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1. Introduction

Nowadays, control design of Unmanned Aerial Vehicles (UAVs) has emerged as an attractive
research area, due to the wide range of UAV applications in various military and civilian
areas such as terrain and utility inspections, coordinated surveillance, search and rescue
missions, disaster monitoring, rapid emergency response, aerial mapping, traffic monitoring,
and reconnaissance missions (see, e.g., (Metni et al., 2007), (Kuroki et al., 2010 ), (Campbell
& Campbell, 2010 )). They can also be used as complex test-bed dynamic systems for
implementation and verification of the control schemes for different research purposes (Kim
& Sukkarieh, 2007), (Saripalli et al., 2003), (Bortoff, 1999). Several research groups are involved
in the modeling and control of UAVs (Bortoff, 1999), (Gavrilets et al., 2000), (Cai et al., 2006).
The control methods such as the neural network approach (Enns & Si, 2003), the differential
geometry method (Isidori et al., 2003), feedback control with decoupling approach (Peng et
al., 2009), and the model predictive approach (Shim et al., 2003) have been applied for the
flight control of the UAV helicopters. In this chapter, however, we have used an analytical
approach to design and analyze the whole system including the inner-loop and the outer-loop
controllers for a small-scale UAV helicopter. Here, in the proposed hierarchical structure, the
inner-loop is responsible for the internal stabilization of the UAV in the hovering state and
control of the linear velocities and heading angle angular velocity whereas the outer-loop is
used to drive the system, which is already stabilized by the inner-loop, to follow a desired path
while keeping the system close to the hovering state. This hierarchical strategy is an intuitive
way of controlling such a complex system. However, there is another reason that compels us
to employ such a control structure. Indeed, the UAV model cannot be fully linearized, since,
in practice, we cannot expect the heading angle of the UAV to be restricted to a small range
of variation as depending on the mission, the heading of the UAV could be in any direction.
This will impose some kind of nonlinearity on the system, which can be modeled by a simple
transformation. To handle this semi-linearized model of the UAV, we can separate the linear
and nonlinear parts, and then control the linear part in the inner-loop and the nonlinear part
in the outer-loop.
In this hierarchy, for the inner-loop, we have used an H∞ controller to both stabilize the system
and suboptimally achieve the desired performance of the UAV attitude control. Assuming
that the inner-loop has already been stabilized by an H∞ controller, a proportional feedback
controller combined with a nonlinear compensator block have been used in the outer-loop to
bring the UAV into the desired position with desired heading angle.
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Although designing a proportional feedback controller for SISO systems is straightforward,
the situation for MIMO systems is different. This is because, in MIMO systems, it is not easy
to use the popular tools, such as the Nyquist stability theorem or the root-locus approach,
that are well-established for the SISO systems. The current approaches employed for MIMO
systems are rather complicated and are mostly extensions of the existing results for SISO
systems (Wang et al., 2007). In this chapter, we propose a design method of a decentralized
P-controller for MIMO systems that, although conservative, can be effectively used in practical
problems, particularly for the case that the system is close to a decoupled system. The
approach is an extension of the Nyquist theorem to MIMO systems, and its application to
the NUS UAV system provides a successful flight controlled system.
The test-bed is Helion (Fig. 1), the first developed UAV helicopter in our NUS UAV research
group (Peng et al., 2007). In (Cai et al., 2008a), a systematic procedure for the construction of
a small-scale UAV helicopter is described, and in (Cai et al., 2005), the hardware parts of the
NUS UAV, including both the avionic system and the ground station, are illustrated in detail.

Fig. 1. The NUS UAV helicopter.

The remaining parts of this chapter are organized as follows. In Section II, the model and
the structure of the NUS UAV is described. The UAV model consists of two decoupled
subsystems. In Section III, a hierarchical controller, including an inner-loop and an outer-loop
controller, is designed for both subsystems. Actual flight tests are presented in Section IV, and
the chapter is concluded in Section V. For the convenience of the reader, a nomenclature part
is provided at the end of this chapter.

2. Modeling and structure of the UAV helicopter

A typical UAV helicopter consists of several parts: physical parts such as engine and fuselage;
ground station to monitor the flight situation and collect realtime flight data, and the avionic
system to implement the control strategy to have an autonomous flight control. Among these
elements, the avionic part is in the center of our interest in this chapter and we will focus on
the control structure which is embedded in the airborne computer system. Here, the avionic
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system consists of an airborne computer system which can be extended modularly by some
extension boards such as A\D card, DC-DC convertor card, and serial communication board.
In addition, the avionic system has been equipped with some analog and digital sensors to
collect the information of the current state of the UAV. The major sensor used in the avionic
system, is the NAV-IMU sensor. The IMU sensor provides three axis velocities, acceleration
and angular rates in the body frame, as well as longitude, latitude, relative height and heading,
pitch and roll angles. Moreover, the avionic system has a fuel level sensor as well as a magnetic
RPM sensor to measure the speed of the rotor. Furthermore, it comprises five servo actuators
that could manipulate the helicopter to move forward and backward, up and down, to turn
left and right, to regulate the nose angle and finally to control the spinning speed of the
rotor. All of these servos are controlled by a servo board as a local controller. In addition,
the servo board gives the ability of driving the servo system into either the manual mode or
the automatic mode. In the manual mode, a pilot can drive the helicopter by a radio controller
which is useful in the emergency situations; however, in the automatic mode the helicopter is
under the control of the computer system and all control signals are generated by the avionic
system and the computer board, autonomously.
Using some basic physical principles, we can obtain a general nonlinear UAV model. These
principles will result in several equations that represent the effects of different factors such
as gravity, the main rotor, and tail rotor forces and moments. The model equations will be
obtained in two coordinate systems: the body frame and the ground frame. The body frame
is centered at the center of gravity of the UAV, and the ground frame is an NED (North - East
- Down) coordinate system (Stevens & Lewis, 1992) with a fixed origin at the starting point
of the UAV flight. Clearly, the UAV dynamic equations should be derived in the body frame,
while the position of the UAV is considered in the ground frame.
Neglecting the gyroscopic effect of the engine-driven train, the equations of the helicopter
motion in the body frame are obtained as follows:

�̇Vb = −�ωb × �Vb + Bb�g + m−1�F (1)

�̇ωb = −J−1ωb × J�ωb + J−1 �M (2)

where in these equations, × denotes the cross product of the vectors, and the concatenation

of two matrices or vectors represents the normal matrix multiplication. Moreover, �F and �M
are the resultant force and moment in the body frame, including those generated from the
main rotor, the tail rotor and the fuselage. Other symbols’ definition can be found in the
nomenclature part provided at the end of this chapter.
The Euler angles that show the orientation of the body frame relative to the ground frame are
as follows:

⎡

⎣

φ̇

θ̇
ψ̇

⎤

⎦ =

⎡

⎣

1 tan θ sinφ tan θ cosφ
0 cosφ −sinφ

0
sin φ
cos θ

cos φ
cos θ

⎤

⎦ �̇ωb (3)

where
(

φ θ ψ
)′

is a vector that contains the Euler angles to describe the attitude of the
helicopter with respect to the NED frame.
The relation between the UAV position in the ground frame and the UAV velocity in the body
frame is:

�̇Pg = B́b
�Vb (4)
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where Bb is the transformation matrix from the ground frame to the body frame, which has
the following form:

Bb =

⎡

⎣

cos θ cosψ cos θ sinψ −sin θ
−cos φ sinψ + sin φsin θ cosψ cos φ cosψ + sin φsin θ sinψ sin φ cosθ
sin φ sinψ + cos φsin θ cosψ −sin φ cosψ + cos φsin θ cosψ cos φ cosθ

⎤

⎦ (5)

The details of this UAV model are described in (Peng et al., 2007). From the above model
description, it can be seen that the UAV model is nonlinear. Furthermore, the main problem
encountered in the modeling of our UAV is that the process of buying a radio-control
helicopter from the market and upgrading it to an autonomous flying vehicle leaves us with
many unknown parameters and aerodynamic data. Therefore, for practical reasons, we need
to linearize the UAV model and then, identify the resulting linearized model through the
recorded in-flight data. The in-flight data can be collected through the manual mode and by
injecting perturbed input signals to the flying helicopter. We have obtained a linearized model
at the hovering state as it has been presented in (Cai et al., 2006). By hovering, we mean that
�V0 = 0, �ω0 = 0, θ0 = 0, φ0 = 0 . The obtained linearized model is as follows:

ẋ = Ax + Bu + Ew (6)

where the state variable x includes 11 variables as x = [ Vzb
(m/s) ωzb

(rad/s) wz f (rad/s)

Vxb
(m/s) Vyb

(m/s) ωxb
(rad/s) ωyb

(rad/s) φ(rad) θ(rad) ãs(rad) b̃s(rad) ]′. These parameters
are shown in Fig. 2. wz f is the yaw rate feedback, which is related to δpedal by a first-order
differential equation (Cai et al., 2008b).
Furthermore, the control input u includes commands to the servos embedded for the control
of the helicopter blades as u = [ δcol(rad) δpedal(rad) δroll(rad) δpitch(rad) ]′.
Matrices A, B, and E are obtained as follows:

A =

[

A1 03×8

08×3 A2

]

, B =

[

B1 03×2

08×2 B2

]

, E =

[

E1 03×2

08×1 E2

]

where

A1 =

⎡

⎣

−0.6821 −0.1070 0
−0.1446 −5.5561 −36.6740

0 2.7492 −11.1120

⎤

⎦, B1 =

⎡

⎣

15.6491 0
1.6349 −58.4053

0 0

⎤

⎦,

E1 =

⎡

⎣

−0.5995
−1.3832

0

⎤

⎦, B2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 0
0 0
0 0
0 0

0.0496 2.6224
2.4928 0.1740

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, E2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.1778 0
0 −0.3104

−0.3326 −0.2051
0.0802 −0.2940

0 0
0 0
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

A2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.1778 0 0 0 0 −9.7807 −9.7808 0
0 −0.3104 0 0 9.7807 0 0 9.7807

−0.3326 −0.5353 0 0 0 0 75.7640 343.86
−0.1903 −0.2940 0 0 0 0 172.620 −59.958

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 −1 0 0 −8.1222 4.6535
0 0 −1 0 0 0 −0.0921 −8.1222

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Remark 1. In the linearized model described by (6), the saturation level for the servos is |δ�max | = 0.5.
We need to provide a control law such that the resulting control signals always remain within the linear
unsaturated range.
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Fig. 2. Helicopter states in the body frame.

Although (6) describes the relation between the control input and the state variable x, it still

does not describe the whole dynamics of the system, and particularly, �P and ϕ are not reflected

in the model. Thus, considering (2) and (4), a more complete model containing �P and ϕ is as
follows:

⎧

⎪

⎨

⎪

⎩

ẋ = Ax + Bu + Ew

ψ̇ = ωzb

�̇Pg = B́b
�Vb

(7)

Remark 2. Matrix Bb includes some time-dependent terms. Therefore, matrix Bb can not be considered
as a constant term and it is not simple to integrate both sides of (7) in order to obtain the position in
the ground frame. This is due to the fact that the body frame is a moving coordinate system. Hence, to
obtain the displacement, it is necessary to first obtain the velocities in a fixed coordinate system such as
the ground frame. Then, the displacement can be calculated by integrating of the velocity vector in the
fixed coordinate system.

The presence of nonlinear terms of Bb, in the third equation of (7), makes it difficult to design a
controller for the system; however, we can further simplify the model. Indeed, matrix Bb in (5),
which introduces some nonlinear terms to the model, can be linearized at the hovering state.
In practice, the heading angle of the helicopter can take any arbitrary value; however, the roll
and pitch angles are usually kept close to the hovering condition. Therefore, linearizing matrix
Bb at the hovering state will result in:

Bb =

⎡

⎣

cos ψ sin ψ 0
−sin ψ cos ψ 0

0 0 1

⎤

⎦ =

[

R 02×1

01×2 1

]

(8)

The physical interpretation is that by keeping �θ and �φ close to zero, the Euler rotation in a
three-dimensional space will be converted into a simple rotation in a two-dimensional space
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with respect to ψ. In this case, the rotation matrix is:

R =

[

cos ψ sin ψ
−sin ψ cos ψ

]

(9)

In the following section, as we design the outer-loop controller, it will be shown that this new
formulation of Bb helps us to keep the system decoupled, even after using the outer-loop
controller.
The semi-linearized UAV model, presented in (7) can be controlled in separate parts: the linear
part in the inner-loop and the nonlinear part in the outer-loop, as described in the following
section.

3. Controller design

We use a hierarchical approach to design a controller for the UAV (Fig. 3). In this framework,
the system is stabilized in the inner-loop, and then it is driven to track a desired trajectory in
the outer-loop. Besides this rational strategy, there is another reason that compels us to select
this particular architecture. As mentioned previously, we need to derive the model equations
in two coordinate systems: the velocities and accelerations should be obtained in the body
coordinate system as a moving frame, whereas the displacement must be derived by the
integration of the velocities in a fixed frame. The velocity transformation from the body frame
to the ground frame, modeled by matrix Bb, imposes some kind of nonlinearity as described
in (7). This nonlinearity can be handled in the outer-loop. Using this control strategy, we have
separated the nonlinear term from the linear part and put it in the outer-loop.

✲ ✲ ✲
✲ ✲Control Law

Outer-loop
Control Law

Helicopter
Inner-loopPre f ui

Fig. 3. Schematic diagram of the flight control system.

In this control architecture, the references for the inner-loop controller, ui, are the linear
velocities (Vxb

, Vyb
, and Vzb

) and the yaw rate, ωzb
, which should all be provided by the

outer-loop. The outer-loop, however, is responsible for the control of the position and heading
angle of the UAV and will guide the UAV to follow a desired trajectory. Therefore, the
references for the outer-loop are the position (Xr , Yr, Zr) and the yaw angle ψr. In other words,
the UAV will follow the generated path by the position and the yaw angle control in the
outer-loop, and the linear velocity and the angular rate control in the inner-loop.
looking at matrices A, B, and E in (6), we can see that, the system has been already decoupled
into two independent parts. Therefore, (6) can be rewritten into two separate subsystems as
follows:

ẋ1 = A1x1 + B1u1 + E1w (10)

ẋ2 = A2x2 + B2u2 + E2w (11)

where x1 = [ Vzb
(m/s) ωzb

(rad/s) wz f (rad/s) ]′, u1 = [ δcol δpedal ]′, x2 = [ Vxb
(m/s) Vyb

(m/s)

ωxb
(rad/s) ωyb

(rad/s) φ(rad) θ(rad) ãs(rad) b̃s(rad) ]′, and u2 = [ δroll(rad) δpitch(rad) ]′.
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Considering (7), (8), (10), and (11), the above-mentioned hierarchical control strategy can be
implemented for the decoupled model of our UAV, as shown in Fig. 4 and Fig. 5. In these
figures, subscripts g, b, and r stand for ground frame, body frame, and reference, respectively.
Moreover, matrices C1 and C2 are:

C1 =

[

1 0 0
0 1 0

]

, C2 =

[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]

(12)

Fig. 4. Control schematic for Subsystem 1.

Fig. 5. Control schematic for Subsystem 2.

Due to the special structure of the linearized form of Bb, Subsystem 1 is a fully linearized
model. However, in the outer-loop of Subsystem 2, the term R−1 appears as a nonlinear
element, and thus Subsystem 2 is more complicated than Subsystem 1. In the following parts,
we will describe the control design for both subsystems.

3.1 Controller for subsystem 1
Subsystem 1 is a fully linearized model so that linear design tools can be applied to the system.
We will use the H∞ control design technique for the inner-loop and a P-controller for the
outer-loop.

3.1.1 Inner-loop controller

Using an H∞ controller for the inner-loop, both robust stability and proper performance of the
system can be achieved simultaneously. To design the H∞ controller, using notation analogous
with (Chen, 2000), we define the measurement output simply as the state feedback in the form
of y1 = C11x with C11 = I. Since our primary task is to design a control law to internally
stabilize the system, and to achieve a good response of the state variables that are directly
related and linked to the outer-loop, while considering the constraints on the inputs and some
state variables, we define the controlled output h1 in the form of h1 = C12x + D12u, where

C12 =

⎡

⎢

⎢

⎣

02×3

3.1623 0 0
0 3.1623 0
0 0 1.7321

⎤

⎥

⎥

⎦

, D12 =

⎡

⎣

44.7214 0
0 28.2843

03×2

⎤

⎦ (13)
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The nonzero entries of C12 and D12 are used for tuning the controller, and here, are determined
experimentally to achieve the desired performance. Meanwhile, the H∞ design guarantees
internal stability and robustness of the system. Indeed, H∞ control design minimizes the effect
of the wind gust disturbance, i.e., minimizes the H∞ norm of the closed-loop transfer function
from the disturbance w to the controlled output h1, denoted by T1. The H∞ norm of the transfer
function T1 is defined as follows:

‖T1‖∞ = sup
0≤ω<∞

σmax[T1(jω)] (14)

where σmax[.] denotes the maximum singular value of the matrix.
It should be highlighted that the H∞ norm is the worst case gain in T1(s). Therefore,
minimization of the H∞ norm of T1 is equivalent to the minimization of the disturbance
effect from the disturbance w to the controlled output h1 in the worst case situation. Having
the matrix C12 and D12, one can find the γ∗

∞ which is the optimal H∞ performance for the
closed-loop system from the disturbance input w to the controlled output h1 over all the
possible controllers that internally stabilize the system. As practically, γ∗

∞ is not achievable,
we will try to reach γ∞ which is slightly larger than γ∗

∞.
With this choice of the control parameters, D11 and D12 are full rank and the quadruples
(A1, B1, C12, D12) and (A1, E1, C11, D11) are left invertible and are free of invariant zeros.
Therefore, we have a so-called regular problem, for which we can use well-established H∞

control theory (Chen, 2000). The resulting closed loop system suboptimality minimizes the
H∞ norm of the transfer function from the disturbance w to the controlled output h1. To design
this controller we consider the control law in the following form:

u1 = F1x1 + G1r1 (15)

where r1 = (Vzr , ωzr)
′ is the reference signal generated by the outer-loop controller, G1 =

−(C1(A1 + B1F1)
−1B1)

−1 is the feedforward gain, and F1 is the H∞ control gain that can be
achieved as follows:

F1 = −(D′
12D12)

−1(D′
12C12 + B′

1P1)) (16)

where matrix P1 is the positive semi-definite solution of the following H∞ algebraic Riccati
equation:

A′
1P1 + P1 A1 + C′

12C12 + P1E1E′
1P1/γ2 −

(P1B1 + C′
12D12)(D′

12D12)
−1(D′

12C12 + B′
1P1) = 0 (17)

For this system and these control parameters values, the value of γ∗
∞ is 1.4516. Hence, we

select γ∞ = 1.4616. Therefore, matrices F1 and G1 are obtained as follows:

F1 =

[

−0.0935 −0.0005 0.0027
0.0008 0.0364 −0.0481

]

, G1 =

[

0.1371 0.0066
−0.0020 −0.2748

]

(18)

To evaluate the controller performance and its effect on the disturbance attenuation, we
simulated the closed loop system with an initial state of x1(0) = [1.5 0 0]′, and also we injected
wind gust disturbance for 20 sec (Fig. 6). The injected disturbance has a maximum amplitude
of 3 m/s along the z axis (the other directions do not affect the dynamics of Subsystem 1). The
controlled system reaches the steady hovering state after 3.5 sec, and the disturbance effect is
reduced to less than 0.25%. The control inputs are within the unsaturated region.
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Fig. 6. Simulation of the inner-loop of Subsystem 1.

3.1.2 Outer-loop controller

In the outer-loop of Subsystem 1, we use a P-controller KP1
(Fig. 7). We can redraw this system

as shown in Fig. 8, in which Gin1
= 1

S C1(SI − (A1 + B1F1))
−1B1G1. It can be shown that Gin1

is
a 2×2 multi-variable system. Unfortunately, in general, designing a P-controller for an MIMO
system is difficult. However, if we consider Kp1 in diagonal form as Kp1

= kp1
I2×2, we can

apply the generalized Nyquist theorem (Postlethwaite & MacFarlane, 1979) to design kp1 such
that it stabilizes the system as described in the following part.

❣ ❣❄✲ ✲ ✲ ✲ ✲

✛

✻
✲ ✲kp G1 Ẋ1 = A1 X1 + B1u1 C1 1/s

F

+++ -
∣

∣

∣

∣

∣

∣

Zr

ψr

∣

∣

∣

∣

∣

∣

VZr

ωZr

∣

∣

∣

∣

∣

∣

Zg

ψg

Fig. 7. Control structure of Subsystem 1.

❥ ✲✲
❄

✲kp1
Gin1

+ -
∣

∣

∣

∣

Zg

ψg

∣

∣

∣

∣

VZr

ωZr

∣

∣

∣

∣

Zr

ψr

+

Fig. 8. Redrawing the control structure of Subsystem 1.

3.1.3 Stability analysis

The characteristic loci of Gin1
are shown in Fig. 9, where the dash-dot lines correspond to the

infinite values. In Subsystem 1, Fig. 8, the inner-loop has already been stabilized, using an H∞
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controller. Therefore, due to the presence of the integral term, Gin1
has two poles at the origin

and the remaining poles are in the LHP plane. Hence, Gin1
has no pole in the Nyquist contour.

It follows from the form of the characteristic loci of Gin1
in Fig. 9, that kp1 ∈ (0 , ∞) will keep

the entire system stable. However, in practice, we are subjected to the selection of small values
of kp1 to avoid saturation of the actuators. kp1 = 1.5 is a typical value.

Fig. 9. Characteristic loci of Gin1
.

3.1.4 Tuning the controller

With the above outer-loop controller, the stability of the whole system has been achieved;
however, the controller in the form of Kp1 = kp1 × I2×2 with only one control parameter is
not an appropriate choice. We need to have more degrees of freedom to tune the controller
and achieve better performance. By considering the proportional feedback gain Kp1 =
diag{Kp11 , Kp12} as a diagonal matrix, we have more degrees of freedom and can control each
of the output channels in a decentralized manner, while keeping the system decoupled.
Uncertainty analysis usually is used to investigate the effect of the plant uncertainty. Here,
we borrow this idea to analyze the effect of deviation of the diagonal entries of the matrix
Kp1 = kp1 I2×2 in the controller part. Alternatively, one can define Kp1 as follows:

Kp1 =

[

Kp11 0
0 KP12

]

= kp1 I2×2 +

[

∆Kp11
0

0 ∆KP12

]

(19)

The objective is to design ∆ = diag
{

∆Kp11
, ∆Kp12

}

such that it does not affect the stability of

the system. In fact, � is the tuning range (Fig. 10).
Following from Fig. 10, one can extract the internal model of the system as:

{

y = Gin1
kp1 (I + Gin1

kp1 )
−1v + (I + Gin1

kp1 )
−1Gin1

z

x = (I + Gin1
kp1 )

−1v − (I + Gin1
kp1 )

−1Gin1
z

(20)

To simplify the notation, (20) can be rewritten as:
{

y = G11v + G12z

x = G21v + G22z
(21)
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Therefore, Fig. 10 can be redrawn as it is shown in Fig. 11. In the new diagram, since the
nominal system with ∆ = 0 is stable, all Gij are stable. G11, G12, and G21 are outside the
uncertain loop and cannot be affected by block �; however, the loop includes G22 and � may
affect the internal stability of the system due to perturbations of the elements of �. Since G22

and � are stable, according to the generalized Nyquist theorem, the characteristic loci of the
loop transfer function should not encircle the point (-1+j0), or equivalently, |λi(−G22∆)| < 1.
To satisfy this condition, since |λi(G22∆)| ≤ σ̄(G22∆) ≤ sup

ω
(σ̄(G22∆)) = ‖G22∆‖

∞
, it is

sufficient that ‖G22∆‖
∞

< 1. Using norm properties, we have:

‖G22∆‖
∞
≤ ‖G22‖∞

‖∆‖
∞

(22)

Therefore, the sufficient condition for the stability of the system is:

‖G22‖∞
‖∆‖

∞
< 1 (23)

For these values of the controller and plant and for a frequency range of (0, 10000), we obtain
‖G22‖∞

= 0.6986. Therefore, the perturbation of Kp1 should be such that ‖∆‖
∞

≤ 1.4315.
Recall that � has a diagonal structure, and hence, all diagonal entries of Kp1 should have less
than a 1.4315-unit deviation from their nominal value. In fact, using this approach, we first
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obtained a nominal controller that provides the stability of the system, and then, we attempted
to tune the controller to improve the performance, while keeping the system stable. After
tuning the controller, the value of Kp1 = diag{0.5, 0.7} was selected as an appropriate value
that satisfies the above mentioned condition and gives a satisfactory performance. The method
is conservative as ∆ is structured and real, but applying to the UAV plant it has provided
sufficient degree of freedom for tuning the controller and improving the performance.
To simulate the resulting system, let the outer-loop reference be (Zr, ψr) = (−2, 0.5) and the
current position and heading angle be (Zg, ψg) = (0, 0). The system will reach its target after
approximately 8 sec as shown in Fig. 12.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Z
g
(m

)

Time(s)
0 10 20 30 40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ψ
 (

ra
d

)

Time(s)

Fig. 12. Simulation of the outer-loop of Subsystem 1.

3.2 Designing the controller for subsystem 2
3.2.1 Inner-loop controller

For Subsystem 2, described by (11), we use an H∞ controller for the inner-loop
controller design, similar to Subsystem 1. Analogous with Subsystem 1, we define h2

as h2 = C22x2 + D22u2, where

C22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

02×8

0.3162 0 0 0 0 0 0 0
0 0.3162 0 0 0 0 0 0
0 0 0.3162 0 0 0 0 0
0 0 0 0.3162 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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D22 =

⎡

⎣

5.4772 0
0 5.4772

08×2

⎤

⎦

With these parameters, we obtain γ∗
∞ = 0.0731, and choosing γ∞ = 0.0831, we have:

F2 =

[

0.0017 −0.1683 −0.0486 0.0081 −1.9336 −0.1974 −0.3227 −2.1444
0.0815 −0.0461 −0.0087 −0.0535 −0.3908 −1.0690 −1.1712 −0.4659

]

Moreover, G2 = −(C2(A2 + B2F2)
−1B2)

−1, is the feedforward gain for Subsystem 2 and can
be calculated as:

G2 =

[

−0.0029 0.2335
−0.0978 0.0632

]

The simulation of the system is shown in Fig. 13. In this figure, the initial state of the system
is x2(0) = [1.5 0 0 0 0.17 0 0 0]′. The injected disturbance has a maximum amplitude of 10
m/s along the x and y axes (the z direction does not affect the dynamics of Subsystem 2). The
controlled system reaches the steady hovering state after 3.5 sec, and the disturbance effect is
reduced to less than 0.25%. In addition, the control inputs are within the unsaturated region.
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Fig. 13. Simulation of the inner-loop of Subsystem 2.

3.2.2 Outer-loop controller

Although the outer-loop of Subsystem 2 is similar to the outer-loop of Subsystem 1, the main
difference lies in the presence of the nonlinear term, R−1, in the outer-loop of Subsystem 2, as
shown in Fig. 4. In this structure, it can be seen that the error signal is the difference between
the actual position and the reference position, which both are in the ground frame. Therefore,
the resulting control signal, which is the reference for the inner-loop, will be obtained in the
ground frame; however, the inner-loop is in the body frame. Hence, it is reasonable that
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we transform the control signal to the body frame before delivering it to the inner-loop as
the reference to be tracked. To implement this idea, we can use the transformation term,
R, to obtain a control signal in the body frame. The new structure is shown in Fig. 14, in
which Gin2

= C2(SI − (A2 + B2F2))
−1B2G2 is a 2 × 2 multi-variable system. In Fig. 15, it is

shown that the inner-loop block Gin2
is very close to a decoupled system with equal diagonal

elements. Indeed, Subsystem 2 corresponds to the dynamics of the helicopter for the x − y
plane movement. In practice, we expect the dynamics of the UAV in the x and y directions
to be similar and decoupled, since the pilot can easily drive the UAV in either of directions
independently. Using this concept, we can take the block Gin2

out so that the two rotation

matrices R and R−1 will cancel each other.

Fig. 14. Control diagram of Subsystem 2.
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The remaining job is simple, and we can repeat the procedure of designing the outer-loop
controller for Subsystem 1 and design a P-controller in the form of Kp2 = diag{Kp21 , KP22

}
that stabilizes Gin2

(Fig. 16). As an appropriate choice of control parameters, we can select
Kp2 = diag{0.3 , 0.3}. Rationally, Kp21 and KP22

should be the same, since we expect a similar
behavior of the UAV system in the x and y directions.

Fig. 16. Redrawing the control diagram of Subsystem 2.

For an outer-loop reference at (xr , yr) = (2, 2) and the current UAV position at (xg, yg) =
(0, 0), the simulation results are shown in Fig. 17, in which the UAV reaches to the desired
position after approximately 10 sec, smoothly and without overshooting.
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Fig. 17. Simulation of the outer-loop of Subsystem 2.

4. Experimental results

Before using the designed controller in an actual flight test, we first evaluate it through a
hardware-in-the-loop simulation platform (Cai et al., 2009). In this platform, the nonlinear
dynamics of the UAV has been replaced with its nonlinear model, and all software and
hardware components that are involved in a real flight test remain active during the
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simulation. Using the hardware-in-the-loop simulation environment, the behavior of the
system is very close to the real experiments.
Then, we conducted actual flight tests to observe the in-flight behavior of the helicopter. First,
we used the UAV in the hovering state for 80 sec. Figure 18 shows the state variables in the
hovering experiment at (x, y, z, ψ) = (−16,−34, 10,−1.5). To evaluate the hovering control
performance, the position of the UAV is depicted in a 2D x − y plane in Fig. 19. As can be seen,
the position of the UAV has at most a 1-meter deviation from the desired hovering position,
which is quite satisfactory. The control inputs are also shown in Fig. 20. All of the control
inputs are within the unsaturated region.
Next, we used the UAV to follow a circle with a diameter of 20 meters as a given
trajectory. This trajectory determines the reference (x(t), y(t), z(t), ψ(t)) for the system. With
this trajectory, the UAV should complete the circle within 63 sec, while keeping a fixed
altitude. Then, it will hover for 7 sec. In Fig. 21, it is shown that the UAV is able to
follow this trajectory successfully. The UAV path tracking in the x − y plane is shown
in Fig. 22. Moreover, to have a better insight of the system behavior, all of the states of
the UAV and the control inputs are represented in Fig. 23 and Fig. 24, respectively. These
results show that the UAV is able to track the desired trajectory in situations close to the
hovering state. The small deviations in the hovering mode or path tracking mode could
be due to environmental effects such as wind disturbances or the GPS signal inaccuracy
as with the installed sensors the measurable steady accuracy of the heading angle is 2.5o

and the positioning accuracy of the GPS is 3m(1σ). Videos of the hovering experiment
and circle path tracking are available at http://uav.ece.nus.edu.sg/video/hover.mpg and
http://uav.ece.nus.edu.sg/video/circle.mpg , respectively.
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Fig. 18. State variables of the UAV for the hovering.
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5. Conclusion

In this chapter, we presented a systematic approach for the flight control design of a
small-scale UAV helicopter in a hierarchical manner. In this structure, the lower level aims
at stabilization of the system, and the upper level focuses on the reference tracking. For
the disturbance attenuation and stabilization of the UAV, we used an H∞ controller in the
inner-loop of the system. Due to the presence of some nonlinear terms in the outer-loop of
the system, we first compensated for the nonlinearity by an inverse rotation; then, we used a
decentralized P-controller to enable the UAV to follow a desired trajectory. We also proposed
a new method of designing a P-controller for MIMO systems that was successfully applied
to the UAV system. The simulations and actual flight tests show the efficacy of the control
structure. In the future, we will use this structure to accomplish more complex missions
such as formation control (Karimoddini et al., 2010). Such missions will require an embedded
decision-making unit to support the tasks and to switch between the controllers. This concept
will guide us in designing a hybrid supervisory controller in the path planner level of the UAV
to comprehensively analyze the reactions between the continuous dynamics of the system and
discrete switching between the controllers (Karimoddini et al., 2009).
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Nomenclature

A = system matrix
as = longitudinal blade angle
B = control input matrix
Bb = transformation matrix from the ground to the body frame
bs = lateral blade angle
E = disturbance matrix
�F = resultant force in the body frame
�g = acceleration due to gravity, �g = [0, 0, g]′

J = inertia matrix
�M = resultant moment in the body frame
�P = position of the UAV, �P = (X, Y, Z)′

u = control input vector
�V = linear velocity vector of the UAV, �V = (Vx , Vy, Vz)′

�ω = angular velocity vector of the UAV, �ω = (ωx, ωy, ωz)′

w = wind gust disturbance in the body frame, w = (wx, wy, wz)′

θ = pitch angle
φ = roll angle
ψ = yaw angle
δroll = roll channel input
δpitch = pitch channel input

δpedal = pedal channel input

δcol = collective channel input
�g = the value of � in the ground frame
�b = the value of � in the body frame
�r = the value of � as control reference

258 Advances in Flight Control Systems

www.intechopen.com



7. References

Bortoff, S. (1999). The university of toronto rc helicopter: a test bed for nonlinear control,
Proceedings of the IEEE International Conference on Control Applications, IEEE, Vol. 1,
pp. 333–338.

Cai, G., Peng, K., Chen, B. M. & Lee, T. H. (2005). Design and assembling of a uav helicopter
system, International Conference on Control and Automation, Vol. 2, pp. 697–702.

Cai, G., Chen, B. M., Peng, K., Dong, M. & Lee, T. H. (2006). Modeling and control system
design for a uav helicopter, 14th Mediterranean Conference on Control and Automation,
pp. 1–6.

Cai, G., Feng, L., Chen, B. M. & Lee, T. H. (2008a). Systematic design methodology and
construction of uav helicopters, Mechatronics, 18(10): 545–558.

Cai, G., Chen, B. M., Peng, K., Dong, M. & Lee, T. H.(2008b). Comprehensive modeling
and control of the yaw channel of a UAV helicopter, IEEE Transactions on Industrial
Electronics, 55(9): 3426–3434.

Cai, G., Chen, B. M., Lee, T. H. & Dong, M. (2009). Design and implementation
of a hardware-in-the-loop simulation system for small-scale UAV helicopters,
Mechatronics, 19(7): 1057–1066.

Campbell, M. E. & Wheeler, M. (2010). Vision-Based Geolocation Tracking System for
Uninhabited Aerial Vehicles, AIAA Journal of Guidance, Control, and Dynamics, 33(2):
521–532.

Chen, B. M. (2000). Robust and H∞ Control, Springer, London.
Dong, M., Chen, B. M., Cai, G. & Peng, K. (2007). Development of a real-time onboard and

ground station software system for a UAV helicopter, AIAA Journal of Aerospace
Computing, Information, and Communication, 4(8): 933–955.

Enns, R. & Si, J. (2003). Helicopter trimming and tracking control using direct neural dynamic
programming, IEEE Transactions on Neural Networks, IEEE, Vol. 14, pp. 929-939, 2003.

Gavrilets, V., Shterenberg, A., Dahleh, M. & Feron, E. (2000). Avionics system for a small
unmanned helicopter performing aggressive maneuvers, Proceedings of the 19th
Digital Avionics Systems Conferences, Vol. 1, pp. 1E2/1–1E2/7.

Isidori, A., Marconi, L. & Serrani, A.(2003) Robust nonlinear motion control of a helicopter,
IEEE Transactions on Automatic Control, IEEE, Vol. 48, pp. 413–426, 2003.

Karimoddini, A., Lin, H., Chen, B.M. & Lee, T.H. (2009) Developments in hybrid modeling
and control of unmanned aerial vehicles, Proceedings of the 7th IEEE International
Conference on Control and Automation, Christchurch, New Zealand, pp. 228–233.

Karimoddini, A., Lin, H., Chen, B.M. & Lee, T.H. (2010) Hybrid formation control of the
Unmanned Aerial Vehicles, Mechatronics, doi:10.1016/ j.mechatronics.2010.09.007.

Kim, J. & Sukkarieh, S. (2007). Real-time implementation of airborne inertial-SLAM, Journal of
Robotics and Autonomous Systems, 55(1): 62–71.

Kuroki, Y., Young, G.S. & Haupt, S.E. (2010). UAV navigation by an expert system for
contaminant mapping with a genetic algorithm, Journal of Expert Systems with
Applications, 37(6 ): 4687–4697.

Metni, N. & Hamel, T. (2007). A UAV for bridge inspection: Visual servoing control law with
orientation limits, Journal of Automation in Construction, 17(1): 3–10.

Peng, K., Dong, M., Chen, B. M., Cai, G., Lum, K. Y. & Lee, T. H. (2007). Design and
implementation of a fully autonomous flight control system for a uav helicopter,
Chinese Control Conference, pp. 662–667.

259Hierarchical Control Design of a UAV Helicopter

www.intechopen.com



Peng, K. , Cai, G., Chen, B. M., Dong, M., Lum, K. Y. & Lee, T. H. (2009). Design
and implementation of an autonomous flight control law for a UAV helicopter,
Automatica, 45(10), pp. 2333–2338.

Postlethwaite, I. & MacFarlane, A. G. I. (1979). A Complex Variable Approach to the Analysis of
Linear Multivariable Feedback Systems, in Lecture Notes in Control and Information
Sciences, Vol. 12/1979, Springer, Berlin, pp. 58–76.

Saripalli, S., Montgomery, J. & Sukhatme, G. (2003). Visually guided landing of an unmanned
aerial vehicle, IEEE Transactions on Robotics and Automation, 19(3): 371–380.

Shaferman, V. & Shima, T. (2008). Unmanned Aerial Vehicles Cooperative Tracking of Moving
Ground Target in Urban Environments, AIAA Journal of Guidance, Control, and
Dynamics, 31(5): 1360–1371.

Shim, D. H., Kim, H. J. & Sastry, S. (2003). Decentralized nonlinear model predictive control of
multiple flying robots, Proceedings of the 42nd IEEE Conference on Decision and Control,
IEEE, Hawaii, pp. 3621–3626.

Stevens, B. L. & Lewis, F. L. (1992). Aircraft control and simulation, Wiley, New York.
Wang, Q.G., Lin, C., Ye, Z., Wen, G., He, Y. & Hang, C. C. (2007). A quasi-lmi approach

to computing stabilizing parameter ranges of multi-loop pid controllers, Journal of
Process Control, 17(1): 59–72.

260 Advances in Flight Control Systems

www.intechopen.com




