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Abstract
In many unmanned aerial vehicle (UAVs)-related engineering projects, flight
dynamics modeling of the controlled platform usually forms the foundation of the
whole project development. An accurate mathematical model of the controlled
UAV not only makes high-performance model-based control law design possible
but also provides insights into the mechanical design of the aerial platform so
that radical improvements can be made at the beginning of the development.
However, the topic of flight dynamics modeling is somehow not paid enough
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attention to across the general engineering audience. This chapter aims to
disseminate the knowledge of systematic modeling of UAV flight dynamics by
talking about UAV model formulation, parameter identification, and model verifi-
cation. The methodology of UAV model formulation and parameter identification
based on the case study of two kinds of coaxial helicopters will be explained.
Modeling of coaxial helicopters, despite the common governing kinematic and
dynamic principles, deserves special attention due to their distinctive mechanical
structure and aerodynamics behavior. The modeling procedures and parameter
identification process presented in this chapter also serve as a guideline for
modeling other types of aerial vehicles.

49.1 Introduction

In recent years, unmanned aerial vehicles (UAVs) have been more actively involved
in military and civil operations. Possible UAV applications include reconnaissance
and intelligence gathering, forest patrol, coastline monitoring, and search and rescue
(Tsach et al. 2010). In all kinds of UAV development, the flight dynamics modeling
of the controlled platform always forms the cornerstone of the whole project. UAV
modeling not only provides an accurate mathematical model so that advanced
model-based control law design techniques can be used but also provides insights
into the mechanical design of the aerial platform itself. Moreover, in contrast to
those conventional manned aerial vehicles, UAV platforms are normally custom-
made or largely modified from off-the-shelf products to cope with the payload
requirement and the mounting geometry of the onboard avionics. UAV platforms
may possess different working principles, ranging from fixed-wing, rotorcraft,
flapping-wing to mono-copters like the Samurai (Rosen and Seter 1991). To model
some of the special types of aerial platforms, the well-established work for the
conventional aerial platforms in literature cannot be applied directly. Hence, it is
especially useful to let UAV developers understand how the models are derived and
how to identify unknown parameters embedded within the models.

Many works related to flight dynamics modeling and model-based parameter
identification of aerial vehicles are conducted in literature. Some of them are
done for the ultimate purpose of UAV development. In Heffley and Mnich (1988),
a mathematical model for the conventional single-rotor helicopter with adequate
complexity was derived, and the report highlighted the formulation of the main rotor
thrust generation. In Johnson (1994), a fairly comprehensive and detailed coverage
of helicopter working theory and design considerations were provided in aspects
including helicopter vertical flight, forward flight, mathematics of rotating systems,
rotary wing dynamics and aerodynamics, aeroelasticity, and stability and control.
Based on the above works, Cai et al. (2012) obtained a comprehensive nonlinear
model of a miniature single-rotor helicopter. This work has also later been extended
in a book (Cai et al. 2011) with other UAV-related topics like UAV construction,
software development, and controller design.
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In more recent years, the development of UAV platforms has entered the era of
miniature, microscale, and even nanoscale. The used-to-be efficient conventional
fixed-wing or single-rotor helicopter structure may not be an optimum design
anymore. The reduced form factor has also resulted in more innovative and
unconventional aerodynamic designs, and for these new types of platforms, quite
a few new modeling works have been published. In Nonami et al. (2010), the
mathematical model of a miniature coaxial helicopter is derived in the transfer
function form. The identified linear model is used for optimal controller design.
In Bermes (2010), the design and dynamic modeling and the simulation of an
autonomous coaxial micro helicopter platform (muFly) are investigated. A modular
dynamic model is developed, which incorporates the active and passive flapping
characteristics of a hingeless rotor system, the stabilizer bar dynamics, roll-pitch
steering by swashplate or displacing center of mass, etc.

Coaxial helicopter is an attractive UAV platform due to its small dimension, high
thrust-to-weight ratio, and aerodynamic symmetry. If a coaxial helicopter and a
single-rotor helicopter are of the same weight, the size of the coaxial helicopter can
be 35–40 % smaller. In addition, the aerodynamic symmetry of coaxial helicopters
successfully gets rid of the yaw moment and side forces commonly seen in single-
rotor helicopters. Thus, the coaxial helicopter is much more effective in fast forward
flights. These advantages make the coaxial helicopter ideal for UAV operation in
confined environments such as indoor and cluttered outdoor. There are two types
of coaxial helicopters. One has rotor blades with a fixed collective pitch, while the
other is with variable collective pitch. In the following content of this chapter, they
will be called the fixed-pitch coaxial and the variable-pitch coaxial in short. The
dynamic modeling of these two kinds of coaxial helicopters will form the main
discussion in this chapter.

A major difference of modeling between the coaxial helicopter and the conven-
tional single-rotor helicopter is the pair of concentric rotors, in which each of them
rotates with the induced velocity affected by the other. Such relationship is described
in Colin (1997). Detailed studies of the wake dynamics of the two rotors were also
documented in Kim and Brown (2006), Rand and Khromov (2010), and Lim et al.
(2009). Another specialty of coaxial helicopter is the stabilizer bar attached to the
top rotor hub, which passively stabilizes the helicopter. It, however, causes strong
influences to the rotor dynamics especially to the fixed-pitch coaxial configuration
as the upper rotor is not linked to any servo. As a result, the cyclic pitch control of
the upper rotor is solely induced by the stabilizer bar. The stabilizer bar dynamics is
commonly modeled as a first-order lag system (Mukherjee and Waslander 2011). In
the works shown in Mukherjee and Waslander (2011) and Schafroth et al. (2010),
the tip-path-plane (TPP) dynamics is separated into the upper and lower portion,
where only the lower TPP is controlled by the servo inputs.

In a few recent works on the modeling of miniature coaxial helicopter, although
fairly complete nonlinear or linear models are obtained, the works lack intuitive
explanation of the model formulation. Moreover, their methods of parameter
identification are not comprehensive enough. For example, in Neamtu et al. (2010),
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the helicopter dynamics were treated as a black box, while the whole system is
vaguely identified using the CIFER (Comprehensive Identification from FrEquency
Responses) toolkit. To complement the existing work, this book chapter presents the
detailed derivation of the nonlinear model for both the fixed-pitch and the variable-
pitch coaxial helicopters.

The content of this chapter is organized as follows: Sect. 49.2 briefly gives the
working principles of both the fixed-pitch and the variable-pitch coaxial helicopters.
Next, Sect. 49.3 will comprehensively formulate the coaxial flight dynamics system,
starting from kinematics, rigid-body dynamics, and then force/torque composi-
tion and generation. Some parts of the model formulation can be shared by
both types of coaxial helicopters, while the differences in rotor thrust generation
and rotor flapping dynamics will be separately explained. Model-based param-
eter identification will be introduced in Sect. 49.4 with the fixed-pitch coaxial
as an example. Last but not least, Sect. 49.5 will verify the derived model
of the fixed-pitch coaxial case and proves the fidelity of the overall modeling
methodology.

49.2 Working Principle of Coaxial Helicopters

Before any rigorous derivation of the flight dynamic models of the aforementioned
two types of coaxial helicopters, the general working principles of the two will first
be introduced so that it will be easier for readers to understand the later detailed
model formulation. First of all, both platforms have a pair of contrarotating rotors
(upper and lower) to provide the fundamental lift force for the overall platform. This
is indeed where the term “coaxial” comes from.

For the fixed-pitch coaxial helicopter, as shown in Fig. 49.1, the collective pitch
of the rotor blades cannot be changed. Hence, the heave and yaw motion of the
platform can only be controlled by varying the rotational speed of the rotors, which
are linked to two separate motors with step-down gears. In general, the summation
of the motor speeds determines the helicopter vertical motion, while the difference
of the two determines the yaw motion. Rolling and pitching are accomplished by
introducing a cyclic pitch to the lower rotor via a dual-servo-controlled swashplate.
In this way, a tilted flapping of the rotor blades can be induced, and the generated
rotor thrust becomes non-vertical. In the case of the platform shown in Fig. 49.1,
which is called the ESky Big Lama, the cyclic pitch of the upper rotor is not actively
controlled. Instead, the rotor hub tethers together with a stabilizer bar. As the
stabilizer bar is purposely constructed with relatively high moment of inertia, when
the helicopter fuselage suddenly tilts, the stabilizer bar tends to remain rotating
at the original level plane. This introduces a cyclic pitch to the upper rotor, and
it is purposely designed in a way that the thrust tilting resulted from this cyclic
pitch counters the instantaneous motion of the helicopter. Therefore, this kind
of fixed-pitch coaxial helicopters is inherently stable with regard to their attitude
angles.
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Motor 1

Motor 2

Servo 1
Servo 2

Swashplate

Stabilizer Bar

Headlock Gyro

Upper Rotor Hub

Lower Rotor Hub

Fig. 49.1 Description of the fixed-pitch coaxial helicopter

On the other hand, the variable-pitch coaxial helicopter, as shown in Fig. 49.2,
is a mini coaxial helicopter customized according to the design of full-scale
coaxial helicopter from the Kamov design bureau. Its rotor head is equipped with
integrated hinges and shock-resistant dampers. This helicopter also consists of two
contrarotating rotors. However, unlike the fixed-pitch coaxial, the rotational speeds
of the variable-pitch coaxial helicopter’s rotors are maintained at the same constant
speed in normal flight conditions. The dynamic motion of the helicopter is achieved
by actively changing the pitch angles of both upper and lower rotors via the upper
swashplate and the lower swashplate, respectively. The pitch angles of both rotors
are constituted by collective pitch and cyclic pitch, which are mixed controlled by
three servos linked to the lower swashplate. The two swashplates are always parallel
to each other since they are circumferentially connected by three rigid linkages. The
upper rotor is attached with a Bell-Hiller stabilizer bar which introduces damping
to the rotor’s cyclic pitch. Collective and cyclic inputs from servos are transferred
to the lower swashplate and also induced to the top swashplate, resulting in the
dynamic movement of the helicopter in heave direction or pitch-roll direction. The
yaw direction control is realized by changing the collective pitch angle of the lower
rotor. For this particular platform, the upper rotor and lower rotor are driven by
the same brushless direct current (DC) electric motor with the same gear ratio.
Hence, the rotational speeds of the upper rotor and the lower rotor are always
the same.
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Upper Rotor
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Top Swashplate

Lower Swashplate

Motor
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Gyroscope

ESC

Lower Rotor

Yaw Control

Fig. 49.2 Description of the variable-pitch coaxial helicopter

49.3 Model Formulation

49.3.1 Model Overview

The mathematical model of any continuous physical dynamic system can be
expressed in the following compact form:

Px D f.x;u;w/; (49.1)

where x is the state vector, u is the input vector, and w represents external
disturbances. For the case of the fixed-pitch coaxial helicopter system, the system
state and input vectors can be defined as

x D .x y z u v w � �  p q r aup bup adw bdw �up �dw rfb/
T; (49.2)
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Table 49.1 Physical
meaning of state variables

Symbol Physical meaning Unit

x

p, position in the ground frame my

z
u

vb , linear velocity in the body frame m/sv
w
� Roll

Pitch
Yaw

9
=

;
attitude angle rad�

 

p

!, angular velocity in body frame rad/sq

r

aup Longitudinal
Lateral

�

flapping angle of upper blades rad
bup

adw Longitudinal
Lateral

�

flapping angle of lower blades rad
bdw

�up Rotational speed of the upper rotor
�dw Rotational speed of the lower rotor
rfb Controller state of yaw stability augmentation NA

u D .ıail ıele ıthr ırud/
T; (49.3)

w D .!u !v !w/
T: (49.4)

For the case of the variable-pitch coaxial helicopter system, the system state and
input vectors can be defined as

x D .x y z u v w � �  p q r aup bup adw bdw rfb/
T; (49.5)

u D .ıail ıele ıthr ırud/
T; (49.6)

w D .!u !v !w/
T: (49.7)

The physical meanings of the state, input, and disturbance variables are listed in
Tables 49.1–49.3. It should be noted that the fixed-pitch coaxial helicopter has two
additional state variables, �up and �dw, because its rotor rotational speeds keep
changing during normal flights and its motor dynamics is not fast enough to be
neglected. On the other hand, the rotors of the variable-pitch coaxial platform always
rotate at the same speed. Thus, no dynamics need to be considered.

With regard to the input definition, the conventional radio-controlled (RC)
joystick signals, aileron (ıail), elevator (ıele), throttle (ıthr), and rudder (ırud),
normalized to Œ�1; 1� with respect to their corresponding minimum and maximum
values, are chosen as the primary system inputs. This kind of input definition
makes sure that the modeling methodology is also applicable to other types of
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Table 49.2 Physical
meaning of input variables

Variables Physical meaning Range

ıail Control deflection for lateral cyclic
pitch

Œ�1; 1�

ıele Control deflection for longitudinal
cyclic pitch

Œ�1; 1�

ıthr Control deflection for collective pitch Œ�1; 1�
ırud Control deflection for collective pitch

of tail rotor
Œ�1; 1�

Nırud Control deflection for yaw-stability-
augmentation controller

Œ�1; 1�

Table 49.3 Physical
meaning of wind disturbance
variables

Variables Physical meaning

!u Wind velocity in the helicopter x-axis
!v Wind velocity in the helicopter y-axis
!w Wind velocity in the helicopter z-axis

aerial platforms. Usually, the helicopter attitude angles (�, �), heading ( ), and
3D position (x,y,z) are chosen to be the ultimate controlled outputs as they can
comprehensively define the state of the helicopter in the full 6 degree-of-freedom
(6DoF) space.

Furthermore, to derive a mathematical model of a complex system, it is prefer-
able to modularize the overall system into subsystems so that the divide-and-
conquer strategy can be used. Here, an overview of the two model structures
is shown in Figs. 49.3 and 49.4. From the inputs to the state variables, there
are numerous blocks representing all the subsystems involved. The two models
share quite a few similarities but preserve their own distinctive features as well.
On the one hand, the input and output definitions are unified for both, and the
same kinematics and dynamics blocks can be used to relate the body-frame forces
and moments to the helicopter 6DoF motion. On the other hand, the two models
are different in the mechanism in generating the individual forces and moments.
This results in two different sets of intermediate model blocks. In the following
sections, mechanisms in all these blocks will be explained in detail. The similar
blocks between these two types of platforms will be discussed together, while the
different blocks will be discussed separately.

49.3.2 Kinematics and Rigid-Body Dynamics

As a common practice of aeronautic analysis, model formulation of a flying vehicle
normally assumes that the target platform is a rigid body. Thus, it follows the
universal 6DoF kinematics equations and the Newton-Euler dynamics equations.
Two main coordinate frames are generally involved to link the equations. One is the
north-east-down (NED) frame, and the other is the helicopter body frame. While the
NED frame is stationary with respect to a static observer on the ground, the body
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Upper Rotor
Flapping Dynamics

Forces and Moments

Upper Rotor

Fuselage
6-DOF

Rigid-body
Dynamics

Kinematics

Lower Rotor
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Headlock
Gyroscope

Lower Rotor
Flapping Dynamics

F

M

δthr

δrud
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x,  y,  z

φ, θ, ψ

p,  q,  r

adw,  bdw

mg

δail
δele

Fig. 49.3 Model structure of fixed-pitch coaxial helicopter

Fig. 49.4 Model structure of variable-pitch coaxial helicopter

frame is placed at the center of gravity (CG) of the coaxial helicopter, where its
origin and orientation move together with the helicopter fuselage (see Fig. 49.5). It
is worth noting that the listed formulas to describe the kinematics and dynamics of
the coaxial helicopter are indeed universal to all other rigid-body vehicles.

The relationship between the helicopter NED-frame position and its body-frame
velocity is determined by the following navigation equation:

0

@
Px
Py
Pz

1

A D
2

4
c c� c s� s� � s c� c s� c� C s s�
s c� s s� s� C c c� s s� c� � c s�
�s� c� s� c�c�

3

5

0

@
u
v
w

1

A ; (49.8)
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NED
Frame

Body
Frame0

N

E

x y

z

D
mg

Qdw

Qup

Tdw

Tup
Fig. 49.5 Coordinate frames
and various forces and
torques

where x, y, z are the NED-frame position components of the helicopter and u, v, w
are the body-frame velocity components. �, � ,  are the conventional roll, pitch,
yaw angles of the helicopter fuselage and s�, c� denote sin.�/, cos.�/, respectively.
It is also critical to point out that the Euler angle derivatives, P�, P� , P , are not
orthogonal to each other. They are related to the body-frame angular rates, p, q, r ,
by the following equation:

0

@

P�
P�
P 

1

A D
2

4
1 s�s�=c� c�s�=c�
0 c� �s�
0 s�=c� c�=c�

3

5

0

@
p

q

r

1

A : (49.9)

Note that the above equation has singularity at � D 90ı. If full-envelope
flight is required, a quaternion representation is recommended. However, normal
maneuvering of a coaxial helicopter will not hit such an extreme condition. Thus, it
is still adequate to use this relatively simple equation.

Next, by treating the whole coaxial platform as a rigid mass, the 6DoF dynamics
can be described by the following Newton-Euler equations:

0

@
Pu
Pv
Pw

1

A D 1

m

0

@
Fx
Fy

Fz

1

A �
0

@
p

q

r

1

A �
0

@
u
v
w

1

A ; (49.10)

0

@
Pp
Pq
Pr

1

A D J�1
8
<

:

0

@
Mx

My

Mz

1

A �
0

@
p

q

r

1

A � J

0

@
p

q

r

1

A

9
=

;
; (49.11)

where Fx , Fy , Fz are projections of the net force, F, onto the helicopter body-
frame x-, y-, z-axis and Mx, My , Mz are projections of the net torque, M,
onto the body-frame x-, y-, z-axis. The compositions of F and M come from
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various parts of the coaxial helicopter. For the fixed-pitch and variable-pitch coaxial
helicopters, although their force and torque compositions are more or less the same
(explained in Sect. 49.3.3), the individual force and torque generation will have
different formulations because of their different working principles (explained in
Sects. 49.3.4 and 49.3.5, respectively). Till now, the unknown parameters that need
to be identified are m, the total mass of the platform, and J, the moment of inertia
of the platform, which is in the form of

J D
2

4
Jxx �Jxy �Jxz

�Jxy Jyy �Jyz

�Jxz �Jyz Jzz

3

5:

Since the coaxial helicopters are normally designed to be symmetric in both
longitudinal and lateral directions, Jxy , Jxz, Jyz are extremely small and can be
assumed to be zero. The identification method of Jxx, Jyy , Jzz will be explained
in Sect. 49.4, which talks about various approaches in the problem of model-based
parameter identification.

49.3.3 Force and Torque Composition

As mentioned in Sect. 49.3.2, forces and torques acting on the coaxial helicopter
come from various mechanical parts. First of all, the helicopter weight exerts a force
of mg in the NED-frame z-axis. After converting it to the body frame, the vector is
shown as the second term on the right-hand side of Eq. 49.12.

Next, when the rotor blades spin, they generate thrusts, Ti (i = up, dw), in the
direction perpendicular to their respective tip path plane (TPP). When the upper and
lower TPPs deviate from their default orientation, the thrust vectors no longer pass
through the CG of the helicopter, thus creating rotational torque. The torque vectors
caused by the rotor thrusts can be calculated by lup � Tup and ldw � Tdw, where
lup and ldw are the displacement vectors from helicopter CG to the upper rotor hub,
and the lower rotor hub respectively. The deviation of the TPP can be described
by the longitudinal flapping angle ai and the lateral flapping angle bi . The thrust
decomposition to the body-frame axes can be approximated by Eq. 49.14. Nonzero
ai and bi also directly result in flapping torque on the rotor hub. This torque can be
simplified as the second term on the right-hand side of Eq.49.13, whereKˇ is called
the effective spring constant, and it has the same value for both the upper and lower
rotors provided they are rotating at approximately the same speed.

Furthermore, the rotation of the rotors creates the drag torque, Qup and Qdw,
around the body-frame z-axis. When the coaxial helicopter hovers without yaw
motion, the two torques have the same magnitude, thus canceling each other. Else, if
the net drag torque is nonzero, yaw acceleration is generated. In addition, the change
of rotational speeds of the rotors also generates the so-called reaction torques on the
helicopter body (denoted by Qr,up and Qr,dw). They are described in (Eq. 49.16),
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where Jup and Jdw are the moment of inertia of the upper rotor (with stabilizer
bar) and the lower rotor with respect to the rotor shaft. They can be calculated
by measuring the mass and dimension of the rotor blades and stabilizer bar and
assuming a regular geometric shape.

Lastly, when the helicopter moves in air, its fuselage experiences drag forces,
Xfus, Yfus, Zfus, due to air resistance. This drag force is usually related to the linear
speed and up-front surface area of the aerial vehicle.

Equations (49.12) and (49.13) have summarized all the forces and torques
mentioned above, with (49.14)–(49.16) explaining how to evaluate the individual
terms:

0

@
Fx
Fy
Fz

1

A D
X

Ti Cmg

0

@
�s�
s�c�
c�c�

1

A C
0

@
Xfus

Yfus

Zfus

1

A ; (49.12)

0

@
Mx

My

Mz

1

A D
X

li � Ti C
X

Kˇ

0

@
bi

ai
0

1

A C
X

Qd;i C
X

Qr;i ; (49.13)

li D jli j
0

@
0

0

�1

1

A ; Ti D jTi j
0

@
� sin ai
sin bi

� cosai cos bi

1

A ; (49.14)

Qd;up D jQd;upj
0

@
0

0

1

1

A ; Qd;dw D jQd;dwj
0

@
0

0

�1

1

A ; (49.15)

Qr;up D Jup P�up

0

@
0

0

1

1

A ; Qr;dw D Jdw P�dw

0

@
0

0

�1

1

A : (49.16)

49.3.4 Force and Torque Formulation of Fixed-Pitch Coaxial
Helicopter

The generation of individual forces and torques on the fixed-pitch coaxial and
the variable-pitch coaxial has quite different formulations. In this section, a full
formulation of the fixed-pitch coaxial force and torque generation will be provided.
That means, by tracing all the formulas listed in this section, the forces and torques
exerted on the fixed-pitch coaxial helicopter can be exhaustively related to the four
fundamental inputs in a rigorous way.
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49.3.4.1 Thrust and Torque from Rotors
Here, the magnitude of the rotor thrust and drag torque, jTi j and jQd;i j, will first
be investigated. According to the aerodynamic actuator disk theory (Bramwell
et al. 2001), the magnitude of thrust generated by the rotors can be formulated as
follows:

jTi j D �CT;iA.�iR/
2; (49.17)

where � is the density of air, CT;i is the lift coefficient, A is the rotor disk area, �i

is the rotational speed of the rotor, and R is the rotor blade length. Since this is a
fixed-pitch coaxial helicopter, CT;i , like the other parameters in (49.17), is constant.
The only variable is �i . Hence, the equation can be simplified to

jTi j D kT;i�
2
i ; (49.18)

where kT;i is a lumped thrust coefficient that needs to be identified. Similar
assumptions and formulation can be applied to the relationship between the drag
torque and the rotational speed of the rotors:

jQd;i j D kQ;i�
2
i : (49.19)

49.3.4.2 Rotor Flapping Dynamics
For this specific type of coaxial helicopter, the rotor collective pitch is fixed, while
the cyclic pitch can be changed. For the lower rotor, the rotor hub is connected to the
aileron and the elevator servos via a swashplate. When the swashplate tilts, it teeters
the rotor hub and creates a cyclic pitch on the rotor. For every cycle of rotation, the
rotor blade will reach the maximum angle of attack at a particular phase angle at
which the lift on the blade is largest. This results in the flapping of the rotor disk.
The whole mechanism is a combination of gyroscopic precession and aerodynamic
precession. For the case of ESky Big Lama, if one observes the rotor blade in a slow
motion, the maximum rotor flapping occurs roughly at 45ı lag with respect to the
occurrence of maximum angle of attack. This explains why the aileron and elevator
servos of the off-the-shelf coaxial platform are connected to the swashplate 45ı off
the body-frame x-, y-axis. In this way, the aileron servo mainly controls the lateral
flapping of the lower rotor, and the elevator servo mainly controls the longitudinal
flapping. However, the flapping phase lag is not exactly equal to 45ı (slightly larger
than 45ı from test bench observations) due to mechanical modifications to the
original RC platform (original rotor blades have been replaced by stiffer ones for
larger payload). This results in non-negligible coupling between the servo inputs
and the lower rotor longitudinal and lateral flapping angles. As the lower rotor
does not have any additional damping mechanism attached, its flapping process is
almost instantaneous. By assuming a first-order dynamics, the time constant can be
observed via a high-speed camera. The result turns out to be 0.0375 s (see Fig.49.6),
which is very small as compared to dynamics of other parts of the coaxial helicopter
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Fig. 49.6 Step response of
servo motion attached to the
lower rotor (top: t D 0;
center, t � 0:0375 s; bottom,
t D 1). This figure looks
dim because it was taken by a
high-speed camera
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and thus can be ignored. Hence, the relationship between servo inputs and lower
rotor flapping angles can be formulated in a static way:

adw D Aa;dw ıele C Ab;dw ıail �Aq q; (49.20)

bdw D Bb;dw ıail C Ba;dw ıele � Bp p; (49.21)

where aileron (ıail) and elevator (ıele) are the servo inputs, Aa;dw and Bb;dw are
the on-axis steady-state ratio from servo inputs to flapping angles, and Ab;dw and
Ba;dw are the off-axis (coupling) values. The last term which depends on angular
rates, p and q, comes from an effect called rotor damping, which was considered in
literature either in linear or quadratic form. Here, a linear form is chosen because of
its simplicity.

For the upper rotor system, a stabilizer bar is attached to the rotor hub, so
that they teeter together. As the stabilizer bar has large moment of inertia, it
tends to remain at its original rotating plane. Hence, at the moment when the
helicopter body tilts, the stabilizer bar TPP will remain at the level plane, thus
creating a cyclic pitch on the upper rotor which leads to blade flapping. The torque
generated by this flapping redresses the rotational motion of the helicopter and
significantly stabilizes the whole platform attitude. Similar to the lower rotor system,
the stabilizer bar is installed at 45ı phase lead to the rotor blade. In this way, the
maximum flapping happens at the direction that precisely counters the rotational
motion of the helicopter. Again, there is coupling between the longitudinal and
lateral channels because the flapping phase lag is not exactly 45ı. The following
equations describe the above mentioned dynamics:

P�sb D 1

�sb
.� � �sb/; (49.22)

P�sb D 1

�sb
.� � �sb/; (49.23)

aup D Aa;up .�sb � �/C Ab;up .�sb � �/ �Aq q; (49.24)

bup D Bb;up .�sb � �/C Ba;up .�sb � �/ � Bp p; (49.25)

where �sb and �sb are the roll and pitch angles of the stabilizer bar TPP, Aa;up and
Bb;up are the on-axis steady-state ratio from the stabilizer bar teetering angles to the
upper rotor flapping angles, and Ab;up and Ba;up are the off-axis (coupling) values.
�sb is the time constant of approximated first-order flapping dynamics. Again, the
same rotor damping effects (terms depending on p and q) are considered for the
upper rotor flapping dynamics.

49.3.4.3 Fuselage Drag
When the helicopter fuselage moves in air, it experiences drag force acting on the
opposite direction of the motion. For the body-frame horizontal directions, the rotor
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downwash is deflected by u and v. In the situation when u (or v) is less than vi (the
induced velocity of air at the lower rotor), the downwash effect needs to be taken
into account. Otherwise, the downwash effect is relatively weak and can be ignored.
The fuselage in all three directions is considered as a flat plate perpendicular to the
helicopter motion; thus, the drag coefficient is approximately unity. As such, the
horizontal fuselage drag forces are formulated in a quadratic form:

Xfus D ��
2
Sxu � max.vi ; juj/; (49.26)

Yfus D ��
2
Syv � max.vi ; jvj/; (49.27)

vi D
s

jTdwj
2��R2

; (49.28)

where Sx and Sy are the effective drag area along the body-frame x- and y-axis,
respectively.

For the vertical direction, since the fuselage is constantly exposed to the lower
rotor downwash, it is commonly formulated in the following form:

Zfus D ��
2
Sz.w � vi /jw � vi j: (49.29)

However, as the lift coefficient test for identifying kT;i in Eq. 49.18 was done with
the presence of the fuselage (so the term �

2
Szv2i has already been taken into account),

the above equation needs to be compensated as

Zfus D ��
2
Szw � max.vi ; jwj/; (49.30)

where Sz is the effective drag area along the body-frame z-axis.

49.3.4.4 Motor Speed Dynamics
Two brushless DC motors are used on the ESky Big Lama coaxial platform. Their
rotational speed dynamics follows the well-known differential equation of electro
motors:

Jmot P! D kmU � kmke!

Rmot
� d! �ML; (49.31)

where Jmot is the motor moment of inertia, km and ke are the mechanical and
electrical motor constants, U is the input voltage, Rmot is the resistance of the
circuit, d is the friction coefficient, and ML is the external torque acting on the
motor shaft. Here, ML is equal to the rotor drag torque Qd;i appeared in Eq. 49.19.
If the helicopter operates at a near-hover condition, everything can be approximated
as linear.ML can be assumed to be a combination of a constant trimming value,M �

L ,
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and another term proportional to extra rotational speed as compared to the trimming
speed,��:

ML D M �
L C kL.� ���/: (49.32)

By further considering that the rotational speed of rotor, �, and the rotational
speed of the motor, !, are perfectly proportional by the gear ratio, the rotor speed
dynamics can be simplified to the following first-order equations:

P�up D 1

�mt
.mupıup C��

up ��up/; (49.33)

P�dw D 1

�mt
.mdwıdw C��

dw ��dw/; (49.34)

where��
up and��

dw are the trimming values of the rotor rotational speed at hovering,
�mt is the time constant of the motor speed dynamics, and mup, mdw are the steady-
state ratio between the change of rotor speeds and the change of motor inputs.

49.3.4.5 Mixer and Headlock Gyro Dynamics
In order to largely decouple the throttle-heave and the rudder-yaw dynamics, the
throttle and rudder signals are passed into a hardware mixer and transformed to dual
motor control signals:

ıup D ıthr C Nırud; (49.35)

ıdw D ıthr � Nırud: (49.36)

It can be seen that when the throttle signal ıthr increases, inputs to both motors
increase; when the rudder signal Nırud increases, the input to the motor connected to
the upper rotor increases while the input to the motor connected to the lower rotor
decreases.

Note that the rudder signal in the above mixer equation is not the original signal
ırud. From ırud to Nırud, there is a hardware headlock gyro which helps refine the
rudder signal and acts as the most inner-loop yaw motion stabilizer. Usually, there
is a PI controller embedded inside the headlock gyro, and it can be formulated as
follows:

Prfb D Kaırud � r; (49.37)

Nırud D KP.Kaırud � r/CKIrfb; (49.38)

where rfb is the augmented state variable needed by the integral control. At
this point, the full dynamics of a coaxial helicopter have been mathematically
formulated, but the model parameters are yet to be identified. In Sect. 49.4, the
identification methods will be comprehensively given.
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49.3.5 Force and Torque Formulation of Variable-Pitch Coaxial
Helicopter

For the case of the variable-pitch coaxial helicopter, the formulation of force and
torque generation will not be thoroughly listed as some of the formulas are very
much like its fixed-pitch counterpart. For example, the formulas about fuselage
drag and the headlock gyro PI controller are more or less the same. As such, only
formulations that have significant differences when compared to the fixed-pitch
coaxial case will be listed and explained here.

It should also be noted that the main differences compared occur in two areas,
namely, the rotor thrust generation and the rotor flapping dynamics. In this section,
the formulations about thrust generation and rotor flapping dynamics of the variable-
pitch coaxial helicopter will be derived from a more fundamental perspective,
thus capturing more aerodynamic details. This also reflects the fact that model
formulation of aerial vehicles can be done at different levels of complexity. If the
model is to be used for accurate structural analysis and optimization or controller
design for aggressive maneuvering, then a more precise and complicated modeling
approach should be adopted. However, if the planned flight missions are relatively
stable and peaceful, a simplified model formulation is usually more than enough,
such as that of the fixed-pitch coaxial case.

Thorough aerodynamics study of coaxial rotor system is itself a big research
topic. NASA researcher (Colin 1997) has provided a good survey covering the
aerodynamics research worldwide, including America, Russia, Japan, and Germany.
Of all the surveyed techniques, blade element momentum theory (BEMT)
(Leishman 2006) is a standard method for preliminary rotor analysis before complex
high-level analysis, such as free vortex models (FVM) and Lagrangian particle
vortex methods (LPVM). In this chapter, the detailed derivation and reasoning of
BEMT will not be repeated. Only the main computation procedures are listed for
easier reference and understanding.

49.3.5.1 Thrust and Torque from Rotors
The formal analysis of helicopter rotor motion usually starts from its thrust, torque,
and power generation. The rotor thrust, torque, and power can be expressed as

T D �CT A�
2R2; (49.39)

Q D �CQA�
2R3; (49.40)

P D �CPA�
3R3: (49.41)

Here, � is the air density,A is the rotor disk area,� is the rotor rotational speed, and
R is the rotor radius. CT , CP , CQ are the rotor thrust coefficient, power coefficient,
and torque coefficient, respectively. It should be noted that the power is related
to torque by P D �Q. Hence, CP D CQ numerically. All the parameters in
Eqs. 49.39–49.41 are constant except for the three coefficients CT , CP , CQ.
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First of all, the incremental thrust coefficient is defined as

dCT D 1

2
	Clr

2dr D 	Cl˛
2
.�ur

2 � 
r/dr; (49.42)

where Cl˛ is the lift-curve slope of the airfoil section, which can be obtained by
checking the official wind tunnel test results if the blade airfoil is standard. 	 is
the rotor solidity defined as the ratio of the blade area against the rotor disk area.
�u is the blade pitch distribution on the upper rotor. r is the nondimensional radial
distance along the blade. 
 is the nondimensional induced velocity which can be
expressed in terms of r and 
1 as


.r; 
1/ D
s

�
	Cl˛
16F

� 
1
2

�2

C 	Cl˛
8F

�ur �
�
	Cl˛
16F

� 
1
2

�

; (49.43)

where F is the factor to account for the Prandtl tip loss defined as

F D
�
2

�

�

cos�1.e�f /; (49.44)

where f is given in terms of the number of blades Nb and the radial position of the
blade element r :

f D Nb

2

�
1 � r
r�

�

; (49.45)

and � is the induced inflow angle, which equals to 
.r/=r .
For both the upper and lower rotors, the same principles can be applied. However,

as the inner part of the lower rotor operates in the vena contracta of the upper rotor,
the analysis can be more complicated. From the flow visualization results of Taylor
(1950), the author stated that the wake of the upper rotor contracts fully within
0:25R below the upper rotor. The ideal wake contraction ratio, rc , is 0.707, but in
practice it is found closer to 0.8. The contracted wake is defined as Ac D �r2c R

2.
The inner area of the lower rotor encounters incoming stream-tubes with velocity
V1 C .A=Ac/vu (V1 C 2vu in the ideal case). For beam sections lying inside the
upper rotor contraction area, the inflow distribution is given as


.r; 
1/ D
s

�
	Cl˛
16F

� 
1 C .A=Ac/
u

2

�2

C 	Cl˛
8F

�lr

�
�
	Cl˛
16F

� 
1 C .A=Ac/
u

2

�

; (49.46)

where �l is the blade pitch distribution on the lower rotor. For points outside the
contraction area, the inflow distribution is given as
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.r; 
1/ D
s

�
	Cl˛
16F

� 
1
2

�2

C 	Cl˛
8F

�lr �
�
	Cl˛
16F

� 
1
2

�

: (49.47)

When the inflow velocity distribution is obtained, the total thrust lift coefficient
could be found by integrating Eq. 49.42 as

CT D
Z rD1

rD0
dCT : (49.48)

For the rotor torque coefficient and power coefficient, their incremental calcula-
tion is also provided by BEMT:

dCQ D dCP D 	

2
.�Cl C Cd/r

3dr; (49.49)

where Cd is the rotor drag coefficient. By knowing the fact that 
 D �r , the
incremental power is defined as

dCP D 	

2
�Clr

3dr C 	

2
Cdr

3dr

D 	

2
Cl
r

2dr C 	

2
Cdr

3dr (49.50)

D dCPu C dCPo:

The induced power coefficient can be obtained by integrating dCPu as follows:

CPu D
Z rD1

rD0
dCPu D

Z rD1

rD0

 dCTu ; (49.51)

and the profile part of the rotor power is given by

CPo D 	

2

Z 1

0

Cdr
3dr: (49.52)

49.3.5.2 Bare Rotor Flapping Dynamics
Similar to that of the fixed-pitch coaxial case, the rotor flapping dynamics of the
variable-pitch coaxial helicopter is also seen as a rigid disk which can tilt about
its longitudinal and lateral axes. However, instead of directly linking the flapping
angles’ dynamics to the servo inputs, the flapping angles (ai , bi ) are first related
to the cyclic pitch angles (�cyc;bi , �cyc;ai ) as intermediate variables. The presence of
�cyc;bi and �cyc;ai is a joint consequence of servo inputs and the stabilizer bar flapping
angles. The detailed description of the rotor equations is extremely complicated.
Here, a simplified formulation is adopted, where the rotor forces and moments
are expressed as a polynomial function of the rotor state variables (Mettler 2002).
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By removing the higher-order terms of the TPP equation, the remaining first-order
rotor dynamics could be expressed as

� Pbi D �bi � �p C Baai C �cyc; bi ; (49.53)

� Pai D �ai � �q CAbbi C �cyc; ai ; (49.54)

where

Ab D �Ba D 8Kˇ

��2Jˇ
; (49.55)

� D 16

�r�

�

1 � 8e

3R

��1
; (49.56)

� D �cCl˛R
4

Jˇ
: (49.57)

ai and bi are the first-order TPP flapping angles in the longitudinal and lateral
directions for either the upper rotors or the lower rotors. � and � are the flapping
time constant and the lock number of the rotor blades, respectively. Jˇ is the blade
moment of inertia. �cyc; ai and �cyc; bi are the longitudinal and lateral cyclic pitch of
rotor blade. The other terms are defined by the same symbols as that of the fixed-
pitch coaxial helicopter analysis in Sect. 49.3.4. The approximate formulation in
Eqs. 49.53 and 49.54 characterizes the crucial TPP responses with respect to rotor
cyclic control inputs.

49.3.5.3 Stabilizer Bar Flapping Dynamics
The stabilizer bar, which is attached to the upper main rotor shaft via a free-teetering
hinge, can be regarded as a third disk. It consists of two paddles and a steel rod. The
stabilizer bar is not designed to produce thrust or moment on the main hub, whereas
its main function is to adjust the helicopter dynamics via the Bell-Hiller mixer by
augmenting the cyclic pitch command of the upper rotor. It serves as a feedback
system which increases the helicopter robustness against wind gust and turbulence
(Cai et al. 2011). The flapping dynamics of stabilizer bar can be expressed as two
first-order differential equations:

P�sb D �q � 1

�sb
�sb C C

�sb
ıail; (49.58)

P�sb D �p � 1

�sb
�sb C D

�sb
ıele; (49.59)

where �sb is the stabilizer bar flapping time constant, and it can be calculated as

�sb D 16

�sb�
; (49.60)
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where �sb is the stabilizer bar lock number:

�sb D �csbCl˛;sb
�
R4sb � r4sb

�

Iˇ;sb
: (49.61)

The free-teetering hinge does not constrain the flapping of the stabilizer bar; thus,
there is no coupling between the longitudinal and lateral flapping motions. The
augmented rotor cyclic pitch of upper rotor can be expressed as

�cyc; aup D Aaıele CKsb�sb; (49.62)

�cyc; bup D Bbıail CKsb�sb; (49.63)

whereKsb is the ratio of rotor blade cyclic pitch to stabilizer bar flapping.

49.3.5.4 Lumped Flapping Dynamics
In this variable-pitch coaxial configuration, the upper rotor and the lower rotor
receive the same cyclic input (ıail, ıele) since the top swashplate and bottom
swashplate are always parallel. To minimize the overall complexity of the model,
the two counterrotating rotor disks are treated as one equivalent rotor disk with
respect to flapping motions. This assumption is only valid when the helicopter
does not perform rapid maneuvering. By making this assumption, the model can be
simplified to a large extent yet maintaining reasonable fidelity. The imaginary rotor
has equivalent longitudinal and lateral angles expressed as as and bs . Combining
Eqs. 49.53–49.63, the lumped flapping dynamics subsystem could be represented in
the following state-space form:

Px D A x C B u; (49.64)

Py D C x; (49.65)

where

x D

0

B
B
@

p

q

as
bs

1

C
C
A ; u D

�
ıail

ıele

�

; y D
�
p

q

�

; (49.66)
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�

; (49.67)

Lb D mgHmr CKˇ

Jxx
; Ma D mgHmr CKˇ

Jyy
: (49.68)
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49.4 Model-Based Parameter Identification

When model formulation of a certain type of aerial platform has been derived, the
next step is to identify unknown parameters of the derived model for a particular
case. This is commonly known as the model-based parameter identification. In this
section, several common parameter identification methods will be introduced based
on the case study of ESky Big Lama, belonging to the fixed-pitch coaxial helicopter.
It will be seen that some of the model parameters can be directly measured, while
the remaining ones need special test bench experiments or flight tests to be carried
out. The identification procedures for the case of variable-pitch coaxial helicopter
will not be repeated since similar methods can be applied. It is also hoped that the
readers will try the suggested experimental setups on other types of aerial platforms
if they face similar parameter identification problems in their UAV-related projects.

49.4.1 Direct Measurement

For the ESky Big Lama fixed-pitch coaxial helicopter, some of its model parameters,
especially those inherently defined by the platform dimension, geometry, weight
loading, and the operational environment, can be directly measured or algebraically
calculated, for example, the total mass of the platform (m), the distance from
the rotor hubs to CG (jlupj and jldwj), the air density (�), the rotor diameter (R),
the effective drag area of the fuselage (Sx, Sy , Sz), and the moment of inertia of the
upper and lower rotor system (Jup, Jdw). Table 49.4 shows all the parameter values
that can be identified through direct measurement and simple calculation.

49.4.2 Test Bench Experiment

In most aerial vehicle modeling cases, the direct measurement method is only able
to determine a small portion of the parameters. The remaining majority parameters
have to be identified by additional test bench experiments or actual flight tests. In
this subsection, some common test bench methods are introduced, and they are again
illustrated based on the ESky Big Lama fixed-pitch coaxial helicopter case.

First of all, the diagonal elements of the helicopter moment of inertia matrix Jxx ,
Jyy , Jzz can be measured by the so-called trifilar pendulum method proposed in
Harris (1996). The experimental setup is shown in Fig. 49.7. In this experiment,
the coaxial platform is suspended by three flexible strings with equal length l .
The horizontal distances between the attached points and the CG are l1, l2, and
l3, respectively. One can slightly twist and release the platform around the z-axis
and record the oscillation period tl . The moment of inertia is then given by

Jzz D mgl1l2l3t
2
l

4�2l
� l1 sin˛1 C l2 sin˛2 C l3 sin˛3
l2l3 sin˛1 C l1l3 sin ˛2 C l1l2 sin˛3

; (49.69)
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Table 49.4 Parameters determined via direct measurement

Parameter Physical meaning

� D 1:204 kg m�3 Air density
m D 0:977 kg Total mass of the platform
R D 0:250 m Rotor radius
g D 9:781 m s�2 Earth gravity
Sfx D 0:00835 m2 Effective longitudinal fuselage drag area
Sfy D 0:01310 m2 Effective lateral fuselage drag area
Sf z D 0:01700 m2 Effective vertical fuselage drag area
jlupj D 0:195 m Distance from platform CG to the upper rotor hub
jldwj D 0:120 m Distance from platform CG to the lower rotor hub
Jup D 6:8613 � 10�4 kg m2 Moment of inertia of the upper rotor with stabilizer bar
Jdw D 3:2906 � 10�4 kg m2 Moment of inertia of the lower rotor

a2

a1a3

l1
l3

l

l2

Fig. 49.7 The trifilar pendulum method

where ˛1, ˛2, and ˛3 are the angles denoted in Fig. 49.7. Similar experiments can be
done to obtain the moment of inertia around the y and z axes. Figure 49.8 shows the
experimental setups to carry out this trifilar pendulum method to obtain the moment
of inertia of the ESky Big Lama in all three axes.

Next, to identify the rotor thrust coefficient and torque coefficient (kT;i
and kQ;i ), two self-designed test bench experiments were carried out
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Fig. 49.8 The setups to test helicopter moment of inertia. (a) x-axis. (b) y-axis. (c) z-axis

(see Figs. 49.9 and 49.10). The main measurement sensors include a force meter
and a tachometer. When different values of pulse width modulation (PWM) signals
are given to the motors, the steady-state rotor rotational speed and the generated
thrust/toque are recorded. For the thrust experiment, results are summarized in
Fig. 49.11. There are four lines in the plot, in which two of them (solid lines)
perfectly match. They represent the cases when only one rotor, either the upper
rotor or the lower rotor, is rotating. The dashed line on the top is a numerical
combination of the two solid lines, while the dash-dot line comes from the actual
test with both rotors spinning at the same speed. The gap between the two lines
shows a drop in thrust efficiency caused by aerodynamic interactions between the
two rotors. According to Deng et al. (2003), for a coaxial helicopter operating in
near-hover condition, the induced-velocity effect of the upper rotor to the lower
rotor is significantly larger than that of the lower rotor to the upper rotor. Thus, the
loss of thrust efficiency can be assumed to be fully absorbed by the lower rotor thrust
coefficient. Hence, kT;up is the gradient of the solid line, and kT;dw is the gradient
difference between the dash-dot line and the solid line. For the torque experiment,
results are summarized in Fig. 49.12. The solid line represents the case when only
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Fig. 49.9 Setup to
investigate relation between
rotor thrust and rotor
rotational speed

Fig. 49.10 Setup to
investigate relation between
rotor torque and rotor
rotational speed
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Fig. 49.11 Data plot of thrust against square of rotor speed

the stabilizer bar is rotating, while the dash-dot line is for a single rotating rotor. The
dashed line is generated with the upper rotor and the stabilizer bar spinning together.
Unsurprisingly, it matches the numerical combination of the lower two lines. Thus,
the gradient of the dashed line is kQ;up, and the gradient of the dash-dot line is kQ;dw.

The identification of parameters involved in the motor dynamics can be done via
test bench experiments also. The method to determine motor time constant (�mt) is
a bit tricky, as the transient response of the rotor speed with a step motor input is
very difficult to be recorded in real time. As such, instead of examining the transient
response of the rotor speed with motor step input, the transient response of the input
voltage subject to the changes of the motor Back-EMF (voltage generated by the
spinning motor) is recorded using an oscilloscope (see Fig. 49.13). In theory, the
time constant of the two transient responses should be the same. On the other hand,
mup and mdw can be identified by plotting the steady-state relationship between the
rotor speed and the normalized motor input (see Fig. 49.14). mup and mdw are the
gradients of the two fitted lines in the figure.

The headlock gyro forms the most inner-loop control in the helicopter yaw
channel. As mentioned in Sect. 49.3.4, it is a PI controller with three parameters
(Ka, KP, KI) to be identified. The identification of Ka can be done via a hovering
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Fig. 49.13 Estimation of time constant of motor speed dynamics
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Table 49.5 Yaw rate against
rudder input

r (rad/s) �1.50 �2.50 �2.60 �3.50
ırud (�1, 1) 0.25 0.35 0.40 0.55

turn test of the coaxial helicopter with different steady-state yaw rates. This test
belongs more to the test bench category instead of flight test because it can be done
on a swivel table with minimal friction. Table 49.5 shows four sets of data recorded.
By plotting the least-square-fit line (see Fig. 49.15) and calculating its gradient, Ka

can be determined. For the identification of KP and KI, the helicopter is placed
stationary on a table. KP and KI can be determined by observing the headlock gyro
output signal (in pulse width modulation form) caused by a small known step inputs.
The initial ratio between the output and the input isKP �Ka, while the climbing rate
of the step response is KI �Ka.

Last but not least, test bench experiments are also capable of determining some
of the model parameters involved in the rotor flapping dynamics. First of all, by
tilting the helicopter suddenly with rotor rotating at hovering speed and observing
the transient step response of the stabilizer bar TPP (see Fig. 49.16) by a high-
speed camera, the time constant (�sb) can be found to be about 0:2 s. In addition,
the on-axis parameters that appear in the rotor flapping equations (Aa;up, Bb;up,
Aa;dw, and Bb;dw) can be roughly identified by measuring lengths and angles under
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extreme conditions (see Figs. 49.17 and 49.18) and assume a linear proportional
relationship between each pair of them. It should be noted that the parameters related
to rotor flapping dynamics are most critical to the whole coaxial helicopter model.
The above rough measurements may not be good enough to finalized their values.
However, they can be used as an initial guess and get fine-tuned later by a model-
based numerical search method via in-flight test data. In the next subsection, this
method will be explained in detail. Here, Table 49.6 only lists those parameters that
are already finalized at this test bench experiment stage.

49.4.3 Flight Test

After the majority of parameters have been identified, the remaining ones and a
few uncertain ones can be identified and refined by analyzing flight test data with
input perturbations (frequency sweeping). The recommended software for this task
is called “Comprehensive Identification from FrEquency Responses” (CIFER). It is
a MATLAB-based software package developed by NASA Ames Research Center
for military-based rotorcraft system identifications.

In this ESky Big Lama case, since the remaining unidentified parameters are
all about rotor flapping dynamics, only aileron and elevator perturbations need
to be done to collect the relevant data for CIFER analysis. However, CIFER and
most other parameter identification tools can only handle linear models. Hence,
linearization needs to be done first to relate the aileron and elevator inputs to
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Fig. 49.16 Step response of
stabilizer bar TPP motion
(top: t D 0; center, t � 0:2 s;
bottom, t D 1)
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Fig. 49.17 Left: maximum teetering angle of the lower rotor hub; right: maximum flapping angle
of the lower rotor

Fig. 49.18 Left: maximum teetering angle of the stabilizer bar; right: maximum teetering angle
of the upper rotor hub

the helicopter roll, pitch angular rates. By relating and linearizing all the model
formulation related to roll-pitch rate dynamics and upper rotor flapping dynamics at
the hovering condition, one can obtain the following fourth-order linear state-space
approximation:
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(49.70)

whereXup D Tuplup CKˇ andXdw D Tdwldw CKˇ . By treating ıail, ıele as the inputs
and p, q as the outputs (all can be recorded during flight tests) and giving known
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Table 49.6 Parameters determined via test bench experiments

Parameter Physical meaning

Jxx D 0:0059 kg m2 Platform moment of inertia in the x-axis
Jyy D 0:0187 kg m2 Platform moment of inertia in the y-axis
Jzz D 0:0030 kg m2 Platform moment of inertia in the z-axis
kT;up D 1:23 � 10�4 N s2rad�2 Effective thrust coefficient of the upper rotor
kT;dw D 8:50 � 10�5 N s2 rad�2 Effective thrust coefficient of the lower rotor
kQ;up D 4:23 � 10�6 N ms2 rad�2 Effective torque coefficient of the upper rotor
kQ;dw D 3:68 � 10�6 N ms2 rad�2 Effective torque coefficient of the lower rotor
mup D 106:90 rad s�1 Steady-state ratio between change of upper rotor speed and

change of motor input
mdw D 106:45 rad s�1 Steady-state ratio between change of lower rotor speed and

change of motor input
��

up D 203:38 rad s�1 Trimming rotational speed of the upper rotor

��

dw D 217:88 rad s�1 Trimming rotational speed of the lower rotor
�mt D 0:12 s Motor time constant
�sb D 0:2 s Stabilizer bar time constant
Ka D 6:4267 Feed-forward gain of the headlock gyro system
KP D 0:667=Ka Proportional feedback gain of the headlock gyro system
KI D 0:713=Ka Integral feedback gain of the headlock gyro system

constraints and reasonable initial values (on-axis values from Sect. 49.4.2 and off-
axis values as zeros), CIFER helps to search for optimal numerical solution based
on frequency response matching. A stable result with good matching is obtained as
follows:
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(49.71)

With this numerical result, Figs. 49.19–49.22 show the corresponding compari-
son of frequency response between the data collected via actual flight tests and the
CIFER derived model fit. For both the on-axis and off-axis responses, the matching
is very good, indicating a high-quality identification result. Next, by comparing
Eqs. 49.70 and 49.71, all the parameters involved in angular rate and rotor flapping
dynamics can be finalized. Table 49.7 shows the identification results that have been
obtained via flight test. Till now, all unknown parameters in the fixed-pitch coaxial
model have been identified.
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Table 49.7 Parameters determined via flight test and CIFER

Parameter Physical meaning

Aa;up D 0:4900 rad s�1 DC gain from stabilizer bar pitching angle to upper rotor
longitudinal flapping angle

Bb;up D 0:4900 rad s�1 DC gain from stabilizer bar rolling angle to upper rotor lateral
flapping angle

Ab;up D �0:2745 rad s�1 DC gain from stabilizer bar rolling angle to upper rotor
longitudinal flapping angle

Ba;up D 0:2745 rad s�1 DC gain from stabilizer bar pitching angle to upper rotor lateral
flapping angle

Aa;dw D 0:1217 rad s�1 DC gain from elevator input to lower rotor longitudinal flapping
angle

Bb;dw D �0:1217 rad s�1 DC gain from aileron input to lower rotor lateral flapping angle
Ab;dw D �0:0450 rad s�1 DC gain from aileron input to lower rotor longitudinal flapping

angle
Ba;dw D �0:0450 rad s�1 DC gain from elevator input to lower rotor lateral flapping angle

49.5 Model Verification

It is always a good practice to verify a derived system model with actual input
and output data. In this section, a comprehensive evaluation on the fidelity of the
obtained nonlinear model of the ESky Big Lama (fixed-pitch coaxial helicopter) is
shown. Four manual flight tests were carried out, which include:
1. Aileron channel perturbation with platform rolling left and right
2. Elevator channel perturbation with platform pitching forward and backward
3. Throttle channel perturbation with platform flying up and down
4. Rudder channel perturbation with platform yawing clockwise and anticlockwise
In each of these four flight tests, the pilot was asked to agitate only one of the four
input channels. However, to make sure the helicopter position does not drift too
much, minor off-axis inputs were also issued to lightly counter the cross-couplings
between the channels. The time-domain results are shown from Figs. 49.23 to 49.26.
Based on the recorded inputs, the transient response of the UAV attitudes, angular
rates, and body-frame velocities are calculated by a MATLAB simulation program
with the aforementioned nonlinear mathematical model (dashed lines in the figures).
They are plotted together with the in-flight true data obtained by the onboard sensors
(solid lines in the figures). The matching between the two is quite perfect. Note
that for the roll and pitch angular rate dynamics, both the on-axis and the off-
axis responses match very well, indicating a precise formulation of the coupling
terms. Some minor mismatches are caused by the ignorance of high-frequency
dynamics when formulating the model, especially for the motion of rotor flapping,
which is theoretically highly complicated. Other discrepancies come from ground
effect, wind disturbances, and measurement noises present in practical flight tests.
In general, this is an accurate cross-coupled model for a fixed-pitch coaxial UAV
with low maneuvering speed.
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49.6 Conclusions

This book chapter has demonstrated the main procedures and challenges in mod-
eling flight dynamics of aerial vehicles for the purpose of UAV development.
By using the fixed-pitch and variable-pitch coaxial helicopters as examples, the
model formulation, parameter identification, and model verification methods are
explained in sequence with an adequate level of complexity for people with general
engineering backgrounds.

For the model formulation, all analysis starts from the general working principle
and model structure of the targeted systems. Formulas to describe the 6DoF
kinematics and rigid-body dynamics are listed, and they are universal to all other
types of UAVs. The general composition of forces and torques exerted on the
UAV fuselage is more or less the same for the fixed-pitch and variable-pitch
coaxial helicopters. However, the detailed formulation of individual force and torque
generation are different and thus explained separately.

For the model-based parameter identification, the identification methods are
categorized into three types, namely, direct measurement, test bench experiments,
and flight tests. The ESky Big Lama, belonging to the fixed-pitch coaxial helicopter,
is chosen to be a case study to illustrate some useful test bench and flight test setups
to determine the model parameters. After all, a nonlinear model of the ESky Big
Lama flight dynamics is fully derived with all parameters identified.

Finally, model verification is done to prove the feasibility of the whole method-
ology. By comparing simulation data with the actual in-flight data, the fidelity of
the derived nonlinear model is guaranteed. It is also worth noting that the derived
model has been actually used in control law design for an indoor coaxial UAV, and
good hovering performance has been achieved (Wang et al. 2012).

It is believed that with the proposed systematic modeling methodology, the
readers will get insightful knowledge about UAV modeling and parameter identifi-
cation. Hopefully, these methods can be utilized and applied to other types of aerial
platforms, too. It is also welcomed that more detailed aerodynamic formulations and
other innovative parameter identification methods can be shared in future and thus
complement this work.
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