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L INTRODUCTION AND PROBLEM STATEMENT 

A s discussed earlier in Part 1 [3], the basic loop transfer recovery ( L T R ) 

problem is concerned with analyzing and possibly designing a controller 

which can achieve the same robustness properties as those of a state feed-

back controller. T o be specific, consider a plant Σ , 

x ( i + l ) = A x ( J b ) + Bu(Jb) , y(k) = Cz(k) + Du(k) ( 1 ) 

where the state vector χ G R
n
, output vector y G R

p
 and input vector 

ti G R
m
. W i t h o u t loss of generality, assume that [B

1
 D

1
]' and [C D] are 

of maximal rank. Let us also assume that Σ is stabilizable and detectable. 

Let the state feedback control law, 

ti = - f x , (2) 

be such that ( a ) the closed-loop system is asymptotically stable, and ( b ) 

the open-loop transfer function when the loop is broken at the input point 

of the plant meets the given frequency dependent specifications. T h e n 

Lt(z), St(z) and T t ( z ) , the target loop transfer function, sensitivity and 

complimentary sensitivity functions are respectively 

Lt{z) = F*Bt 

St(z) = [Im + Lt(z)]-\ 

and 

T t ( z ) = J m - St(z) = [ J m + I . i z ) ] -
1

! ^ ) ( 3 ) 

where Φ = (zln — A )
- 1

 and I m denotes an identity matr ix of dimension 

m x m . W e would like to recover Lt(z) using only a measurement feedback 

controller C ( z ) . T h a t is, given a target loop transfer function Lt(z) and 

the plant transfer function P ( z ) , 

P(z) = ΟΦΒ + JD, 

we seek to design a controller C(z) such that the loop transfer recovery 

error E(z), 

E(z) = Lt(z)-C(z)P(z), ( 4 ) 

is either exactly or approximately equal to zero in the frequency region of 

interest while guaranteeing the stability of the resulting closed-loop system. 
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T h e notion of achieving exact L T R ( E L T R ) corresponds to E(z) = 0 for 

all z. In the case of asymptotic recovery, one normally parameterizes the 

controller C ( z ) in terms of a scalar tuning parameter σ and thus obtains a 

family of controllers C ( z , σ ) . W e say asymptotic L T R ( A L T R ) is achieved 

if C(z9a)P(z) —» Lt(z) pointwise in ζ as σ —• oo. Achievability of A L T R 

enables the designer to choose a member of the family of controllers that 

corresponds to a particular value of σ which achieves a desired level of 

recovery. 

In Part 1 [3], for general discrete systems, the above L T R problem 

has been considered and analyzed using any of three different observer 

or estimator based controllers. T h e estimators considered there are (1 ) 

prediction estimator, ( 2 ) current estimator and (3 ) reduced order estimator. 

Both prediction estimator and current estimator are full order observers. 

T h e reduced order estimator is a current estimator but uses the reduced 

order observer. T h e prediction estimator estimates the state x(k + l) based 

on the measurements y(k) up to and including the (Jb)-th instant, where 

as the current estimator estimates x(k + 1) based on the measurements 

y(k + 1) up to and including the (Jb + l ) - t h instant. T h e analysis of Part 1 

corresponding to all these three different estimator based controllers unifies 

it into a single mathematical frame work. T h e L T R analysis given there 

focuses on four fundamental issues, ( 1 ) the recoverability of a target loop 

when it is arbitrarily given, ( 2 ) the recoverability of a target loop taking 

into account its specific characteristics, (3 ) the establishment of necessary 

and sufficient conditions on the given system so that it has at least one 

recoverable target loop transfer function or sensitivity function, and (4 ) the 

recoverability of a sensitivity function in a specified subspace of the control 

space. A l l this analysis of Part 1 shows some fundamental limitations of 

the given system as a consequence of its structural properties. Al so , Part 

1 decomposes the so called recovery matrix into two parts, the first one 

can always be rendered zero while the other in general cannot be rendered 

zero and hence can be termed as the recovery error matrix. T h e analysis of 

Part 1 also discovers a multitude of ways in which freedom exists to shape 

the recovery error matrix in a desired way. Thus it helps to set meaningful 

design goals at the onset of design. 

Part 1 also reveals both similarities as well as fundamental differences 

that arise in L T R analysis of continuous and discrete time systems. A 

fundamental difference between continuous time and discrete time systems 
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that should be emphasised is this. In the discrete case, as is well known, in 

order to preserve stability, all the closed-loop eigenvalues must b e restricted 

to lie within the unit circle in complex plane. This implies that unlike 

continuous case which permits both finite as well as asymptotically infinite 

eigenvalue assignment to a closed-loop system, in the discrete case one 

is restricted to only finite eigenvalue assignment. Because of this, in the 

continuous case, there exists target loops which are not exactly recoverable, 

but are asymptotically recoverable by appropriate infinite eigenstructure 

assignment; on the other hand, in discrete systems, since both asymptotic 

as well as exact recovery involves only finite eigenstructure assignment, 

every asymptotically recoverable target loop is also exactly recoverable and 

vice versa. Thus , in discrete systems, one needs to talk about just recovery 

rather than emphasizing exact or asymptotic recovery. 

In this Part 2 of the paper, we consider design of all three, predic-

tion, current and reduced order estimator based controllers for the purpose 

of loop transfer recovery. For each one of such controllers, after review-

ing from Part 1 the necessary design constraints and the available design 

freedom, three different design techniques are developed. T h e first one is 

an eigenstructure assignment scheme, and the other two are optimization 

based designs. Eigenstructure assignment method yields a controller design 

which achieves any chosen recovery error matrix among a set of admissible 

recovery error matrices. O n the other hand, one of the optimization based 

design methods leads to a controller that achieves a recovery error matrix 

having the infimum J3oo norm, while the other does the same except it 

achieves a recovery error matrix having the infimum H2 norm. T h e eigen-

structure assignment method given here is a special case of the asymptotic 

time-scale and eigenstructure assignment ( A T E A ) method introduced in 

[8] and fully developed in [2] in connection with continuous systems. Since 

in discrete systems, one does not have the option of assigning the asymp-

totically infinite eigenvalues, no multiple time-scale structure assignment is 

feasible. T h e algorithm of A T E A as in [2] when the option of time-scale 

structure assignment is removed from it, yields a simple design tool for 

discrete L T R as well. Regarding optimization based design methods, while 

partial results are available in the literature based on H2 norm minimization 

[5], [11], no methods of 2?oo norm minimization are yet available for dis-

crete systems. This paper develops new üT«, norm minimization methods, 

and then streamlines and strengthens the available H2 norm minimization 
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methods. An important difference between A T E A and optimization based 

designs is this. A T E A is capable of achieving any admissible recovery error 

matrix where as optimization based methods always lead to a particular 

recovery error matrix having the infimum or H2 norm depending on 

the method used. 

As mentioned earlier, in discrete systems, when one talks about re-

coverability, one need not distinguish between the notions of 'exact' and 

'asymptotic' recoverabilities as they both imply one and the same. How-

ever, as will be seen in the text, optimization based methods of recovery 

design some times lead only to suboptimal designs. For the case of recover-

able target loops, such suboptimal designs yield asymptotic recovery. To be 

specific, in JJQO-optimization methods, one normally generates a sequence 

of observer gains by solving parameterized algebraic Riccati equations. As 

the parameter tends to a certain value, the corresponding sequence of üT«, 

norms of the resulting recovery matrices tends to a limit which is the in-

fimum of the 2?oo norm of the recovery matrix over the set of all possible 

observer gains. Obviously, for the case when the infimum of 2?oo norm of 

the recovery matrix is zero, the sequence of observer gains thus obtained 

lead to a suboptimal design that corresponds to asymptotic recovery. 

The conventional LTR design task seeks the recovery over the entire 

control space. As discussed in Part 1, one can also formulate another gen-

eralized design task which seeks the recovery only over a specified subspace 

of the control space. Such a formulation is meaningful especially when re-

covery over the entire control space is not feasible. All the three design 

methods developed here can easily be modified to deal with such a gener-

alized design task. 

The paper is organized as follows. Section II reviews the necessary 

design constraints and the available design freedom. Section III develops 

the general A T E A method of design. Section IV develops optimization 

based designs. Here two designs are considered; one minimizes the fT«, 

norm of a recovery matrix while the other minimizes the H2 norm of the 

same. Section V considers the generalized design task of recovering the 

target sensitivity and complimentary sensitivity functions over a subspace 

of the control space. All the previous sections consider the case when 

the target loop transfer function is specified at the input point of the given 

system. Section V I reformulates the LTR design when a target loop transfer 

function is specified at the output point of the given system in terms of 
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LTR design when a target loop transfer function is specified at the input 

point of a system dual to the given system. Finally, Section VII draws the 

conclusions of our work. 

As in Part 1, throughout this paper, A! denotes the transpose of A% A
H 

denotes the complex conjugate transpose of il, I denotes an identity matrix 

while Ik denotes the identity matrix of dimension Jb χ Jb. X(A) denotes the 

set of eigenvalues of il. Similarly, στηαβ[>1] and <7mt-n[i4] respectively denote 

the maximum and minimum singular values of il. Ker [V] and Im [V] denote 

respectively the kernel and the image of V . C ° denotes the set of complex 

numbers inside the open unit circle while C® is the complimentary set 

of C ° . Given a discrete transfer function G(z), we define the discrete 

frequency response G*(ju) as G(e^
uT
) where Τ is the sampling period of 

the discrete-time system. An asymptotically stable matrix is the one whose 

eigenvalues are all in C ° . 

While discussing the design procedures, we will always use a generic 

controller which could be based on any one of the three estimators, predic-

tion, current or reduced order. In that case, as in Part 1, we will always 

use the following notation : 

C ( z ) : = The transfer function of the controller, 

L(z) := C(z)P(z) = The achieved loop transfer function, 

S(z) : = [ I m + ϋ ( ζ ) ] "
1
 = The achieved sensitivity function, 

T(z) := 7 m — S(z) = The achieved complimentary sensitivity 

function, 

E(z) := Lt(z) — L(z) = Loop recovery error, 

M(z) : = The recovery matrix (to be defined later on), 

M°(z) : = A part of the recovery matrix M(z) that can be 

rendered zero, 

M
€
(z) : = A part of the recovery matrix M(z) that cannot be 

rendered zero and hence termed as recovery error matrix, 

T
R
( E ) : = The set of either exactly or asymptotically recoverable 

target loops for Σ . 

Whenever we have a particular controller in mind, we use appropriate sub-

scripts to distinguish them. Subscripts p, c and r are used respectively 
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to represent prediction, current, and reduced order estimator based con-

trollers. For example, Lp(z)% M*(z) and Τ * ( Σ ) denote respectively the 

achieved loop transfer function with prediction estimator based controller, 

the recovery error matr ix when a current estimator based controller is used, 

and the set of recoverable target loops for Σ using reduced order estimator 

based controllers. 

IL CONTROLLER STRUCTURES — DESIGN CON-
STRAINTS AND AVAILABLE FREEDOM 

In this section, we will recall three different controller structures as well as 

their design constraints and freedom available for the purpose of achieving 

L T R . A l l the three controllers considered are observer based, but the type of 

observer (or state estimator) used in each one is structurally different. T h e 

estimators considered are (1) prediction estimator, (2) current estimator 

and (3) reduced order estimator. T h e structural details of the controllers 

are as follows. 

Prediction estimator based controller : 

T h e dynamic equations of the controller are 

f z(t + 1) = Ax(k) + Bu(k) + Kp[y(k) - Cx(Jb) - Du(l)], I (5) 

I !!(*) = «(*) = --?•*(*). 
where Kp is the gain chosen so that A — KPC is asymptotically stable. T h e 

transfer function of the controller is 

Cp(z) = F[zln -A + BF + KPC- KpDF]~
l
Kp. ( 6 ) 

Current Estimator Based Controller : 

Let us first rewrite the matrices C and D in the form, 

C = Co 
Ci 

and D = Do 
0 (7 ) 

where Do is of maximal rank, i.e., r a n k ( D ) = r a n k ( D o ) = ™ο· Thus , the 

output y can be partitioned as, 

[vxW. 
Co 
Ci »(*) + 

Do 
0 «(*)· 
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T h e dynamic equations of the controller are 

z ( i + 1) = Ai(k) + Bu(k) + Ke ([yffiq] - - D e u ( k ) ) , 

Û(fc) = « ( t ) = - F x ( f c ) , 

where «• [a] -* D-=[<&]' w 
and where the gain Kc is chosen so that A — KCCC is asymptotically sta-

ble. T h e transfer function from — u to y that results in using the current 

estimator is then given by 

( 8 ) 

Ce(z) = F [zln - A + KeCc + BF- KcDcF]'
1
 Ke 

Reduced Order Estimator Based Controller : 

Jm. 0 ' 

0 zl 
(10) 

A g a i n , without any loss of generality but for simplicity of presentation, 

it is assumed that the matrices C and D are transformed into the form, 

C = Co2 
0 

and D = Do 
0 ( H ) 

Then Σ can be partitioned as follows, 

fxi(k + l)\_ \Au Au] 
\x2{k + L ) J - [ A 3 1 A „ \ \9i[k)J [ 

Bn 

B22 

0 

(12) 

Since yi = χι is already available, one needs to estimate only the state 

variable sc2. Then the dynamic equations of the reduced order estimator 

based controller are as follows: 

' v(k + 1) = (Ar - KrCr)v(k) + (Br - KrDr)u(k) + Gry(k), 

{ u{k) = û(k) = -Fix1{k)-F3X2(k) = -F2v(k)-[0,F1+F2Krl]y(k) 
(13) 

where the gain Kr is chosen such that A+ — KrCr is asymptotically stable, 

and where 

Ar=A22, Br=B22, * = (14) 
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F = [FU F2]% Kr = [Kr0, Krl]9 ( 15 ) 

Gr = [ J T r 0l A21 - KriAn + (Ar- KrCr)Krl]. (16) 

T h e transfer function from —u to y that results in using the reduced order 

estimator is then given by 

C r ( z ) = F2(zl - A r + KTCT + BrF2 - KrDrFj'
1 

• (Or - (Br - JT r£> r)[0i ft + ftJTn]) + [0, ft + ftJTri]. (17 ) 

A fundamental result of Part 1, namely L e m m a 1, rewrites the loop 

transfer recovery error E(z) between the target loop transfer function Lt(z) 

and that realized by any one of the above controllers, in terms of a so called 

recovery matrix Μ ( ζ ) . T h a t is, 

E(z) = M(z)[Im + M(z)Y
1
(Irn 4 - F9B). (18) 

T h e expression for the recovery matrix Af (z) depends on the controller 

used. In particular, we have the following expressions, 

Mp(z) = F(zln -A + Κ,ΟΥ^Β - KPD)% ( 19 ) 

Me(z) = F ( z I n - A + KçCc)-
1
 (Β - KeDe), (20) 

Mr(z) = F2(zl - Ar 4 - KrCr)-\Br - KrDr). (21) 

It is easy to see that 

E*(ju) = 0 if and only if M*(ju>) = 0 

for all ω G Ω, where Ω is the set of all 0 < | ω \< x / T for which L\(jw) and 

L*(ju) = C*(ju))P*(jw) are well defined (i .e. , all required inverses exist). 

This implies that the study of L T R can be cast in terms of the study of 

the recovery matrix M(z). Also , since the expression for M(z) for each 

controller is structurally similar to those of others, one can unify the L T R 

analysis and design involving all three different controllers into a single 

mathematical framework. This is done by defining the auxil iary systems 

E c and Σ Γ which are respectively characterized by the matr ix quadruples 

(A9 B,Ce,Dc) and (Ar,Br,Cr, Dr). 

In view of the above discussion, in order to determine the available de-

sign freedom for each controller, one needs to study an appropriate recovery 

matrix Af ( z ) . Such a study has been undertaken in Part 1. It is shown 
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there that the recovery matrix M(z) can be decomposed into two parts, 

M°(z) that can always be rendered zero and M*(z) that cannot in general 

be rendered zero. A s such M'(z) is termed as recovery error matrix. Let 

us present here a brief summary of the analysis given in Part 1. A s in Part 

1, our general discussion is always in terms of the given system Σ and the 

prediction estimator based controller. T h e details for other two controllers 

are presented only when they need to b e emphasised. 

Assuming that A — KPC is nondefective, one can expand the recovery 

matrix Mp(z) in a dyadic form, 

i=i ζ ~ λ ί 

where the residue Β,· is given by 

Ri = FWiV(*[B - KpD]. (23) 

Here W< and Vi are respectively the right and left eigenvectors associated 

with an eigenvalue λ{ of A — KPC and they are scaled so that WV = 

V
H
W = In where 

W = [WuW,,-..,Wn] and V = [Vlt V3, • • ·, Vn]. (24) 

T o review what can and what cannot b e rendered zero, let us partition 

Mp(z) into three parts, each part having a particular type of characteristics, 

MP(Z) = M-(Z) + M*(Z) + M;(Z), (25) 

where 

4=1 Z
 -

 A
i i=l Z A

i 

and 

t=l * 
In the above partition, appropriate superscripts - , 6, and c are added to 

Ri and λ< in order to associate them respectively with Mp"(z)t Mp

h
(z), and 

M*(z). Next , define the following sets where ηΛ = n+ + nc + nf. 

A " = { Λ Γ ; t = l to n " } , V~ = {Vr; i=l to n " } , W~ = {Wr; i=l to n j } 

A
6

= { λ * ; ι = 1 t o n * } , V * = {V? ; t = l to nb}t W
b
 = { W ? ; t = l to nb] 

A * = { λ ? ; » = 1 t o n . } , V
e
 = { ; » = 1 to n . } , W = { ; t = l to n , } . 
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W e now proceed to describe in detail the necessary design constraints and 

the available design freedom in assigning an appropriate eigenstructure to 

A — KpC. W e do this b y considering one part of Mp(z) at a time. 

D i s c u s s i o n o n M~(z)i Consider an arbitrary target loop transfer function 

Lt(z). T h e term M~(z) can identically b e rendered sero. T o accomplish 

this, the set of n~ eigenvalues A " and the corresponding set of left eigen-

vectors V " of A — KPC must be selected to coincide respectively with the 

set of plant min imum phase invariant seros and the corresponding left state 

sero directions of Σ . 

D i s c u s s i o n o n Mp(z): Consider an arbitrary target loop transfer function 

Lt(z). T h e term Mp(z) can identically be rendered zero. T o accomplish 

this, the set of n* eigenvalues A * can be assigned arbitrarily in C ° , while 

the corresponding set of left eigenvectors V
h
 of A — KPC is in the null space 

of matrix [B — KpD]'. 

D i s c u s s i o n o n Mp(z)i In general, for an arbitrary target loop transfer 

function Lt(z)} it cannot be rendered zero either asymptotically or oth-

erwise b y any assignment of A ' and the associated sets of right and left 

eigenvectors, W* and V
e
. Note also that the sets of eigenvectors W* must 

span the subspace £ ~ ~ ( Σ ) [3]. 

Since both M~(z) and Mp(z) can be rendered zero, for future use, we 

can combine them into one term, 

M?(z) = Mp-(z) + M$(z). 

W e define likewise, A
0
 = A " U A * , W° = W U W\ V° = V U V

1
. 

Similarly, we define the set of residues corresponding to the eigenvalues in 

A
0
 as Ä

0
, and the one corresponding to the eigenvalues in A * as R

e
. Thus 

Mp(z) can be rewritten as 

MP(Z) = M2(Z) + M;(Z). (26) 

T o summarize the above development, Mp(z) can essentially be decom-

posed into two parts, Mp(z) and Mp(z). T h e first part M%(z) is dependent 

on A ° a set of eigenvalues, and R° the corresponding set of residues. R° 

in turn depends on the sets of right and left eigenvectors, W° and V°. 

Mp(z) can always be rendered zero by choosing appropriately Λ
0
, W° and 
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V°. O n the other hand, the second part M*(z) cannot b e rendered zero in 

general for an arbitrary target loop transfer function. Hence, M*(z) can 

be termed as the recovery error matrix. This recovery error matr ix M*(z) 

is parameterized in terms of A ' and where R* in turn is parameter-

ized in terms of W* and V
e
. There is complete freedom in choosing the 

set of eigenvalues A ' so that its elements are all with in the unit circle 

in complex plane, where as the sets of eigenvectors W* and V* have to 

satisfy the well known eigenvector assignment constraints [6]. A l so , W 

must span the subspace 5 ~ ( Σ ) . Al though W and V* have to satisfy cer-

tain constraints, there exists a considerable amount of freedom in selecting 

them. A s such, one can shape the recovery error matr ix M£(z) b y selecting 

appropriately A * , W
€
 and V

e
. In other words, for every given system and 

for each type of controller, there exists a set of admissible recovery error 

matrices, and such a set can be denoted as Μ
Λ
(Σ). Thus , notationally, 

A 4 * ( E ) , Λ 4 £ ( Σ ) and Μ*(Σ) are respectively the admissible sets of recovery 

error matrices for prediction, current and reduced order estimator based 

controllers. N o w proceeding with our general discussion for a prediction 

estimator based controller, one then naturally seeks a design method which 

leads to a chosen recovery error matrix M*{z) among the set of admissible 

recovery error matrices Μ*(Σ). In the following section, we will give an 

eigenstructure assignment design method capable of achieving any chosen 

M*(z) G Μρ[Σ). In Section I V , we will describe two optimization based 

design methods, one method leads to a design that yields the infimum i f oo 

norm of the recovery error matrix, while the other yields the infimum H2 

norm. W e emphasize that the eigenstructure assignment design method can 

lead to any chosen recovery error matrix, where as the optimization based 

design methods yield a particular recovery error matrix having either the 

infimum Hoo norm or H2 norm depending on the method used. 

T h e above discussion pertains to the case where the target loop transfer 

function L%(z) = F$B is arbitrarily specified. However, as stated in T h e -

orem 5 of Part 1, when specific properties of Lt(z) are taken into account, 

one can render the recovery error matrix zero provided the given system 

satisfies the following conditions depending on the controller used: 

(1) For a prediction estimator based controller, the condition is that 

5 " ( Σ ) C K e r ( F ) . 

(2 ) For a current estimator based controller, the condition is that S~ ( Σ ) Π 

{ x | C x e I m ( D ) } Ç K e r (F). 
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(3) For a reduced order estimator based controller, the condition is that 

5 - ( Σ ) Π { χ I C z € Im (D)} C Ker (F). 

Thus under the above conditions, the set of admissible recovery error ma-

trices for a given target loop transfer function contains an element which is 

identically sero for all ζ in complex plane. In that case, either eigenstruc-

ture assignment method of design or optimisation based methods of design 

can achieve exact loop transfer recovery. 

I I I . DESIGN B Y EIGENSTRUCTURE ASSIGNMENT 

For continuous time systems, we developed earlier a time-scale and eigen-

structure assignment ( A T E A ) method of L T R design which is capable of 

exploiting all the available design freedom [8], [2]. In discrete time systems, 

as explained earlier, one does not deal with asymptotically infinite eigen-

values and as such there is no feasibility of assigning a multiple time scale 

structure to controller dynamics as in the case of continuous systems. That 

is, in discrete time systems, one can assign only a finite eigenstructure. As 

such, the design procedure we propose here is a special case of A T E A in 

which the option of assigning a chosen time scale structure is removed and 

hence is some what simpler than that for continuous systems. Although 

there is no time scale structure assignment, since the method proposed 

here is a special case of A T E A , we still call it as A T E A design. The present 

A T E A design method does not call for parameterizing the gain Κ in terms 

of a tunable parameter. 

The input parameters to A T E A design are the sets of eigenvalues A
6 

and A ' , and the residue set R* which can equivalently be specified in terms 

of the right and left eigenvectors W
e
 and V

e
. Also, R? is to be rendered 

zero so that M ° ( z ) = 0. Note that A* and A* in addition to A " form 

the eigenvalues of the observer dynamic matrix. Furthermore Λ
β
 and R

e 

shape the recovery error matrix M*(z) as desired. Thus the prescription 

of A* and R* is equivalent to prescribing a desired M*(z) G Μ*(Σ). We 

now give a step by step A T E A design method of obtaining the observer 

gain Kp which when used in prediction estimator based controller leads 

to the prescribed recovery error matrix M*(z). The following steps of the 

A T E A design algorithm assume that the given system Σ has already been 

transformed to the form of s.c.b (see, Section III of Part 1 [3]). 
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Step 1 : This step deals with the assignment of eigenstructure to the 

subsystem (9) of Part 1. Choose a gain K* such that X(Ahi — K*C{) 

coincides with the specified set A*. Note that the existence of such a K* is 

guaranteed by Property 2 of Section III of Part 1 [3]. We also note that the 

eigenvectors of Ai% — KpC% can be assigned in any chosen way consistent 

with the freedom available in assigning them [6]. Owing to the properties 

of s.c.b, A T E A design always results in an eigenvector set V* corresponding 

to the eigenvalues A* of the observer, in the null space of (B — KpD)' so 

that M*(z) = 0. 

Step 2 : This step deals with the assignment of eigenstructure to the 

subsystems (8), (10) and (12) of Part 1. Let A* and C" be defined as 

Aia 0 

( hE+a Acc 

[BfE+ BjEc 

LefCf 
C* = 

&0α Coe Co/ 

0 0 Cj J 
(27) 

The design specifications utilised here are Λ ' and W*. In view of the s.c.b, 

W* is of the form, 

W
t
 = [0 {W;+)» 0 (WJ)" 

Let Wi = [ ( W e

e

+ )
H
 ( W e

e
)

H
 ( W / ) " ]

1 1
. Now select a gain K* such that 

X(A* — K*C
€
) and the set of right eigenvectors of A* — K*C* coincide with 

the specified Λ ' and Wf. Again note that the existence of such a K* is 

guaranteed by Property 2 of Section III of Part 1. Let us next partition 

Kt as 

Step 3 : In this step, Kp and K* calculated in Steps 1 and 2 are put 

together into a composite matrix. Let 

Γ * o . Ks Κ] 
XL+*;0+ Lit 

Bot Us 
Boc + Kf K? Let 

. Boj + ÜT/° 0 . 

Γ - ι (28) 

We have the following theorem. 
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Theorem 1. CONSIDER A GAIN AS GIVEN BY (28). THEN WE BAVE THE FOLLOWING 

PROPERTIES: 

1. THE EIGENVALUES OF A — KPC ARE GIVEN BY A", A* and A*. 

2. THE ACHIEVED RECOVERY ERROR MATRIX COINCIDES WITH THE SPECIFIED M*(Z) 

FOR ALL Ζ IN C. 

P r o o f : It follows from the properties of s.c.b and some simple algebra. I 

Example 1 : Consider a non-strictly proper discrete-time system Σ with 

sampling period Τ = 1, and characterised by 

A = 

0 1 0 0 

0 0 1 1 

1 0 0.5 0 

1 0 0 1.5 

0 0 1 0 

1 0 0 0 

Β = 

D = 

0 01 

0 1 

1 0 

0 0. 

1 0 

0 0 

Let the target loop LT(Z) and thus the target sensitivity function ST(Z) be 

specified by 

~0.00 0.0000 1 0.000 

1.25 0.8333 1 2.875 
F = 

It is simple to verify that the given system Σ is invertible, i.e., nj = NC = 0, 

with two infinite zeros of order 2 and two invariant zeros at {—0.5, 1.5}. 

It can also be verified that the target loop specified by the given F is not 

recoverable by any of the three controllers being considered in this paper. 

Let A
e
 and W

e
 along with the corresponding recovery error matrix M*(Z) 

be as given below depending on the controller used: 

Prediction Estimator Based Controller 

A* = { - 0 . 1 , 0 ,0 .1} , W 

-0.3684 -0.3478 0.3276 

-0.5157 -0.5217 0.5241 

0.0000 0.0000 0.0000 

-0.7735 -0.7790 0.7861 

and 

0.01z 

0 0 

0 0.8333z
2
 + 1.25z - 13.41 
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Current Estimator Based Controller 

Λ
β
 = { - 0 . 1 , 0.1, } , W = 

and 
1 

01 

Γ 0.0000 0.00001 
-0.5812 -0.5300 

0.0000 0.0000 
L-0.8137 -0.8480 J 

0 0 
0 0.8333z - 7.69 

Reduced Order Estimator Based Controller : 

A* = { - 0 . 1 , 0.1, } , W = 

and 

-0.5812 -0.5300 
0.0000 0.0000 

-0.8137 -0.8480 

0 0 
0 0.8333z - 7.69 ζ- - 0.01 

Then using A T E A algorithm, we obtain the following controllers. 

Prediction Estimator Based Controller : 

i ( * + 1 ) = 

•-1.50 1.0000 0.0 

o.ooo- •o 
1.50-

-3.49 -0.8333 0.0 --1.875 
*(*) + 

0 2.24 
0.00 0.0000 -0.5 0.000 *(*) + 1 1.00 

.-3.36 0.0000 0.0 1.500. .0 4.36. 

-u(k) = 
0.00 
1.25 

0.0000 
0.8333 

1 0.000* 
1 2.875 *(*). 

v(*). 
The eigenvalues of the above prediction estimator are at {—0.5, —0.1, 0, 

0.1} while the achieved recovery error matrix M* coincides with the one 

specified. 

Current Estimator Based Controller 

*(* + !) = 

- 0.00 0.0000 0.0 

o.ooo- -o o.oo--1.25 -2.3333 0.0 -1.875 
*(*) + 

0 -8.95 
1.00 0.0000 -0.5 0.000 *(*) + 1 1.00 

. 1.00 -2.2400 0.0 1.500. .0 1.00. 

0.00 0.0000 1 0.000 
1.25 0.8333 1 2.875 

0 0.00 
0 8.94 

y(k). 
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I 

"I 

0.5 1.5 2 

Frequency (rad/sec) 

Figure 1: T h e m a x . and min. singular values of target and achieved loops. 

T h e eigenvalues of the above current estimator are at {—0.5, —0.1, 0, 0 .1} 

while the achieved recovery error matr ix Af" coincides with the one speci-

fied. 

Reduced Order Estimator Based Controller 

v(k + 1) = 

"-2.3333 0.0 -1.875" "0 -8 .95" 

0.0000 - 0 . 5 0.000 „(*) + 1 1.00 

-2 .2400 0.0 1.500 0 1.00 
y ( * ) , 

0.0000 

0.8333 

0.000 

2.875 
v(k) + [I 0.00 

8.94 
y(k). 

T h e eigenvalues of the above reduced order estimator are at {—0.5, —0.1, 

0 .1} while the achieved recovery error matr ix Mf coincides with the one 

specified. 

T h e plots of m a x i m u m and minimum singular values of the target and 

the achieved loop transfer function via all the three controllers are shown in 

Figure 1. A l so , the plots of m a x i m u m singular values of M*(ju>)} M*(jw) 

and M*(jcj) are shown in Figure 2, while the plots of m a x i m u m singular 
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1.5 2 

Frequency (rad/sec) 

<rma.[M;(jij)]; * m. . [ A f ; ( i u ; ) ] U σ^Μ^ω)] 

Figure 2: T h e max . singular values of recovery matrices. 

3.5 

i 

1.5 2 

Frequency (rad/sec) 

<rmam[E;(jU>)]; < T m a . [ £ e* ( i w ) ] * * m « . [ J S ; ( j u , ) ] 

Figure 3: T h e m a x . singular values of loop transfer recovery errors. 

3.5 
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values of EP(JU), E*(JU>) and E*(JU) are shown in Figure 3. Clearly, as 

expected, the above current and reduced order estimators yield the same 

performance in the sense that the achieved recovery is same. • 

IV . OPTIMIZATION BASED DESIGN METHODS 

As is clear from Section II, the whole notion of LTR is to render the recov-

ery matrix MP(Z) = F(ZLN — A + KPC)~
X
(B — KPD) small in some sense or 

other. The A T E A design method of Section III views this task from the per-

spective of eigenstructure assignment to the controller dynamic matrix. It 

enables us to design a controller which achieves any specified recovery error 

matrix among a set of such admissible matrices. An alternative method, as 

in the case of continuous systems, is to view the controller design for LTR as 

finding an observer gain KP which minimizes some (say, either or H2 ) 

norm of M P ( Z ) . That is, one can cast the LTR design as a straightforward 

mathematical optimization problem. A suboptimal or optimal solution to 

such an optimization problem provides the needed observer gain. Note that 

when L T R problem is formulated as an optimization problem of minimiz-

ing some norm of MP(Z) by appropriate selection of KP, the optimization 

method apparently renders MP(Z) zero while minimizing the specified norm 

of M P ( Z ) . In contrast to this, eigenstructure assignment method is flexible, 

and is capable of yielding any recovery error matrix MP(Z) G Μρ(Σ) while 

rendering MP(Z) zero. 

Goodman [5] is the first person who formulated earlier the L T R problem 

for discrete systems as a 2Γ3 minimization problem of the recovery matrix 

M P ( Z ) . He considered only strictly proper square invertible minimum phase 

systems having infinite zeros of order one. Recently, Zhang and Freuden-

berg [11] considered square strictly proper nonminimum phase systems. 

They develop explicit expressions for the resulting recovery error matrix 

and the sensitivity function when prediction as well as current estimator 

based controllers are used and when optimization is used to minimize the 

H2 norm of the recovery matrix. The optimization procedure used by [11] 

follows along the same lines as that for continuous systems as in [4]. It 

turns out, as in the continuous case [2], that the controller design based on 

optimization procedures for LTR of general discrete systems, can be cast 

as an optimal state feedback design for an auxiliary system related to the 

given one. Then, following a mass of existing literature on such optimal 
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state feedback designs, especially for continuous systems, one can develop 

in a straightforward way optimisation based design procedures for L T R of 

general discrete systems. This is what we pursue in this section. 

T o proceed with, we consider the following auxil iary system, 

( x(k + 1) = A'x(k) + Cu(k) + F'w(k), 

y ( * ) = » ( * ) , 

z(k) =B'x(k) + Üu{k). 

(29) 

Here w is treated as an exogenous disturbance input to E
e ul

 and u is the 

controlling input while the variable ζ is considered as the controlled output. 

Then it is trivial to verify that the closed loop transfer function from w to 

y of E
e ul

 under a state feedback law u(Jb) = -K'px(k) is given by 

Μ\z) = (Β' - D'K'p)(zIn - A' + C'K^F'. (30) 

Hence, the minimisation of Mp(z) over all the possible stabilising gains Kp 

is equivalent to the minimization of M'(z) over all the stabilizing state feed-

back control laws for E * "
1
. A s such the design of observer based controllers 

for L T R is translated to an optimal state feedback controller design. 

A . JTQ O - o p t i m i z a t i o n B a s e d A l g o r i t h m 

Throughout this section, we assume that the given system Ε characterized 

by (A, B. C , D) has no invariant zeros on the unit circle. Denoting 7* as 

the infimum of ||Afp(z)||oo over all possible stabilizing gains Kpi we present 

here a basic algorithm of computing the gain matr ix ^(7) such that the 

resulting -HOo-norm of the recovery matr ix M p ( z , 7 ) , is less than a priori 

given desired scalar 7 > 7*. T h e algorithm is as follows: 

S t e p 1 : A t first we compute nonsingular transformations U and V such 

that 

UD' 
[ 0 0 

Then partition 

C'V=[B0 B i ] and UB'= Co 
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Following the procedure of constructing a special coordinate basis ( s . c .b ) , 

see Section I I I of Part 1 [3], one can readily calculate three nonsingular 

transformations I\- and Γ 0 such that 

r 7 V - * o £ o ) r . = 

0 K>c> 0 KfCf] 
0 ATA 0 LIJCF 

0 0 A» 0 LTJCJ 

BCE^ BCETA 
AEE LEJC} 

BFEJA BFEFA 
BJEJT BJEJC AS J 

Γ 7
1
 [B0 Β ! ] Γ , · = 

BÖA 

BTA 

BOT 

BOE 

BOS 

0 

0 

0 

0 

BS 

ο η 
ο 
ο 

BE 

ο 

-.-ι 
'CO' 'CÖA CTA Co» COE 

C i 

Γ , = 0 0 0 0 

C i 0 0 CI 0 

E 
J7 

α 

— ET 

EC 

YEJ\ 

COS 

CS » 

G 

and 

Λ-1 
0 ' 

r< = imo 
0 

0 

0 

0 ' 

0 

0 0 0 0 0 

Next , we define a subsystem E
o u3

 of the above dual system as, 

X{K + 1) = AX(K) + BU(K) + EW{K), 

Y{K) = X(K), 

Z(K) = CX{K) + Du(i fe) , 

iou2 , 

where 

and 

αα 

0 

0 

0 

AT 
0 

BFET 

AB
C
* L 

tic* 
AN 

BFEJI 

Kfcf 

K,c, 
LTFCF 

0 • 

Β — BTA 0 

ι — BOB 0 

-BQJ B } \ 

E = 
ET 

ET 

, C -ET 

ET 

IE,} 

ο 
ο 

Ct 

ο 
C
I 
ο 

Ίτηο 0 " 
, D = 0 0 

0 0 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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Here we note that the system characterized by ( A , £ , C , D) is left invertible 

and has no invariant zeros on the unit circle if and only if Σ characterized 

by (A , B, C, D) has no invariant zeros on the unit circle. 

Step 2 : Solve the Riccati equation, 

D'D + B'PB B'PE 
ETB -y'l + E'PE 

for a positive semi-definite Ρ which satisfies the conditions: 

D'D + B'PB > 0 and I — E'PE/y
2
 > 0 

and 

_ 1 r
B'PA + D'C 

E'PA 

λ{Α-[Β E] 
D'D+B'PB B'PE 

E'PB -y
3
I+E'PE 

- 1 
ÏPA + D'CÏI 

E'PA Jj cc°. 

We note that such a Ρ always exists and is unique since (A, B, C, D) is 

left invertible and has no invariant zeros on the unit circle [10]. 

Step 3 : Compute 

Fi = [B'PB + D'D + B'PEtfl - E'PE^E'PB]-
1 

• [B'PA + D'C + B'PEtfl - E'PE^E'PA] 

and partition it as 

•^oO Ko
 F

* 0 ί / 0 

Kf Kf *ss\ 
Then let 

F(j) = VTi 

C0a + f a 0 C$a + FJq Cot + Fto Cqc Cof + Ffo 
Kf Kf *"*J Efc Fff 

0 0 0 Fee 0 
1-1 

where Fee is such that Χ(Αα — BeFee) G C ° . Next, choose Kp(y) as 

* » ( 7 ) = η*)· (38) 
We have the following theorem. 
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T h e o r e m 2. Let Κρ(γ) be computed as in (38) and let Mp(z,y) be the 

resulting recovery matrix. Then, | | Μ ρ ( ζ , 7 ) | | ο ο is strictly less than 7 , and 

tends to 7 * as 7 —• 7 * . 

P r o o f : See A p p e n d i x A . I 

R e m a r k 1. Note that once the estimator gains Κρ(η*), Kc(j*) and Kr(y*) 

are calculated from the above design procedure, the corresponding recovery 

error matrices can easily be calculated from the expressions (19), (20) and 

(21), i.e., 

M;(Z) = F[zln - A + Kp(y*)Cf]^[B - * F ( 7 * ) J > ] , (39) 

M;(Z) = F[zIn-A + Ke(j*)Cc]-
1
 [B - Ke(>y*)Dc], (40) 

M r

e
( z ) = F2[zl-Ar + Kr{j*)GR]-

1
[BR - Krtf)DR]. (41) 

Moreover, these recovery error matrices have the least norm among 

the sets of the corresponding admissible recovery error matrices. 

E x a m p l e 2 : Consider a discrete-time system Σ given in A s t r o m et al [1] 

with sampling period Τ = 1, and characterised by 

1.1036 1 0 0.0803 
A = -0.4060 0 1 , B = 0.1544 

0.0498 0 0 0.0179 

C = [ l 0 o ] , D-- = 0. 

Let the target loop Lt(z) and the target sensitivity function St(z) b e spec-

ified by 

F = [7.1222 7.5293 2.7373]. 

It is simple to verify that the given system Σ is invertible with one infinite 

zero of order one and two invariant zeros at {—1.7989, —0.1239}. It can also 

be verified that the target loop specified by the given F is not recoverable 

either by a prediction or by a current or b y a reduced order estimator 

based controller. T h e following are the prediction, current and reduced 

order estimator based controllers obtained by the JJQO-optimization based 

algorithm. A l l these controllers achieve the infimum of the 27Oo-norm of the 

corresponding recovery matrices. 
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Prediction Estimator Based Controller : 

"-1.5371 0.3954 -0.2198" 2.0688" 

-1 .2039 -1 .1625 0.5774 £(*) + -0 .3017 *(*). 
-0 .1275 -0 .1348 -0 .0490 0.0498 

-u(k) = [7.1222 7.5293 2.7373] z ( k ) . 

T h e eigenvalues of the above prediction estimator are placed at { 0 , —0.1239, 

—0.8413} while the resulting recovery error matrix Mp'(z) is given by, 

1 .7834z+ 2.1198 
M

*
( Z )

- z> + 0.8413z ' 

Current Estimator Based Controller 

t>(Jb + 1) = 

0.0000 0.0000 0.0000" 0.0000" 

-1 .5716 -1 .2115 0.6046 + -1 .7217 

-0 .0777 -0 .1348 -0 .0490 -0 .0944 
y ( * ) . 

-u(Jfc) = [7.1222 7.5293 2.7373 ] i>(Jb) + 8.0552y(Jfe). 

T h e eigenvalues of the above current estimator are placed at { 0 , 0, —0.1239} 

while the resulting recovery error matrix M'(z) is given by, 

1.1366 
M / ( z ) = — — — . 

Reduced Order Estimator Based Controller : 

-1 .2115 0.6046 
v{k + 1) = »(*) + 

-1 .7217 

-0 .0944 y ( * ) . 
-0 .1348 -0 .0490 J 

-u(Jfe) = [7.5293 2.7373] v(k) + 8.0553y(Jb). 

T h e eigenvalues of the above reduced order estimator are placed at { 0 , 

—0.1239} while the resulting recovery error matr ix M'(z) is given by, 

χ 1-1366 

T h e plots of singular values of the target and the achieved loop transfer 

function via all the three controllers are shown in Figure 4. Also , the plots 

of singular values of M*(jw)t M*(jw) and M*(ju) are shown in Figure 

5, while the plots of singular values of E*(ju)y E*e{ju)) and E*(ju) are 

shown in Figure 6. Clearly, for this example, the above current and reduced 

order estimators yield the same performance in the eense that the achieved 

recovery is same. • 
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2h 

, 5 l , . • 1 ' ' ' 
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|M;r»|; |Me»r»l * \M:U«)\ 

Figure 5: T h e singular values of recovery matrices. 
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Ξ 

2.5 1 1.5 2 

Frequency (rad/sec) 

\B;U»)\; \Ε;(ίω)\ L· \E;{jv)\ 

Figure 6: T h e singular values of loop transfer recovery errors. 

3.5 

B . ^ - o p t i m i z a t i o n B a s e d A l g o r i t h m 

It is well-known in the literature that the solution of ^ - o p t i m i z a t i o n prob-

lem is equivalent to the solution of JTQO-optimization where in 7 is set to 0 0 . 

Utilizing this fact, in this subsection, we proceed to give an algorithm that 

minimizes the F a - n o r m of Mp(z) over all possible stabilizing gain matrices 

Kp. T o do so, as in the previous subsection, we assume that the given 

system Σ characterized b y ( A , B, C , D) has no invariant zeros on the unit 

circle. 

S t e p 1 : Transform the dual system of ( A , B, C , D) in the form of s.c.b, 

and construct an auxiliary system Σ
α

"
3
 as in (35). 

S t e p 2 : Solve the Riccati equation, 

Ρ = A'Ρ A + C'C - (B'PA + D'C)'(D'D + B'PB^iB'PA + D'C)% 

for a positive semi-definite Ρ which satisfies the conditions: 

D'D + B'PB > 0 
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and 

A {A - B(D'D + Β'ΡΒ)-\Β'ΡΑ + D'C)} C C®. 

Again, we note that such a Ρ always exists and is unique. 

Step 3 : Partition, 

[B'PB + D'DY^B'PA + D'C] = FaO FaO F*0 FfO 

Kt *Zt *>/. ' 

Step 4 : Let 

F = VTi 
Cöa + Fä + Cot + Fto CQe Co, + Ffo 

F
af

 F
af

 F
*f

 E
fc FjJ 

0 0 0 0 

- 1 

(42) 

where Fee is such that A ( A C C - BeFee) e C®. Next, choose Kp as 

We have the following theorem. 

Theorem 3. Let Kp be computed as in (43) and Jet Mp(z) be the resulting 

recovery matrix. Then, \ \ M P ( Z ) \ \ H 7 is the infimum among all the possible 

ones. 

P r o o f : It follows from the well-known relationship between HQQ- and 

^-optimizations. I 

R e m a r k 2. Consider the case when the system characterised by the ma-

trix quadruple ( A , B , C , D ) is invertible with D = 0 and det(CB) φ 0. 

Then, as determined first by Goodman [5], the gain matrix of (43) reduces 

to Kp = [{kCB)-
1
CA]

1
 if the system characterised by ( A , B, C , D) is of 

minimum phase. On the other hand, the gain matrix of (43) reduces to 

Kp = [(CmB)-
1
CrnA]

1
 if the system characterised by ( A , J3,C, D) is of 

nonminimum phase, where Cm is the minimum phase counterpart of C in 

the all-pass factorization of ( A , Bt C , D) [11]. 

Remark 3. Consider a special case of a strictly proper square invertible 

system with all its infinite zeros of order one. For this special case, and when 

prediction and current estimator based controllers are used, and moreover 

(43) 
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WHEN THE TARGET LOOP TRANSFER FUNCTION IS SPECIFIED BY BREAKING THE LOOP AT 

THE OUTPUT POINT OF THE GIVEN SYSTEM, ZHANG AND FREUDENBERG [11] EARLIER 

DEVELOPED CLOSED-FORM EXPRESSIONS FOR THE RESULTING RECOVERY ERRORS WHEN 

OBSERVER GAIN MATRICES are calculated using THEIR ^-OPTIMIZATION PROCE-

DURE. IT CAN EASILY BE SHOWN THAT FOR THE SPECIAL CASES CONSIDERED BY ZHANG 

AND FREUDENBERG [11], THE RESULTING RECOVERY ERROR MATRICES WHEN OUR DESIGN 

PROCEDURES ARE USED, ARE INDEED EQUIVALENT TO THE ONES GIVEN BY ZHANG AND 

FREUDENBERG. 

Example 3 : Consider the system and the target loop given in Example 

2. The following are the prediction, current and reduced order estimator 

based controllers obtained by the Fa-optimization based algorithm. All 

these controllers achieve the infimum of the .fl^-norm of the corresponding 

recovery matrices. 

Prediction Estimator Based Controller 

'-1.2517 0.3954 -0.2198' 1.7834" 

i(Jb + 1 ) = -1.1686 -1.1625 0.5774 *(*) + -0.3371 

-0.1275 -0.1348 -0.0490 0.0498 

-u(Jfe) = [7.1222 7.5293 2.7373] i(Jb). 

The eigenvalues of the above prediction estimator are placed at {0 , —0.1239, 

—0.5559} while the resulting recovery error matrix M*(Z) is given by, 

1.7834z+1.7954 
M

P W - Z2 +0.5559z * 

Current Estimator Based Controller 

0.0000 0.0000 0.0000" 0.0000" 

v(k + 1) = -1.8671 -1.4313 0.7268 *(*) + -2.7901 
-0.1143 -0.1620 -0.0339 -0.2268 

v ( * ) , 

-u(jb) = [7.1222 7.5293 2.7373] t>(Jb) + 12.4294y(Jb). 

The eigenvalues of the above current estimator are placed at {0 , —0.1239, 

—0.5559} while the resulting recovery error matrix M'(Z) is given by, 

0.7854 

ζ + 0.5559 
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Figure 7: T h e singular values of target and achieved loops. 

Reduced Order Estimator Based Controller 

-1 .4313 0.7268 

-0 .1620 -0 .0339 
v(k + 1) = 

-2 .7901 

-0 .2268 

-tt(Jb) = [ 7.5293 2.7373 ]v(k) + 12.4294y(Jb). 

T h e eigenvalues of the above reduced order estimator are placed at {—0.1239, 

—0.5559} while the resulting recovery error matr ix Mf(z) is given by, 

M;(Z) = 
0.7854 

ζ + 0.5559' 

T h e plots of singular values of the target and the achieved loop transfer 

function via all the three controllers are shown in Figure 7. Al so , the plots 

of singular values of M*(ju>)9 M^(jw) and M*(jw) are shown in Figure 

8, while the plots of singular values of E*(ju>), E^(ju) and E*(ju) are 

shown in Figure 9. Clearly, for this example, the above current and reduced 

order estimators yield the same performance in the sense that the achieved 

recovery is same. • 
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Figure 8: The singular values of recovery matrices. 

1.5 2 

Frequency (rad/sec) 

\E;(ju,)\; | s ; t » | L· 

Figure 9: The singular values of loop transfer recovery errors. 

3.5 
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• - 2 . 0 1.0 1 - ί - •o ί-
1.0 - 0 . 5 0 ο , B = 

1 ο 
1.0 0.0 0 0 

, B = 
0 0 

. 2.5 0.0 0 2 . .0 0 . 

Example 4 : Consider a non-strictly proper discrete-time system Σ with 

sampling period Τ = 1, and characterised b y 

A -

[ 0 - 0 . 2 5 0 0 ] f l 0 ] 
c - [ i ο o o j ' ^ - [ o oj-

Let the target loop LT(Z) and target sensitivity function ST(Z) be specified 

by 

1 - 1 1 0 
- 1 1 1 0 

It is simple to verify that the given system Σ is invertible with one infinite 

zero of order one and three invariant zeros at {—0.25, 0, 2}. It can also be 

verified that 

F = 

S ( Σ ) = span 

1 

0 

0 

L0 

01 
0 
0 
1 

and «S~ ( Σ ) Π { ζ | CX G I m (D)} = span 

Hence, the target loop specified by the given F is not recoverable by pre-

diction estimator based controller, but it is recoverable either by current 

or by reduced order estimator based controllers. T h e following are the pre-

diction, current and reduced order estimator based controllers obtained by 

the ^ - o p t i m i z a t i o n based algorithm. A g a i n , all these controllers achieve 

the infimum of the Jï^-norm of the corresponding recovery matrices. 

Prediction Estimator Based Controller 

X{H + 1) = 

•-0.5 0.00 0 - ί-
0.0 -0.25 0 ο 
0.0 0.00 0 0 

. 3.0 0.00 0 2. 

ro 
1 

ο 
L0 

-0.51 

1.0 

1.0 

-0.5 J 

y ( * ) . 

- u ( * ) = 
1 

- 1 

T h e eigenvalues of the above prediction estimator are placed at { 0 , 0, —0.25, 

0 .5} while the resulting recovery error matr ix M*(Z) is given by, 

0 ζ - 2 

0 - ( ζ - 2 ) W = τ : 0.5z 
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Current Estimator Based Controller 

v(k + 1) = 

0 0.00 

1 - 0 . 2 5 

1 0.00 

1 0.00 

0.0 

0.0 

0.0 

0.5J 

Γ0 

1 

0 

L0 

0.001 

1.00 

1.00 

0.25J 

V « , 

1 

- 1 

-1 1 0 

1 1 0 

0 1 

0 - 1 ν ( * ) · 

T h e eigenvalues of the above current estimator are placed at { 0 , 0, —0.25, 

0 .5} while the resulting recovery error matrix M*(z) = 0. 

Reduced Order Estimator Based Controller 

"-0.25 0 0.0" "1 1.00" 

v(k + 1) = 0.00 0 0.0 v(k) + 0 1.00 

0.00 0 0.5 0 0.25 

y{k). 

-ti(t) = 
- 1 1 

1 1 
v(k) + 0 1 

0 - 1 !/(*)· 

T h e eigenvalues of the above reduced order estimator are placed at {—0.25, 

0, 0 .5} while the resulting recovery error matrix A f r

e
( z ) = 0. 

T h e plots of m a x i m u m and minimum singular values of the target and 

the achieved loop transfer function via all the three controllers are shown in 

Figure 10. Also , the plot of m a x i m u m singular value of M* (ju)is shown in 

Figure 11, while the plots of m a x i m u m singular value of E*(jù)) is shown in 

Figure 12. Clearly, for this example, the above current and reduced order 

estimators yield exact recovery. • 

V. DESIGN FOR RECOVERY OVER A SPECIFIED 
SUBSPACE 

Sections I I I and I V consider the conventional L T R design problem which 

seeks the recovery over the entire control space. In this section, given a sub-

space S of R
m
, the interest is in designing a controller so that the achieved 

and target sensitivity and complimentary sensitivity functions projected 

onto the subspace S match each other. T h e conditions under which such a 

design is possible are given in Part 1. T o recapitulate these conditions, let 
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0.5 k 

0 I 1 i ' ' ' 1 

0 0.5 1 1.5 2 2.5 3 3.5 

Frequency (rad/sec) 

L*t(jv); L;(ju); L*c{ju>) fc L*r(ju,) 

Figure 10: The max. and min. singular values of target and achieved loops. 

0 0.5 1 1.5 2 2.5 3 3.5 

Frequency (rad/sec) 

<r m e. [Af ; ( iuO] i » « . [ M ; Î » ] t * M E . [ M ; ( ; W ) ] 

Figure 11: The max. singular values of recovery matrices. 
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1 

0.8 k 

0 6
 h 

B 

"I 0 4 " 
0.2 -

0 

. 0 .2 · « • • '
 1

 ' 

0 0.5 1 1.5 2 2.5 3 3.5 

Frequency (rad/sec) 

VmmmlBffit*)]; taffiW] & ° W . [ B ; ( J t v ) ] 

Figure 12: The max. singular values of loop transfer recovery errors. 

V * be a matrix whose columns form an orthogonal basis of 5 G R
m
. As-

sume that the columns of V
e
 are scaled so that the norm of each column is 

unity. Let P' = V
e
(V

e
)' be the unique orthogonal projection matrix onto 

«S. Then, define three auxiliary systems E*, EJ and EJ characterized, re-

spectively, by the quadruples ( A , £ V * , C , D V
1
) , ( A , B V ' 9 C C }D e V ' ) and 

(Ar, BrV'f CTy DrV). Then the analysis given in Part 1 implies that any 

admissible and arbitrarily specified sensitivity function (i.e., when F is spec-

ified arbitrarily) is recoverable in S if and only if the following condition is 

satisfied depending upon the controller used. 

(1) Prediction estimator based controller : 

Any arbitrary admissible sensitivity function is recoverable if and 

only if the auxiliary system Σ* is left invertible and of minimum 

phase with no infinite zeros (i.e., DV' is of maximal rank). 

(2) Current estimator based controller : 

Any arbitrary admissible sensitivity function is recoverable if and 

only if the auxiliary system EJ is left invertible and of minimum 

phase with no infinite zeros (i.e., DeV* is of maximal rank). 
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(3 ) Reduced order estimator based controller : 

A n y arbitrary admissible sensitivity function is recoverable if and 

only if the auxiliary system Σ ' is left invertible and of min imum 

phase with no infinite seros (i .e. , D r V is of maximal rank) . 

T h e above results are concerned with the recovery of sensitivity function 

when F is arbitrary or unknown. A s is done in Part 1, one can also formu-

late the recovery conditions for a known F as follows. A known admissible 

sensitivity function (i .e. , when F is known) is recoverable in S if and only 

if the following condition is satisfied depending on the controller used. 

1. For a prediction estimator based controller, the condition is that 

2. For a current estimator based controller, the condition is that 5 ~ ( Σ ' ) 

3. For a reduced order estimator based controller, the condition is that 

R e m a r k 4. If the given system Σ is strictly proper, i.e., D = 0, then it is 

ample to verify that 

This is not true in general for non-strictly proper systems. 

Thus the task of designing a controller for recovery in a subspace col-

lapses to the same task discussed in Sections I I I and I V except that one 

needs to use the auxiliary systems Σ * , Σ * and Σ ' respectively in place of 

Σ ρ , Σ€ and Σ Γ . T h e following example illustrates this. 

E x a m p l e 5 : Consider a non-strictly proper discrete-time system Σ with 

sampling period Τ = 1, and characterized b y 

5 - ( Σ ; ) Ç K e r ( F ) . 

Ç Ker ( F ) . 

A = 

• 1 4 1 1 1 -

4 4 4 4 4 

1 4 5 0 0 

1 4 0 3 0 

.1 4 0 0 2 . 

Β 

Ό 1 o-

0 0 1 

1 0 0 

0 0 0 

.0 0 0 . 
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c-
0 

1 

0 

D = 

Let the target loop Lt(z) and target sensitivity function St(z) be specified 

by 

' 1.0000 4.0000 5.0000 0.0000 o.oooo" 
F= 0.5795 3.6504 1.0000 -0.4554 1.7594 

5.1676 8.3372 4.0000 9.5197 2.4978 

It is simple to verify that the given system Σ has two infinite zeros of order 

one and three invariant zeros at {2 , 3, 4 } . It can also be verified that the 

target loop specified by the given F is not recoverable either by a prediction 

or by a current or by a reduced order estimator based controller. Let us 

consider a subspace S spanned by 

V = 
1 0 
0 1 
0 0 

It is simple to verify that the given target sensitivity function is recoverable 

in S using either a current or a reduced order estimator based controller. 

The following current and reduced order estimator based controllers ob-

tained by A T E A achieve such a recovery. 

Current Estimator Based Controller : 

v(k + 1) = 

0.0000 0.0000 0 0.0000 

o.oooo-0.0000 0.0000 0 0.0000 0.0000 
9.0027 33.7281 4 37.8334 -10.2964 

-5.3994 -19.7721 0 -27.2535 8.2335 
1.8485 7.1520 0 4.0114 0.9083. 

v(k) 

1.0000 
0.5795 
5.1676 

4.0000 
3.6504 
8.3372 

+ 

5.0000 
1.0000 
4.0000 

0 
0 
1 
0 

L0 

0.0000 
0.0000 
9.0027 

-5.3994 
1.8485 

0.0000 
0.0000 

-153.7028 
135.5881 

-14.1746. 

V ( * ) . 

0.0000 
-0.4554 

9.5197 

0.0000 
1.7594 
2.4978 

v(k) 

0 1.0000 38.2712 
0 0.5795 14.2796 
0 5.1676 -14.6080 

y(k). 
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T h e eigenvalues of the above current estimator are placed at { 0 , 0.1, 0.2, 

0 .3} . 

Reduced Order Estimator Based Controller 

4 40.9010 -11.1312 

v(k+l) = I 0 -30.6150 9.1483 | i;(Jfc}f 
0 4.7193 0.7156 

5 0.0000 0.0000 

-u(i) = I 1 -0 .4554 1.7594 | v(Jfe) + 
4 9.5197 2.4978 

1 9.6516 -192.8259 

0 -6 .1104 171.8538 

0 1.9983 -20.4207 
V(* ) 

0 1.0000 41.0500 

0 0.5795 15.3384 

0 5.1676 -17.8622 

T h e eigenvalues of the above reduced order estimator are placed at { 0 , 0.1, 

0 .2} . • 

V I . LTR DESIGN FOR OUTPUT BREAK POINT 

A l l the previous sections consider the case when the target loop transfer 

function is specified at the input point of the given system. Let us now con-

sider the L T R design when a target loop transfer function Lt(z) = C(zl — 

A)~
X
K is specified at the output point of the given system ( A , B% C , D). 

Let A ( A - KC) e C ° . Then as is discussed in Section V I of Part 1 [3], 

the above design can be reformulated as the loop transfer recovery problem 

when a fictitious target loop transfer function Ld(z) = Fd(zl — Ad)~
l
Bd is 

specified at the input point of a fictitious dual system Σd characterized by 

(Adi Bd% Cdi Dd) where Ad = A ' , Bd = C, Cd = B'f Dd = Ρ ' , and Fd = K'. 

N o w , to come u p with a controller Cd(z) for Σ<*, one can utilize any one of 

the three controllers, namely, the prediction, current and reduced order es-

timator based controllers. Moreover, the design can be accomplished using 

any one of the methods developed earlier, namely, the eigenstructure as-

signment method, the Boo- or the ^ - o p t i m i z a t i o n based designs. Finally, 

one needs simply to implement the controller C ( z ) = Cd(z) to achieve the 

needed design for the given system. 

V I I . CONCLUSIONS 

This Part 2 of the paper considers three design methods for L T R of gen-

eral discrete time systems. T h e first one is an eigenstructure assignment 

scheme, and the other two are optimization based designs. Eigenstructure 
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assignment method yields a controller design which achieves any chosen 

recovery error matrix among a set of admissible recovery error matrices. 

O n the other hand, one of the optimization based design methods leads to 

a controller that achieves a recovery error matrix having the infimum JJQO 

norm, while the other does the same except it achieves a recovery error 

matrix having the infimum H2 norm. A n y controller, whether it is predic-

tion or current or reduced order estimator based, can be designed b y using 

any one of the above three design methods. Once the estimator gain is 

known, the corresponding recovery error matrices can explicitly be calcu-

lated in closed form. Besides the conventional L T R design problem which 

is concerned with the recovery over the entire control space, another gener-

alized recovery design problem where the concern is with the recovery over 

a specified subspace of the control space is also considered. A l l the design 

methods developed here are implemented in a ' M a t l a b ' software package. 

A number of design examples illustrate several aspects of eigenstructure 

assignment design as well as optimization based designs. 
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A. Proof of Theorem 2 

W e need to introduce the following l emma first in order to prove Theorem 

2. 

L e m m a 1. T h e following two statements are equivalent: 

1. There exists an internally stabilising static state feedback law u(k) = 

—K'px(k) such that the closed-loop transfer function from w to ζ of 

E
a ul

 has an Η oo-norm less than 1. 

2. There exists an internally stabilizing static state feedback law u(Jb) = 

—Fx(k) such that the closed-loop transfer function from w to ζ of 

Σ
α

"
3
 has an -ET«,-norm less than 1. 
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P r o o f o f L e m m a 1: W i t h o u t loss of generality, we assume that the system 

characterised b y the quadruple (A'% Ù\ Ϋ % D
1
) is in the form of s.c.b. N o w , 

let us assume the first statement is true, i.e., there exists a state feedback 

law tt(Jb) = —üf'x(Jb) such that the resulting closed-loop system of E
a ul

 is 

asymptotically stable and the transfer function from W to Ζ has an IToo-

norm less than 1. Partitioning 

K' 7*f 
·* ac 

FBO + Co* FEO + CQC F JO + COJ 

1 / F
'F

 F
SS 

FBC FCC FJE 

it is trivial to verify that the closed-loop system of Σ ' "
1
 under the state 

feedback law u = —K'X is equivalent to the closed-loop system of Σ
α ν2 

with the following dynamical state feedback, 

XC(K+l) = {ACC-BEFEE)XC(K) 

+[BC(E-A - J -" ) , Bc («+ - *•+), LEHCH - BEFHE, LCFCJ - BCFFE]X(K), 

FCO * (h\ \
F
*O

 F
ÎO

 F H0 F
*° 

eW~[Kf F„ 
(44) 

Obviously, the resulting closed-loop system of Σ
α

"
2
 with the dynamical 

state feedback law (44) is asymptotically stable and the transfer function 

from W TO Ζ has an ff«,-norm less than 1. T h e n it follows from Theorem 

9.2 of Stoorvogel [10] that there exists a symmetric matr ix Ρ > 0 such that 

the following conditions hold: 

1. V > 0 and R > 0, where 

V := DD + B'PB, 

R := I - E'PE + E'PBV-
I
B'PE. 

This implies that the matrix G(P) is invertible, where 

Γ(Ρ\— \D'D + B'. 
G

(
P

) - [ E'PB 
PB Β ΡΕ 

E'PE - 1 (45) 

2. Ρ satisfies the following discrete time A R E : 

Ρ = A'Ρ A + C'C 

(B'PA + D'C^'F^.IFB'PA + D'C} . . . . 

- { E'PA )
 G

^ { E'PA ) · <
46
> 
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3. The matrix Aci has all its eigenvalues inside the unit circle, where 

Ael:=A-[B E ) G { P ) - * ( B ' P £ £ f C y (47) 

Now let us define a cost function, 

^(0 ) := B U pmf{ | |z t t i t r | |
3 - |H| 2 } , (48) 

where v+ := u |[i | 0 0). Moreover, we impose an additional constraint ti(0) = 

0. Then the dynamic state feedback induces in closed loop a mapping from 

w to ti, say / . In other words u = /(tu). Because we have SB(0) = 0 we 

found that u(0) = [f(w)](0) = 0. It is clear that 

^ ( 0 ) < s u p { | | z / ( t l, ) | t l, | |
2
- | | u , | |

2
} 

< s u p { ( 7

2 - l ) | H | 2 } 
w 

= o, 

where 7 < 1 is the closed-loop JJqo norm we obtained via the dynamic state 

feedback control law (44). Also note that the supremum in (48) is finite 

and is only attained by 0. We know that 

s u p i n f { | | z u + > 1 l, + | |
3
 - ||u,+ | |

3
 = * ' ( l ) P x ( l ) , 

w+ u + 

where tu
+
 := ti>|[i|0o)i a« an optimisation problem on [ l ,oo) . Therefore we 

have 

.7(0) = sup { | | z (0 ) | |
2 - ||u,(0)||

2
 + x'(l)Px(l). (49) 

147(0) 
Moreover, the maximum is uniquely attained by 10(0) = 0 (uniqueness 

stems from the uniqueness in maximization in (48)), (49) can be rewritten 

in the following form 

sup {w'(0)[E'PE - i]to(0)}. 
w(o) 

Then boundedness and uniqueness of maximum imply 

E'PE - K 0 . 

By Theorem 9.4 of Stoorvogel [10] that there exists an internally stabilizing 

static state feedback law ti(Jb) = — Fx(k) such that the closed-loop transfer 

function from w to ζ of E
a u 2

 has an ifoo-norm less than 1 . 
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Conversely, let us assume that the second statement is true, i.e., there 

exists a state feedback law u(k) = —Fx(k) such that the resulting closed-

loop system of Σ * "
2
 is asymptotically stable and the transfer function from 

w to ζ has an floo-norm less than 1. A g a i n , let us partition F as 

'[Kj F>J 

Fjo 

F,J 

Choosing 

F& + CÎ Fn + Cot 

K, 
0 

Coe 

Fee 

Fjo + Co, 

0 

where Fee is such that A ( A e c — BcFcc) G C ° , it is simple to verify that the 

closed-loop system of E
e ul

 under the state feedback law ti(Jb) = —K'z{k) 

is asymptotically stable and the transfer function from w ϊο ζ has an ΙΖΌο-

norm less than 1. • 

R e m a r k 5. T h e above l e m m a is a generalization of a state feedback 27oo-

optimization problem for discrete-time systems given in [10]. 

N o w , the proof of Theorem 2 follows directly from the above l e m m a and 

the results of Stoorvogel [10]. I 
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