3040 x 108. (11.4.5)

The simulation results presented in the following are done using the MATLAB
SIMULINK package, which is widely available everywhere these days. The
SIMULINK simulation block diagram for the overall piezoelectric bimorph ac-
tuator system is given in Figure 11.4.3. Two different reference inputs are
simulated using the Runge-Kutta 5 method in SIMULINK with a minimum
step size of 10 micro-seconds and a maximum step size of 100 micro-seconds
as well as a tolerance of 1075. These references are: 1) a cosine signal with a
frequency of 30 Hz and peak magnitude of 1 ym, and 2) a sine signal with a
frequency of 34 Hz and peak magnitude of 1 um. The results for the cosine
signal are given in Figures 11.4.4 to 11.4.6. In Figure 11.4.4, the solid-line curve
is 1 and the dash-dotted curve is the reference. The tracking error and the
control signal corresponding to this reference are given in Figures 11.4.5 and
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11.4.6, respectively. Similarly, Figures 11.4.7 to 11.4.9 are the results corre-
sponding to the sine signal. All these results show that our design goals are
fully achieved. To be more specific, the tracking error for a 30 Hz cosine wave
reference is about 0.8%, which is better than the specification, and the worst
peak magnitude of the control signal is less than 90 volts, which is of course less
than the saturated level, i.e., 112.5 volts. Furthermore, the 1% tracking error
settling times for both cases are less than 0.003 seconds.

Because the piezoelectric actuator is designed to be operated in a small
neighborhood of its equilibrium point, the stability properties of the overall
closed loop system of the nonlinear piezoelectric bimorph actuator should be
similar to those of its linearized model. This fact can also be verified from
simulations. In fact, the performance of the actual closed loop system is even
better than that of its linear counterpart.

Finally, we would like to note that currently, we are still working on the
actual implementation of our design. The outcome and result of the implemen-
tation will be reported in [21].
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Chapter 12

A Gyro-stabilized Mirror
Targeting System Design

12.1. Introduction

ELECTRO-OPTICAL (E-O) SENSORS that are mounted on vehicles such as air-
craft, helicopter and tanks are subjected to vibrations introduced by these plat-
forms. These vibrations cause the line-of-sight (LOS) of the E-O sensors to shift,
resulting in serious degradation of the image quality (see for example [5]). This
problem is even more pronounced in systems with high magnification property.
One way of overcoming it is to use free gyro-stabilization. A gyroscope or
gyro is basically an axially symmetrical mass rotating at a high constant speed.
With the magnitude of the angular inertia and the speed of rotation both kept
constant, the momentum generated is also fixed. Bearing in mind that the
momentum is a vector quantity, this implies that the directional orientation is
maintained. Therefore, under the absence of large external forces, a gyro is
capable of maintaining the orientation of its spin axis in the inertia space. By
choosing an appropriate high value for the speed of rotation, the vibrational
torque produced by the platforms can be made insignificant as compared to the
momentum generated. The LOS can thus be stabilized by simply designing a
system such that the LOS and the gyro’s spin axis are parallel in space. How-
ever, a spinning gyro has another property known as precession. This means
that if a torque is applied to one axis, it will contrary to the intuitions of me-
chanics, and rotate in the direction of another axis [78]. Thus, to enable for
changes in the space orientation of the LOS, a gyro with at least two degrees
of freedom is needed. This property also poses a problem in controlling the
LOS as movement about one axis will cause a coupled movement in the other.
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Therefore a controller has to be designed to provide the correct slewing (i.e.,
the application of a calculated torque to cause a desired precession).

In this chapter, we consider a multivariable servomechanism gyro-stabilized
mirror system. More specifically, it is a two-input-and-two-output system. The
control of this multiple-input-multiple-output system is not a simple problem
using conventional PID controllers as there exist cross-coupling interactions
between the dynamics of the two axes. In addition, it has to maintain sta-
ble operation even when there are changes in the system dynamics. Over the
years, many researchers have worked on this system and the control methodolo-
gies studied include adaptive with feedforward paradigm (see e.g., [57]), neural
network control (see e.g., [44]) and fuzzy logic (see e.g., [106] and [56]). Un-
fortunately, the controllers obtained using these techniques, except the one of
[44], are in general too complicated to be implemented in the real system. Here
we are tackling this problem using an H,, control approach to design a simple
and low order controller such that the overall closed-loop system would have
fast tracking and good robustness performance. The work of this chapter was
originally reported in a recent work of Siew, Chen and Lee [97].

This chapter is organized as follows: In Section 12.2, the mechanical setup
of the free gyro-stabilized mirror system as well as its dynamical equations are
given. This is followed by Section 12.3 where we formulate our controller de-
sign into an H control problem by properly defining the disturbance input and
the controlled output. A technique so-called asymptotic time-scale and eigen-
structure assignment (ATEA) of Chapter 7 is then used to solve the proposed
problem. Section 12.4 presents the simulation and implementation studies of
our overall design. The results of both studies clearly show that all the design
specifications are met and the overall performance is very satisfactory.

12.2. The Free Gyro-stabilized Mirror System

This section aims to give a brief overview of the hardware used in the whole
free gyro-stabilized mirror system. The whole system consists of four main
parts: a) a gyro mirror; b) a system interface assembly; c) a data acquisition
board; and d) a personal computer. The overall hardware setup was pictured
in Figure 12.2.1. In what follows, we give some brief descriptions of these four
hardware parts.

The Gyro Mirror

The most crucial part of the free gyro-stabilized mirror system is naturally the
gyro-mirror itself. Figure 12.2.2 is a schematic diagram of the gyro mirror. It
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Figure 12.2.1: A gyro-stabilized mirror system.

consists of the following essential components: i) a flywheel and its spin motor;
ii) gimbals that provide two degrees of freedom to the fiywheel and two torque
motors for slewing purposes; and iii) a mirror that is geared to the gimbals
through a 2 : 1 reduction drive mechanism.

As no rigid body is able to spin forever in this practical world, a piece of
pancake spin motor (flywheel) is used as the gyroscope (gyro). By adjusting
the input torque, it can be made to spin at a high constant velocity about its
spin axis (Axis 3 in Figure 12.2.2). The flywheel is mounted on an inner gimbal
so that it can rotate freely up and down. This axis of rotation is named pitch
axis and corresponds to Axis 2 in Figure 12.2.2. The inner gimbal is in turn
mounted on an outer gimbal, which provides another axis of freedom (yaw axis
or Axis 1) in moving left and right. Note that with these three axes being
orthogonal to each other, the system’s line-of-sight (LOS) can be made parallel
to Axis 3 by aligning the mirror axis to the pitch axis.

A torque motor is attached to each of the inner and outer gimbals. These
torque motors move the gyro either in the yaw or in the pitch direction, and
are thus named the yaw and the pitch motors, respectively. By providing ap-
propriate torque through these motors, the system can be precessed relative
to the inertia space to achieve some desired line-of-sight (LOS). Once these
input torques are removed, the LOS will be stabilized in its new position. The
angular positions about the yaw and the pitch axes are defined as 8; and 6,
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Figure 12.2.2: Schematic diagram of the gyroscope mirror.
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respectively. 6; and 6, can be measured through potentiometers mounted on
the inner and outer gimbals. There are however, no velocity sensor to sense él
and 6. Due to physical constrains, the workspace for the gyro-stabilized mir-
ror is limited to —50° < 6; < 50° and —30° < 4, < 30°. Also, the maximum
torques for both yaw and pitch motors are physically limited to a range from
—0.5Nm to 0.5Nm.

In this particular system, a mirror is used in place of the actual electro-
optical (E-O) sensors. The advantage of doing this is that the E-O sensors
will not form an integral part of the system. Therefore any E-O sensor can be
used without affecting the system’s dynamics. The mirror is connected to the
flywheel-gimbal structure via a 2 : 1 reduction drive. This 2 : 1 reduction drive
is required because when the mirror is tilted by an angle o, the reflected LOS
is rotated by 2c.

The dynamical equations of the gyro mirror were developed by applying the
well-known Lagrange’s motion equation [72]:

M, (6)6: + H(8,6) + G1(8,6,65) = w1, (12.2.1)
M;5(8)62 + Ha(6,6) + G2(6,0,05) = uy, (12.2.2)
where § = (61,02)’; u; and uy are the actuator torques for the yaw and the

pitch axes; 63 is the spin velocity of the fiywheel. The parameters in equations
(12.2.1)-(12.2.2) are defined as follows:

M; = a+d+ (b—d+2) cos? 02+%(é+§)+ -;—(é— g)sin6s, (12.2.3)
Hy = —(b—d+12)6,0,sin 202+-;-(é——§)9.10'2 cos 03 +k616, sin 02 cos 0z, (12.2.4)
G, = k6205 cos 6, (12.2.5)
M, = 5+£+Z, (12.2.6)
H, = -;—(5-—-3+Z)0'12 sin 20, — %(6—9)6'12 cos B —I—cél2 sin @2 cos 02, (12.2.7)
G, = —k6,05 cos 0z, (12.2.8)

where @, b, ¢, d, &, f, g, ? and k are all physical constants representing the
various moment of the inertia of the system. These constants were identified
earlier by [72] and [56], and took on the following values:

a=0.004, b=000128, &=0.00098, d=0.02, (12.2.9)

£=0.0049, f=0.0025, §=000125 £=0.0032, k=0.0025. (12.2.10)
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Figure 12.2.3: System interface assembly layout.

The above parameters all carry a unit of kgm?. As can be seen from the above
equations, the system is highly nonlinear and there exist cross-coupling terms
between the yaw and the pitch axes.

The System Interface Assembly

The torque motors and position sensors on the gyro-mirror have to be connected
to a data acquisition board on the personal computer. This is accomplished via
the system interface assembly. Figure 12.2.3 shows the layout of the components
assembled in this platform.

1. POWER SuUPPLIES. The power supply units A and B are of single 28V DC
regulated type. They are connected in series to give a —24V - 0V - +24V
DC supply. This combined power unit supplies all the currents required by
the torque motors, the position sensors and the analogue filters. Power
supply unit C is rated 24V DC. It is used solely to drive the flywheel
controller.

2. FLYWHEEL CONTROLLER. This is a dedicated driver unit (model MCH20-
20-002CL) purchased commercially from BEI Motion Systems Company.
It provides adjustable speed control to the spin motor via a potentiometer.
The spin velocity ranges from Orpm up to around 5000rpm.
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Figure 12.2.4: Block diagram of experimental setup.

3. CURRENT AMPLIFIERS. There are two current amplifiers, one for the yaw
motor and the other for the pitch motor. The inputs of the amplifiers
are connected directly to the D/A outputs of the ADDA card, and their
outputs are connected to the torque motors. They are built using a Power
Operational Amplifier (PA51) from Apex Microtechnology Corporation
and the outputs range from —25V to +25V. These outputs will produce
corresponding torques ranging from —0.5Nm to 0.5Nm.

4. ANALOGUE FILTERS. The position signals from the potentiometers are
first passed through these filters before being connected to the A/D inputs
of the ADDA card. They are low pass filters with cutoff frequency at 19Hz
so as to reject high frequency noises.

The Data Acquisition Board

The analog-digital and digital-analog (ADDA) card used is DT2821 from Data
Translation. Two analog input channels and two analog output channels are
used. The analog inputs are the filtered position signals of the yaw and the
pitch axes while the analog outputs are the torques to control the motors. The
signals in all channels range from —10V to +10V DC, with a 12 bit accuracy.

The Personal Computer

The controller is implemented on a personal computer via an ADDA card
mounted within. The block diagram of the experimental setup is given in
Figure 12.2.4. The personal computer configuration is an IBM PC compatible
with: 1) an Intel Pentium 75 Processor; 2) a Numerical Co-processor, Intel
80387; 3) a 8 M-byte Main Board Memory; and 4) an MS-DOS 6.0 Operating
System.
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Figure 12.3.1: Structure of control system for gyro-stabilized mirror system.

12.3. Controller Design Using an H,, Approach

In this section, we formulate our controller design for the free gyro-stabilized
mirror system as an H,, optimal control problem and then use a so-called
asymptotic time-scale and eigenstructure assignment (ATEA) method of Chap-
ter 7 to carry out the design of the controller. Our goal is to design a simple
and low order controller as structured in Figure 12.3.1 such that the overall
system will: i) have fast tracking in both the yaw and the pitch axes for step
input commands with small or no overshoot; ii) minimize the cross-coupling in-
teractions between the yaw and the pitch axes; and iii) ensure that the overall
system is robust to external disturbances and changes in system parameters.
As will be seen shortly, our controller is very simple and of low order. Thus, it
can easily be implemented using low speed personal computers and A/D and
D/A cards.

First of all, we need to linearize the dynamical model given in equations
(12.2.1)-(12.2.2) and cast it into the standard state space form. The linearized
state space model is given as follows:

g = Agxy + Bou+ Ejwg, (12.3.1)

where x4, = (01,91,02,d2)', u = (u1,us), and wy € L3 is the viscous damping
coefficients for the system, which can be regarded as disturbances. The matrices
Ay, By and E; are given by

1 0 0
0 0 -kf3/N;
0 0 1 ’
kO3/Ny 0 0

A= (12.3.2)

[ M B o R e}
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and
0 0 0 0
1/N; 0 -1 0
B, = /0 ' E E, = o ol (12.3.3)
0 1/N, 0 -1
where _
. E+7 - i} .
N1 =a+b+——2——+€, N2=C+Z+é. (1234)

The measurement output of the free gyro-stabilized mirror system is

6= (g;) : (12.3.5)

Since we are interested in the changes in the orientation of the LOS, we focus
only on the case where the command input r(t) is a step function. To be more
specific, we consider

@] _[%1] 14 = 010 (12.3.6)

r® = )| = e ]

where 1(t) is the unit step function, and 1)y, 1, are some constants. Then, we
have

ooy | T®)] _ [ ] .
") = .’*:(t)_ LY 8(t) =¥ 4(t), (12.3.7)

where 4(t) is the unit impulse function. Let us define a controlled output 4 as
the difference between the actual output 6 and the command input r, ie,,

h:()—r:(gl_rl) (12.3.8)

92 -T2

Obviously, h is simply the tracking error. Finally, we obtain the following
system in the standard state space form:

i=Az+ Bu+ Ew
Y o y=Cz + Dy w, (12.3.9)
h=Cyz+ Dyu,

with
6
01 91
_ (% | ! = Y ~| 0 12.3.10
CE._(TQ)__ 02 3 u—(uz)q w (6(1}))’ Y o) ) ( )
1 T2



318 Chapter 12. A Gyro-stabilized Mirror Targeting System Design

— g 0 — g —_ g 0 — —
A_[‘O1 o]’ B-[BO], E_[EO wl» D1=0, Dy=0,
(12.3.11)

and

-1 0

Cr= 0 -1

] . (123.12)

OO O
[« «e R e B wn]
OO =0
OO OO
O = OO
_ 0 O O

At first glance, the matrix pair (A, B) may look scary as two uncontrollable
modes at s = 0 are added. We would like to note that the augmented state r(t)
is actually the command input and hence does not need to be controlled. These
uncontrollable modes will disappear when the final controller is implemented
to the original free gyro-stabilized mirror system and the overall closed-loop
system will be asymptotically stable. As will be seen shortly, a perfect tracking
can be achieved with the above formulation. Our next step is to use the ATEA
method of Chapter 7 to design a controller of the form:

v=A.v+ By,
DIF
u=C.v+ Dy,

(12.3.13)

such that the effects of the ‘disturbance’ w to the tracking error or controlled
output A is minimized. Here we note that we have no problem at all to handle
the uncontrollable modes using the ATEA method. We just treat them as
stable modes and then carry out our design. As mentioned earlier, these modes
will disappear in the closed-loop system comprising the original system and
the controller (12.3.13). If one wishes to solve the problem using an approach
involved solving Riccati equations, then matrix A should be replaced by

s _1Ag 0O
A= [ o _612], (12.3.14)
where ¢ is a small positive scalar. Using the toolbox of [12] or [60], we can show
that

1. The subsystem (A, B, Cs, D2) is invertible with two invariant zeros at 0,
which comes from the command input. It also has two infinite zeros of
order 2.

2. Thesubsystem (A, E, C1, D;) is left invertible and of minimum phase with
no invariant zero. It has one infinite zero of order 1 and two infinite zeros
of order 2.
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In fact, it can be shown that for such a system we can achieve a robust and
perfect tracking for the proposed problem, i.e., we can design a controller of
(12.3.13) whose gain matrices are parameterized by a tuning variable, say &,
such that

/Do h(t,e)'h(t,e)dt = /m[O(t,s) —r(t)]'[0(t,€) — r(t)]dt = 0, (12.3.15)
¢} 0

as € — 0 for all w € £5. Thus, in principle, #(¢) is capable to track the
command r(¢) perfectly with no overshoot and with no time. Of course, the
price one needs to pay for this kind of excellent performances is that the control
input must be unlimited, i.e., using infinite gains. This is not possible in the
real world. As mentioned earlier, the control inputs u; and us of our problem
are actually bounded from —0.5Nm to 0.5Nm. Therefore, a trade-off is needed.

Using the result of Chapter 7, one can either design a full order observer
based controller or a reduced order observer based controller to solve the above
problem. For the full order observer based controller, the order of the controller
will be 6. On the other hand, a reduced order observer based controller will have
an order of 2 since we only need to reconstruct the velocity states. Therefore
from the practical point of view, a reduced order observer based controller is
more desirable. We separate our controller design into the following two steps:

1. In the first step, we assume that all six states of £ in (12.3.9) are available
and then design a static state feedback control law,

u=Fu, (12.3.16)
such that the closed-loop system has desired properties.

2. In the second step, we design a reduced order observer based controller.
It has a reduced order observer gain matrix Ky that can recover the
performance achieved by the state feedback control law in the first step.

Using the m-function atea.m of the toolbox [12] and after a few iterations,
we obtained the following state feedback gain:

2.3732 1.0271 1.4264 0.0000 -—-2.3732 -—1.4264

F=- -1.4264 0.0000 2.3732 1.0113 14264 -2.3732|°

(12.3.17)

Simulation result showed that the performance of the closed-loop system with
the above state feedback law is quite satisfactory. Next, we proceed to design
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the reduced order observer based controller. Let us first perform the following
nonsingular state transformation to the system X,

1 00000
0 00010
_ 01 000 0.
z=T% = 00000 11% (12.3.18)
001000
0 00100
such that
1 00000
010 00O
1T = 001000l% [I, 0]. (12.3.19)
0 00100

Clearly, the first four states of Z, which are corresponding to 6y, 05, r; and ro,
need not to be estimated. We further partition accordingly the transformed
system as follows:

T-1AT = [A“ A”} ,T'B= [Bl] , TE = [El] L FT=[F, B,

A Az By E,
(12.3.20)
and define a reduced order system,
(Agr, Br, Cr, Dy) = (422, Bz, A12, E1) . (12.3.21)

The reduced order observer based controller is then given as in the form of
(12.3.13) with

A, = Agp+KpAyp+ByFy+ Ko Bi F, (12.3.22)
B = Agp+Kn Ay — (Ao + Kn A1) Kn+(Be+ KBy )(FL - FyKz), (12.3.23)
C.=Fy, (12.3.24)
D, = Fy~ F3Kx, (12.3.25)

where K7 is the reduced order observer gain matrix for the reduced order system
(Ar, Br,Cx, Dy), and is chosen such that Ag + KzCy is asymptotically stable
and the properties associated the state feedback law is recovered. Once again,
using the m-function atea.m in the toolbox of [12] and after a few iterations
and simulations, we found that the following reduced order observer gain matrix
K,

85.4439 212201 0 O

Ka==1212001 1223176 0 0]’ (12.3.26)
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will yield a good performance. Finally, substituting this Ky into equations
(12.3.22)-(12.3.25), we have

—174.3280 —74.2370] ’ (12.3.27)

Ae=1 1062743 -332.7939

[-83.3798 —64.5160  1.0269 0.6172
Be=1 115772 1047265 —1.4843 2.4695]’ (12.3.28)

[ —205.4112 0
| 0 —202.2678]’ (12.3.29)
[—90.1288  —23.2207  2.3732 1.4264

De=| _200343 —1260777 —1.4264 2.3732]' (12.3.30)

12.4. Simulation and Implementation Results

In order to implement our controller designed in the previous section using our
hardware setup, we need to discretize it. The performance of this discretized
controller is then evaluated using MATLAB SIMULINK. Finally, it is applied
to the actual free gyro-stabilized mirror system. Using the well-known bilinear
transformation (see also Chapter 4) with a sampling time of 4ms, we obtained
the following discretized controller,

' {v(k +1) = Aq v(k) + Ba y(k),
T uk) = Coo(k) + Da y(k),

(12.4.1)

where

[0.4624 —0.1304
Aa = [ 0.1866 0.1841J’ (12.4.2)

[ —-61.7225 —34.4820  0.8476 0.2904
Ba= | —0.9257 —121.3119 —0.7830 1.5197]’ (12.4.3)

_ [-0.6008  0.0536
Ca = | —0.0755 —0.4790]’ (12.4.4)

[—64.7719  —9.0547  2.0249 1.3072
Da= | —19.6598 —77.0027 —1.1097 1.7584}' (12.4.5)

The SIMULINK simulation block diagram for the the free gyro-stabilized mirror
system is given in Figure 12.4.1. In order to achieve more accurate results,
the nonlinear model given in equations (12.2.1)-(12.2.2) is used in the gyro
block. Simulations are carried out using the Runge-Kutta 5 method with both
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Figure 12.4.1: Simulation block patched up in SIMULINK.

minimum and maximum step sizes set to be the same as the sampling period,
i.e., 4ms. To account for the limitations in the torque motors, a saturation
block is added to each of them. The limits are set to be +0.5Nm. Throughout
the simulations, the gyro’s spin velocity is set to be 2500rpm.

The gyro is first commanded to move simultaneously to (yaw, pitch) =
(5°, —5°). On the fifth seconds, it is moved from this new position to (20°, —20°).
A horizontal span is then carried out, i.e., the gyro is moved horizontally from
20° to —5° while keeping the pitch position at —20°. This is followed by a
vertical span; this time the yaw position is fixed at —5° while the pitch posi-
tion is changed from —20° to 5°. Finally, it is pushed to its extreme position
(—50°,30°) before returning back to its zero position. The gyro’s response as
well as the torque input to each axis are plotted in Figures 12.4.2-12.4.3.

The various set-points in the above tests are chosen such that from one
position to another, the displacement ranges from as small as 5° up to 45°. This
is to verify that our controller works well within the whole workspace although it
is designed based on a linearized model. The simultaneous movement is to test
whether our controller is capable of achieving perfect tracking in both axes while
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the spans are conducted to investigate how well does our controller ‘decouple’
the gyro-stabilized mirror system. As can be seen from the responses in Figure
12.4.2, the gyro is able to reach all commanded positions without steady state
errors. Furthermore, none of the responses exhibits any overshoots. The settling
time from its extreme position back to the zero position is about 3.5 seconds.
The maximum coupled movement in #; caused by moving 6, is around 0.15°.
The maximum coupled movement in 62 caused by moving 6; is about 0.5°. A
check with Figure 12.4.3 shows that all these are accomplished with the torques
kept within the constrain of £0.5Nm. Thus we conclude that our controller
designed in the previous section is very satisfactory.

Next, we implement this controller on the actual free gyro-stabilized mirror
system via a computer (see Figure 12.2.1) and perform the whole test once
again. The results obtained are shown in Figures 12.4.4-12.4.5.

Comparing Figures 12.4.2-12.4.3 with Figures 12.4.4-12.4.5, we note that the
general waveforms are the same. However, there exist steady state errors in both
axes. Furthermore, the real system takes a slightly longer time before settling at
its set-point. For example, it now takes about 5 seconds instead of 3.5 seconds
to move from its extreme position back to zero. The coupled interaction caused
by movement in the other axis is also larger than our simulation results (1.6°
in the yaw axis and 0.55° in the pitch axis). The performance of the controller
during the implementation is clearly not as good as in the simulation. The
reason is due to the imperfection of the hardware system.

The biggest defect that the system has may be the dead zones of the torque
motors. Studying Figure 12.4.5, we observe that although the torques are still
non-zero, the positions have already reached their steady states. This can only
happen if the torque motors are working within their dead zones. In fact, after
running a few tests, we find that the dead zone in the pitch motor is more pro-
nounce and it does not remain constant throughout operation. According to
one past documentation (see e.g., [56]), the dead zone is related to the mechan-
ical vibration on the gyro-mirror. In situations when the gyro-mirror vibrates,
the vibrations cause the system to ‘loosen up’ and result in a small dead zone;
at other times when the gyro-mirror is stabilized and spinning smoothly, a large
dead zone exists. This behaviour makes the dead zone compensation extremely
difficult. Nevertheless through trial and error, we observe that the magnitude
of the dead zone compensation seems to be related to the set-points in the
following way:

Uos1 = a7y + P12, (1246)
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and
Uos2 = Ty + fara, (12.4.7)

where 1,51 and u,sz are the values to be added to w; and uy, respectively.
Various sets of (r1,72) are used to tune a;, oz, f1 and (3 so as to obtain suitable
offsets to be added to the control inputs such that the dead zone effects can be
minimized. Figures 12.4.6-12.4.7 are the results we obtain from our controller
with a dead zone compensation whose parameters are chosen as follows:

o = —0;001125, B1 = —0.000125, a9 = —0.0049875, P2 = —0.00059375.
(12.4.8)
With these results, we once again show that our controller is able to perform
fast tracking without overshoots in the both axes and minimize the coupled
effect (0.8° in the yaw axis and 0.5° in the pitch axis).

In order to test the robustness of this controller, we send a command to move
the gyro simultaneously in the yaw (+20°) and pitch (—20°) direction. Then
we purposely introduce some disturbance (through knocking on the gimbals) to
the system. As shown in Figure 12.4.8, our controller is robust to this external
disturbance.

During implementation, the gyro’s spin velocity is controlled via a poten-
tiometer. Hence it is very difficult to set an exact speed of rotation. To make
things worse, the gyro will vary it’s spinning velocity by itself. Since the free
gyro-stabilized mirror system dynamics are dependent on its spin velocity (see
equations (12.2.1)-(12.2.2)), the system dynamics is changed too. Furthermore,
the physical constants @, b, ¢, d, €, f, §, £ and k were obtained from exper-
iments conducted on the free gyro-stabilized mirror system a few years back.
Over these years, the free gyro-stabilized mirror system has broken down and
has been serviced for many times. Thus, these values may not be accurate
anymore. Yet in view of these model uncertainties, the performance of our
controller remains very satisfactory.
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Chapter 13

An Open Problem

OF COURSE, THERE are still quite a number of problems associated with H,
control remaining unsolved in the literature. We conclude this work by posting
an open problem related to the exact computation of the infimum, v*. For
simplicity, we will only focus on the exact computation of v* for the continuous-
time full information feedback problem, i.e., we consider

= A z+ Bu+ E w,

(é) s + (?) w, (13.0.1)

h = CQ .’L‘+D2U+ .D22 w.

Y

As usual, we let £ denote the quadruple (A, B,Cs, D3). The algorithm that
yields the exact value of v* for this type of problem in Chapter 5 was built
based on the following crucial assumption,

Im(E) C V™ (Sp) + S~ (5s), (13.0.2)

and some minor ones. As will be seen shortly in an example, the assumption of
(13.0.2) is not a necessary condition for obtaining the exact value of v*. Here

is the open problem.

Open Problem. How to compute the exact value of the infimum, ie., 7*,
associated with the full information feedback system of (13.0.1) without posing
the condition as given in (13.0.2)7

We believe that the above problem is solvable or at least partially solvable.
The following is an example for which we are able to obtain the exact value of
~* without posing the condition of (13.0.2).

333



334 Chapter 13. An Open Problem

Example 13.0.1. Consider a full information feedback system of (13.0.1) with

1 0 1 0 10
A= [0 1}, B = [0 1], E= [0 1], (13.0.3)
and
0 O 1 0
0 0 01
Cy = 1 ol Dy = 0o ol Dqys = 0. (13.0.4)
0 2 0 0

It is simple to check using the linear system tools of Chapter 2 that
V7 (Zp) + S (Zs) = {0}, (13.0.5)

and hence the condition (13.0.2) is not valid. It is also straightforward to verify
that the existence of a -y-suboptimal control law with v > v* > 0 for (13.0.1)
is equivalent to the existence of a positive definite solution P for the following
algebraic Riccati equation,

PA+ A'P+ PEE'P/y* — PBB'P + C3C; = 0. (13.0.6)
bet P P 1 1
e 1 0 e
P .= [Po P2] and a7 1. (13.0.7)
Then (13.0.8) is equivalent to
P}+Pl+2aPi+a  Py(P+ P +2a) —0 (13.0.8)
Po(Py+ Py +2a) P2+ P:+2aP+4a) o
or
Po(Py + Py +2a) =0, (13.0.9)
P24+ P2 +2aP,+a=0, (13.0.10)
P} + P} +2aP; + 40 =0. (13.0.11)

Equation (13.0.9) implies that either
FPo=0 or P +P+2a=0. (13.0.12)
If we choose P, + P, + 2a = 0, then we have
P, =-P, —2¢q, (13.0.13)
which together with (13.0.10) imply that

P+ P} +2aP,+a=0. (13.0.14)
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Clearly, (13.0.11) and (13.0.14) imply that a = 0 or equivalently v = 0. Note
that v > 4* > 0. Hence, it is a contradiction. Thus, we will have to choose
Py = 0. Then (13.0.10) and (13.0.11) are reduced to

P? +2aP, +a =0, (13.0.15)

P} +2aP; + 40 =0. (13.0.16)

It can be readily verified that the above equations have positive solutions P
and P; if and only if a < 0, or equivalently v > 1. Therefore, the exact value

of the infimum is given by v* = 1. Moreover, the positive definite solution P
of (13.0.6) is given by

727_1 (V2 =1+) 0
0 L (Vo —d+9) |

7 -1

(13.0.17)

for any given v > v* = 1. E

In general, we feel that there is a large class of systems that do not necessarily
satisfy the geometric condition (13.0.2) but their infima are exactly computable.
It is an interesting and of course very challenging problem.

Finally, we would like to note that most of the algorithms presented in
this book have been implemented by the author and/or his co-workers in a
Linear Systems and Control Toolbox under the MATLAB environment [12].
The toolbox collects quite a number of m-functions related to linear systems
and control theory. Here is a list of some selected m-functions from the package:

* jordan, to compute the Jordan canonical form;

*r_jordan, to find the real Jordan canonical form;

* brunovsk, to find the Brunovsky canonical form;

*bdcct, to find the block diagonal controllability canonical form;
*uni_scb, to realize the unified special coordinate basis decomposition;
*v_x, to find the weakly unobservable geometric subspace V*;

*xs_x, to find the strongly controllable geometric subspace S*;

* v_lambda, to find the geometric subspace Vy;

* 8_lambda, to find the geometric subspace Sx;

*morseidx, to find the Morse index lists of a given linear system;

* intersec, to calculate the intersection of two vector subspaces;
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* ssorder, to determine the ordering of two vector subspaces;

* atea, realization of the general ATEA design method,;

* dare, solution to the general discrete-time Riccati equations;

* h2dare, solution to the H, discrete-time Riccati equations;

* h8dare, solution to the H,, discrete-time Riccati equations;

* ch2state, to design a continuous-time Hj state feedback law;

* ch8infmn, to find the infimum +* in continuous-time H,, optimization;
* ch8state, to design a continuous-time H, state feedback law;

* ch8finfo, to find a continuous-time H, full information feedback law;
* ch8fout, to find a continuous-time H, full order output feedback law;
* ch8rout, to find a continuous-time H,, reduced order control law;

* dh8infmn, to find the infimum +* in discrete-time H,, optimization;

* dh8state, to design a discrete-time H, state feedback law;

* dh8finfo, to find a discrete-time H, full information feedback law;
*dh8fout, to find a discrete-time H,, full order output feedback law;

* dh8rout, to calculate a discrete-time H, reduced order control law.

The above list is very incomplete and the author is still implementing some
new algorithms. Interested readers can contact the author through email at
bmchen@nus.edu.sg, for further details.



Bibliography

[1] K. J. Astrém, P. Hagander and J. Sternby, “Zeros of sampled systems,”
Automatica, Vol. 20, No. 4, pp. 21-38, 1984.

[2] K. J. Astrém and B. Wittenmark, Computer Controlled Systems: The-
ory and Design, Prentice-Hall, Englewood Cliffs, 1984.

[3] S. Barnett, Matrices in Control Theory, Robert E. Krieger Publishing
Company, Malabar, Florida, 1984.

[4] T. Bagar and P. Bernhard, Ho, Optimal Control and Related Minimax
Design Problems: A Dynamic Game Approach, Birkhiuser, Boston,
1991.

[5] W. J. Bigley and V. J. Rizzo, “Wideband linear quadratic control of
a gyro-stabilized electro-optical sight system,” IEEE Control Systems
Magazine, Vol. 7, No. 4, pp. 20-24, 1987.

[6] R. C. Booton, Jr., “Nonlinear control systems with random inputs,”
IRE Transactions on Circuit Theory, CT-1, pp. 9-18, 1954.

[7] S. W. Chan, G. C. Goodwin and K. S. Sin, “Convergence properties
of the Riccati difference equation in optimal filtering of nonstabilizable
systems,” IEEE Transactions on Automatic Control, Vol. 29, No. 1,
pp. 110-118, 1984.

[8] T. P. Chang, Seismic Response Analysis of Nonlinear Structures Using
the Stochastic Equivalent Linearization Technique, Ph.D. Dissertation,
Columbia University, 1985.

[9] B. M. Chen, Software Manual for the Special Coordinate Basis of Multi-
variable Linear Systems, Washington State University Technical Report
Number: ECE 0094, Pullman, Washington, 1988.

337



338

Bibliography

[10] B. M. Chen, Theory of Loop Transfer Recovery for Multivariable Linear

(11]

(12]

(13]

[14]

[15]

[16]

[17]

18]

(19]

Systems, Ph.D. Dissertation, Washington State University, 1991.

B. M. Chen, “A simple algorithm for the stable/unstable decomposi-
tion of a linear discrete-time system,” International Journal of Control,
Vol. 61, pp. 255-260, 1995.

B. M. Chen, Linear Systems and Control Toolbox, Technical Report,
Department of Electrical Engineering, National University of Singapore,
Singapore, 1997.

B. M. Chen, “Exact computation of infimum in discrete-time H.-
optimization using measurement feedback,” Proceedings of the IFAC
Automatic Control 13th Triennial World Congress, San Francisco, Vol-
ume G: Education and Robust Control I, pp. 151-156, July 1996.

B. M. Chen, “Exact computation of infimum for a class of continuous-
time H,, optimal control problem with a nonzero direct feedthrough
term from the disturbance input toc the controlled output,” Systems &
Control Letters, Vol. 32, No. 2, pp. 99-109, 1997.

B. M. Chen, “Solvability conditions for the disturbance decoupling
problems with static measurement feedback,” International Journal of
Control, Vol. 68, No. 1, pp. 51-60, 1997.

B. M. Chen and Y.-L. Chen, “Loop transfer recovery design via new
observer based and CSS architecture based controllers,” International
Journal of Robust and Nonlinear Control, Vol. 5, No. 7, pp. 649-669,
1995.

B. M. Chen, Y. Guo and Z. L. Lin, “Non-iterative computation of in-
fimum in discrete-time H.-optimisation and solvability conditions for
the discrete-time disturbance decoupling problem,” International Jour-
nal of Control, Vol. 65, No. 3, pp. 433-454, 1996.

B. M. Chen, J. He and Y.-L. Chen, “Explicit solvability conditions for
general discrete-time H, almost disturbance decoupling problem with
internal stability,” Submitted for publication, 1997.

B. M. Chen and A. Saberi, “Noniterative computation of infimum in
H -optimisation for plants with invariant zeros on the jw axis,” IEE
Proceedings-Part D: Control Theory and Applications, Vol. 140, No. 5,
pp. 298-304, 1993.



Bibliography 339

[20]

[27]

(28]

[29]

B. M. Chen, Z. Lin and C. C. Hang, “Solutions to general H,, al-
most disturbance decoupling problem with measurement feedback and
internal stability — An eigenstructurre assignment approach,” To be
presented at the 1998 American Control Conference. Also, submitted
for journal publication.

B. M. Chen, T. H. Lee, C. C. Hang, Y. Guo and S. Weerasooriya,
“An H,, almost disturbance decoupling robust controller design for
a piezoelectric bimorph actuator with hysteresis,” To appear in IEEE
Transactions on Control Systems Technology, 1998.

B. M. Chen, A. Saberi, S. Bingulac and P. Sannuti, “Loop transfer
recovery for non-strictly proper plants,” Control-Theory and Advanced
Technology, Vol. 6, No. 4, pp. 573-594, 1990.

B. M. Chen, A. Saberi and U. Ly, “Exact computation of the infimum
in H..-optimization via state feedback,” Control-Theory and Advanced
Technology, Vol. 8, No. 1, pp. 17-35, 1992.

B. M. Chen, A. Saberi and U. Ly, “Exact computation of the infimum
in H.-optimization via output feedback,” IEEE Transactions on Au-
tomatic Control, Vol. 37, No. 1, pp. 70-78, 1992.

B. M. Chen, A. Saberi and U. Ly, “A non-iterative method for comput-
ing the infimum in H,-optimization,” International Journal of Control,
Vol. 56, No. 6, pp. 1399-1418, 1992.

B. M. Chen, A. Saberi and U. Ly, “Closed loop transfer recovery with
observer based controllers — Part 1: Analysis & Part 2: Design,” Control
and Dynamic Systems: Advances in Theory and Applications, Vol. 51,
No. 2, pp. 247-348, 1992.

B. M. Chen, A. Saberi and P. Sannuti, “Explicit expressions for cascade
factorization of general non-minimum phase systems,” IEEE Transac-
tions on Automatic Control, Vol. 37, No. 3, pp. 358-363, 1992.

B. M. Chen, A. Saberi and P. Sannuti, “On blocking zeros and strong
stabilizability of linear multivariable systems,” Automatica, Vol. 28,
No. 5, pp. 1051-1055, 1992.

B. M. Chen, A. Saberi, P. Sannuti and Y. Shamash, “Construction
and parameterization of all static and dynamic H-optimal state feed-
back solutions, optimal fixed modes and fixed decoupling zeros,” IEEE
Transactions on Automatic Control, Vol. 38, No. 2, pp. 248-261, 1993.



340

Bibliography

[30]

[31]

[32]

(36]

[37]

[38]

(39]

B. M. Chen, A. Saberi and Y. Shamash, “A non-recursive method for
solving the general discrete time algebraic Riccati equation related to
the H,, control problem,” International Journal of Robust and Nonlin-
ear Control, Vol. 4, No. 4, pp. 503-519, 1994.

B. M. Chen, A. Saberi, Y. Shamash and P. Sannuti, “Construction
and parameterization of all static and dynamic Hj-optimal state feed-
back solutions for discrete time systems,” Automatica, Vol. 30, No. 10,
pp. 1617-1624, 1994.

B. M. Chen and S. R. Weller, “Mappings of the finite and infinite zero
structures and invertibility structures of general linear multivariable sys-
tems under the bilinear transformation,” Proceedings of the 2nd Asian
Control Conference, Seoul, Korea, Volume II, pp. 139-142, 1997. Also
to appear in Automatica.

B. M. Chen and D. Z. Zheng, “Simultaneous finite and infinite zero
assignments of linear systems,” Automatica, Vol. 31, No. 4, pp. 643-
648, 1995.

T. K. Caughey, “Derivation and application of the Fokker-Planck equa-
tion to discrete nonlinear dynamic systems subjected to white ran-
dom excitation,” Journal of the Acoustical Society of America, Vol. 35,
No. 11, pp. 1683-1692, 1963.

C. Commault and J. M. Dion, “Structure at infinity of linear multivari-
able systems: A geometric approach,” IEEE Transactions on Automatic
Control, Vol. AC-27, No. 3, pp. 693-696, 1982.

S. T. Crandall, “Perturbation techniques for random vibration of non-
linear systems,” Journal of the Acoustical Society of America, Vol. 35,
No. 11, pp. 1700-1705, 1963.

J. C. Doyle, Lecture Notes in Advances in Multivariable Control,
ONR/Honeywell Workshop, 1984

J. C. Doyle and K. Glover, “State-space formulae for all stabilizing
controllers that satisfy an H..,-norm bound and relations to risk sensi-
tivity,” Systems & Control Letters, Vol. 11, pp. 167-172, 1988.

J. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, “State space
solutions to standard H; and H,, control problems,” IEEE Transactions
on Automatic Control, Vol. 34, No. 8, pp. 831-847, 1989.



Bibliography 341

[40] C. Fama and K. Matthews, Linear Algebra IIH, Lecture Notes MP274,
Department of Mathematics, The University of Queensland, 1991.

[41] L. S. Fan, H. H. Ottesen, T. C. Reiley and R. W. Wood, “Magnetic
recording head positioning at very high track densities using a microac-
tuator based, two stage servo system,” IEEE Transaction on Industrial
Electronics, pp. 222-233, 1995.

[42] B. A. Francis, A Course in Hy, Control Theory, Lecture Notes in Con-
trol and Information Sciences, Vol. 88, Springer-Verlag, Berlin, 1987.

[43] G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of
Dynamic Systems, Addison-Wesley, Reading, Massachusetts, 1990.

[44] S. S. Ge, T. H. Lee and Q. Zhao, “Real-time neural network control of a
free gyro-stabilized mirror,” Proceedings of the 1997 American Control
Conference, Albuquerque, New Mexico, pp. 1076-1080, 1997.

[45] K. Glover, “All optimal Hankel-norm approximations of linear multi-
variable systems and their £, error bounds,” International Journal of
Control, Vol. 39, pp. 1115-1193, 1984.

[46] J. W. Grizzle and M. H. Shor, “Sampling, infinite zeros and decoupling
of linear systems,” Automatica, Vol. 24, No. 3, pp. 387-396, 1988.

[47] P. A. Iglesias and K. Glover, “State space approach to discrete time H,
control,” International Journal of Control, Vol. 54, No. 5, pp. 1031-1073,
1991.

[48] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, 1980.

[49] P. Khargonekar, I. R. Petersen and M. A. Rotea, “Hqo-optimal control
with state feedback,” IEEE Transactions on Automatic Control, Vol.
AC-33, No. 8, pp. 786-788, 1988.

[50] H. Kimura, “Conjugation, interpolation and model-matching in He,”
International Journal Control, Vol. 49, pp. 269-307, 1989.

[51] V. Kugera, “The discrete Riccati equation of optimal control, Kyber-
netika, Vol. 8, No. 3, pp. 430-447, 1972.

[52] H. Kwakernaak, “A polynomial approach to minmax frequency domain
optimization of multivariable feedback systems,” International Journal
of Control, Vol. 41, pp. 117-156, 1986.



342

Bibliography

(53]

[54]

[55]

[56]

[57]

[60]

[61]

[63]

H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, John
Wiley, New York, 1972.

P. Lancaster, A. C. M. Ran and L. Rodman, “State space approach to
discrete time H,, control,” International Journal of Control, Vol. 44,

pp. 777-802, 1986.

A. J. Laub, “A Schur method for solving algebraic Riccati equations,”
IEEE Transactions on Automatic Control, Vol. 24, pp. 913-921, 1979.

M. W. Lee, An Investigation in Fuzzy Logic, Bachelor of Engineering
Thesis, Department of Electrical Engineering, National University of
Singapore, 1995.

T. H. Lee, E. K. Koh and M. K. Loh, “Stable adaptive control of mul-
tivariable servomechanisms, with application to a passive line-of-sight
stabilization system,” IEEE Transactions on Industrial Electronics, Vol.
43, No. 1, pp. 98-105, 1996.

D. J. N. Limebeer and B. D. O. Anderson, “An interpolation theory
approach to H, controller degree bounds,” Linear Algebra and its Ap-
plications, Vol. 98, pp. 347-386, 1988.

D. J. N. Limebeer, M. Green and D. Walker, “Discrete time H,, con-
trol,” Proceedings of IEEE Conference on Decision and Control, Tampa,
FL, pp. 392-396, 1989.

Z. Lin, The Implementation of Special Coordinate Basis for Linear Mul-
tivariable Systems in Matlab, Washington State University Technical
Report Number ECE0100, Pullman, Washington, 1989.

Z. Lin, Global and Semi-global Control Problems for Linear Systems
Subject to Input Saturation and Minimum-Phase Input-Output Lin-
earizable Systems, Ph.D. Dissertation, Washington State University,
1994.

Z. Lin, “Almost disturbance decoupling with global asymptotic stability
for nonlinear systems with disturbance affected unstable zero dynam-
ics,” Submitted to Systems & Control Letters.

Z. Lin, X. Bao and B. M. Chen, “Further results on almost distur-
bance decoupling with global asymptotic stability for nonlinear sys-
tems,” Presented at the 36th IEEE Conference on Decision and Control,
San Diego, California, 1997.



Bibliography 343

[64]

[65]

[66]

(69]

[70]

[71]

[72]

(73]

[74]

Z. Lin, B. M. Chen, A. Saberi and Y. Shamash, “Input-output factor-
ization of discrete-time transfer matrices,” IEEE Transactions on Cir-
cuits and Systems — I: Fundamental Theory and Applications, Vol. 43,
No. 11, pp. 941-945, 1996.

Z. Lin and B. M. Chen, “Solutions to general Ho, almost disturbance
decoupling problem with measurement feedback and internal stability
for discrete-time systems,” Submitted for publication, 1997.

T. S. Low and W. Guo, “Modeling of a three-layer piezoelectric bi-
morph beam with hysteresis,” Journal of Microelectromechanical Sys-
tems, Vol. 4, No. 4, pp. 230-237, 1995.

R. H. Lyon, “Response of a nonlinear string to random excitation,”
Journal of the Acoustical Society of America, Vol. 32, No. 8, pp. 953-
960, 1960.

A. G. J. MacFarlane and N. Karcanias, “Poles and zeros of linear mul-
tivariable systems: A survey of the algebraic, geometric and complex
variable theory,” International Journal of Control, Vol. 24, pp. 33-74,
1976.

D. K. Miuand Y. C. Tai, "Silicon micromachined SCALED technology,”
IEEE Transaction on Industrial Electronics, pp. 234-239, 1995.

A. S. Morse, “Structural invariants of linear multivariable systems,”
SIAM Journal on Control, Vol. 11, pp. 446-465, 1973.

P. Moylan, “Stable inversion of linear systems,” IEEE Transactions on
Automatic Control, Vol. 22, pp. 74-78, 1977.

W. K. Ng, Design Considerations of a Gyro-stabilized Mirror System,
Bachelor of Engineering Thesis, Department of Electrical Engineering,
National University of Singapore, 1986.

D. H. Owens, “Invariant zeros of multivariable systems: A geometric
analysis,” International Journal of Control, Vol. 28, pp. 187-198, 1978.

H. K. Ozcetin, A. Saberi and P. Sannuti, “Design for Hy, almost distur-
bance decoupling problem with internal stability via state or measure-
ment feedback — singular perturbation approach,” International Journal
of Control, Vol. 55, No. 4, pp. 901-944, 1993.



344 Bibliography

[75] H. K. Ozcetin, A. Saberi and Y. Shamash, “Hy-almost disturbance
decoupling for non-strictly proper systems—A singular perturbation ap-
proach,” Control-Theory & Advanced Te<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>