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1 DESCRIPTION OF THE PROBLEM

We consider an n-th order generalized linear system Σ characterized by the
following state-space equations:

Σ :




ẋ = A x + B u + E w
y = C1 x + D11 u + D1 w
h = C2 x + D2 u + D22 w

(1)

where x is the state, u is the control input, w is the disturbance input,
y is the measurement output, and h is the controlled output of Σ. For
simplicity, we assume that D11 = 0 and D22 = 0. We also let ΣP be the
subsystem characterized by the matrix quadruple (A,B,C2, D2) and ΣQ be
the subsystem characterized by (A,E,C1, D1).
The standard H∞ optimal control problem is to find an internally stabilizing
proper measurement feedback control law,

Σcmp :
{
v̇ = Acmp v + Bcmp y
u = Ccmp v + Dcmp y

(2)

such that when it is applied to the given plant (1), the H∞-norm of the
resulting closed-loop transfer matrix function from w to h, say Thw(s), is
minimized. We note that the H∞-norm of an asymptotically stable and
proper continuous-time transfer matrix Thw(s) is defined as

‖Thw‖∞ := sup
ω∈[0,∞)

σmax[Thw(jω)] = sup
‖w‖2=1

‖h‖2
‖w‖2 ,

where w and h are, respectively, the input and output of Thw(s).
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The infimum or the optimal value associated with the H∞ control problem
is defined as

γ∗ := inf
{
‖Thw(Σ×Σcmp)‖∞ | Σcmp internally stabilizes Σ

}
. (3)

Obviously, γ∗ ≥ 0. In fact, when γ∗ = 0, the problem is reduced to the well-
known problem of H∞ almost disturbance decoupling with measurement
feedback and internal stability.
We note that in order to design a meaningful H∞ control law for the given
system (1), the designer should know before hand the infimum γ∗, which rep-
resents the best achievable level of disturbance attenuation. Unfortunately,
the problem of a noniterative computation of this γ∗ for general systems still
remains unsolved in the open literature.

2 MOTIVATION AND HISTORY OF THE PROBLEM

Over the last two decades, we have witnessed a proliferation of literature on
H∞ optimal control since it was first introduced by Zames [20]. The main
focus of the work has been on the formulation of the problem for robust
multivariable control and its solution. Since the original formulation of the
H∞ problem in Zames [20], a great deal of work has been done on finding
the solution to this problem. Practically all the research results of the early
years involved a mixture of time-domain and frequency-domain techniques
including the following: 1) interpolation approach (see, e.g., [13]); chenbm2)
frequency domain approach (see, e.g., [5, 8, 9]); 3) polynomial approach
(see, e.g., [12]); and 4) J-spectral factorization approach (see, e.g., [11]).
Recently, considerable attention has been focused on purely time-domain
methods based on algebraic Riccati equations (ARE) (see, e.g., [6, 7, 10, 15,
16, 17, 18, 19, 21]). Along this line of research, connections are also made
between H∞ optimal control and differential games (see, e.g., [1, 14]).
It is noted that most of the results mentioned above are focusing on finding
solutions to H∞ control problems. Many of them assume that γ∗ is known
or simply assume that γ∗ = 1. The computation of γ∗ in the literature
are usually done by certain iteration schemes. For example, in the regular
case and utilizing the results of Doyle et al. [7], an iterative procedure
for approximating γ∗ would proceed as follows: one starts with a value
of γ and determines whether γ > γ∗ by solving two “indefinite” algebraic
Riccati equations and checking the positive semi-definiteness and stabilizing
properties of these solutions. In the case when such positive semi-definite
solutions exist and satisfy a coupling condition, then we have γ > γ∗ and
one simply repeats the above steps using a smaller value of γ. In principle,
one can approximate the infimum γ∗ to within any degree of accuracy in this
manner. However, this search procedure is exhaustive and can be very costly.
More significantly, due to the possible high-gain occurrence as γ gets close to
γ∗, numerical solutions for these H∞ AREs can become highly sensitive and
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ill-conditioned. This difficulty also arises in the coupling condition. Namely,
as γ decreases, evaluation of the coupling condition would generally involve
finding eigenvalues of stiff matrices. These numerical difficulties are likely
to be more severe for problems associated with the singular case. Thus, in
general, the iterative procedure for the computation of γ∗ based on AREs is
not reliable.

3 AVAILABLE RESULTS

There are quite a few researchers who have attempted to develop procedures
for the determination of the value of γ∗ without iterations. For example,
Petersen [15] has solved the problem for a class of one-block regular case.
Scherer [17, 18] has obtained a partial answer for state feedback problem for
a larger class of systems by providing a computable candidate value together
with algebraically verifiable conditions, and Chen and his co-workers [3, 4]
(see also [2]) have developed a noniterative procedures for computing the
value of γ∗ for a class of systems (singular case) that satisfy certain geometric
conditions.
To be more specific, we introduce the following two geometric subspaces of
linear systems: Given an n-th order linear system Σ∗ characterized by a
matrix quadruple (A∗, B∗, C∗, D∗), we define

i. V−(Σ∗), a weakly unobservable subspace, is the maximal subspace of
R
n which is (A∗+B∗F∗)-invariant and contained in Ker (C∗ +D∗F∗)

such that the eigenvalues of (A∗ +B∗F∗)|V− are contained in C
−, the

open-left complex plane, for some constant matrix F∗; and

ii. S−(Σ∗), a strongly controllable subspace, is the minimal (A∗ +K∗C∗)-
invariant subspace of R

n containing Im (B∗ + K∗D∗) such that the
eigenvalues of the map which is induced by (A∗ +K∗C∗) on the factor
space R

n/S− are contained in C
− for some constant matrix K∗.

The problem of noniterative computation of γ∗ has been solved by Chen
and his co-workers [3, 4] (see also [2]) for a class of systems that satisfy the
following conditions:

i. Im(E) ⊂ V−(ΣP) + S−(ΣP); and

ii. Ker(C2) ⊃ V−(ΣQ) ∩ S−(ΣQ),

together with some other minor assumptions. The work of Chen et al. in-
volves solving a couple of algebraic Riccati and Lyapunov equations. The
computation of γ∗ is then done by finding the maximum eigenvalue of a
resulting constant matrix.
It has been demonstrated by an example in Chen [2] that the noniterative
computation of γ∗ can be done for a larger class of systems, which do not
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necessarily satisfy the above geometric conditions. It is believed that there
are rooms to improve the existing results.
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