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Abstract

An optimization-based approach to linear
feedback control system design uses the H2

norm, or energy of the impulse response,
to quantify closed-loop performance. In this
entry, an overview of state-space methods for
solving H2 optimal control problems via Riccati
equations and matrix inequalities is presented
in a continuous-time setting. Both regular and
singular problems are considered. Connections
to so-called LQR and LQG control problems are
also described.
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Introduction

Modern multivariable control theory based
on state-space models is able to handle

multi-feedback-loop designs, with the added
benefit that design methods derived from it
are amenable to computer implementation.
Indeed, over the last five decades, a number of
multivariable analysis and design methods have
been developed using the state-space description
of systems. Of these design tools, H2 optimal
control problems involve minimizing the H2

norm of the closed-loop transfer function from
exogenous disturbance signals to a pertinent
controlled output signals of a given plant
by appropriate use of a internally stabilizing
feedback controller. It was not until the 1990s
that a complete solution to the general H2 optimal
control problem began to emerge. To elaborate
on this, let us concentrate our discussion on H2

optimal control for a continuous-time system †

expressed in the following state-space form:

Px D Ax C Bu C Ew (1)

y D C1x C D11u C D1w (2)

z D C2x C D2u C D22w (3)

where x is the state variable, u is the control
input, w is the exogenous disturbance input, y is
the measurement output, and z is the controlled
output. The system † is typically an augmented
or generalized plant model including weighting
functions that reflect design requirements. The
H2 optimal control problem is to find an ap-
propriate control law, relating the control input
u to the measured output y, such that when it
is applied to the given plant in Eqs. (1)–(3), the
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resulting closed-loop system is internally stable,
and the H2 norm of the resulting closed-loop
transfer matrix from the disturbance input w to
the controlled output z, denoted by Tzw.s/, is
minimized. For a stable transfer matrix Tzw.s/,
the H2 norm is defined as

kTzwk2D
�

1

2�
trace

�Z 1
�1

Tzw.j!/T H
zw.j!/d!

��
1
2

(4)

where T H
zw is the conjugate transpose of Tzw. Note

that the H2 norm is equal to the energy of the
impulse response associated with Tzw.s/ and this
is finite only if the direct feedthrough term of the
transfer matrix is zero.

It is standard to make the following assump-
tions on the problem data: D11 D 0; D22 D
0; .A; B/ is stabilizable; .A; C1/ is detectable.
The last two assumptions are necessary for the
existence of an internally stabilizing control law.
The first assumption can be made without loss
of generality via a constant loop transformation.
Finally, either the assumption D22 D 0 can be
achieved by a pre-static feedback law, or the
problem does not yield a solution that has finite
H2 closed-loop norm.

There are two main groups into which all H2

optimal control problems can be divided. The
first group, referred to as regular H2 optimal
control problems, consists of those problems for
which the given plant satisfies two additional
assumptions:
1. The subsystem from the control input to the

controlled output, i.e., .A; B; C2; D2/, has no
invariant zeros on the imaginary axis, and
its direct feedthrough matrix, D2, is injective
(i.e., it is tall and of full rank).

2. The subsystem from the exogenous dis-
turbance to the measurement output, i.e.,
.A; E; C1; D1/, has no invariant zeros on
the imaginary axis and its direct feedthrough
matrix, D1, is surjective (i.e., it is fat and of
full rank).

Assumption 1 implies that .A; B; C2; D2/ is left
invertible with no infinite zero, and Assump-
tion 2 implies that .A; E; C1; D1/ is right invert-
ible with no infinite zero. The second, referred to

as singular H2 optimal control problems, consists
of those which are not regular.

Most of the research in the literature was
expended on regular problems. Also, most of the
available textbooks and review articles, see, for
example, Anderson and Moore (1989), Bryson
and Ho (1975), Fleming and Rishel (1975),
Kailath (1974), Kwakernaak and Sivan (1972),
Lewis (1986), and Zhou et al. (1996), to name a
few, cover predominantly only a subset of regular
problems. The singular H2 control problem with
state feedback was studied in Geerts (1989) and
Willems et al. (1986). Using different classes of
state- and measurement-feedback control laws,
Stoorvogel et al. (1993) studied the general H2

optimal control problems for the first time. In
particular, necessary and sufficient conditions are
provided therein for the existence of a solution in
the case of state-feedback control, and in the case
of measurement-feedback control. Following
this, Trentelman and Stoorvogel (1995) explored
necessary and sufficient conditions for the
existence of an H2 optimal controller within
the context of discrete-time and sampled-data
systems. At the same time Chen et al. (1993,
1994a) provided a thorough treatment of the
H2 optimal control problem with state-feedback
controllers. This includes a parameterization
and construction of the set of all H2 optimal
controllers and the associated sets of H2 optimal
fixed modes and H2 optimal fixed decoupling
zeros. Also, they provided a computationally
feasible design algorithm for selecting an H2

optimal state-feedback controller that places the
closed-loop poles at desired locations whenever
possible. Furthermore, Chen and Saberi (1993)
and Chen et al. (1996) developed the necessary
and sufficient conditions for the uniqueness of
an H2 optimal controller. Interested readers are
referred to the textbook Saberi et al. (1995)
for a detailed treatment of H2 optimal control
problems in their full generality.

Regular Case

Solving regular H2 optimal control problems is
relatively straightforward. In the case that all of
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the state variables of the given plant are available
for feedback, i.e., y D x, and Assumption 1
holds, the corresponding H2 optimal control
problem can be solved in terms of the unique
positive semi-definite stabilizing solution P � 0

of the following algebraic Riccati equation:

ATP C PA C C T
2 C2 � .PB C C T

2 D2/.D
T
2D2/

�1

.DT
2C2 C BTP / D 0 (5)

The H2 optimal state-feedback law is given by

u D F x D �.DT
2D2/

�1.DT
2C2 C BTP / x (6)

and the resulting closed-loop transfer matrix from
w to z, Tzw.s/, has the following property:

kTzwk2 D
q

trace.E
T
PE/ (7)

Note that the H2 optimal state-feedback control
law is generally nonunique. A trivial example
is the case when E D 0, whereby every sta-
bilizing control law is an optimal solution. It
is also interesting to note that the closed-loop
system comprising the given plant with y D x

and the state-feedback control law of Eq. (6) has
poles at all the stable invariant zeros and all the
mirror images of the unstable invariant zeros of
.A; B; C2; D2/ together with some other fixed
locations in the left half complex plane. More de-
tailed results about the optimal fixed modes and
fixed decoupling zeros for general H2 optimal
control can be found in Chen et al. (1993).

It can be shown that the well-known linear
quadratic regulation (LQR) problem can be refor-
mulated as a regular H2 optimal control problem.
For a given plant

Px D Ax C Bu; x.0/ D X0 (8)

with .A; B/ being stabilizable, the LQR problem
is to find a control law u D F x such that the
following performance index is minimized:

J D
Z 1

0

.xTQ?x C uTR?u/dt; (9)

where R? > 0 and Q? � 0 with .A; Q
1
2
? / being

detectable. The LQR problem is equivalent to
finding a static state-feedback H2 optimal control
law for the following auxiliary plant †LQR:

Px D Ax C Bu C X0w (10)

y D x (11)
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For the measurement-feedback case with both
Assumptions 1 and 2 being satisfied, the cor-
responding H2 optimal control problem can be
solved by finding a positive semi-definite stabi-
lizing solution P � 0 for the Riccati equation
given in Eq. (5) and a positive semi-definite sta-
bilizing solution Q � 0 for the following Riccati
equation:

QATCAQ C EET�.QC T
1 C EDT

1/.D1DT
1/
�1

.D1ET C C1Q/ D 0 (13)

The H2 optimal measurement-feedback law is
given by

Pv D .A C BF C KC1/v � Ky; u D F x (14)

where F is as given in Eq. (6) and

K D �.QC T
1 C EDT

1/.D1D
T
1/�1 (15)

In fact, such an optimal control law is unique and
the resulting closed-loop transfer matrix from w
to z, Tzw.s/, has the following property:

kTzwk2 D ˚
trace.ETPE/

Ctrace
��
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Similarly, consider the standard LQG problem
for the following system:

Px D Ax C Bu C G?d (17)
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y D Cx C N?n; N? > 0 (18)

z D
�

H?x

R?u

�
; R? > 0; w D

�
d

n

�
(19)

where x is the state, u is the control, d and n

white noises with identity covariance, and y the
measurement output. It is assumed that .A; B/ is
stabilizable and .A; C / is detectable. The control
objective is to design an appropriate control law
that minimizes the expectation of jzj2. Such an
LQG problem can be solved via the H2 optimal
control problem for the following auxiliary sys-
tem †LQG (see Doyle 1983):

Px D Ax C Bu C Œ G? 0 �w (20)

y D Cx C Œ 0 N?�w (21)

z D
�

H?

0

�
x C

�
0

R?

�
u (22)

H2 optimal control problem for discrete-
time systems can be solved in a similar way
via the corresponding discrete-time algebraic
Riccati equations. It is worth noting that many
works can be found in the literature that deal
with solutions to discrete-time algebraic Riccati
equations related to optimal control problems;
see, for example, Kucera (1972), Pappas et al.
(1980), and Silverman (1976), to name a few. It
is proven in Chen et al. (1994b) that solutions
to the discrete- and continuous-time algebraic
Riccati equations for optimal control problems
can be unified. More specifically, the solution
to a discrete-time Riccati equation can be done
through solving an equivalent continuous-time
one and vice versa.

Singular Case

As in the previous section, only the key procedure
in solving the singular H2-optimization problem
for continuous-time systems is addressed. For
the singular problem, it is generally not possible
to obtain an optimal solution, except for some
situations when the given plant satisfies certain
geometric constraints; see, e.g., Chen et al. (1993)
and Stoorvogel et al. (1993). It is more feasible

to find a suboptimal control law for the singular
problem, i.e., to find an appropriate control law
such that the H2 norm of the resulting closed-
loop transfer matrix from w to z can be made
arbitrarily close to the best possible performance.
The procedure given below is to transform the
original problem into an H2 almost disturbance
decoupling problem; see Stoorvogel (1992) and
Stoorvogel et al. (1993).

Consider the given plant in Eqs. (1)–(3) with
Assumption 1 and/or Assumption 2 not satisfied.
First, find the largest solution P � 0 for the
following linear matrix inequality

F.P /D
�

ATP C PA C C T
2 C2 PB C C T

2 D2

BTP C DT
2C2 DT

2D2

�
� 0

(23)
and find the largest solution Q � 0 for

G.Q/D
�

AQ C QAT C EET QC T
1 C EDT

1

C1Q C D1E
T D1DT

1

�
� 0

(24)

Note that by decomposing the quadruples
.A; B; C2; D2/ and .A; E; C1; D1/ into various
subsystems in accordance with their structural
properties, solutions to the above linear matrix
inequalities can be obtained by solving a Riccati
equation similar to those in Eq. (5) or Eq. (5) for
the regular case. In fact, for the regular problem,
the largest solution P � 0 for Eq. (23) and
the stabilizing solution P � 0 for Eq. (5) are
identical. Similarly, the largest solution Q � 0

for Eq. (24) and the stabilizing solution Q � 0

for Eq. (13) are also the same. Interested readers
are referred to Stoorvogel et al. (1993) for more
details or to Chen et al. (2004) for a more system-
atic treatment on the structural decomposition of
linear systems and its connection to the solutions
of the linear matrix inequalities.

It can be shown that the best achievable H2

norm of the closed-loop transfer matrix from w
to z, i.e., the best possible performance over all
internally stabilizing control laws, is given by

�?
2 D ˚

trace.ETPE/
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��
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Q
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Next, partition

F.P /D
�

C T
P

DT
P

� �
CP DP

�

and G.Q/D
�

EQ

DQ

� �
ET

Q DT
Q

�
(26)

where ŒCP DP� and ŒET
Q DT

Q� are of maximal
rank, and then define an auxiliary system †PQ:

PxPQ D AxPQ C Bu C EQwPQ (27)

y D C1xPQ C DQwPQ (28)

zPQ D CPxPQ C DPu (29)

It can be shown that the quadruple.A;B;CP;DP/

is right invertible and has no invariant zeros in the
open right-half complex plane, and the quadruple
.A; EQ; C1; DQ/ is left invertible and has no
invariant zeros in the open right-half complex
plane. It can also be shown that there exists
an appropriate control law such that when it is
applied to †PQ, the resulting closed-loop system
is internally stable and the H2 norm of the closed-
loop transfer matrix from wPQ to zPQ can be made
arbitrarily small. Equivalently, H2 almost distur-
bance decoupling problem for †PQ is solvable.

More importantly, it can further be shown
that if an appropriate control law solves the H2

almost disturbance decoupling problem for †PQ,
then it solves the H2 suboptimal problem for †.
As such, the solution to the singular H2 control
problem for † can be done by finding a solution
to the H2 almost disturbance decoupling problem
for †PQ. There are vast results available in the
literature dealing with disturbance decoupling
problems. More detailed treatments can be found
in Saberi et al. (1995).

Conclusion

This entry considers the basic solutions to
H2 optimal control problems for continuous-
time systems. Both the regular problem and
the general singular problem are presented.
Readers interested in more details are referred

to Saberi et al. (1995) and the references therein,
for the complete treatment of H2 optimal control
problems, and to Chap. 10 of Chen et al. (2004)
for the unification and differentiation of H2

control, H1 control, and disturbance decoupling
control problems. H2 optimal control is a mature
area and has a long history. Possible future
research includes issues on how to effectively
utilize the theory in solving real-life problems.
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Abstract

The area of robust control, where the perfor-
mance of a feedback system is designed to be
robust to uncertainty in the plant being controlled,
has received much attention since the 1980s.
System analysis and controller synthesis based on
the H-infinity norm has been central to progress
in this area. This article outlines how the control
law that minimizes the H-infinity norm of the

closed-loop system can be derived. Connections
to other problems, such as game theory and risk-
sensitive control, are discussed and finally appro-
priate problem formulations to produce “good”
controllers using this methodology are outlined.

Keywords

Loop-shaping; Robust control; Robust stability

Introduction

The H1-norm probably first entered the study
of robust control with the observations made
by Zames (1981) in the considering optimal
sensitivity. The so-called H1 methods were
subsequently developed and are now routinely
available to control engineers. In this entry
we consider the H1 methods for control, and
for simplicity of exposition, we will restrict
our attention to linear, time-invariant, finite
dimensional, continuous-time systems. Such
systems can be represented by their transfer
function matrix, G.s/, which will then be a
rational function of s. Although the Hardy
Space, H1, also includes nonrational functions,
a rational G.s/ is in H1 if and only if it is proper
and all its poles are in the open left half plane, in
which case the H1-norm is defined as:

kG.s/k
1
D sup

Res>0

�max.G.s//D sup
�1<!<1

�max..j!//

(where �max denotes the largest singular value).
Hence for a single input/single output system
with transfer function, g.s/, its H1-norm,
kg.s/k1 gives the maximum value of jg.j!/j
and hence the maximum amplification of
sinusoidal signals by a system with this transfer
function. In the multi-input/multi-output case
a similar result holds regarding the system
amplification of a vector of sinusoids. There
is now a good collection of graduate level
textbooks that cover the area in some detail from
a variety of approaches, and these are listed
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