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L INTRODUCTION 

In recent years, a method of multivariable feedback control system design 

using so called L Q G / L T R techniques has gained significance. As is known, 

many performance and robust stability objectives can be cast in terms 

of maximum magnitude or maximum singular values of some particular 

closed-loop transfer functions, e.g., sensitivity and complementary sensitiv-

ity functions at certain points in a closed-loop. Such magnitude or singular 

value requirements on some closed-loop transfer functions can be directly 

determined by corresponding singular values of certain related open-loop 
transfer functions. Thus equivalently, the design specifications can be pre-

scribed in terms of some open-loop transfer functions. In prescribing the 

open-loop transfer functions, the point at which loop is broken can be the 

input or output or any arbitrary point of the given plant. Here we deal 

with the situation when the loop is broken at the input point of the plant. 

Then the design methodology of L Q G / L T R can essentially be partitioned 

into two steps. The first step involves "loop shaping" utilizing a state feed-

back control law so that the resulting open-loop transfer function when the 

loop is broken at the input point of the plant meets the design specifica-

tions. The resulting open-loop transfer function is called the target loop 

transfer function. The second step, called loop transfer recovery ( L T R ) , 

involves the design of an output feedback control law such that the result-

ing open-loop transfer function would be either exactly or approximately 

the same as the target open-loop transfer function. In other words, the 

idea of L T R is to come up with a measurement feedback compensator, typ-

ically observer based, to recover either exactly or asymptotically a specific 

open-loop transfer function prescribed in terms of a state feedback gain. 

Ever since the seminal works of [14] and [9], L T R has been the subject 

of a number of authors including [2], [3], [4], [5], [6], [7], [10], [12], [13], [15], 

[17], [18], [19], [21], [23], [24], [25], [29], [31], [32], [34] and [35]. Both contin-

uous and discrete systems have been treated earlier. Recently Chen, Saberi 

and Sannuti in [6] analyzed in depth the mechanism of L T R for continuous 

systems. The analysis given there considers four main issues. The first 

issue is concerned with what can and what cannot be achieved for a given 

system and for an arbitrarily specified target loop transfer function. On 

the other hand, the second issue is concerned with the development of nec-

essary or/and sufficient conditions a target loop has to satisfy so that it can 
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either exactly or asymptotically be recovered for a given system while the 

third issue is concerned with the development of necessary or/and sufficient 

conditions on a given system such that it has at least one recoverable target 

loop. The fourth issue deals with a generalisation of all the above three 

issues when recovery is required over a subspace of the control space. It 

concerns with generalising the traditional L T R concept to sensitivity recov-

ery over a subspace and deals with method(s) to test whether projections of 

target and achievable sensitivity and complementary sensitivity functions 

onto a given subspace match each other or not. Such an analysis pinpoints 

the limitations of the given system for the recovery of arbitrarily specified 

target loops via either current or prediction estimator based controllers. 

These limitations are the consequences of the structural properties (i.e., fi-

nite and infinite zero structure, and invertibility) of the given system. Also, 

the conditions required on a target loop transfer function for its recover-

ability, turn out to be constraints on its finite and infinite zero structure as 

related to the corresponding structure of the given system. Furthermore, 

the analysis given in [6] discovers a multitude of ways in which freedom 

exists to shape the loops in a desired way as close as possible to the target 

shapes. Also, possible pole zero cancellations between the eigenvalues of 

the controller and the input or/and output decoupling zeros of the given 

system are characterized. Next, regarding the design of controllers for LTR, 

[7] developed three methods of observer based controller design. The first 

method is an asymptotic time-scale and eigenstructure assignment ( A T E A ) 

method while the other two are optimization based, one minimizing the 

norm and the other H2 norm of a so called recovery matrix. The analysis 

as well as design methods as given in [6] and [7] are fairly complete for 

general nonminimum phase nonstrictly proper plants of continuous type. 

In contrast to the continuous systems, the results available for discrete 

systems are relatively few. In order to facilitate the discussion of the avail-

able results, let us first recall that for discrete systems there exist three 

different types of observer based controllers; namely, 'prediction estima-

tor', and full or reduced order type 'current estimator' based controllers. 

In the case of continuous systems, as is well known, any arbitrary tar-

get loop transfer function is asymptotically recoverable provided that the 

given system is left invertible and of minimum phase. However, this is not 

necessarily so for discrete systems as discussed first by Goodman [12]. Us-

ing prediction estimator based controllers, Goodman characterized the so 
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called recovery matrix and showed that in general it cannot be rendered 

sero even for square minimum phase strictly proper systems. He showed 

further that prediction estimator when its gain is calculated via Kaiman 

filter formalism in which the covariance of the fictitious input noise is arbi-

trarily increased to infinity, minimizes the H2 norm of the recovery matrix. 

Later on, Maciejowski [15] continued the study of L T R for square minimum 

phase strictly proper discrete systems using current estimators. Although 

Maciejowski studied the recovery at the output point of the plant, his results 

when translated to recovery at the input point of the plant, imply that re-

covery of an arbitrarily specified target loop transfer function is possible for 

the class of systems he considered, namely, strictly proper square minimum 

phase systems having only infinite zeros of order one. Also, Maciejowski 

[15] as well as Ishihara and Takeda [13] observe that it is impossible in 

general to have either exact or asymptotic L T R when the plant is either 

nonminimum phase or when prediction estimator is used even if it has all 

infinite zeros of order one. Realizing that in general L T R for discrete sys-

tems is not feasible, Niemann and Sogaard-Andersen [19] consider square 

strictly proper systems with a prediction estimator, and develop a param-

eterization of exactly recoverable target loop transfer functions in terms of 

system zeros and associated zero directions. Recently, Zhang and Freuden-

berg [35], considering only square strictly proper plants having only infinite 

zeros of order one, study the L T R mechanism at the output point of the 

plant. They develop explicit expressions for the recovery error and the 

resulting sensitivity function when prediction as well as current estimator 

based controllers are used and when optimization is used to minimize the 

H2 norm of a recovery matrix (for precise definition of recovery matrix, see 

Lemma 1). The analysis of L T R done so far on discrete systems, as sum-

marized above, although presents some glimpses of what is happening in 

some special cases, it does not reveal a total picture of L T R mechanism for 

general discrete systems. In fact, it is fair to say that no systematic analysis 

of all the issues involved in L T R exists to date for general discrete systems, 

and whatever is available is far away from being complete. For example, 

as pointed out by Maciejowski [15], most practical discrete systems have a 

direct feed through from inputs to outputs and thus are non-strictly proper. 

Yet no work to date deals with non-strictly proper discrete systems. Sim-

ilarly, as shown in Astrom et al [1], sampling of continuous systems most 

often introduces unstable invariant zeros in the resulting discrete systems. 
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Yet, even for strictly proper discrete systems, the results showing the effects 

of unstable invariant seros on L T R are to a great extent incomplete; just 

to mention a few, no characterisation of recoverable target loops of a given 

system exists, similarly analysis for recovery in any given subspace of con-

trol space is nonexistent. Similarly, regarding design for LTR, while partial 

results are available based on minimization of Hi norm of a certain recovery 

matrix [12], [35], no methods of üT«, norm minimization and eigenstructure 

assignment are yet available. Thus the intent of this two part paper is to 

present both systematic analysis as well as design tools for L T R of general 

nonminimum phase nonstrictly proper discrete plants. Part 1 of the pa-

per deals with complete analysis. All the four issues mentioned earlier in 

connection with continuous systems are reexamined for discrete systems. 

The analysis and the method of presentation given in Part 1 unifies the dis-

cussion regarding all the three controllers, namely, 'prediction estimator' 

based, and full or reduced order 'current estimator' based controllers. Part 

2 of the paper [8] deals with design where both eigenstructure assignment 

method and optimization based methods in which either JJQO or H2 norm 

of certain recovery matrix is minimized, are developed. 

The analysis and design aspects presented in this two part paper reveal 

both similarities as well as fundamental differences between continuous and 

discrete systems. One fundamental difference which we want to emphasize 

here is this. In discrete systems, as is well known, in order to preserve 

stability, all the closed-loop eigenvalues must be restricted to lie within the 

unit circle in complex plane. This implies that unlike continuous case which 

permits both finite as well as asymptotically infinite eigenvalue assignment, 

in the discrete case one is restricted to only finite eigenvalue assignment. 

This restriction leads to several important differences in connection with 

LTR between continuous and discrete systems. To quote one such dif-

ference, let us recall that asymptotic recovery in the case of continuous 

systems allows assignment of both asymptotically finite as well as infinite 

observer eigenvalues by using high observer gains, where as exact recovery 

allows only assignment of finite observer eigenvalues. Thus, in continuous 

systems, there exists target loops which are only asymptotically recoverable 

but not exactly recoverable. On the other hand, in discrete systems, since 

both asymptotic as well as exact recovery involves only finite eigenvalue 

assignment, every asymptotically recoverable target loop is also exactly re-

coverable. This implies that one needs to talk about just recovery rather 
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than emphasizing exact or asymptotic recovery. However, in optimization 

based design methods, such as fl» norm minimization, one some times 

ends up in suboptimal designs which correspond to only asymptotic recov-

ery. In that case, a distinction can be made between exact and asymptotic 

recovery. 

Throughout the paper, A! denotes the transpose of A> A
H
 denotes the 

complex conjugate transpose of A, I denotes an identity matrix while I* de-

notes the identity matrix of dimension Jfe χ Jb. λ ( Α ) and Re[A(A)] respectively 

denote the set of eigenvalues and real parts of eigenvalues of A. Similarly, 

0moc [A] and a m t' n [ A ] respectively denote the maximum and minimum sin-

gular values of A. Ker [V] and Im [V] denote respectively the kernel and 

the image of V. C ° denotes the set of complex numbers inside the open 

unit circle while C® is the complementary set of C ° . Also, Hp denotes 

the sub-ring of all proper rational functions of ζ while the set of matrices 

of dimension l χ q whose elements belong to Tip is denoted by M
lxq
(Hp). 

Given a discrete transfer function G ( z ) , we define the discrete frequency 

response G*(ju) as G ( e
J w T

) where Τ is the sampling period of the discrete-

time system. An asymptotically stable matrix is the one whose eigenvalues 

are all in C ° . 

I I . PROBLEM FORMULATION 

In this section, we formulate the LTR problem in precise mathematical 

terms. Let us consider a nonstrictly proper discrete-time system Σ , 

x{k + 1) = Ax(k) + Bu(k) , y(Jfc) = Cx(Jb) + Du(k) (1) 

where the state vector x G R
n
, output vector y G R

F
 and input vector 

u G R
m
. Without loss of generality, assume that [ 5

/
, D

/
]

,
 and [C,D] are 

of maximal rank. Let us also assume that Σ is stabilizable and detectable. 

Let F be a full state feedback gain matrix such that (a) the closed-loop 

system is asymptotically stable, i.e., eigenvalues of A — B F lie inside the 

unit circle, and (b) the open-loop transfer function when the loop is broken 

at the input point of the given system meets the given frequency dependent 

specifications. The state feedback control is 

(2) 
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and the loop transfer function evaluated when the loop is broken at the 

input point of the given system, the so called target loop transfer function, 

is 

Lt(z) = F*B (3) 

where Φ = ( z / n — A)"
1
. The corresponding target sensitivity and comple-

mentary sensitivity functions are 

StW^lIm + FQB]-1 and Tt(z) = I m - St(z). ( 4 ) 

Arriving at an appropriate value for F is concerned with the issue of loop 

shaping which is an engineering art and often includes the use of linear 

quadratic regulator ( L Q R ) design in which the cost matrices are used as free 

design parameters to generate the target loop transfer function Lt(z) and 

thus the desired sensitivity and complementary sensitivity functions. The 

next step of design is to recover the target loop using only a measurement 

feedback controller. This is the problem of loop transfer recovery ( L T R ) and 

is the focus of this paper. To explain it clearly, consider the configuration 

of Figure 1 where C(z) and P(z), 

P(z) = ΟΦΒ + D, 

are respectively the transfer functions of a controller and of the given sys-

tem. Given P(z) and a target loop transfer function Lt(z)t one seeks then 

to design a C(z) such that the loop recovery error E(z), 

E(z) = Lt(z) - C ( z ) P ( z ) , 

is either exactly or approximately equal to zero in the frequency region of 

interest while guaranteeing the stability of the resulting closed-loop system. 

The notion of achieving exact L T R ( E L T R ) corresponds to E(z) = 0 for 

all z. In the case of asymptotic recovery, one normally parameterizes the 

controller C ( z ) in terms of a scalar tuning parameter σ and thus obtains a 

family of controllers C(zta). We say asymptotic L T R ( A L T R ) is achieved 

if C(z,a)P(z) —» Lt(z) pointwiee in ζ as σ —• oo. Achievability of A L T R 

enables the designer to choose a member of the family of controllers that 

corresponds to a particular value of σ which achieves a desired level of 

recovery. We now consider the following definitions in order to impart 

precise meanings to E L T R and A L T R : 



202 BEN M. CHEN ET AL. 

0 +π u 
L - t Q 

—U 

P(z) 

C(z) 

Figure 1: Plant—Controller closed-loop configuration. 

Definition 1. T i e set of admissible target loops Τ ( Σ ) of a system Σ is 
defined by 

Τ ( Σ ) = {Lt{z) G Mmxm(np) I Lt(z) = FSB and λ(Α - BF) G C 0 } . 

Definition 2. A target loop transfer function Lt(z) G Τ ( Σ ) is said to 
be exactly recoverable (ELTR) if there exists a C(z) G MmXp(7Zp) such 
that (i) the closed-loop system comprising of C(z) and P(z) as in the 
configuration of Figure 1 is asymptotically stable, and (ii) C(z)P(z) = 
Hz). 

Definition 3. A target loop transfer function Lt(z) G Τ ( Σ ) is said to be 
asymptotically recoverable (ALTR) if there exists a parameterized family 
of controllers Ο ( ζ , σ ) G MmxpÇR,p)t where σ is a scalar parameter taking 
positive values, such that (i) the closed-loop system comprising of Ο ( ζ , σ ) 

and P(z) as in the configuration of Figure 1 is asymptotically stable for all 
σ > σ*, where 0 < σ* < oo, and (ii) C(z , σ)Ρ(ζ) —• Lt(z) pointwise in ζ 
as σ —* oo. Moreover, the limits, as σ —* oo, of all the eigenvalues of the 
closed-loop system should remain in C ° . 

As mentioned earlier, it turns out that for discrete systems in contrast with 

continuous systems, every asymptotically recoverable target loop can also 

be exactly recoverable and vice versa. One might then wonder why one 

needs to distinguish between ELTR and A L T R . This is perhaps, as will be 

seen in Part 2 of the paper, even for the case when ELTR can be achieved, 

some optimization based design methods, such as ZZoo norm minimization, 

typically end up in suboptimal designs which correspond to asymptotic 

recovery. But in this Part 1 of the paper which is mainly concerned with 

analysis, we will not hereafter distinguish between the notions of exact 

and asymptotic recovery. Also, we will not parameterize a controller in 
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terme of a tunable parameter σ in an attempt to achieve whatever can 

be achieved asymptotically rather than exactly. We maintain that such 

a parameterization can always be done if one chooses so. We have the 

following additional definitions. 

Definition 4 . A target loop transfer function Lt(z) belonging to Τ ( Σ ) is 

said to be recoverable if L%(z) is either exactly or asymptotically recover-

able. 

Definition 5. The set of recoverable target loops for the given system Σ 

is denoted by Τ * ( Σ ) t. 

Next, in view of the definition of sensitivity function St(z) as in (4), it is 

simple to note that the recovery of target loop Lt(z) implies the recovery 

of St(z) and vice versa. 

As mentioned in introduction, the purpose of this Part 1 paper is to do 

in depth analysis of L T R mechanism in general discrete systems. As in the 

case of continuous systems, the analysis of L T R mechanism carried out here 

concentrates on four fundamental issues. The first issue is concerned with 

what can and what cannot be achieved for a given system without taking 

into account any specific target loop transfer function, i.e., the target loop 

transfer function is considered as arbitrarily given. On the other hand, 

the second issue is concerned with the development of necessary or/and 

sufficient conditions a target loop has to satisfy so that it can either exactly 

or asymptotically be recovered for a given system. The third issue deals 

with the development of necessary or/and sufficient conditions on a given 

system such that it has at least one recoverable target loop. The fourth issue 

concerns with a generalization of all the above three issues when recovery 

is required over a subspace of the control space. To be exact, it concerns 

with generalizing the traditional L T R concept to sensitivity recovery over 

a subspace and deals with method(s) to test whether projections of target 

and achievable sensitivity and complementary sensitivity functions onto a 

given subspace match each other or not. As in the case of continuous 

systems, the analysis presented here shows some fundamental limitations of 

fin continuous time systems, we defined three sett; the set of exactly recoverable 
target loops T

B R
( E ) , the set of recoverable target loops T

R
( E ) , and the set of target 

loops which are recoverable but not exactly recoverable T
A R

( E ) . But in discrete case, 
owing to the fact that every asymptotically recoverable target loop is exactly recoverable 
and vice versa, we need to define only the set of recoverable target loops T

R
( E ) . 
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the given system as a consequence of its structural properties, namely finite 

and infinite zero structure and invertibility. It also discovers a multitude of 

ways in which freedom exists to shape the recovery error in a desired way. 

The rest of the paper is organised as follows. Section I I I recalls a special 

coordinate basis (s.c.b) of [27] and [28] which displays explicitly both the 

finite as well as infinite sero structure of the given system. In Section I V , 

the structural details of three observer based controllers, namely prediction, 

full and reduced order current estimator based controllers, are discussed. 

Also, in Section I V , some preliminary analysis is given showing that the 

required L T R analysis for all the three controllers considered here can be 

unified into a single mathematical frame work. Section V deals with all the 

issues of L T R analysis, while Section V I dualizes the results of Section V 

for the case when the target loops are specified at the plant output point. 

Finally, Section V I I draws the conclusions of our work. 

As in the case of L T R analysis of continuous systems, finite and infinite zero 

structures of both the given discrete system and the target loop transfer 

function play a dominant role in the recovery analysis as well as design. 

Keeping this in mind, we recall in this section a special coordinate basis 

(s.c.b) of a linear time invariant system [27], [28]. Such a s.c.b has a distinct 

feature of explicitly displaying the finite and infinite zero structure of a given 

system. Consider the system Σ characterized by (A, B, C, D). It is simple 

to verify that there exist non-singular transformations U and V such that 

where mo is the rank of matrix D. Hence hereafter, without loss of gen-

erality, it is assumed that matrix D has the form given on the right hand 

side of ( 5 ) . 

One can now rewrite the system of (1) as, 

I I I . PRELIMINARIES 

UDV = 
0 

0 
(5) 
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where the matrices 2?o> Bit Co and C \ have appropriate dimensions. In 
what follows, whenever there is no ambiguity, in order to avoid the no-
tational clutter, the running time index ib will be omitted. We have the 
following theorem. 

Theorem 1 (SCB). Consider the system Σ characterised by the matrix 

quadruple (A, 2?, C, D). There exist nonsingular transformations Γι, Γ 2 

and Ta, an integer my < m —mo, and integer indexes qi, i = 1 to mj, such 

that 

χ = Γ ι ΐ , y — r 2 y , u = Γ 3ΰ 

x = [x'a,x'llx'e,x'J]' , x . = [ ( * : ) ' , (*+)']' 

Xf = [x'i, x'a, · · • ,x'mj]' 

V= [î6>l//iVÎ]' . V/ =[Vi,V2, ··· »Vm,]' 

« = [«Οι«/ι «'e]' ι « / = [«1» «3i * · · .«m,]' 
and 

x~(k + 1) = >1ΓβχΓ(*) + + L:fy,(k) + L^yt(k) (7) 

x+(* +1) = i l+»+( * ) + B0

+aJA)(*) + Lt,y,(k) + Xi»i(*) (8) 

ζ»(* + 1) = + Β0»!Λ>(*) + UfVi (*) , ft = C t x t (9) 

x e ( i + 1) =Aeexe(k) + Beue(k) + BocVoW 

+ Lelyh(k) + X e/» / (* ) + Be[E:ax;(k) + $+ ·+ ( * ) ] (10) 

Vo = σ^,χ" + C&x+ + Cotxi, + CocXc + Cofif + «o (11) 

and for each t = 1 to mj, 

xi(k + 1) =AtiXi(k) + iiolto(t) + + B « 

+ Eiaxa(k) + E»xt{k) + Eiexe{k) + ]Γ) £<;χ;(*) ] ( 1 2) 
J ' = I 

Vi = C^Xf , yt = CfXf. (13) 

Here t ie states x j , x+, χ», x e and x/ are respectively of dimension 

*Z>
 n

a>
 n

»>
 n

e η/ = Ci while Xi is of dimension ç< for each 
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i = 1 to rnj. The control vectors UQ, uj and u c are respectively of dimen-

sion mo, m/ and mc = m — mo — my while the output vectors yo, yj and 

y* are respectively of dimension po = mo, pj = mj and Pb = ρ — po — p / . 

The matrices Aqi, Bqi and Cqi have the following form: 

A9i = ' « - 1 
0 

Β - ί 0 , C „ = [1, Ο, · . · , 0]. (14) 

(Obviously for the case when = 1, we have Aqi= 0, Bqi= 1 and Cqi= I.) 

Furthermore, we have λ ( Α ^ ) G C ° , λ ( Α + α) G C
e
, the pair ( A c c, £ c J is 

controllable and the pair (A%%,C%) is observable. Also, assuming that the 

variables X{, i = 1 to mj, are arranged such that ç< < the matrix Lij 

has the particular form, 

Lij = [Lu, L<2i · · · ι L%i-ΐι 0, 0, · · · , 0]. 

Also, the last row of each Lij is identically sero. 

P r o o f : This follows from Theorem 2.1 of [27] and [28]. I 

We can rewrite the s.c.b given by Theorem 1 in a more compact form, 

A:= T^iA-BoCo^i^ 

0 0 

0 A+ 0 
0 0 Abb 0 Lt/Cf 

BcE+a LcbCb ACe LefCf 
BjEi BfEb BfEe 

A} J 
B : = r ^ [ J 5 0 B1]T3 = 

Boa 
BL 
Bot 
Boe 

iBof 

0 
0 
0 
0 

Bf 

0 1 
0 
0 

Be 
0 J 

C :=
 1 

'Co' 'Cöa cL Cob Coc Coj 
Γ ι = 0 0 0 0 Cf 

Ci. 0 0 cb 
0 0 

Z>:= 
0 o" 

Z>:= 0 0 0 
0 0 0 

In what follows, we state some important properties of the s.c.b which 

are pertinent to our present work. 
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Property 1. Tie given system Σ is right invertible if and only if χι and 

hence y« are nonexistent (ni = 0, pi = 0), left invertible if and only if xe 

and hence uc are nonexistent (ne = 0, me = 0), invertible if and only if 

both x\ and xe are nonexistent. Moreover, Σ is degenerate if and only if it 

is neither left nor right invertible. 

Property 2. We note that (An, Ci) and (Aqi, Cqi) form observable pairs. 

Unobservability could arise only in the variables xa and xe. In fact, the sys-

tem Σ is observable (detectable) if and only if (A0it, C0\t) ia an observable 

(detectable) pair, where 

Aohê = 
Λαα 0 

BeEea Aec 

Αλλ — 

0 

A
+ Cob, = 

Coa Coe 
Ee ' 

C0a = [Cöa, Cti, Ea = [E~, B+], Eea = [E~a, Etal 

Similarly, (Aec, Be) and (Aqi, Bqi) form controllable pairs. Uncontrollabil-

ity could arise only in the variables xa and x&. In fact, Σ is controllable 

(stabilizable) if and only if (Aeon, Beon) is a controllable (stabilizable) pair, 

where 

Boa = 

Aaa 

0 

Boa 

Oa J 

LabCb 
An 

Lai = 

Beon = 
Boa L, 
Bot In/ '»/ J ' 

Laf = K4 

Property 3. Invariant zeros of Σ are the eigenvalues of Ααα· Moreover, 

the minimum phase (or stable) and the nonminimum phase (or unstable) 

invariant zeros of Σ are the eigenvalues of A~a and A+a, respectively. 

If all the invariant zeros of a system Σ are in C ° , i.e., if all the invariant 

zeros of Σ are stable, then we say Σ is of minimum phase, otherwise Σ is 

said to be of nonminimum phase. 

There are interconnections between the s.c.b and various invariant and 

almost invariant geometric subspaces. To show these interconnections, we 

introduce the following geometric subspaces of Σ. 

Definition 6. For a given system Σ characterized by a matrix quadruple 

(A, B, C, D), we define 
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1. V* ( Σ ) TO BE THE MAXIMAL SUBSPACE of R
n
 WHICH IS (A — BF)-INVARIANT 

AND CONTAINED IN Ker (C — DF) SUCH THAT THE EIGENVALUES OF {A — 

BF)\V
9
 ARE CONTAINED IN C9 Ç C for SOME F. 

2. £ ' ( Σ ) TO BE THE MINIMAL (A — KC)-INVARIANT SUBSPACE OF R
n
 CON-

TAINING IN Im (Β — KD) SUCH THAT THE EIGENVALUES OF THE MAP WHICH 

IS INDUCED BY (A — KC) ON THE FACTOR SPACE R
N
/S* ARE CONTAINED IN 

C9 Ç C for SOME K. 

FOR THE CASES THAT C f = C , C9 = C ° and C , = C®, WE REPLACE THE INDEX 

G INV
9
 AND S

G
 BY V , ' and ' + ' , RESPECTIVELY. 

Various components of the state vector of s.c.b have the following geo-

metrical interpretations. 

Proper ty 4. 

1. x~ Θ xt ® x c spans ν*(Σ). 
2. z~ © a5e spans ν~(Σ). 
3. x+ 0 x c SPANS ν+(Σ). 
4. z c 0 z / spans <S*(E). 

5 . χ ~ ® χ ε Θ χ / spans 5
+

( Σ ) . 

6. x + 8 5 B c 0 x / spans 5 ~ ( Σ ) . 

IV. D IFFERENT CONTROLLER STRUCTURES 

In this section, we consider three different controller structures used com-

monly in discrete systems. All three controllers are observer based, but 

the type of observer (or state estimator) used in each one is structurally 

different. The estimators considered here are (1) prediction estimator, (2) 

current estimator and (3) reduced order estimator. Both prediction esti-

mator and current estimator are full order observers. The reduced order 

estimator is a current estimator but uses the reduced order observer. The 

prediction estimator estimates the state x(Jb + 1) based on the measure-

ments Y(K) up to and including the (Jb)-th instant, where as the current 

estimator estimates x(Jb + 1 ) based on the measurements Y(K + 1 ) up to and 

including the (K + l)-th instant. Since in the prediction estimator based 

controller, the current estimated value of control does not depend on the 

most current value of the measurement, it might not be as accurate as it 

could be in the current estimator based controller. However, the prediction 
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estimator based controller could avail itself the entire sampling period to do 

the required computations and hence is commonly used when the needed 

computations are excessive. In contrast, when the needed computations can 

be done in a short time compared to the sampling period, current estima-

tor based controller can easily be used. W e note that prediction estimator 

forces an inherent time delay which otherwise is absent in the structure of 

controller. As can be expected, the three different controllers have different 

capabilities regarding L T R ; but as will be seen shortly there exists a com-

mon mathematical machinery to analyse them under a single frame work. 

In the sections to follow, we will systematically do L T R analysis using a 

generic controller which could be any one of these three controllers. In such 

an analysis, we shall use the following notation : 

C ( z ) : = The transfer function of the controller, 

L(z) := C(z)P(z) = The achieved loop transfer function, 

S(z) := [Im + L ( z ) ] "
1
 = The achieved sensitivity function, 

T(z) : = J m — S(z) = The achieved complimentary sensitivity 

function, 

E(z) := Lt(z) — L(z) = Loop recovery error, 

M(z) : = The recovery matrix ( to be defined later on) , 

M°(z) : = A part of the recovery matrix Μ (ζ) that can be 

rendered zero, 

M*(z) : = A part of the recovery matrix M(z) that cannot be 

rendered zero and hence termed as recovery error matrix, 

T
R
( E ) : = The set of either exactly or asymptotically recoverable 

target loops for Σ . 

The above notation applies to a generic controller; however, whenever we 

refer to a particular controller, we use appropriate subscripts to identify 

them. Subscripts p, c and r are used respectively to represent prediction, 

current, and reduced order estimator based controllers. For example, Lv(z)% 

M*(z) and Τ * ( Σ ) denote respectively the achieved loop transfer function 

with a prediction estimator based controller, the recovery error matrix when 

a current estimator based controller is used, and the set of recoverable target 

loops for Σ using a reduced order estimator based controller. 
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We now proceed t o give the s t ruc tu ra l detai ls o f the control lers consid-

ered here. 

P r e d i c t i o n E s t i m a t o r B a s e d C o n t r o l l e r : 

The d y n a m i c equations o f the control ler are 

x(Jb 4-1) = Ax(k) + Bu(k) + Kp[y(k) - Cx(Jb) - Du(k)], 

u ( * ) = û(A0 = - F i ( J b ) , 
(15) 

where Kp is the ga in chosen so t h a t A — KPC is a s y m p t o t i c a l l y stable. T h e 

transfer f u n c t i o n o f the control ler is 

Cp(z) = F[zln - A + BF + KPC - KpDF]'
1
Kp. 

C u r r e n t E s t i m a t o r B a s e d C o n t r o l l e r : 

(16) 

Here w i t h o u t loss o f general i ty, we assume t h a t the matr ices C a n d D 

are i n the f o r m , 

C = Co 
Ci 

and D = 
Do 
0 

(17) 

where D0 is of m a x i m a l rank , i.e., rank(Z?) = rank(A)) = mo- T h u s , the 

o u t p u t y can be p a r t i t i o n e d as, 

[mW 
Co 
C i 

Do 
0 »(*)+ 

The d y n a m i c equations o f the control ler are 

i(* + 1) = Ax(k) + Bu(k) + Ke ([̂ J?!)] - - , 
û ( i ) = « ( * ) = -Fx(k), 

where 

(18) 

Co 
CiA 

and U e = 
Do 

CiB 
(19) 

and where the gain Kc is chosen so t h a t A — ÜTCCC is a s y m p t o t i c a l l y s t a r 

ble. T h e transfer f u n c t i o n f r o m —u t o y t h a t results i n using the current 

est imator is then given by 

Cc{z) = F [zln - A + J r cC e + BF — W
1
 JT, * 1 7 l o 

0 zip—mo 
(20) 
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Perhaps, some explanation regarding the structure of the current esti-
mator (18) is in order. It is a generalization for nonstrictly proper systems 
of the existing current estimator given in Franklin et al [11]. Here we note 
that yo(k) and yi(Jb) together form the measurement vector y(k). In view 
of (17), yo(k) depends on the control u(Jb) explicitly, where as yi(Jb) does 
not depend on any control at the instant Jb. In order that the controller be 
physically realizable, in arriving at z(Jb + 1), the current estimator utilizes 
yi(Jb + 1) which is a part of the measurement at instant Jb + 1, and yo(k) 
which is a part of the measurement at instant Jb. If the given system Σ 
is strictly proper, yb(Jb) is nonexistent and the current estimator (18) co-
alesces with that given in Franklin et al [11], Maciejowski [15] and Zhang 
and Freudenberg [35]. 
R e d u c e d O r d e r E s t i m a t o r B a s e d C o n t r o l l e r : 

Again, without any loss of generality but for simplicity of presentation, 
it is assumed that the matrices C and D are transformed into the form, 

C = 
Ip-mo 

Co2 
0 and D — 

Do 
0 (21) 

Then Σ can be partitioned as follows, 
+ \AU A13] ( * i ( k ) \ , " 

yz3(k + l ) J - [A31 A33\ \z3{k)J^ . f (*x1M B33 

D0 

0 
(22) 

We observe that yi = x\ is already available and need not be estimated. 
Thus we need to estimate only the state variable 22- We first rewrite the 
state equation for zi in terms of the output yi and state ζ2 as follows, 

Vl{k + 1) = Aliyi(k) + A12x2{k) + Bnu(k). (23) 

Since yi(Jb + 1) and yi(Jb) are known, (23) can be rewritten as 
yx{k) = A12x2{k) + Bnu(k) = yi(Jb + 1) - AllVl(k). (24) 

Thus, observation of Z2 is made via (24) as well as by yo(k) = C02X2{k) + D0u(k). 
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Now, a reduced order system suitable for estimating the state χ 2 is given 
by 

Î *a(t + 1) = Κ x2(k) + Br u(Jb) + A21 y i(Jb) , 

= *w=Cr x 3 ( k ) + a u ( t ) ( 2 5 ) 

where • C f - U i 3 J ' 
Do 

Bn 
(26) 

Based on equation (25), we can construct a reduced order estimate of the 

state χ 2 as, 

x2(Jb + 1) = Arx2{k) + Bru{k) + ^ a i y i ( i ) 

+ Kr [yr(k) - Crx2(k) - D r u ( * ) ] , (27) 

where ÜTr 1 the reduced order estimator gain matrix, is chosen such that AT — 

KrCr is asymptotically stable. Since sc3(ib + l ) depends on the measurement 

yi(Jb + 1), the reduced order estimator (27) belongs to the class of current 

estimators. For the purpose of implementing it, (27) can be rewritten by 

partitioning Kr = [ÜTro, Kr{\ in conformity with yo and y1 and by defining 

the following variable v(k)y 

v{k) = Î2(k)-Kriyi{k). (28) 

Then the reduced order estimator based controller is given by 

v(k + 1) = (Λ - KrCr)v(k) + (Br - KrDr)u{k) + Gry(k), 

u(k) = û(k) = -Ft»i(h) - F2£2(k) = -F3v(k) - [0, Fx + F2Krx]y(k), 
(29) 

where 

F = [Λ, F2], G r = [ΛΓ,ο, A31 - ΚτχΑχχ + (Ar - KrCr)Krx]. (30) 

The transfer function from —u to y that results in using the reduced order 

estimator is then given by 

Cr(z) = F3[zl -Ar + KrCr + BrF2 - Χ , Α ^ ] "
1 

• (Gr - (Br - KrDr)[0, Fx + F2Krl]) + [0, Fx + F2Krx). (31) 
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Proposition 1. For the case when Σ is right invertible and the matrix D is 

of maximal rank, all the controllers considered here, namely, the prediction, 

current and reduced order estimator based controllers, are one and the 

same. 

Proof : When Σ is right invertible and matrix D is of maximal rank, 

we note that in current estimator, D = Do, C\ is empty, Cc = C 0 = C 

and De = Do = D. On the other hand, in reduced order estimator, we 

have A22 = A, B22 = B, C02 = C, A? = A22 = A, Br = B22 = B, 

Cr = C02 = C, Dr = Do = D. Using these facts, it is easy to verify the 

above proposition. I 

We now proceed to do some preliminary analysis of the loop recovery 

error E(z). It turns out that the expression, E(z) = Lt(z) —L(z), is not well 

suited for loop transfer recovery analysis. Realizing this, for the class of sys-

tems he considered, Goodman [12] related E(z) to a matrix M(z), hereafter 

called the recovery matrix. The following lemma generalizes Goodman's re-

sult for general nonstrictly proper systems and for all the three controllers 

considered here. 

Lemma 1. Let a system Σ be stabilizable and detectable. Also, let Lt(z) = 

FSB be an admissible target loop, i.e., Lt(z) £ Τ ( Σ ) . Then the loop 

recovery error E(z) between the target loop transfer function L%{z) and 

that realized by any one of the controllers described earlier, can be written 

in the form, 

E{z) = M(z) [J m + M ^ r V m + FSB). (32) 

iïirthermore, for all ω Ε Ω, 

E*(ju) = 0 if and only ifM*(ju>) = 0 

where ft is the set of all 0 < | ω \< τ/Τ for which L\(jw) and L*(jw) = 

C*(jù))P*(jù>) are well defined (i.e., all the required inverses exist). The 

expression for the recovery matrix M(z) depends on the controller used. In 

particular, for each one of the controllers considered earlier, we have the 

following expressions, 

Mp{z) = F(zln - A + KPC)~\B - KPD), (33) 

Me(z) = F (zln - A + KcCc)-
1
 (B - KcDe), (34) 

Mr{z) = F2{zl - A r + KTCT)-\Br - KrDr). (35) 



214 BEN M. CHEN ET AL. 

Figure 2: Plant and controller configuration. 

P r o o f : See Appendix A. I 

A physical interpretation of the the recovery matrix M(z) can be given. 

To do so, one can view the controller as a device having two inputs, (1) 

the plant input u and (2) the plant output y as shown in Figure 2. Then, 

—M(z) is the transfer function from the plant input point to the controller 

output point while M(z) is the transfer function from the plant input point 

to the estimated state £. That is, one can write 

U(z) = -FX(z) = -M(z)U(z) - N(z)Y(z), (36) 

and 

X(z) = M(z)U(z) + N(z)Y (z). (37) 

Here, depending on the controller used, the expressions for M(z) are as in 

(33), (34) and (35). Also, M(z) is such that M(z) = FM(z). Moreover, 

depending on the controller used, the expressions for N(z) and N(z) are as 

given below. 

tf,(z) = F(*J-A + i i r , C ) - % , Np(z) = FNp(z), (38) 

Nc(z) = (zI-A + KeCe)-
l
Ke 

I 0 
0 zl 

Ne(z) = FNc(z) , 

Nr(z) = F2(zI-Ar+KrCry
1Gr^[0iF1 + F2Krl] , Nr(z) = FNr(z) . 

In view of the above expressions, Lemma 1 implies that whenever LTR 

is achieved by the controller, the controller output does not entail any 

feedback from the plant input point. On the other hand, the state estimate 

£ in general depends on the plant input. The significance of Lemma 1 

can be seen in two ways. It converts the LTR analysis problem into a 



LOOP TRANSFER RECOVERY, PART 1: ANALYSIS 215 

study of conditions under which the recovery matrix M(z) can be rendered 

sero. Also, it unifies the study of M(z) for all the three controllers into 

a single mathematical framework. To see this explicitly, let us define the 

auxiliary systems E c and Σ Γ which are respectively characterized by the 

matrix quadruples (A,B%Cc,De) a n d ( A r , 2 ? R, C T tD T ) . Then we have the 

following observation. 

Observation 1. 

1. The LTR mechanism for a given system Σ using a current estimator 

based controller can be studied using the auxiliary system E c and a 

a prediction estimator based controller constructed for it. 

2. The LTR mechanism for a given system Σ using a reduced order esti-

mator based controller can be studied using the auxiliary system Σ Γ 

and a prediction estimator based controller constructed for it where 

in F2 takes the place of F. 

In view of Lemma 1 and Observation 1, our study of L T R for all the three 

controllers is unified and reduces to the study of an appropriate recovery 

matrix Μ (ζ). In order to further cement such a unification, we need to 

investigate the relationship between the structural properties of E c and Σ , 

as well as between those of E r and Σ . The following propositions delineates 

such relationships. 

Proposition 2. 

1. Σ β is of (non-) minimum phase if and only if Σ is of (non-) minimum 

phase. 

2. E c is stabilizable and detectable if and only if Σ is stabilizable and 

detectable. 

3. Invariant zeros of E c contain invariant zeros of Σ and ζ = 0. 

4. Orders of infinite zeros of E c are reduced by one from those of E. 

5. E c is left invertible if and only if Ε is left invertible. 

6. V + ( E C) = V + ( E ) . 

7. « S - ( E C) = S - ( E ) n{x\Cxe lm(D)}. 
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β. S~(E e) = 0 if and only if Σ is left invertible and of minimum phase 

with no infinite zeros of order higher than one. 

Proof : See Appendix Β. I 

Proposition 3. 

1. Στ is of (non-) minimum phase if and only if Σ is of (non-) minimum 

phase. 

2. Στ is detectable if and only if Σ is detectable. 

3. Invariant zeros of E r are the same as those of Σ. 

4. Orders of infinite zeros of Στ are reduced by one from those of Σ. 

5. E r is left invertible if and only if Σ is left invertible. 

7 > /%-π*ο)χ(η-ρ+τηοΛ = £ - ( E ) n { x | CX G Im(JD)}. 
\ (̂n-p+mo) / 

8. 5"(E r) .= 0 if and only if Σ is left invertible and of minimum phase 

with no inßnite zeros of order higher than one. 

Proof : See [26]. I 

Remark 1. For a left invertible minimum phase system Σ with D = 0, it 

is simple to see that 

«S-(EC) = «S~(E r) = S - (E) n{X\CX G Im (D)} = 0 

if and only if CB is of maximal rank. Also, for a nonstrictly proper SISO 

system Σ, 

«S"(E) = «S~(EC) = «S~(E r) = S~(E) Π {Χ \ CX G Im (D)} = 0 

if and only if it is of minimum phase. 
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V. GENERAL LTR ANALYSIS 

This section deals with the general analysis of L T R mechanism using any 

one of the three controllers discussed in the last section. Notationally, in all 

our general discussions here, we deal with the given system Σ characterized 

by the quadruple ( A , B, C, D) and the prediction estimator based controller 

in which Kp is the observer gain. In view of Observation 1, all the general 

discussions presented here can be particularized to current and reduced 

order estimator based controllers with appropriate notational changes. In 

all our main theorems, we will however explicitly point out the capabilities 

of each controller as they could be different for each case. 

As is evident from Lemma 1, the nucleus of L T R analysis is the study of 

Mp(z) to ascertain how and when it can or cannot be rendered zero. The 

required study of Mp(z) can be undertaken in two ways, with or without 

the prior knowledge of F that prescribes the target loop transfer function 

Lt(z). Note that the study of Mp(z) without the prior knowledge of F 

imitates the traditional L Q G design philosophy in which the two tasks of 

obtaining F and Kp are separated. Keeping this in mind, our goal in the 

first subsection to follow is to study Mp (z) without taking into account any 

specific characteristics of F. The second subsection, devoted to L T R analy-

sis while taking into account appropriate characteristics of F, complements 

the analysis of the first subsection. Decomposing Mp(z) as FMp(z), the 

study of Mp(z) without knowing F is the same one as the study of Mp(z). 

A detailed study of Mp(z) leads to a fundamental Lemma 2 involving with 

an eigenstructure assignment to the observer dynamic matrix A — KpC by 

an appropriate design of Kp. This Lemma 2 reveals the limitations of the 

given system as a consequence of its structural properties in recovering an 

arbitrary target loop transfer function via the given controller structure. 

Thus it leads to Theorem 2 which, for each controller, shows under what 

conditions on Σ the set of recoverable target loops Τ * ( Σ ) is equal to the 

set of admissible target loops Τ ( Σ ) . Most of the results available so far 

in the literature can then be seen to be special cases of Theorem 2. Also, 

Lemma 2 enables one to decompose Mp(z) into two essential parts, Mp(z) 

and Mp(z). The first part Mp(z) can be rendered zero by an appropriate 

eigenstructure assignment to A — KpC, while the second part Mp(z) in 

general cannot be rendered zero, by any means, although our analysis of 

Mp(z) reveals a multitude of ways by which it can be shaped. The decom-
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poeition of Mp (ζ) into two parts and the subsequent analysis of each part 

forms the core of entire analysis given throughout this paper. In particular, 

it leads to several important results given in this section. For example, 

Theorem 3 characterizes the loop transfer function as well as the sensitiv-

ity and complementary sensitivity functions achievable by the considered 

controller. On the other hand, Theorem 4 shows the subspace S* G R m
 in 

which Mp(z) can be rendered zero, i.e, the projections of the target and 

achievable sensitivity and complementary sensitivity functions onto S
€ can 

match each other. Next, in Subsection B, Theorem 5 develops the necessary 

and sufficient conditions a target loop transfer function Lt(z) has to satisfy 

so that it can be recoverable for the given system Σ. On the other hand, 

Theorem 6 develops the necessary and sufficient conditions on Σ so that 

it has at least one recoverable target loop transfer function. Subsection C 

generalizes the results of Subsections A and Β when recovery is important 

over a prescribed subspace of the control space. Furthermore, our analysis 

in this section reveals the mechanism of pole-zero cancellation between the 

controller eigenvalues and the input or output decoupling zeros of Σ. 

A . Recovery Analysis For A n A r b i t r a r y Target L o o p 

In this subsection, we consider that the target loop transfer function L%(z) = 

FSB is arbitrary. That is, we do not take into account any specific charac-

teristics of Lt(z) in analyzing the LTR mechanism. As mentioned before, 

we will focus our attentions on the prediction estimator based controller 

with gain Kp. Then, as implied by Lemma 1 , Mp(z) as given below forms 

the basis of our study, 

Mp(z) = (zln - A + KPC)-
X
{B - KPD). (39) 

It is evident that the gain Kp is the only free design parameter in Mp(z). 

First of all, in order to guarantee the closed-loop stability, Kp must be such 

that A — KPC is an asymptotically stable matrix. The remaining freedom 

in choosing Kp can then be used for the purpose of achieving LTR. We note 

that exact loop transfer recovery (ELTR) is possible for an arbitrary F if 

and only if 

KU") = (̂ ωΤ/η - A + Kpcy\B - KPD) = 0 . 

However, due to the nonsingularity of (β*
ωΤ
Ιη —Α + ΚρΟ)~

χ
, the fact that 

Mp(jw) = 0 implies that Β — KpD = 0 . Hence, rendering all the parts 



LOOP TRANSFER RECOVERY, PART 1: ANALYSIS 219 

of MJju) zero is possible only for a very restrictive class of systems. In 

general only certain parts of Mp(jw) can be rendered zero. T o proceed 

with our analysis, for clarity of presentation we will temporarily assume 

that A — KPC is nondefective. This allows us to expand Mp(z) and hence 

Mp(z) in a dyadic form, 

where the residue Ri is given by 

Ri = WiV?[B-KpD]. (41) 

Here W{ and Vi are respectively the right and left eigenvectors associated 

with an eigenvalue λ» of A — KPC and they are scaled so that WV
H
 = 

V
H
W = In where 

W=[WuW2,...,Wn) and V = [Vi, V2, .. ., Vn]. (42) 

Remark 2. The assumption that Kp is selected so that A — KPC is nonde-
fective is not essential. However, it simplifies our presentation. A removal 
of this condition necessitates the use of generalized right and left eigenvec-
tors of A — KPC instead of the right and left eigenvectors Wi and Vi and 
consequently the expansion of Mp(z) requires a double summation in place 
of the single summation used in (40). 

W e are looking for conditions under which the i-th term of Mp(z) in 

(40) can be made zero for each i = 1 to n. There is only one possibility 

in discrete-time L T R to do so, namely, assigning λ,· to any location in C ° 

while simultaneously rendering the corresponding residue Ri zero. In other 

words, such a possibility corresponds to appropriate finite eigenstructure 

assignment to A — KPC to render Ri zero. In continuous systems, besides 

the above possibility, there exists another possibility, namely, assigning At-

asymptotically large in the negative half s-plane so that a term of the type 

Ri 
a — Xi 

tends to zero as λ* —• oo. This possibility deals with an infinite eigenstruc-

ture assignment to A — KpC. The possibility of assigning an infinite eigen-

structure, however, does not exist in discrete systems since Xi is restricted 
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to C ° in order to guarantee the stability of the resulting closed-loop system. 

Given the fact that | A t | cannot go to oo, it is easy to observe that the no-

tions of exact L T R ( E L T R ) and asymptotic L T R ( A L T R ) in discrete-time 

systems are equivalent in the sense that any target loop that is asymptoti-

cally recoverable is also exactly recoverable and vice versa. Because of this, 

throughout this paper, whenever we talk about recovery, we mean both 

exact and asymptotic recovery. For example, whenever we say that an ad-

missible target loop is recoverable, we mean by it that the specified target 

loop is exactly as well as asymptotically recoverable as stated in definition 

4. Nevertheless, we will in Part 2 of this paper, distinguish between E L T R 

and A L T R . This is because, as we mentioned in the introduction, some 

optimization based design methods such as JJQO norm minimization meth-

ods some times lead to suboptimal designs that correspond to asymptotic 

recovery. T o be specific, in optimization methods, one normally generates 

a sequence of observer gains by solving parameterized algebraic Riccati 

equations. As the parameter tends to a certain value, the corresponding 

sequence of üT«, norms of the resulting recovery matrices tends to a limit 

which is the infimum of the HQQ norm of the recovery matrix over the set of 

all possible observer gains. A suboptimal solution is obtained when one se-

lects an observer gain corresponding to a particular value of the parameter. 

On the other hand, in eigenstructure assignment methods, the required ob-

server gain is obtained without solving any parameterized equations. Thus 

some times the observer gain Kp is designed as a function of a parameter 

and some other times independent of it. 

The following lemma answers the question of how many residues Ri 

can be rendered zero by an appropriate finite eigenstructure assignment of 

A - KPC. 

L e m m a 2 . Let λ,· and V{ be an eigenvalue and the corresponding leu eigen-

vector of A — KPC for any gain Kp such that A — KpC is asymptotically 

stable. Then the maximum possible number of At- G C ° which satisfy the 

condition V*[B — KpD] = 0 is n~ + n&. A total of n~ of these Xi coin-

ode with the system invariant zeros which are in C ° (the so called stable 

or minimum phase invariant zeros) and the remaining eigenvalues can 

be assigned arbitrarily to any locations in C ° . All the eigenvectors Vi 

that correspond to these n~ -f n* eigenvalues span the subspace R
n
/ 5 " ( E ) . 

Moreover, the n~ eigenvectors VJ which correspond to the eigenvalues which 
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COINCIDE WITH THE SYSTEM INVARIANT ZEROS IN C ° COINCIDE WITH THE CORRESPOND-

ING LEFT STATE ZERO DIRECTIONS AND SPAN THE SUBSPACE V * ( E ) / V
+
( E ) . 

Proof : See Appendix Β of [6]. I 

Remark 3. INSTEAD OF RENDERING THE n~ + n* residues RI MENTIONED IN 

LEMMA 2 EXACTLY ZERO, IF ONE PREFERS, THEY CAN BE RENDERED ASYMPTOTICALLY 

ZERO AS CERTAIN PARAMETER TENDS TO A PARTICULAR LIMIT. L· THAT CASE n~ eigen-

values COINCIDE ASYMPTOTICALLY WITH THE n~ minimum PHASE INVARIANT ZEROS 

WHILE THE CORRESPONDING EIGENVECTORS IN THE LIMIT COINCIDE WITH THE CORRE-

SPONDING LEFT STATE ZERO DIRECTIONS AND SPAN THE SUBSPACE V* ( Σ ) / V
+
 (Σ ) . AS 

STATED EARLIER, IN THIS PART OF PAPER, WE WILL NOT DISTINGUISH BETWEEN SUCH 

EXACT AND ASYMPTOTIC ASSIGNMENTS. 

Lemma 2 points out that there are altogether n~ 4-η* eigenvalues which 

can be assigned inside C ° so that the corresponding terms of MP(Z) in its 

dyadic expansion (40) are zero. This fact leads to some structural conditions 

on Σ so that any arbitrary admissible target loop can be recovered. This 

is explored in the following theorem. 

Theorem 2. CONSIDER A STABILIZABLE AND DETECTABLE SYSTEM Σ. DEPENDING 

UPON THE CONTROLLER USED, WE HAVE THE FOLLOWING CHARACTERIZATION OF Σ SO 

THAT ANY ARBITRARY ADMISSIBLE TARGET LOOP CAN BE RECOVERED. 

1. Prediction estimator based controller: ANY ARBITRARY ADMISSIBLE TARGET 

LOOP IS RECOVERABLE, I.E., Τ£(Σ) = Τ ( Σ ) , if and ONLY IF Σ IS LEFT INVERT-

IBLE AND OF MINIMUM PHASE WITH NO INFINITE ZEROS (I.E., D IS MAXIMAL 

RANK). 

2. Current estimator based controller: ANY ARBITRARY ADMISSIBLE TARGET 

LOOP IS RECOVERABLE, I.E., Τ*(Σ) = Τ ( Σ ) , if and onJy IF Σ IS LEFT INVERT-

IBLE AND OF MINIMUM PHASE WITH NO INFINITE ZEROS OF ORDER HIGHER THAN 

ONE. 

3. Reduced order estimator based controller: ANY ARBITRARY ADMISSIBLE 

TARGET LOOP IS RECOVERABLE, I.E., Τ?(Σ) = Τ ( Σ ) , if and ONLY IF Σ IS Jeft 

invertiWe and of MINIMUM PHASE WITH NO INFINITE ZEROS OF ORDER HIGHER 

THAN ONE. 
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P r o o f : Let us take the case of a prediction estimator based controller. 

The fact that Σ is left invertible and of minimum phase with no infinite 

zeros implies that n+ = nc = n/ = 0. Thus n~ + nj = n. Hence the result 

follows from (32) and Lemma 2. Conversely, it is simple to see that the 

recoverability of all the admissible target loops implies that V* (B—Kv D) — 

0, i = 1, · · · , n. Then by Lemma 2, we know that this is possible only when 

n ä + n » = η . Hence, n+ = n c = η / = 0, and thus Σ is left invertible and 

of minimum phase with no infinite zeros. Now, for the case of current and 

reduced order observer based controllers, in view of Propositions 2 (i.e., 

item 8) and 3 (i.e., item 8), we note that n+ + ne + nj corresponding to 

both E c and Σ Γ is equal to zero if and only if Σ is left invertible and of 

minimum phase with no infinite zeros of order higher than one. I 

We have the following interesting special case of Theorem 2. 

Corol lary 1. Let Σ be left invertible and of minimum phase with D = 0 

and CB of maximal rank. Then all 'infinite zeros of Σ are of order one, 

and hence it follows from Theorem 2 that Τ * ( Σ ) = Τ * ( Σ ) = Τ ( Σ ) , i.e., 

au the admissible target loops are recoverable by appropriate current and 

reduced order estimator based controllers; but not in general by a prediction 

estimator based controller. 

P r o o f : It is obvious. I 

The above result was obtained earlier by Maciejowski [15] and Zhang 

and Freudenberg [35] for the case of a current estimator based controller. 

As is evident by Theorem 2, the required structural conditions for re-

covery of any arbitrary admissible target loop are very stringent, and call 

for n~ + to be equal to the dimension η of Σ . To see what is and what 

is not feasible when n~ +ri\, φ η, and to emphasize explicitly the behavior 

of each term of Mp(z), let us partition the dyadic expansion (40) of Mp(z) 

into three parts, each part having a particular type of characteristics, 

(43) 

where 
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and 

n++ne+n/ ~· 
In the above partition, appropriate superscripts - , 6, and e are added to 

Ri and At- in order to associate them respectively with Mp ( z ) , Mp(z), and 

Mp(z). Next, define the following sets where n* = + nc + nj: 

A " = { Λ Γ ; t = l to η " } , V " = { VJ- ; i = 1 to n j } , W~ = {Wr;i=l to n"} 

A
k

= { λ Ι ; ι
β
= 1 to ι * } , ν*= { V < » ; i = l ton*}, TP* = { W > ; i = l to nh} 

A * = { A f ; i = l ton . } , V
e
 = { V·* ; t = l to n . } , W * = { W? ; t = l to π . } . 

We now note that various parts of Mp(z) have the following interpretation: 

1. Mp (z) contains n~ terms. The eigenvalues of A — KpC repre-

sented in it form a set A ~ . In accordance with Lemma 2, there exists 

a gain Kp such that Mp (z) can be rendered identically zero by assign-

ing the elements of A " to coincide with the system minimum phase 

invariant zeros while the corresponding set of left eigenvectors V~ 

coincides with the the corresponding set of left state zero directions. 

2. M
h

p(z) contains n* terms. The n* eigenvalues of A — KPC represented 

in it form a set A*. In accordance with Lemma 2, there exists a gain 

Kp such that Mp(z) can be rendered zero by assigning the elements 

of A* to arbitrary locations in C ° . 

3. M*(z) contains n* = + ne + nj terms. The n« eigenvalues of 

A — KPC represented in Mp(z) form a set A*. In view of Lemma 2, 

Mp(z) cannot in general be rendered zero by any assignment of A* 

and the associated sets of right and left eigenvectors W* and V
e
. 

Since both Mp (z) and Mp (z) can be rendered zero, for future use, we can 

combine them into one term, 

M°P{Z) = M;(Z) + M
1

P(Z). 

We define likewise, A
0
 = A " U A*, W° = W~U W\ V° = V~ U V*. Thus 

Mp(z) can be rewritten as 

Mr{z) = M°p{z) + Mp(z). (44) 
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Since Mp(z) cannot in general be rendered sero, it can be termed as recov-

ery error matrix. 

As the above discussion indicates, Lemma 2 forms the heart of the 

underlying mechanism of discrete-time LTR. It shows clearly what is and 

what is not feasible under what conditions. Although it does not directly 

provide methods of obtaining the gain Kp, it provides structural guide lines 

as to how certain eigenvalues and eigenvectors are to be assigned while 

indicating a multitude of ways in which freedom exists in assigning the 

other eigenvalues and eigenvectors of A — KpC. These guidelines, in turn, 

can appropriately be channeled to come up with a design method to obtain 

an appropriate gain Kp. Leaving aside now the methods of design which 

will be discussed systematically in Part 2 of the paper, let us at this stage 

simply define the following sets of gains: 

Definition 7. Consider the system Σ . Let £ * ( Σ ) be a set of gains Kp Ε 

R
n xp

 such that (1) A - KPC is asymptotically stable, and (2) M°p(z) is 

zero. In a similar manner, deßne /C*(E C) and £ * ( Σ Τ ) for systems E c and 

Σ Γ . 

As mentioned earlier, we do not parameterize here the gain Kp in terms 

of a tunable parameter σ. We deal only with a fixed gain Kp. In case if 

one deals with asymptotic recovery and thus with a sequence of controller 

gains Κρ(σ) for different values of σ, the set of recoverable gains is also 

parameterized and hence can be written as £ * ( Σ , σ ) . In that case, one 

defines Κ*ρ(Υ>,σ) as a set of gains Κρ(σ) G R
n xp

 such that (1) A — Kp(a)C 

is asymptotically stable for all σ > σ* where 0 < σ* < oo, (2) the limits, as 

σ —• oo, of all the eigenvalues of A — Kp(a)C remain in C ° , and (3) Mp(z) 

is either identically zero or asymptotically zero. Similarly, /CJ(E C Ja) and 

£ * ( Σ Γ , σ ) are defined for systems E c and Στ. Such a characterization is 

useful in design methods dealt with in Part 2 of the paper. 

It is obvious that the sets of gains defined above are nonempty. We note 

also that whenever Kp is chosen as an element of £ * ( Σ ) , the resulting error 

in the recovery matrix Mp(z) is Mp(z) = FMp(z). As such Mp(z) is called 

hereafter as the 'recovery error matrix
9
. 

Theorem 3 given below characterizes the achieved loop transfer function 

as well as sensitivity and complementary sensitivity functions. 
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Theorem 3. Let the given system Σ be stabilizable and detectable. Also, 

let Lt(z) = FSB be an admissible target loop, i.e., Lt(z) Ε Τ(Σ). Then for 

a prediction estimator based controller with estimator gain Kp G ££(Σ), 
we have 

E,(z) = M;(z)[Im + M;(z))-
l
[Im + Lt(z)], (45) 

Sp(z) = St(z)[Im + M;(z)], (46) 

Tp{z) = Tt(z)-St(z)M;(z), (47) 

and 
| σ ^ ( » > ) ] - σ , [ 5 ? ^ ) ] | 

a m m [ s . m ^ < W " , Oo,)], (48) 

I ^ M - ^ P T M J ^ # ( 4 9) 

* m e, [ S ; ( j u ; ) ] 

The above results are true for current and reduced order estimator based 

controllers as well provided the subscript Ρ is changed to c and R, and 

quadruple (A9B,C,D) is changed to (A, B, Ce, De) and (AR, Br, Cr, Dr) 

respectively. Also, in the case of reduced order estimator based controller, 

F in (45) to (49) is to be replaced by F2. 

Proof : It follows from Lemma 2. I 

Remark 4 . Theorem 2 is a special case of the above theorem. To see this, 

let us examine first the case when a prediction estimator based controller 

is used. If the given system Σ is left invertible and of minimum phase 

with no infinite zeros, then the recovery error matrix Mf(z) is nonexistent 

and hence Ep(z) can be rendered zero for all z G C. Similarly, if Σ is 

left invertible and of minimum phase with no infinite zeros of order higher 

than one, then Me(z) and Mr(z) are nonexistent and hence the exact 

recovery is achievable by using either current or reduced order estimator 

based controllers. Thus, for the special cases considered in Theorem 2, the 

results of Theorem 3 are reduced to those of Theorem 2. 

Remark 5. Theorem 3 also holds if we use the estimator gain Κρ(σ) G 

£*(Σ,σ). However, in this case, the equalities in (45) to (47) should be 

replaced by pointwise convergences in ζ as σ oo. 

As implied by Theorem 3, the recovery error matrix M*(z) plays a 
dominant role in the recovery process and hence it should be shaped to yield 



226 BEN M . CHEN ET A L . 

as best as possible the desired results. Shaping Μ* (ζ) involves selecting the 

set of eigenvalues A ' represented in Mp(z) and the associated set of right 

and left eigenvectors W
e
 and V

e
. Such a selection can be done in a number 

of ways subject to the constraints imposed in selecting the eigenvectors [16]. 

Since there is an ample amount of freedom in selecting Λ ' , W
e
 and V

e
, 

there exists a set of admissible recovery error matrices, and such a set can 

be denoted as Mp(z). Similarly, sets M*e(z) and M*(z) can be formulated 

for the current and reduced order estimator based controllers. Among the 

design methods to be discussed in Part 2 of the paper, the eigenstructure 

assignment methods make use of the available flexibility, and are capable 

of attaining any given Mp(z) G <Mp(z) while making FMp(z) = 0. On the 

other hand, in optimization design methods, the optimal solution would 

render FMp(z) = 0 while minimizing the JT«, or H2 norm of the recovery 

error matrix Mp(z), Thus, FMp(z) is always rendered zero but the attained 

Mp(z) varies from one design method to the other. 

In multivariable systems, one interesting aspect of Theorem 3 is that 

there could exist a subspace of the control space in which Mp(z) can be 

rendered zero. To pinpoint this, let 

ei = [B-KpD]'Vi , 7 , € 7 · , (50) 

and let E* be the subspace of R
m
, 

8* = Span{e< I V{ e V
e
}. (51) 

Let the dimension of 8* be m«. Now let 

S* = orthogonal complement of £
β
 in R

m
. (52) 

Let Ρ' be the orthogonal projection matrix onto S*. Then the following 

theorem pinpoints the directional behavior of Mp(z) and consequently the 

behavior of S(z) and T(z). 

Theorem 4. Let Σ be stabilizable and detectable, and Lt(z) be a member 

of the set of admissible target loops Τ ( Σ ) . Then for any Kp Ε £ ρ ( Σ ) , the 

corresponding prediction estimator based controller satisfies 

Mp(z)P' = 0, 

Sp(z)P' = St{z)P' 
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Tp(z)P' = Tt(z)P', 

where P
9
 is the orthogonal projection onto S

€
 G R

m
 as given in (52). 

The above results are true for current and reduced order estimator based 

controllers as well provided the subscript p is changed to c and r > and 

quadruple (A,B9C,D) is changed to ( A , B , C e , D e ) and (Ar%BT%CT,DT) 

respectively. 

P r o o f : In view of the definitions of the matrix P' and the subspaces £ · 

and 5' , Theorem 3 implies the results of Theorem 4. I 

It is interesting to note that although the projections of Sp(z) and St(z) 

and hence those of Tp(z) and Tt(z) onto S* are equivalent, it need not be 

true that the projections of achieved and target loops, Cp(z)P(z) and Lt(z), 

onto S* are equivalent. That is, in general, Cp(z)P(z)P' φ Lt(z)P'. This 

is illustrated by the following example. 

Example 1 : Consider a non-strictly proper discrete-time system charac-

terized by 

which is invertible with two nonminimum phase invariant zeros at ζ = 1 

and 2 = 2. Let the target loop Lt(z) and target sensitivity function St (z) 

be specified by 
3 0 
0 2 * 

Let the prediction estimator gain be given by 

Then, it is easy to calculate that 

Lt(z) = F(zl - A) 

3 z - 6 0 
0 2 z - 6 

z
2
 - Sz + 6 

St{*) = [I + Lt(z)] - 1 

z - 3 
0 

0 
z - 2 

ζ 
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' 15z
3
 - 72z

3
 + 108z - 48 -12z

3
 + 48z

2
 - 36z 

„ M D n 1 2z
3
 - 8z

3
 + 8z -16z

3
 + 6 4 z - 4 8 

C p ( z ) P ( z ) = ± 
z

4
 - 15z

3
 + 64z

3
 - 100z + 48 

and 
[ z

3
 - 15z

3
 + 48z 

WJ - 2 z
3
 + 8 z -

- 36 12z
2
 - 48z + 36 

8 z
3
 - 8z + 8 

Now consider a subspace S* having the orthogonal projection matrix P' as 

P' = 

It is now straightforward to verify that 

0.5 0.5 
0.5 0.5 

St(z)P' = Sp{z)P' = 

ζ - 3 ζ -
ζ - 2 ζ 

- 3 ' 
- 2 

2ζ 

This implies that the projections of the target and the achieved sensitivity 

functions on to the subspace S
€
 are equal to one another. On the other 

hand, we have 

^ 3 ( z - 2 ) 3 ( z - 2 ) " 

Lt(z)P'=WZ-3) fo-'lJ and 

Cp(z)P(z)P' = I 

2(z
2
 - 5z + 6) 

3z
3
 - 24z

2
 + 72z - 48 3z

3
 - 24z

2
 + 72z - 48 

2z
3
 - 24z

2
 + 72z - 48 2z

3
 - 24z

2
 + 72z - 48 

2(z
4
 - 15z

3
 + 64z

2
 - 100z + 48) 

Obviously, L%(z)P' φ Cp(z)P(z)P'. That is, the projections of the target 

and the achieved loop transfer functions on to the subspace S* do not match 

each other. • 

In view of the directional behavior of the recovery error matrix Mp{z) 

as given by Theorem 4, one could try to shape it in a particular way so as to 

obtain the recovery of sensitivity and complementary sensitivity functions 

in certain desired directions or one could try to shape Mp(z) so that the 

subspace S* has as large a dimension as possible, i.e., the subspace £
e
 has as 

small a dimension as possible. In this regard, we note that we have already 

selected A ° and the corresponding sets of eigenvectors V° so that Mp(z) is 

sero. W e also note that although all the n £ + n c + n / vectors Vi G V
e
 can be 
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selected to be linearly independent, the corresponding c< = [B — KpD]'Vi 

need not be linearly independent. In fact for a given e φ 0, the equation 

e = [B- KPD]'V> 

has η — m+ 1 linearly independent solutions for V. Of course, not all such 

η — m+1 vectors could be admissible eigenvectors of A — KPC for different 

eigenvalues of it inside C ° f and moreover some or all of these η — m 4 - 1 

vectors could also be linearly dependent on already selected eigenvectors 

in the set V ° . Thus the problem of shaping £' is to find an admissible 

set of eigenvalues λ4· and vectors et-, i = 1 to n+ + n c -f ny, which are 

not necessarily linearly independent, but the associated eigenvectors V{ of 

A — KPC satisfying e» = [B — KpD]'Vit i = 1 to η + + n c + ny, together with 

the vectors in the set V° form η linearly independent vectors. This problem 

of selecting an admissible set (λ«, e t) is very much related to the traditional 

problem of distributing the modes of a closed-loop system to various output 

components by an appropriate selection of the closed-loop eigenstructure. 

This traditional problem of Shaping the output response characteristics' 

of a closed-loop system has been studied for continuous systems first by 

Moore [16] and Shaked [30] and more recently by Sogaard-Andersen [33] 

although to this date there exists no systematic design procedure. 

The above discussion focuses on how to shape the subspace S* in which 

Mp(z), St(z) and Tt(z) are recovered. A practical problem of interest could 

be to achieve recovery of Mp(z), St(z) and Tt(z) in a prescribed subspace 

<?'. We will discuss this aspect of the problem in Subsection C. 

We will next examine the open-loop eigenvalues of the prediction esti-

mator based controller Cp(z) and the mechanism of pole zero cancellation 

between the controller eigenvalues and the input or output decoupling ze-

ros [22] of the system. It is important to know the eigenvalues of Cp(z) as 

they are included among the invariant zeros of the closed-loop system and 

hence affect the performance of it, e.g., command following. The controller 

transfer function is given by (16) while the eigenvalues of it are 

X[A - KPC -BF + KPDF]. 

To study the nature of these eigenvalues, let 

det[2ln - A + KPC] = φ
Ό
(ζ)φ

Λ
(ζ) 
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where φ°(ζ) and φ*(ζ) are polynomials in ζ whose zeros are the eigenvalues 

of A — KPC that belong to the sets A ° and A* respectively. Also, let 

where R
€
(z) is a polynomial matrix in z. Now consider the following when 

det[zl„ - A + KrC + BF- KPDF] 

= det[z/„ - A + KpC] det[I n + (zl„ - A + KVC)-\B - KPD)F] 

= φ°(ζ)φ'(ζ) d e t [ I m + F(zln -A + KVC)-\B - KPD)] 

= 4>°{z)<f>*(z)det[Im + FMp{z)] 

= <t>
0
(z)<r(z)det[Im + FMl(z)) 

= ^ ( z ) ^ ( z ) d e t [ I m + ^M] 

= ρ d e t [ I m^ ( z ) + fl«(z)] 

We note that the observer can be designed such that φ°(ζ) and φ'(ζ) are 

coprime. Thus the open-loop eigenvalues of the controller (16) are the zeros 

of φ°(ζ) and 
d e t [ I m^ ' ( z ) + R<(z)] 

[^(2)]m-l 

Thus A ° is contained among the eigenvalues of the controller. Although A ° 

is in C
0
, there is no guarantee that the zeros of 

d e t [ J m^ ( z ) + JZ«(z)] 
0.(z)]m-x 

are in C ° . Hence the controller may or may not be open-loop stable. 

However, it is obvious to see that if recovery is achieved, i.e., if FMp(z) = 

0 and thus R
e
(z) = 0, then the eigenvalues of the prediction estimator 

based controller are given by the roots of φ°(ζ)φ
Λ
(ζ) = 0. As the roots of 

φ°(ζ)φ
€
(ζ) = 0 are inside the unit circle, whenever recovery is achieved, 

the controller is open-loop stable. This is also apparent from equation (36). 

Note that in this case C p ( z ) = Np(z) where Np(z) is as in (38). 

In general, the loop transfer function Cp(z)P(z) has 2n eigenvalues, η 

of them coming from the given system Σ and the other η from the con-

troller. However, there are several cancellations among the input or output 
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decoupling zeros [22] of Cp(z)P(z) and the controller eigenvalues. The fol-

lowing Lemma 3 which is a generalisation of a similar one in Goodman [12], 

explores such a cancellation. 

Lemma 3. Let λ be an eigenvalue of A — KPC with the corresponding 

left eigenvector V such that V
H
[B — KPD] = 0. Then λ is an eigenvalue 

of A — KPC — B F + KPDF with the corresponding left eigenvector as V. 

Moreover, Λ cancels an input decoupling zero of Cp(z)P(z). 

Proof : See Appendix C. I 

Thus, in view of Lemma 2, the above lemma implies that whatever 

may be the matrix F, if the controller is appropriately designed, there are 

"a + n * cancellations among the eigenvalues of the controller and the input 

decoupling zeros of Cp(z)P(z). As will be seen in the next subsection, there 

may be additional cancellations if F satisfies certain properties. 

Remark 6. Equation (54) and Lemma 3 are equally true for current as well 

as reduced order estimator based controllers. In these cases, notationally 

the quadruple (A,B,C,D), F and Cp(z) are to be replaced respectively 

by (A, B, C c, Dc), F and Ce(z) for a current estimator based controller, 

and by (Ar) Br,Cr, Dr), F2 and Cr(z) for a reduced order estimator based 

controller. 

B. Analysis For Recoverable Target Loops 

In the previous subsection, loop transfer recovery analysis is conducted 

without taking into account any knowledge of F. It involves essentially the 

study of the matrix Mp(z) or Mp(z) to ascertain when it can or cannot be 

rendered zero. This subsection complements the analysis of Subsection A 

by taking into account the knowledge of F. Obviously then, the analysis 

of this subsection is a study of Mp(z) = FMp(z). One of the important 

questions that needs to be answered here is as follows. What class of 

target loops can be recovered for the given system? As it forms a coupling 

between the analysis and design, characterization of Lt(z) to determine 

whether it can be recovered or not for the given system, plays an extremely 

important role. That is, although the physical tasks of designing F and 

Kp are separable, one can benefit enormously by knowing ahead what kind 

of target loops are recoverable. The necessary and sufficient conditions 
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developed here on LT(Z) for its recoverability, turn out to be constraints on 
the finite and infinite sero structure of LT(Z) as related to the corresponding 
structure of Σ. An interpretation of these conditions reveals that recovery 
of LT(Z) for general nonminimum phase systems is possible under a variety 
of conditions. 

Another important question that arises before one undertakes formulat-
ing any target loop transfer function LT(Z) for a given system Σ is as follows. 
What are the necessary and sufficient conditions on Σ so that it has at least 
one recoverable target loop? An answer to this question obviously helps a 
designer to remodel the given plant if necessary by appropriately modifying 
the number or type of plant inputs or/and outputs. To answer the ques-
tion posed, we develop here an auxiliary system Σα" of Σ for each one of 
the three controllers considered here, and show that the set of recoverable 
target loops is nonempty if and only if Σα" is stabilizable by a static out-
put feedback controller. A close look at this condition reveals a surprising 
necessary condition, namely, strong stabilizability of Σ is necessary for it 
to have at least one recoverable target loop. 

Finally, another aspect of the analysis given here shows the mechanism 
of pole-zero cancellation between the controller eigenvalues and the input 
or output decoupling zeros of Σ for the case when F is known. 

We proceed now to give the following result regarding the recoverability 
of a target loop transfer function LT(Z) = FSB for the given system Σ. 

Theorem 5. CONSIDER a STABILIZABLE AND DETECTABLE DISCRETE-TIME SYSTEM 

Σ CHARACTERIZED BY A MATRIX QUADRUPLE (A, B, C, D), WHICH IS NOT NECESSARILY 

LEFT INVERTIBLE AND NOT NECESSARILY OF MINIMUM PHASE. THEN, AN ADMISSIBLE 

TARGET LOOP TRANSFER FUNCTION LT(Z) OF Σ, i.e., LT(Z) G Τ(Σ), IS RECOVERABLE 

IF AND ONLY IF THE FOLLOWING CONDITION IS SATISFIED, DEPENDING ON THE CONTROLLER 

USED. 

1. FOR A PREDICTION ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT 

S-ÇE)ÇKEI(F). 

2. FOR A CURRENT ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT S" (Σ) 

Π{ζ I CX G Im(jD)} C Ker (F). 

3. FOR A REDUCED ORDER ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT 

5"(Σ) CI{X\CXE LM(D)} C Ker (F). 
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THUS THE SET OF RECOVERABLE TARGET LOOPS UNDER EACH CONTROLLER IS CHARACTER-

ISED AS FOLLOWS: 

1. Prediction estimator based controller : 

Τ?(Σ) = {LT(Z) Ε Τ ( Σ ) 15"(Σ) C Ker (F)}. 

2. Current estimator based controller : 

Τ*(Σ) = {LT(Z) Ε Τ ( Σ ) I £ - ( Σ ) Π { ζ I Cz Ε Im (D)} C Ker {F)}. 

3. Reduced order estimator based controller : 

Τ?(Σ) = {LT(Z) Ε Τ ( Σ ) 15"(Σ) Π { ζ | CX Ε Im (D)} C Ker (F)}. 

Proof : For the case of a prediction estimator based controller, the result 

follows easily from Theorem 5.1 of [6] or equivalently from Theorem 3.3 of 

[24] with obvious notational changes. For the current and reduced order 

estimator based controllers, the results follow from Propositions 2 and 3 

and Theorem 5.1 of [6]. I 

Remark 7. WE NOTE THAT Τ£(Σ) C Τ*(Σ) = Τ?(Σ). 

Remark 8. LET Σ be a STRICTLY PROPER MINIMUM PHASE SYSTEM HAVING IN-

FINITE ZEROS OF ORDER ONE, I.E., CB OF MAXIMAL RANK. THEN, IT IS SHOWN IN 

GOODMAN [12] THAT A TARGET LOOP LT(Z) = F&B IS RECOVERABLE BY A PRE-

DICTION ESTIMATOR BASED CONTROLLER IF FB = 0. This RESULT CAN EASILY BE 

DEDUCED FROM THEOREM 5. 

Several interpretations emerge from the recoverability conditions on the 
target loops given in Theorem 5. In fact the constraints given in Theorem 
5 are nothing more than constraints on the finite and infinite zero structure 
and invertibility properties of LT(Z). Some interesting interpretations in 
this regard can easily be exemplified as follows. 

1. If Σ is not left invertible, any recoverable LT(Z) is not left invertible. 

On the other hand, left invertibility of Σ does not necessarily imply 

that a recoverable LT(Z) is left invertible. That is, whenever Σ is left 

invertible, a recoverable LT(Z) could be either left invertible or not 

left invertible. 
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2. Any left invertible and recoverable LT(Z) must contain the unstable 

invariant sero structure of Σ . A recoverable but not left invertible 

LT(Z) does not necessarily contain the unstable invariant sero struc-

ture of Σ (see Example 2). 

Example 2 : Consider a non-strictly proper discrete-time system with 

sampling period Τ = 1, and characterised by 

A = 

C = 

- 1 - 1 " "1 0" 
0 0 , B = 0 0 

1 1 0 1 

- 1 -Γ 
, D = 

1 o" 
1 - 1 

, D = 
0 1 

This system is invertible and is of nonminimum phase as its invariant zeros 

are at {0 , 0, 2} . Let the target loop LT(Z) and the target sensitivity 

function ST(Z) be specified by 

F = 
0.5 0.5 

-0.5 -0.5 

The triple (A, B9 F) forms a minimum phase and right invertible system 

and hence it does not contain the unstable invariant zero structure of Σ . 

However, for this example, it can easily be seen that 

£ - ( Σ ) = S' ( Σ ) N{X\CX EHN(D)} = 

Since £ ~ ( Σ ) is contained in K e r ( F ) , in accordance with Theorem 5, the 

given target loop is recoverable by all the three controllers considered in 

this paper. In fact, since Σ is invertible with D being of maximal rank, all 

these controllers are one and the same (see Preposition 1). Thus we can 

conclude that a recoverable LT(Z) need not contain the unstable invariant 

zero structure of Σ . The following is the prediction estimator gain which 

achieves ELTR, 

1 0" 

KP = I 0 0 

- 1 0 

Our aim next is to develop the conditions on Σ so that the set of recov-

erable target loops is nonempty. We have the following theorem. 
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Theorem 6. CONSIDER A STABILIZABLE AND DETECTABLE SYSTEM Σ CHARACTER-

IZED BY A MATRIX QUADRUPLE ( A , J3, C, D), WHICH IS NOT NECESSARILY OF MINI-

MUM PHASE AND WHICH IS NOT NECESSARILY LEFT INVERTIBLE. LET CV AND CE BE 

ANY FULL RANK MATRICES OF DIMENSIONS (n~ +ni)xn and (n~ + nj + my ) χ η, 

RESPECTIVELY, SUCH THAT 

1. KEI{CP) = ν+(Σ), and 

2. Ker ( C c ) = 5 " ( Σ ) Π {χ \ CX G LM(D)}. 

ALSO, LET CR = CE. DEFINE THREE AUXILIARY SYSTEMS: 

1. Σ*
Η
 CHARACTERIZED BY THE MATRIX TRIPLE (A, B, CV), 

2. Σ*
14
 characterized BY THE MATRIX TRIPLE (A, B, CC), AND 

3. Σ ™ characterized BY THE MATRIX TRIPLE (A, B, CT). 

THEN WE HAVE THE FOLLOWING RESULTS DEPENDING UPON THE CONTROLLER USED : 

1. Prediction estimator based controller: Τ*(Σ) IS NONEMPTY IF AND ONLY 

if Σ ™ IS STABILIZABLE BY A STATIC OUTPUT FEEDBACK CONTROLLER. 

2. Current estimator based controller: Τ * ( Σ ) IS NONEMPTY IF AND ONLY IF 

Σ£" IS STABILIZABLE BY A STATIC OUTPUT FEEDBACK CONTROLLER. 

3. Reduced order estimator based controller: Τ ? ( Σ ) IS NONEMPTY IF AND 

ONLY IF Σ *
ν
 IS STABILIZABLE BY A STATIC OUTPUT FEEDBACK CONTROLLER. 

P r o o f : See Appendix D. I 

Theorem 6 gives the necessary and sufficient conditions under which the 

set of recoverable target loops for each controller is nonempty. However, 

the conditions given there are not conducive to any intuitive feelings. The 

following corollary gives a necessary condition which is surprising as well 

as intuitively appealing. 

Corol lary 2. THE STRONG STABILIZABILITY OF THE GIVEN SYSTEM Σ IS A NECES-

SARY CONDITION FOR IT TO HAVE AT LEAST ONE RECOVERABLE TARGET LOOP UNDER ANY 

OF THE THREE CONTROLLERS DISCUSSED HERE. 
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P r o o f t See Appendix Ε. 

Corollary 2 telle us that any given system Σ must be strongly stabilizable 

in order to have at least one recoverable target loop. On the other hand, 

as seen from Theorem 6, strong stabilizability of Σ alone is not sufficient 

for Τ * ( Σ ) to be nonempty. The following example illustrates this. 

Example 3 : Consider a non-strictly proper discrete-time system Σ char-

acterised by 

A - [ o i j '
 B

-
1 o' rt 0 l ' 

, D = 
Ί o' 

0 1 ι ° — - 1 0 
, D = 

. ° i . 

This system is invertible with two unstable invariant zeros a t { l + i, 1 — i } . 

Also, this system is strongly stabilizable as it can be stabilized by the 

following stable output feedback compensator, 

C ( * ) = 
-0.25 0.5(2 + 0.5) 

-0.25 ζ2 + 2 + 0.5 [0.5(2 + 0.5) 

However, it is simple to verify that for this system, 

£ - ( Σ ) = 5 ~ ( Σ ) Π { ζ I Cx G Im (D)} = R
2 

Hence, it follows from Theorem 5 that any recoverable target loop Lt(z) 

must have the following form of F, 

F = 
0 0 
0 0 

But it is trivial to see that such a target loop is not admissible. Thus, this 

system has no recoverable target loop although it is strongly stabilizable. 

• 

We now proceed to discuss the possible pole-zero cancellations for the 

recoverable target loops. First, we need the following lemma which is a 

generalization of a similar one in Goodman [12]. 

L e m m a 4. Let Λ be an eigenvalue ofA—KpC with the corresponding right 
eigenvector W such that FW = 0. Then λ is an eigenvalue of A — KPC — 
B F + KPDF with the corresponding right eigenvector as W. Moreover, λ 
cancels an output decoupling zero of Cp(z). 
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We have the following theorem. 

Theorem 7. IF E*(JU>) - 0 FOR ALL 0 < | Ω | < oo, i.e., ELTR is achieved, 

then EVERY EIGENVALUE OF A — KPC— B F + KPDF CANCELS EITHER AN OUTPUT 

DECOUPLING SERO OF CP(Z) OR AN INPUT DECOUPLING SERO OF CP(Z)P(Z). 

Proof : We note that E*(JW) = 0 for all 0 < | Ω | < oo if and only if either 

FWI = 0 or V?[B - KPD] = 0 or both. Hence the result follows from 

Lemmas 3 and 4. I 

Remark 9. Lemma 4 AND THEOREM 7 ARE EQUALLY TRUE FOR CURRENT AND RE-

DUCED ORDER ESTIMATOR BASED CONTROLLERS. IN THESE CASES, NOTATIONALLY THE 

QUADRUPLE (A,B,C,D), F AND CP(Z) ARE TO BE REPLACED RESPECTIVELY BY 

(A, B, CE% DE), F AND CE(Z) FOR A CURRENT ESTIMATOR BASED CONTROLLER, AND 

BY (AR,BR9CR, DR), F2 AND CR(Z) FOR A REDUCED ORDER ESTIMATOR BASED CON-

TROLLER. 

In view of Lemmas 3 and 4, and Theorem 7, whenever recovery of a 

given target loop occurs, there are η cancellations among the eigenvalues 

of the controller and the output decoupling zeros of CP(Z) or the input 

decoupling zeros of CP(Z)P(Z). 

C. Recovery Analysis in A Given Subspace 

In the last two subsections, we discussed recovery of a target loop trans-

fer function L%(Z) = FSB when the recovery is required over the entire 

control space R m
 and when the knowledge of state feedback gain F is 

either unknown or known. The traditional LTR problem as treated in 

there, concentrates on recovering a open-loop transfer function LT(Z) which 

has been formed to take into account the given design specifications. Ac-

tually, design specifications are normally formulated in terms of certain 

required closed-loop sensitivity and complementary sensitivity functions, 

ST(Z) = [IM + LT(Z)}"1 and TT(Z) = IM - ST(Z). In LQG/LTR design phi-

losophy, these given specifications are reflected in formulating an open-loop 

transfer function called the target loop transfer function. As discussed ear-

lier, this aspect of determining a target loop transfer function is a first step 

in LQG/LTR design and falls in the category of loop shaping. Generating 

a target loop transfer function LT(Z) at the present time is an engineering 

art and often involves the use of linear quadratic design in which the cost 
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matrices are used as free design parameters to obtain the state feedback 

gain F and thus to obtain Lt(z) = and St(z) = [ J m + F Φ B ] -
1
. 

In the second step of design, the so called loop transfer recovery ( L T R ) 

design, Lt(z) is recovered using a measurement feedback controller. Ob-

viously, in the traditional LTR design where recovery is required over the 

entire control space R
m
, the recovery of Lt(z) implies the recovery of the 

corresponding sensitivity function St(z) and hence the recovery of the com-

plementary sensitivity function Tt(z). Conversely, in a similar manner, the 

recovery of St(z) or equivalently that of Tt(z), implies the recovery of Lt(z). 

In other words, when recovery is required over the entire control space R
m
, 

recovering a certain target loop transfer function is equivalent to recover-

ing a certain target sensitivity function. Thus, without loss of any freedom, 

historically, recovery of a target loop transfer function has been sought. 

As seen in earlier sections, loop transfer recovery in the entire control 

space R
m
 is not possible in general. This may force a designer to seek recov-

ery only in a chosen subspace S of the control space R
m
. In that case, it is 

natural to think of recovering the projections of both the target loop Lt(z) 

and the sensitivity function St(z) onto S. However, as seen in Example 

3, one may obtain the projections of achieved and target sensitivity func-

tions onto S matching each other, but the projection of the correspondingly 

achieved loop transfer function may or may not match that of the target 

loop. This implies that the designer may have to choose between matching 

the projections onto S of (1) the achieved and the target sensitivity func-

tions, and (2) the achieved and the target loop transfer functions. Since, 

most often design specifications are given in terms of sensitivity functions, 

it is natural to choose matching the projections onto S of the achieved and 

the target sensitivity functions. In view of this, in this section, we focus 

on the recovery of sensitivity functions over a subspace. For the case when 

S equals R
m
, obviously the sensitivity recovery formulation of this section 

coincides with the conventional LTR formulation. Thus this section can in-

deed be viewed as a generalization of the notion of traditional LTR to cover 

recovery over either the entire or any specified subspace S of the control 

space R
m
. 

A brief outline of this subsection is as follows. At first, precise defini-

tions dealing with the sensitivity recovery problem are given. Then, Lemma 

5 is developed generalizing Lemma 1. It formulates the condition for the re-

coverability of a sensitivity function in S in terms of a matrix M
§
(z). Next, 
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Theorem 8 specifies the required conditions on Σ so that sensitivity recov-

ery in S is possible for any arbitrarily specified target sensitivity function 

St (JZ). Similarly, Theorem 9 specifies the necessary and sufficient condi-

tions for the recoverability of a sensitivity function when the knowledge of 

F is known. O n the other hand, Theorem 10 establishes the necessary and 

sufficient conditions so that the sets of recoverable sensitivity functions of 

the given system Σ for a specified subspace 5 , is nonempty. A n important 

aspect of recovery analysis in a subspace is to determine the m a x i m u m pos-

sible dimension of a recoverable subspace S. This is discussed at the end 

of this section. 

W e have the following formal definitions. 

D e f i n i t i o n 8. The set of admissible target sensitivity functions S ( E ) for 

a given system Σ is defined as follows: 

δ ( Σ ) : = {St(z) G M
m x r n

( 7 l p ) I St(z) = [Im + Lt(z)]-\ Lt{z) G Τ ( Σ ) } . 

D e f i n i t i o n 9. Given Sf(z) G δ ( Σ ) and a subspace S G R
m
, we say St(z) is 

recoverable in the subspace S if there exists a controller having the transfer 

function C(z) such that (i) the closed-loop system comprising of the con-

troller and the plant is asymptotically stable, and (ii) S(z)P' = St(z)P', 

where S(z) is the achieved sensitivity function and Ρ' is the orthogonal 

projection matrix onto S. 

D e f i n i t i o n 10. T h e set of recoverable St(z) G S ( E ) in the given subspace 

S is denoted by 8 * ( Σ , S). 

A s usual, subscripts p, c and r are respectively used to distinguish the 

above sets ( δ ( Σ ) and 8
Κ

( Σ , 5 ) ) for prediction, current and reduced order 

estimator based controllers. Also , we note that the above definitions 8 to 

10 are natural extensions of the corresponding definitions given earlier. In 

fact, the definitions 8 to 10 generalize the concept of recovery to a subspace 

and enable us to reanalyze all the results of the previous two subsections 

to cover the recovery in a given subspace S. 

T h e following l e m m a is analogous to L e m m a 1. 

L e m m a 5. Let the given system Σ be stabilizable and detectable. Also, 

let Lt(z) = F&B be an admissible target loop, i.e., Lt(z) G Τ ( Σ ) . Then 

Ε*(ζ), the projection onto a given subspace S G R
m
 of the error between 
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t i c achieved SENSITIVITY FUNCTION S(Z) AND THE TARGET SENSITIVITY FUNCTION 

ST(Z), IS GFVEN BY 

E\Z) = [IM + FSB^M'IZ) (55) 

WHERE 

M'(Z) = M(Z)P\ (56) 

FURTHERMORE, FOR ALL Ω G Ω , 

E'*(JU) = 0 IF AND ONLY IF M'*(JU>) = 0, 

where Ω IS THE SET OF ALL 0 < \Ω\ < τ / Τ FOR WHICH S?(jü>) AND S*(JW) ARE 

WELL DEFINED (I.E., ALL THE REQUIRED INVERSES EXIST). HERE THE EXPRESSION FOR 

M(Z) DEPENDS ON THE CONTROLLER USED AND IN PARTICULAR FOR EACH ONE OF THE 

THREE CONTROLLERS CONSIDERED IN THIS PAPER, THE NEEDED EXPRESSIONS ARE AS IN 

(33), (34), AND (35) WITH AN APPROPRIATE SUFFIX ADDED TO M(Z). 

P r o o f : It is obvious. I 

T o proceed with the recovery analysis, let V
E
 be a matrix whose columns 

form an orthogonal basis of S G R
m
. Assume that the columns of V

E
 are 

scaled so that the norm of each column is unity. Let Ρ' = V
e
 ( V * ) ' be 

the unique orthogonal projection matrix onto S. Then , define three auxil-

iary systems Σ * , Σ ' and Σ ' characterized, respectively, by the quadruples 

(Α,Βν',Ο,DV), (A,BV,CC,DEV) and (AR,BTV
E
,CRIDRV). N o w 

treating each auxiliary system as the given system, one can re-discuss here 

mutatis mutandis all the results of Subsections A and B . In particular, we 

have the following theorems. 

T h e o r e m 8. CONSIDER A STABILIZABLE AND DETECTABLE DISCRETE-TIME SYSTEM Σ 

characterised BY A MATRIX QUADRUPLE (A, B, C , D), WHICH IS NOT NECESSARILY 

OF MINIMUM PHASE AND WHICH IS NOT NECESSARILY LEFT INVERTIBLE. LET V
E 

BE A MATRIX WHOSE COLUMNS FORM AN ORTHOGONAL BASIS OF A GIVEN SUBSPACE 

S G R
m
. Then any ARBITRARY ADMISSIBLE SENSITIVITY FUNCTION ST(Z) OF Σ , i.e., 

ST(Z) G S ( Σ ) IS RECOVERABLE IN S IF AND ONLY IF THE FOLLOWING CONDITION IS 

SATISFIED DEPENDING UPON THE CONTROLLER USED. 

1. Prediction estimator based controller: ANY ARBITRARY ADMISSIBLE SENSI-

TIVITY FUNCTION ST(Z) OF Σ IS RECOVERABLE IF AND ONLY IF THE AUXILIARY 

SYSTEM Σ£ IS LEFT INVERTIBLE AND OF MINIMUM PHASE WITH NO INFINITE 

ZEROS (I.E., DV IS OF MAXIMAL RANK). 
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2. Current estimator based controller: ANY ARBITRARY ADMISSIBLE SENSITIVITY 

FUNCTION ST(Z) OF Σ IS RECOVERABLE IF AND ONLY IF THE AUXILIARY SYSTEM 

Σ£ IS LEFT INVERTIBLE AND OF MINIMUM PHASE WITH NO INFINITE ZEROS (I.E., 

DEV
E
 IS OF MAXIMAL RANK). 

3. Reduced order estimator based controller: ANY ARBITRARY ADMISSIBLE 

SENSITIVITY FUNCTION ST (Z) OF Σ IS RECOVERABLE IF AND ONLY IF THE AUXILIARY 

SYSTEM Σ* IS LEFT INVERTIBLE AND OF MINIMUM PHASE WITH NO INFINITE 

ZEROS (I.E., DRV IS OF MAXIMAL RANK). 

P r o o f : T h e results are obvious in view of Theorem 2 and L e m m a 5. I 

Theorem 8 is concerned with the recovery analysis when F is arbitrary 

or unknown. A s in Subsection B , one can formulate the recovery conditions 

for a known F as follows. 

T h e o r e m 9. CONSIDER A STABILIZABLE AND DETECTABLE SYSTEM Σ CHARACTER-

IZED BY A MATRIX QUADRUPLE (A, B, C , D), WHICH IS NOT NECESSARILY OF MINI-

MUM PHASE AND WHICH IS NOT NECESSARILY LEFT INVERTIBLE. LET V BE A MATRIX 

WHOSE COLUMNS FORM AN ORTHOGONAL BASIS OF A GIVEN SUBSPACE S G R
m
. THEN 

an ADMISSIBLE SENSITIVITY FUNCTION ST(Z) of Σ , I.E., ST(Z) G S ( E ) , IS RECOVER-

ABLE IN S IF AND ONLY IF THE FOLLOWING CONDITION IS SATISFIED DEPENDING ON THE 

CONTROLLER USED. 

1. FOR A PREDICTION ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT 

3. FOR A REDUCED ORDER ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT 

5 - ( E ; ) Ç K e r ( F ) . 

2. FOR A CURRENT ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT 

S-PL)CKEI(F). 

THUS THE SET OF RECOVERABLE SENSITIVITY FUNCTIONS IN THE GIVEN SUBSPACE S IS 

CHARACTERIZED AS FOLLOWS: 



242 BEN M. CHEN ET AL. 

1. Prediction estimator based controller: 

S ? ( E , 5 ) = { ST(Z) E S ( E ) I 5 - ( Σ ; ) Ç Ker (F)}. 

2. Current estimator based controller: 

S ? ( E , S) = { ST(Z) E S ( E ) 1 5 - ( E j ) Ç Ker (F) } . 

3. Reduced order estimator based controller: 

Proof : T h e proof is a consequence of Theorem 5. 

Remark 10. IF THE GIVEN SYSTEM Σ IS STRICTLY PROPER, I.E., D = 0, THEN IT 

IS SIMPLE TO VERIFY THAT 

THIS IS NOT TRUE IN GENERAL FOR NON-STRICTLY PROPER SYSTEMS. 

In what follows, we give a necessary and sufficient condition under which 

8
Λ
( Σ , 5 ) is non-empty for the given subspace S G R

m
. W e have the fol-

lowing theorem. 

Theorem 10. CONSIDER A STABILIZABLE AND DETECTABLE SYSTEM Σ CHARACTER-

IZED BY A MATRIX QUADRUPLE (A, B, C, D), WHICH IS NOT NECESSARILY OF MINI-

MUM PHASE AND WHICH IS NOT NECESSARILY LEFT INVERTIBLE. LET V
E
 BE A MATRIX 

WHOSE COLUMNS FORM AN ORTHOGONAL BASIS OF A GIVEN SUBSPACE S G R
m
. LET 

CP, CE AND CR BE ANY FULL RANK MATRICES SUCH THAT 

1. K e r ( C ; ) = S - ( E ; ) , 

2. K e r (C^ ) = 5 - ( E i ) , a n d 

DEFINE THREE AUXILIARY SYSTÈME: 

1. E £
u
* CHARACTERIZED BY THE MATRIX TRIPLE (A, B, CP), 
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2. Σ ™ ' characterised BY THE MATRIX TRIPLE (A, B, CC), AND 

3. E?*" characterized BY THE MATRIX TRIPLE (A, B, 

THEN WE HAVE THE FOLLOWING RESULTS DEPENDING UPON THE CONTROLLER USED : 

1. Prediction estimator based controller: S£(E,«S) IS NONEMPTY IF AND ONLY 

if Σ™* IS STABILIZABLE BY A STATIC OUTPUT FEEDBACK CONTROLLER. 

2. Current estimator based controller: S£(Σ, S) IS NONEMPTY IF AND ONLY 

IF Σ™' IS STABILIZABLE BY A STATIC OUTPUT FEEDBACK CONTROLLER. 

3. Reduced order estimator based controller: 8 * ( Σ , 5 ) IS NONEMPTY IF AND 

ONLY IF Σ™* IS STABILIZABLE BY A STATIC OUTPUT FEEDBACK CONTROLLER. 

P r o o f : The results are a consequence of Theorem 6. I 

An important aspect that arises when one is interested in the recovery 

analysis in a subspace is to determine the maximum possible dimension of 

a recoverable subspace S. In this regard, our goal in what follows, anal-

ogous to continuous systems, is to prove that whatever may be the given 

target loop transfer function and whatever may be the number of unstable 

invariant zeros, there exists at least one m — 1 dimensional subspace S of 

R
m
 which is always recoverable provided that the given system Σ satisfies 

some conditions. In what follows, for simplicity of presentation, we will 

make a technical assumption that all the unstable invariant zeros of Σ have 

geometric multiplicity equal to unity. We have the following theorem. 

Theorem 11. LET THE GIVEN SYSTEM Σ be LEFT INVERTIBLE WITH UNSTABLE IN-

VARIANT ZEROS HAVING GEOMETRIC MULTIPLICITY EQUAL TO UNITY. THEN, THERE 

EXISTS AT LEAST ONE m — 1 DIMENSIONAL SUBSPACE S OF R
m
 such that any 

ADMISSIBLE TARGET SENSITIVITY FUNCTION ST(Z) OF Σ , i.e., ST(Z) G δ ( Σ ) , IS RE-

COVERABLE IN S PROVIDED THE FOLLOWING CONDITION IS SATISFIED DEPENDING ON 

THE CONTROLLER USED. 

1. FOR A PREDICTION ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT D 

BE OF MAXIMAL RANK, I.E., Σ has no INFINITE ZEROS. 

2. FOR A CURRENT ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT Σ has 

NO INFINITE ZEROS OF ORDER HIGHER THAN ONE. 
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3. FOR A REDUCED ORDER ESTIMATOR BASED CONTROLLER, THE CONDITION IS THAT 

Σ HAS NO INFINITE ZEROS OF ORDER HIGHER THAN ONE. 

P r o o f : See A p p e n d i x F . I 

V I . DUALITY OF LTR B E T W E E N T H E INPUT AND 
OUTPUT BREAK POINTS 

T h e target open-loop transfer functions can be designed when the loop is 

broken at either the input or the output point of the plant depending upon 

the given specifications. W e have analyzed so far L T R recovery at the input 

point ( L T R I ) , using any one of prediction, current or reduced order esti-

mator based controllers. N o w we like to consider L T R recovery when the 

loop is broken at the output point ( L T R O ) . For continuous systems, such a 

method was introduced earlier by Kwakernaak [14] in connection with sen-

sitivity recovery. L T R O is used when the designer specifications and the 

modelling of uncertainties are reflected at the output point of the plant. In 

the literature, it is commonly said that L T R recovery at the input and out-

put points ( L T R I and L T R O ) are dual to one another. This duality is well 

understood in the case of prediction estimator based controllers. T h a t is, 

in the case of L T R O , the first step is to design a prediction estimator based 

controller, via loop shaping techniques, whose loop transfer function meets 

the design specifications. T h e next step is to recover the transfer function 

of prediction estimator based controller via L T R technique. However, this 

kind of duality is not well understood when current or reduced order es-

timator based controllers are used. T h e confusion in the literature [15,35] 

arises because the duality is sought between the plant and the controller. 

T h e given plant Σ and the controller are not necessarily dual to one another 

whenever any controller other than prediction estimator based is used. A n 

appropriate subsystem of Σ , such as E c or Σ Γ , has to be constructed, and 

then the duality has to be sought between the controller and the subsys-

tem Σ β or Σ τ rather than between the controller and the given plant Σ . 

T h a t is, duality has to be sought in the loop transfer recovery analysis or 

controller design methodology rather than between the given plant and the 

controller. In order to avoid any confusion, we give below a formal step by 

step algorithm to show how duality arises for L T R recovery at the input 

and output points. 
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1. Let a plant Σ b e characterised b y the quadruple (A, B, C , D). A l so , 

let P(z) be the transfer function of Σ , 

P(z) = C{zln - A)-
X
B + D. 

Let Lt(z) = C(zIn — A)"
1
K be an admissible target open-loop trans-

fer function, i.e., λ(Α — KC) G C ° , when the loop is broken at the 

output point of the given plant. Then , in the configuration of Figure 

1, we are seeking a controller C(z) such that the closed-loop system 

is asymptotically stable and 

E°(z) := Lt(z) - P(z)C(z) = 0 for all z. 

Here the controller C(z) could be of any type. In particular, it could 

be either a prediction, or a current, or a reduced order estimator 

based controller. 

2. Define a dual system Σd characterized by (Ad, Cd, Dd) where 

Ad ~A', Bd:=C, Cd:=B', Dd:=D'. (57) 

Note that Pd(z), the transfer function of the dual plant Σ<* is P'(z). 

Let Ld(z) be defined as 

Ld(z) : = L't(s) = Fd(zln - Ad)'
1
Bd where Fd : = K'. (58) 

Let Ld(z) be considered as a target loop transfer function for E<j 

when the loop is broken at the input point of Σ ^ . Let a measurement 

feedback controller Cd(z) be used for Σ4. Here the controller Cd(z) 

could be any one of the three controllers, depending upon how C(z) 

is chosen. Then, it is simple to verify that the loop recovery error 

E*
d
(z) at the input point of Σ ^ is 

ΈΤ^ζ) = Ld(z) - Cd(z)Pd(z) = [E°(z)Y 

provided Cd(z) = C(z). 

3. For the purpose of analysis or design alone, consider the fictitious 

plant Σd and the fictitious target loop transfer function Ld(z) as given 

in Step 2. Then , it is straightforward to verify that the target loop 

transfer function Lt(z) is recoverable at the output point of the given 
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plant Σ if and only if Ld(z) is recoverable at the input point of the 

fictitious plant Σ4. T o be specific, construct prediction, current, and 

reduced order estimator based controllers, namely Cpd(z)} Ccd(z)) 

and Crd(z) respectively as in (16) , (20) and (29) while using the 

parameters Ad, £<*, C4, A t and Ed instead of A, Bt C , D and F. 

Let Ε**(ζ), or E[
d
(z) or Ε\

ά
(ζ) be the resulting loop recovery error 

at the input point of Σ4 when Cp«i (z ) , or Ced(z), or Crd(z) is used 

respectively as a controller for Σ ^ . Let 

CP{z) = C'pi(z) , C « ( « ) = C'ei(z) and Cr(z) = Crd(')-

Let E°(z) or E%(z) or E?(z) be the loop recovery error at the output 

point of Σ when C p ( z ) , or C c ( z ) , or C r ( z ) is used respectively as a 

controller for Σ . It is then straightforward to show that 

TO = ( Kd(') Y. ^ W = ( )' ^ Ε°Λ*) = ( ̂ (*) )'· 

Thus all the loop transfer recovery analysis at the input point of Σ<* as 

done in this chapter can easily be interpreted as the loop transfer recov-

ery analysis at the output point of Σ . In other words, the above step by 

step discussion clearly shows how duality arises between the loop transfer 

recovery at the input and the output points whatever m a y be the type of 

controller used. 

V I I . CONCLUSIONS 

Here we deal with issues concerning the analysis of loop transfer recovery 

problem using observer based controllers for general non-strictly proper not 

necessarily min imum phase discrete time systems. Three different observer 

based controllers, namely, 'prediction estimator', and full or reduced or-

der type 'current estimator' based controllers , are used. A s in our earlier 

work, all the analysis given here is independent of the methodology by 

which these controllers are designed. Moreover, the analysis corresponding 

to all these three controllers is unified into a single mathematical frame 

work. A fundamental difference between continuous time and discrete time 

systems is this. In the discrete case, as is well known, in order to preserve 

stability, all the closed-loop eigenvalues must be restricted to lie within 

the unit circle in complex plane. This implies that unlike continuous case 
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which permits both finite as well as asymptotically infinite eigenvalue as-

signment, in the discrete case one is restricted to only finite eigenvalue 

assignment. Thus , in the continuous case, there exists target loops which 

are not exactly recoverable, but are asymptotically recoverable by appro-

priate infinite eigenstructure assignment. O n the other hand, in discrete 

systems, since both asymptotic as well as exact recovery involves only finite 

eigenstructure assignment, every asymptotically recoverable target loop is 

also exactly recoverable and vice versa. 

There are several fundamental results given here. A t first, based on 

the structural properties of the given system, we decompose the recov-

ery matr ix between the target loop transfer function and that that can 

be achieved by any one of the controllers, into two distinct parts. T h e 

first part of recovery matrix can be rendered exactly (or asymptotically, if 

one chooses so) zero by an appropriate finite eigenstructure assignment of 

the controller dynamic matrix, while the second part cannot be rendered 

zero, by any means, although there exists a multitude of ways to shape 

it. Such a decomposition helps us to discover when and under what condi-

tions, an arbitrarily specified target loop is recoverable by using any one of 

the three controllers considered. Also , it helps to characterize the recovery 

error and its singular value bounds, whenever a target loop is not recover-

able. Thus it shows the limitations of the given system in recovering the 

target loop transfer functions as a consequence of its structural properties, 

namely finite and infinite zero structure and invertibility. T h e next issue 

of our analysis concentrates on characterizing the required necessary and 

sufficient conditions on the target loop transfer functions so that they are 

recoverable by the considered controller for the given system. A s in the 

case of continuous systems, the conditions developed here on a target loop 

transfer function for its recoverability, turn out to be constraints on its fi-

nite and infinite zero structure as related to the corresponding structure of 

the given system. Next , necessary and sufficient conditions on the given 

system are established such that it has at least one recoverable target loop. 

In this regard, we show that strong stabilizability of the given system is 

necessary for it to have at least one recoverable target loop by any one of 

the three controllers considered here. Since recovery in all control loops in 

general is not feasible, our analysis next, focuses in developing the neces-

sary o r / a n d sufficient conditions under which recovery of target sensitivity 

and complementary sensitivity functions is possible in any specified sub-
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space of the control space. Inherent in all the issues discussed here is the 

characterisation of the resulting controller eigenvalues and possible pole 

sero cancellations. Such an investigation is important in v iew of the fact, 

controller eigenvalues become the invariant seros of the closed-loop system 

and thus affect the performance with respect to command following and 

other design objectives. 

T o summarise, the analysis presented here adds a considerable amount 

of flexibility to the process of design and helps a designer to set meaningful 

goals at the onset of design. In other words, although the actual physical 

tasks of first designing a target loop and then designing an observer based 

controller are separable, one can link these two tasks philosophically by 

knowing ahead what is feasible and how. In a sequel to this paper, for each 

one of the controllers considered here, we will present design methodologies 

which are capable of utilizing the complete freedom a design can have as is 

discovered here. 
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Appendices 

A. Proof of Lemma 1 

T o simplify and to unify our proof of L e m m a 1, we first examine the fol-

lowing Luenberger estimator based controller: 

V ( J b + l ) = Z v ( * ) + <3u(fc) + £ry(Jfc), 
(59) 

-u(Jb) = Fz(k) = Pv(k) + Vy(k), 

where t i 6 R
r
 with r being the order of the controller. It is well known 

(see e.g., [20]) that £ is an asymptotic estimate of the state χ provided 

that ( a ) L is an asymptotically stable matr ix and ( b ) there exists a matr ix 

T G R
r Xn

 satisfying the following conditions: 

1. TA — LT — HC, 
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2. G = TB - HD, 

3. F = PT+ VC, and 

4. VD = Q. 

Then, following the procedure given in [18], it is simple to show that the 

loop recovery error realized by such a Luenberger estimator based controller 

is 

E(z) = M(z)[Im + M GOr^Im + F*B), (60) 

where 

M{z) = P(zI-L)'1G. (61) 

Next , it is straightforward to verify that the prediction estimator based 

controller of (15) is a special case of Luenberger estimator based controller 

in (59) with 

L = A-KPC, G = Β — KPD, H = KP, 

P = F, V = 0, Τ = I. 

Hence, equation (33) of L e m m a 1 follows trivially from (60) and (61) . 

Similarly, in order to prove that (34) is valid for the current estimator 

based controller, let us first partition the gain matrix Ke = [Ko, Κχ] in 

conformity with yo(k) and yi(Jb). Also , define a new variable 

v(k) : = x(Jfe) - Kiyi(k). 

Then it is easy to rewrite the current estimator based controller (18) in 

terms of the new variable v(k), 

' w(Jb + 1) = ( A - KeCe)v(k) + (B — KeDe)u(k) 

< +[Ko, ( A - KcCjldMk), (62) 

. - u ( J b ) = Fx = Fv(k) + [0, FÜTi]y(Jb). 

A g a i n , it is straightforward to verify that the current estimator based con-

troller (62) is a special case of Luenberger estimator based controller in (59) 

with 

L = A — KeCe, G — Β - KeDe, Η = [K0, ( A - KeCe)K{\, 

P = F, V = [0, FKi], T = I- Kid. 
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Then, (34) follows from (60) and (61) . 

A s expected, the reduced order estimator based controller (29) is also a 

special case of (59) with 

L = AR -KRCR, G = BR-KRDRT H = GR, 

P = F2I V = [0, FX + F2KRL], T=[-KRUT\. 

Then, once again in view of (60) and (61) , we get (35) . This completes the 

proof of L e m m a 1. I 

B. Proof of Proposition 2 

W i t h o u t loss of generality but for simplicity of presentation, we assume 

that the given system Σ is in the form of s.c.b, i.e., it is characterized 

by the quadruple (A9 B, C , D) as in Theorem 1. Let us partition XJ = 

[ (sc / i ) ' , (XJO)'I (a5/2)/]/> where x / i is the part of output associated with in-

finite zeros of order one, XJO IS the rest of output associated with infinite 

zeros of order higher than one and χ/j consists of the state variables cor-

responding to the rest of infinite zeros. Then it is simple to verify that CJ 

and BJ have the following forms, 

CF = 
ο ο 

I 0 

BF = 0 0 

0 B / aj 

N o w , b y appropriate permutation transformation of the state variables, we 

can partition the given system as follows, 

* = [ M , (*/<.)', (*.)', (*:) ' . (4 ) ' , (»«)', (»/2)T 
and À = 

A - BQCQ = 
'EFII EJIO EN Kl ET, ECI EF 12 

LFOI LJ OO 0 0 0 0 

LBFL LIFO AHI 0 0 0 0 
L
âfO

 L
ÂB

C
* 0 0 0 

0 0 0 

LCFO BCEEI, BCE~A BCE+A AEE 0 

.4/21 Aj2o BJ2Eh2 B}IEA2 BJIEEL -A/23 + Β]ΪΕ}22. 
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c = 
Co 

C i 

and 

Let us define 

'Bfoi i mx ο o • 

5 / 0 0 0 0 0 

Bio 0 0 0 

= 0 0 0 1 

A 0 0 0 

BeO 0 0 Be 

-Bf 02 0 Bj2 0 . 

• 0 0 0 Côa Cta Coe C o / 2 * 

Iτη ι 0 0 0 0 0 0 

0 I 0 0 0 0 0 

. 0 0 Ci 0 0 0 0 . 

D 
Ί 0 0' 

D = 0 0 0 

0 0 0 

Co 
[C1{A-B0C0)\ 

and Dc = 
o 

0 

CiBx 

W e note that Ce = TCe and De = TDe, where Γ is a nonsingular matrix , 

Thus, establishing the required properties for a system characterized by 

(Ay ΒfCe9De) is equivalent to doing the same for a system characterized by 

( A , JB, C c , De) . W e next rewrite Ce and i9 c in the form, 

Cc = 

0 0 0 

Efii Efio En 
Lj oi X/oo 0 

and 

Γ / m o 

0 

0 

L 0 

0 

0 

Côa 
Kl 

0 

0 

0 

0 

0 

0 

0 

0 

CQC 

Ed 
0 

0 

C o / 2 1 

Ef\2 

0 J 

01 

0 

0 

0J 

It is trivial then to verify that system (A, B, C c , Dc) has the same finite and 

infinite zero structure, and invertibility property as the system (Αχ, Βχ, Cx) 
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does, where -Αι = 

" 0 0 0 0 0 0 0 

Ljoo 0 0 0 0 C/3 
Lbjo A» 0 0 0 0 
L
afO Al\ 0 0 0 

t u 
0 Ata 0 0 

Lcfo BeEet BcE^ BcE+a 
Ace 0 

.-A/21 -A/30 BjiEi7 Bj2Ea2 Bf2E+3 BfiEci -A/33 + -B/3 25/33. 

Bi = 

0 

0 

0 

0 

0 

0 

Bf2 

0 1 

0 

0 

0 

0 

Be 
0 

and 

C i = 
foi foo 0 

0 

Cf2 

0 [ C j ü i / i ChLijQ CtAn 

W e note here that C}2C'J2 = J. 

Next , we define a dual system, 

x{k+l) = Äx(k) + Bü(k), y(k) = Cx(k), 

where 

Ä = A[ , 5 = Ci , C = ßi , 

*=[(*>)'. (*:)', (*ί)Ί (*»)'. (*/) '] ' . 

«=[(«/)', (««)T 9= [{V/Y, M-
T h e dynamic equations of the above dual system are given b y 

x0(Jfe + 1) = Λ 3 ο χ ο ( * ) + ÄioxZ{k) + Ä2oxt(k) + + Â]Qxs{k) 

+K}ü}(k) + Keüe(k) 

x:(k + 1) = Äl\x:(k) + 2£fc (4) + Ï I / Î Z /W 

* + ( * + 1) = Â+ i+ ( * ) + 1 + + i + y/(fc) 

ï i ( t + 1 ) = i i » x » ( t ) + £>/y/(*), s» = c » x » 
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xj(k + 1) = Â / x / ( i ) + LFYF(K) + BF[ÜF{K) + VF = Cfxf 

where 

Γ 0 0 0 " 

AOO = LJOI LJ OO 0 

MLHJI LHJO Mhm 

Mo = [ i j / n i2/0i L
a\

C
*]'> Â20 = [LÎFV ^ ί /οι

 LTB
Ch]\ 

Mo = [̂c/li ̂c/Oi -Bc^cj]' , Â/0 = [Af2U 4f20i -Β/2-Ε*2]Ί 

^ = (̂ α),> Ji = (*i)#, î;/ = ra,

) *i = 
£ o = [ 0 , / , 0 ] , Â / = ( A / / 2) ' , tf/ = ( B / a ) ' , C 6 = ( £ c ) ' , 

and 

=
 ( ^ / Μ ) ' > KF = [ i / o i i £/oo, 0]', KE — [CBLHFU CHLBFO, CHABB]'. 

Next , we wil l perform some transformations among the state variables in 

order to bring the new system ( Â , B, C) into the form of s.c.b. Let us first 

define 

ΐ ο
 =

 *o
 —

 KFBJXJ. 

A s BJBJ = Cj2Cf2 = -Γ, it is straightforward to verify that 

Mk+I)=^Mk)+KCÜC(k)+Ä10x-(k)^^ 

where 

Γ 0 0 0 ' 

Âoo = 0 0 0 

LBJI LI JO ABB 

and A / o is some appropriate matrix . A l so , 

z/(Jb + 1) = Â / z / ( J b ) + 1 /5 / (4 ) + BF[ÜJ(K) + Ë0î0(K) + KFB'fxf{k)]. 

Then it follows from the results of Sannuti and Saberi (1987) that there 

exists a nonsingular transformation Τ such that 

[(So) ' , ( * : ) ' , (* iy, ( * / ) ' ] ' = Τ [ ( i 0) ' , ο ο ' , (*+)', (« .y . ( * / ) ' ] ' 

and 

1 0( * + 1 ) = ioo io( t )+^eoc( fc )+Aioïr (Jfe )+i 2oxÎ ( i fe )+£»oy»(Jfe )+ Î /oÎ / / (* ) 
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+ 1 ) = Ä^z;(k) +1-ft(4) + LifVtik) 

xt(k + l ) = Ätaxt (k) + 1 + Λ ( 4 ) + 

âê*(* + 1) = Âhhxh(k) + Z j / y / i * ) , yh = Chxh 

xf (k +1) = Àj xf {k) + Lf yj (k) + Bf [ûf (k) + È0ïo (*) + !i*§(*) + è / * / ( i ) ] l 

V/ = O/âS/. 

W e note that the above system is not in the standard form of s.c.b since 

we have not separated the new invariant seros from Aoo yet. Let us next 

examine the pair (Aoo, Kc). W e have 

rank [zl - Aoo Kc ] = rank 

= rank 

= rank 

zI-X 00 

Κ 
zl 0 0 

0 zl 0 

—Lafi —Lifo zl — An 
CiLifi CiLifo CiAn J 

zl 0 0 

0 zl 0 

—Lafi —Lbfo zl — An 
0 0 zCi 

(63) 

Prom (63) we know that the only possibility that causes [zl — AQQ Ke] 

to drop its rank is ζ = 0. Thus , since the pair (An,Ci) is observable, 

the system ( Λ , B, C) has stable invariant zeros at ζ = 0. Hence, it follows 

from the results of Sannuti and Saberi (1987) that there exists another 

nonsingular transformation S such that 

[(io)', (*;)'. (*ί)',(*0'. (*/)']' 

= S [(ie-y, (*;)', (*+)'. (s.)', («/)']' and 

Ie(Jb + 1) = iC£xe(*) + Be[E°EX(k) + Êeax:(k) + 

+LcbVh(k) + Leiyj(k) 

x°a(k + 1) = 0 · i°(Jb) + Ä0-x:{k) + io+x+(*) + + O/W 
x;( t+1) = i : e x r ( f c ) + + ï ^ y / i f c ) 
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* + ( * + 1) = ÀtaxUk) + X+ yh(k) + LTsyS{k) 

+ 1) = Àhhxh(k) + J j / f r ( k ) , ft = CH2H 

xj(k + 1) = ÄF*F(h) + Lfyf(k) + * / [ « / ( * ) + ÉCÈc(k) + Ê°AÈ°a(k) 

+ *;*;(*) + i U i W + &»*»(*) + */*/(*)], 

where (Α^,Ββ) is a controllable pair, and É°CA, EEA1 ···, Ê* are some 

constant matrices with appropriate dimensions. It is now trivial to see that 

the above system is in the standard form of s.c.b. Hence all the properties 

listed in Proposition 2 can be verified easily by the properties of s.c.b and 

by some simple algebra. I 

C. Proof of Lemma 3 

Noting from Lemma 1 that 

EP(Z) := LT(Z) - C,(Z)P(Z) = MP(Z)[I + ΜΡ(*)Γ
Χ
[Ι + LT(Z)], 

we obtain, 

CP(Z)P(Z) = LT(Z) - MP(Z)[I + MP(Z)]-
1
[I + LT(Z)] 

= [I+MP(Z)]-
1
[LT(Z)-MP(Z)]T 

from which CP(Z)P(Z) can be interpreted in terms of a block diagram given 

below. 
tx . . + —û -̂ M—K? •—* 

: 
In view of the block diagram, it is straightforward to write a state-space 

realization of CP(Z)P(Z), 

A 0 
[(B-KPD)F A — KPC — BF + KPDF 

Β 

X{K + 1 ) = X(K) 

+ Β — KPD 

[ -û(Jb) =[F, -F]X(K). 



256 BEN M. CHEN ET AL. 

Let Λ be an eigenvalue of A — KPC and the corresponding left eigenvector 

V be such that V
H
(B — KPD) = 0. It is simple then to verify that 

[0, V " ] j j ^ i p χι - A + KPC + (B - KPD)F = 0 

[0, V] = 0. 

and 
Β 

B-KPD\ 

This shows that λ is an input decoupling sero of CP(Z)P(Z) and thus the 

result follows. I 

D. Proof of Theorem 6 

Let us first consider the case of prediction estimator based controller. With-

out loss of generality we assume that the given system Σ is in the form of 

s.c.b as in Theorem 1. Now in view of Theorem 5 a recoverable LT(Z) = 

FSB must satisfy 5 ~ ( Σ ) Ç Ker (F). This implies that LT(Z) is recoverable 

if and only if F is of the form, 

F = 
F~X 0 FHL 0 0 

LF~2 0 FH2 0 0 
(64) 

Thus the fact that the given system has at least one exactly recoverable 

target loop is equivalent to the existence of some appropriate matrices F~LT 

FBU Fia F**
 S U CN

 ^ a t A — BF is asymptotically stable. Next, in view 

of the fact that z+ 0 XE 0 XJ spans «?~~(Σ), we note that CP as defined in 

Theorem 6 is of the form, 

0 
0 0 0 0 

0 INH 0 0 

where Γ is any nonsingular matrix of dimension (n~ + nj) χ (n~ + nj ) . It 

is now trivial to verify that the existence of a matrix F of the form in (64) 

such that A—B F is asymptotically stable, is equivalent to the existence of a 

matrix G of dimension m χ ( η ~ +η^) such that A — BGCP is asymptotically 

stable. This is simply due to the fact that GCP has the same structure as 

F in (64). 

The results for current and reduced order estimators follow from similar 

arguments. This completes the proof of Theorem 6. I 



LOOP TRANSFER RECOVERY, PART 1: ANALYSIS 257 

E. Proof of Corollary 2 

A g a i n , we first consider the case of prediction estimator based controller. 

If there exists at least one recoverable target loop, i.e., if there exists at 

least one target loop and a prediction estimator gain Kp such that the 

corresponding Mp(z) = 0, then we note from (54) that the eigenvalues of 

the prediction estimator based controller are given by X(A — KPC) G C ° . 

Hence the corresponding prediction estimator based controller is asymptot-

ically stable and thus by definition, the given plant is strongly stabilizable. 

T h e results for current and reduced order estimators follow from similar 

arguments. I 

F. Proof of Theorem 1 1 

A g a i n , we explicitly prove here only the case of prediction estimator based 

controller. Utilizing Propositions 2 and 3, the results for current and re-

duced order estimator based controllers can be derived in a similar way. 

Let Z{y Xi and ιυ$·, i — 1 to n j , be respectively an unstable invariant 

zero and the associated right state and input zero directions of ( A , 2?, C , D). 

Since ( A , B} C , D) is assumed to be stabilizable and detectable, we have 

Wi φ 0 for all i = 1 to n + . Because if W{ = 0, then by definition, 

(zil - A)xi = Bwi = 0 and Cxi + Dwi = C x < = 0. 

This implies that is an output decoupling zero of ( A , 2?, C , D). But this 

contradicts the detectability of ( A , Bt C , D) as G C®. T h e n it follows 

from L e m m a 3.8 of [24] that there exist at least one e such that 

e'wi φ 0 for all i = 1 to n + . 

Select e to satisfy the above equation, and then define S as 

«5 = T h e orthogonal complement of the subspace spanned by e in R
m
. 

It is now trivial to see that S has a dimension of m— 1 and that tut- £ S for all 

i = 1 to n j . Then it follows from L e m m a 6.2 of [6] that the corresponding 

Σ£ is of min imum phase and left invertible. Al so , it is simple to verify that 

Σ ρ has no infinite zeros, i.e., DV is of maximal rank. This in turn implies 

the results of Theorem 11. I 
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