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L I N T R O D U C T I O N 

In feedback design many performance and robust stability objectives can 

be stated in the form of requirements placed on the singular values of par-

ticular closed-loop transfer functions. A well-known approach to feedback 

controller design is the so-called loop shaping approach whereby a designer 

specifies the closed-loop objectives in terms of requirements on the open-

hop singular values of the compensated system. The prominent design 

procedure under the terminology LQG/LTR [7] is one such design method-

ology in multivariable systems that is based on the concept of loop shaping. 

This design procedure is divided into two steps. The first step involves the 

design of a stabilizing state-feedback law that yields a loop transfer func-

tion satisfying the design specifications. The loop properties are usually 

described in relation to an open-loop system (e.g., for a loop transfer func-

tion broken at either the control or measurement paths). Such an open-loop 

transfer function defines the target loop shape. The second step involves 

the design of an output-feedback control law (typically an observer-based 

compensator) such that the resulting open-loop transfer function would 

have either exactly or approximately the same target loop shape as the one 

achieved under state feedback. The procedure of designing such an output 

feedback control law is called loop transfer recovery (LTR). In other words, 

the idea of LTR is to design a compensator to recover a specific open-loop 

transfer function. 

The recent work of Chen, Saberi and Ly [1] p.nd [2] proposes a new 

concept of recovery based on the closed-loop transfer function directly, as 

opposed to the open-loop transfer function found in the case of a tradi-

tional LTR design for continuous-time systems. The problem can be stated 

as follows. Suppose that one is able to synthesize a state-feedback law that 

yields satisfactory closed-loop performance. And let us define the closed-

loop transfer function between the external input to the controlled output 

under the state-feedback law to be the target closed-loop transfer function. 

Clearly from this definition, the closed-loop target transfer function is com-

pletely defined by the selection of a full-state feedback gain matrix. Now 

we would like to design an output-feedback control law with a closed-loop 

transfer function that matches either exactly or approximately the target 

closed-loop transfer function. In this respect, we are dealing with the prob-
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lem of closed-loop transfer recovery (CLTR) instead of open-loop transfer 

recovery (LTR). In this paper, we deal with closed-loop transfer recovery 

for general discrete-time systems. 

Our study of the mechanism in CLTR for discrete-time systems is appli-

cable to a general class of systems and aims at three important theoretical 

issues: 

(a) Characterization of the recovery error and the available freedom in 

the design of output-feedback control laws for a given system and 

for an arbitrarily specified target closed-loop transfer function, 

(b) Development of necessary and/or sufficient conditions for a target 

closed-loop transfer function in order to be either exactly or asymp-

totically recoverable for a given system, and 

(c) Development of necessary and/or sufficient conditions on a given 

system such that it has at least one recoverable target closed-loop 

transfer function. 

These are some of the theoretical issues pertaining to the analysis of CLTR. 

Of course, one also needs to examine issues in CLTR that are related to 

systematic design algorithms for the recovery process. This paper concerns 

the analysis of the CLTR mechanism for general discrete-time systems fol-

lowed by a numerical example illustrating the usefulness of the CLTR de-

sign concept. The primary objective at hand is to analyze methodically the 

mechanism of CLTR using an observer-based controller in its most general 

setting (i.e., covering the cases of prediction, current and reduced-order 

estimators). 

The paper is organized as follows. In section II, we define precisely the 

problem of closed-loop transfer recovery for discrete-time systems. Rec-

ognizing the importance of finite and infinite zero structure in the LTR 

problem, we recall in section III a special coordinate basis (s.c.b) of [5] and 

[6] that clearly displays the zero structure of a given system. Section IV 

describes three different controller structures for the CLTR design and the 

recovery error matrix associated with each of these controllers. General 

analysis of the CLTR problem is given in section V. A numerical example 

illustrating the application of CLTR to the synthesis of a tip position con-

trol system for a planar flexible one-link robot arm. Conclusions are given 

in section VI. 
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Throughout the paper, A! denotes the transpose of A, AH denotes the 

complex conjugate transpose of A, I denotes an identity matrix while I* de-

notes the identity matrix of dimension k χ Jb. λ(Α) and Re [λ (A)] respectively 

denote the set of eigenvalues and real parts of eigenvalues of A. Similarly, 

0mo«[<A] and am t- n[A] respectively denote the maximum and minimum sin-

gular values of A. Ker [V] and Im [V] denote respectively the kernel and 

the image of V. C ® denotes the set of complex numbers inside the open 

unit circle while C ® is the complementary set of C ® . Also, Hp denotes 

the sub-ring of all proper rational functions of ζ while the set of matrices 

of dimension l x q whose elements belong to Hp is denoted by MlXq(7Zp). 

Given a discrete transfer function G(z)} we define the discrete frequency 

response G*(jw) as G(e*uT) where Τ is the sampling period of the discrete-

time system. An asymptotically stable matrix is one whose eigenvalues are 

all in C ® . 

II. PROBLEM STATEMENT 

Let us consider a linear time-invariant discrete-time system Σ , 

' x(k + 1) = A x(k) + J5i w(k) + B2 u(Jb), 

Σ : { z(k) = dz(Jb) + Dnw(k) + X?iau(i) f (1) 

y(k) = C2x(k) + D2iw(k) 4- D22u(k), 

where χ 6 R n is the state, u G R m is the control input, iu G R* is the 

external signal or disturbance, z G R* is the controlled output and y G R p 

is the measurement output. For convenience, we also define Σ * to be the 

matrix quadruple 

Σ * : = ( 4 * ΐ ι < 7 2 ι Ζ ) 2 ΐ ) . 

Let us assume that the pair (A, B2) is stabilizable and the pair (A, C2) 

detectable. Following the procedures of [1], it is simple to show that it is 

without loss of any generality to assume that the matrix D22 = 0. Hence, 

throughout this paper, we assume that D22 = 0 for simplicity of presen-

tation. Let F be a full-state feedback gain matrix such that under the 

state-feedback control 

u(k) = -Fx(k) (2) 
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Figure 1: Plant with an output feedback controller. 

(a) the closed-loop system is asymptotically stable, i.e., the eigenvalues 

of A-B2F lie in C ® , 

(b) the closed-loop transfer function from the disturbance w to the con-

trolled output 2, denoted by T**,(z)} meets the given frequency de-

pendent design specifications. 

We also refer to 7^* (z) as the target closed-loop transfer function given by 

3 & M = ( d - D u i ) ( * " 1 + B2F)~1B1 + D1X (3) 

where Φ = (zln — A)~x. Design of the appropriate full-state feedback gain 

matrix F can be done, for example, via #2-, JToo theory or eigenstructure 

assignment. For design implementation, the next step in the design pro-

cedure is to recover the target closed-loop transfer function using only a 

measurement feedback (internally stabilizing) controller. This is the prob-

lem of closed-loop transfer recovery (CLTR) and the focus of this paper. 

The problem can be clearly stated using the configuration shown in 

Figure 1. For a given system Σ and a target closed-loop transfer func-

tion T*^(z) in (3), the problem is to find an internally stabilizing proper 

controller C(z) such that the recovery error defined as 

* ( * ) : = T „ ( * ) - 2 £ M (4) 

is either exactly or approximately equal to zero in the frequency region 

of interest. Here, Tsw (z) represents the transfer function from w to ζ for 

the closed-loop system shown in Figure 1. The notion of achieving exact 

CLTR (ECLTR) corresponds to E(z) = 0 for all z. In the case of asymptotic 

recovery, one normally parameterizes the controller C(z) in terms of a scalar 
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tuning parameter σ and thus obtains a family of controllers C(z, σ). We 

say that asymptotic CLTR (ACLTR) is achieved if E(z, σ) -* 0 pointwise 

in ζ as σ —* oo. Achievability of ACLTR enables the designer to choose a 

member of the family of controllers with a particular value of σ that yields 

a desired level of recovery. We now consider the following definitions in 

order to impart precise meanings to ECLTR and ACLTR: 

Definition 1. The set of admissible target closed-loop transfer functions 

Τ(Σ) for the plant Σ is defined by 

Τ(Σ)= {2£M G Mlxk(np) | 3 j i W is as in (3) and X(A - B2F) G C®}. 

Definition 2. T*&(z) G Τ(Σ) is said to be exactly recoverable (ECLTR) 

if there exists a C(z) whose transfer function belongs to Mmxp(Hp) such 

that 

1. the closed-loop system comprising C(z) and Σ as in (1) is stable, 

2. the achieved closed-loop Txw(z) = T&{z) for all z G C. 

Definition 3. TMW(z) G Τ(Σ) is said to be asymptotically recoverable 

(ACLTR) if there exists a parameterized family of controllers C(z, σ) whose 

transfer functions belong to Mmxp(Hp) where σ is a scalar parameter with 

positive values such that 

1. the closed-loop system comprising C(z,a) and Σ as in (1) is asymp-

totically stable for all σ > σ* where 0 < σ* < oo, 

2. the achieved closed-loop Tsw ( 2 , σ) —• T̂ ti ( z ) pointwise in ζ as σ —• oo. 

Moreover, in the limit as σ —• oo tie finite eigenvalues of the closed-

loop system remain in C®.1 

As we will show later on, it turns out that for discrete-time systems, in 

contrast with the CLTR problem in continuous-time systems, every asymp-

totically recoverable target loop is also exactly recoverable and vice versa. 

One might then wonder why one needs to distinguish between ECLTR and 
1
Herc we have strengthened the notion of closed-loop stability by excluding those 

cases where, in the limit as σ —• oo, some finite eigenvalues of the closed-loop system 
would be on the unit circle. This avoids the problem of having an almost unstable 
behavior of the closed-loop system for large σ. 
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ACLTR. This is because, even for the case when ECLTR is achievable, 

some optimization-based design methods, such as JT«, norm minimization, 

would typically produce suboptimal designs in the recovery. In this paper, 

we will not hereafter distinguish between the notions of exact and asymp-

totic recovery. Also, we will not parameterize a controller in terms of a 

tunable parameter σ in an attempt to achieve whatever can be achieved 

asymptotically rather than exactly. We maintain that such a parameteri-

zation can always be done if one chooses to do so. We have the following 

additional definitions. 

Definition 4. T}Z,(z) belonging to Τ(Σ) is said to be recoverable if (z) 

is either exactly or asymptotically recoverable. 

Definition 5. The set of recoverable target closed-loop transfer functions 

for the system Σ is denoted by Τ Β(Σ). 

Remark 1 . The controller C(z) in the above deßnitions is not restricted 

to any particular structure. However, in this paper we study the closed-loop 

transfer recovery for three specific structures of C(z); namely, prediction, 

current and reduced-order estimator based controllers. Furthermore, we 

label Τ Λ(Σ) with subscript ρ (for prediction), c (for current) and r (for 

reduced order) as Τ£(Σ), Τ£(Σ) and Τ£(Σ) to signify results related to 

these particular controller structures. 

The analysis of CLTR mechanism carried out here examines three fun-

damental issues. The first concerns what can and what cannot be achieved 

for a given system and for an arbitrarily specified target closed-loop trans-

fer function. For a given system, the second issue is to establish necessary 

and/or sufficient conditions on the target closed-loop transfer function so 

that it can be recovered. In another word, we characterize completely the 

set ΤΗ(Σ) of recoverable target closed-loop transfer functions. The third 

issue is to establish necessary and/or sufficient conditions on a given system 

such that it has at least one recoverable target closed-loop transfer func-

tion. That is, what are the conditions on a given system Σ so that the set 

of recoverable target closed-loop transfer TR(E) is nonempty? 
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III. PRELIMINARIES 

We recall in this section a special coordinate basis (s.c.b) of a linear time-

invariant system [5], [6]. Such a s.c.b has a distinct feature of explicitly 

displaying the finite and infinite zero structure of a given system and will 

play a very important role in both the analysis and the design of closed-loop 

transfer recovery. Consider the system characterized by 

" I v(*) 

= Ax(k) + Bu(k), 

= Cx(k) + Du(k), 
(5) 

where x G R n, u G R m and y G R F. Without lose of generality, we assume 

that the matrices [C, D] and [Β', D']' are of maximal rank. It is simple to 

verify that there exist non-singular transformations U and V such that 

UDV = *m 0

 v 

0 0 
(6) 

where mo is the rank of matrix D. Hence, hereafter and without loss of 

generality, it is assumed that matrix D has the form given on the right-hand 

side of (6). 

One can now rewrite the system of (5) as, 

.(4 + 1) = A x(k) + [B0 

( 7 ) 

where the matrices Bo, 2?i, Co and C\ have appropriate dimensions. In 

what follows, whenever there is no ambiguity, in order to avoid the no-

tational clutter, the running time index k will be omitted. We have the 

following theorem. 

Theorem 1 (s.c.b). Consider the system Σ, characterized by the matrix 

quadruple (A, B, C, D). There exist nonsingular transformations Tlf Γ 2 

and Γ3, an integer rrif < m — mo, and integer indexes qi, i = 1 to mj, such 

that 

χ = Γι x, y = Γ2 y, u = Γ3 û 

x=[x'a,x'l,x't,x'f]', ».= [(«;)', (»+/]' 
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and 

V = Wo> V / · » » ] ' . 

D := Γ3 1
DT3 = 

β= [«{,, u), u'c]' 

0 0 0 . 
0 0 0 

L:icn 
LefCf 

*S J 

i : = Tl
l
{A - 5bC0)ra = 

0 L^Ct 0 
^ί. ^.σ. 0 
0 An 0 

B E £ + LehCt Acc 

lBjE~ BjE+ BjEi BjEc 

0 
0 

BcE^ 

B : = T ^ [ B 0 Βι]Γ3 = 

Γ Boa 

Bta 

Bob 

Boc 

BQJ 

0 
0 
0 
0 

0 
0 
0 

Bc 

0 

C := ΓΓ 1 
"Co' 'c0-„ c0

+

e 
Co» Coe 

Γι = 0 0 0 0 
Ci 0 0 c» 0 0 

0 0 

Here the states x~, x+, xj, x c and x/ are respectively of dimension 

n", n+, nj, nc andnj. Furthermore, wehaveX(A~a) G C®, λ(Α+α) G C®, 

the pair (Aec,Bc) is controllable, the pair (AH,C\>) is observable and the 

triple (Aj, BJ,CJ) is invertible with no invariant zeros. 

Proof : This follows from Theorem 2.1 of [5] and [6]. I 

In what follows, we state some important properties of the s.c.b which 

are pertinent to our present work. 

Property 1 . The given system Σ, is nght invertible if and only if x& and 
hence y& are nonexistent, left invertible if and only if xc and hence uc 

are nonexistent, invertible if and only if both x* and x e are nonexistent. 

Moreover, Σ, is degenerate if and only if it is neither left nor right invertible. 

Property 2. The invariant zeros of Σ, are the eigenvalues of Ααα. More-

over, the minimum phase (or stable) and the nonminimum phase (or unsta-

ble) invariant zeros of Σ, are the eigenvalues of A~a and A+a, respectively. 
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If all the invariant zeros of a system Σ, are in C ® , i.e., if all the invariant 

zeros of Σ, are stable, then we say Σ, is of minimum phase, otherwise Σ, 

is said to be of nonminimum phase. 

There are interconnections between the s.c.b and various invariant and 

almost invariant geometric subspaces. To show these interconnections, we 

need the following definition. 

Definition 6. For the ayatem Σ, , we define the subspaces 

1. ν*(Σ β) to be the maximalaubapace ofRn which ia (A-BF)-invariant 

and contained in Ker (C — DF) auch that the eigenvaluea of (A — 

BF)\V9 are contained in C , C C for aome F. 

2. δ
9
(Σι) to be the minimal (A — KC)-invariant aubapace of R

n con-

tained in Im (Β — KD) auch that the eigenvaluea of the map which 

ia induced by (A — KC) on the factor epace Rn/S9 are contained in 

Cg Ç C for aome K. 

For the cases that = C , Cg = C ® and Cg = C ® , we replace the index 

ginV9 and S9 by *, — and -f, respectiveJy. 

Various components of the state vector of s.c.b have the following geo-
metrical interpretations. 

Property 3. 

1. x ~ 0 z + 0 z c spans ν*(Σ,). 

2.x~®xe spans ν~"(Σ#). 

3. i + 0 x c spans ν + ( Σ β ) . 

4. xc@Xf apana S*(Σ,). 

5. z ; 0 z c 6 2 / apana 5 + ( Σ Λ ) . 

6. z + ® z c 0 2C/ spans 5~(Σ,) . 

IV. D I F F E R E N T CONTROLLER S T R U C T U R E S 

In this section, we consider three different controller structures used com-
monly in discrete-time systems. All three controllers are observer based, 
but the type of observer (or state estimator) used in each one is structurally 
different. The estimators considered here are (i) prediction estimator, (ii) 
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current estimator and (iii) reduced-order estimator. Both prediction esti-

mator and current estimator are of full-order. The reduced-order estimator 

is a current estimator of reduced-order. The prediction estimator recon-

structs the state x(k + 1) based on the measurements y(k) up to and in-

cluding the (Jb)-th instant, where as the current estimator gives estimates of 

z ( * + l ) based on the measurements y(Jb+l) up to and including the (Jb + 1)-

th instant. Since in the prediction estimator based controller, the current 

estimated value of control does not depend on the most current value of the 

measurement, it might not be as accurate as the current estimator based 

controller. However, the prediction estimator based controller could avail 

itself the entire sampling period to do the required computations and hence 

is commonly used when the needed computations are excessive. In contrast, 

when the needed computations can be done in a short time compared to 

the sampling period, current estimator based controller can easily be used. 

We note that prediction estimator forces an inherent time delay which oth-

erwise is absent in the controller structure. As expected, the three different 

controllers have different capabilities in regards to CLTR. However, there 

exists a common mathematical framework in the CLTR analysis for these 

controllers. In the sections to follow, we will systematically do the CLTR 

analysis using a generic controller which could be any one of these three 

controllers. In such an analysis, we shall use the following notation: 

TR(E) := The set of recoverable target closed-loops for Σ. 

TMW(z) := The achieved closed-loop transfer function, 

M(z) := The recovery matrix (to be defined later on), 

E(z) := Tsw (z) — (2 ) = The closed-loop recovery error, 

M e (z) := A part of the recovery matrix Μ (ζ) that cannot be rendered 

zero and hence termed as recovery error matrix, 

M0(z) := A part of the recovery matrix Μ (ζ) that can be rendered zero. 

The above notation applies to a generic controller; however, whenever we 

refer to a particular controller, we use appropriate subscripts to identify 

them. Superscripts p, c and r are used respectively to represent predic-

tion, current, and reduced order estimator based controllers. For example, 

1Jw(z), M£(z) and Τ£(Σ) denote respectively the achieved loop transfer 
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function with a prediction estimator based controller, the recovery error 

matrix when a current estimator based controller is used, and the set of 

recoverable target loops for Σ using a reduced-order estimator based con-

troller. We now proceed to give the structural details of the controllers 

considered here. 

• Prediction estimator based controller : 

The dynamic equations of the prediction estimator based controller are 

x(k + 1) = Ax{k) + B2u(k) + Kp[y(k) - C2x(k)], 

u(k) = -Fi(k), 
(8) 

where Kp is the gain chosen so that A — KpC^ is asymptotically stable. 

The transfer function of the controller is 

Cp(z) = F(zln -A + B3F + K^C^K,,. ( 9 ) 

• Current estimator based controller : 

For simplicity and without loss of generality, we assume that the matrices 

C2 and Z?2i a r e in the form, 

C2 = 
C2fo 

C2li 
and D2\ = #21,0 

0 
(10) 

where #21,0 is of maximal rank. Thus, the output y can be partitioned as, 

U ( * ) y " 

C2to 
»(*) + 

#21,0 
0 w(h). 

Here we use the current measurement output yi(k + 1) instead of yi(k) to 

compute z(k+l). That is, we build our estimate based on the measurement, 

( VoW \ _ Γ C 2 | 0 

\Vi(
i
 +

 1
)) ~ [

C
*A

A 

0 
[C2fiB2 L<?2,lBlJ 

w(k). 

Thus, the dynamic equation of the current estimator is 

x(k + 1) = Ax(k) + B3u(k) 

+ Kc<l . . Γ , ν , Λ - i 3 0 J i ( J f e ) -K IF »»(*) Λ - \ °>·0 0 
Ciy\Bi «(*)} (n) 
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where the gain Kc is chosen so that A — KeCe is asymptotically stable. To 

implement it, we partition Kc = [Κ& Kc\] in conformity with YO and Vi 

and by defining the following variable v(k), 

v(k) = x(k) - KelVl(k). 

For future use, let us define -
Then the current estimator based controller is given by 

v(k + 1 ) = (A- KeCe)v(k) + [Kco (A- KeCe)Kel]y(k) 

+{B3 - KelC3AB3)u[k), 

x(k) = v{k) + Keiyi(k), 

u(Jfe) = -Fx(k). 

The transfer function of the controller is 

Ce{z) = [0, FKel] + F(zln -A + KeCe + B3F - K^C^F)-1 

χ [ΚΛ, (A - KeCe)Kel - (B3 - KeiC3AB3)FKel]. 

( 1 2 ) 

( 1 3 ) 

( 1 4 ) 

( 1 5 ) 

• Reduced order estimator based controller: 

Again without loss of generality but for simplicity of presentation, we as-

sume that the matrices C2 and D2\ are already in the form 

0 
C2 

- Γ
 0 C2t02 

0 
and D2i = «^21,0 

0 
( 1 6 ) 

where mo is the rank of D2\. Then the given system Σ can be written as, 

( v o W \ _ [ 0 

z{k) = 

Ip-m0 

C3t03] (xi(k)\ \D31>0 

0 \\*2W) [ 0 »(*) 

Ci x(k) + Du w(k)+ D13 u(k) 
( 1 7 ) 

where [x'lt χ2]' = χ and [j/Q, Y I ] ' = Y. We note that YI = χχ. Thus, 
one needs to estimate only the state x2 in the reduced-order estimator. 
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Then following closely the procedure given in [4], we first rewrite the state 

equation for x\ in terms of the measured output yi and state x2 as follows, 

Vl(k + 1) = AllVl(k) + A12x2(k) + Bltlw{k) + B2tlu(k), (18) 

where yi and u are known. Observation of x2 is made via yo and 

yt(k) = Aia* a(*) + B I , I U F ( * ) = yi{k + 1) - Anyi(Jb) - B a , H * ( * ) . (19) 

A reduced-order system for the estimation of state x2 is given by 

X3{k + 1) = Ar X3(k) + BT W(k) + [A21, B3,3] , 

where 

:= A22, Br := Bit2l Cr := ^ 2 , 0 2 

-Aw 
# r : = 

# 2 1 , 0 

L *u 

(20) 

(21) 

Based on (20), one can construct a reduced-order observer for x2 as, 

£,(* + 1) = Λ · ί 3 ( * ) + [An, B3,3] ( ^ ) + # r M * ) - C r i 2 ( * ) ] , (22) 

where Kr is the observer gain matrix chosen such that Ar—KrCr is asymp-

totically stable. For the purpose of implementing (22), let us partition 

Kr = [ÜTrOi Kri] to be compatible with the dimensions of the outputs 

[Vo> ViYt &t the same time define a new variable, 

ν := i 2 - #π2/ι· 

We then obtain the following reduced-order estimator based controller, 

v(k + 1 ) = (Ar - JTrCr)«(*) + ( B A , 2 - KrlB2tl)u(k) + Gry(k), 

0 0 Jp-mo 

0 Kri »(*) + 

ti(fc) = -Fx(k) = -FlXl(k) - F3x3(k), 

where 

Gr = [ Λ Γ ρ 0, A 2 1 - KrlAU + {Ar- KrCr)Krl], 

(23) 
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and where F is partitioned as 

F = [FU F3] 

in conformity with [z^, x2]'. Then the transfer function from y(k) to — u(Jb) 

that results in using the reduced order estimator, is given by 

Cr(z) = F2(zl - A r + KrCr + B2t2F2 - Κτ1Β2ΛΡ2Γ
Χ 

• (ör - (*2,2 - KTlB2%1)[0y Fi + F2Kri]) + [0, Fi + F2Krl]. (24) 

We now proceed to do some preliminary analysis of closed-loop recovery 

error E(z). First we express the closed-loop recovery error E(z) in terms of 

a so-called recovery matrix M(z) that is suitable for the closed-loop recovery 

analysis. We have the following lemma. 

Lemma 1 . Consider the given system Σ. Assume that (A, B2) is stabi-

lizable and (A,C2) is detectable. Also, let T}*,(z) be an admissible target 

loop, i.e., 7^2,(z) G Τ(Σ). Then the loop recovery error E(z) between the 

target loop transfer function T**,(z) and that realized by any one of the 

controllers described earlier, can be written in the form, 

E{z) = TMU(z)M(z). (25) 

where 

Tsu(z) = (Ci - D^F)^1 + B2F)-XB2 + #12, 

is the closed-loop transfer function from u to ζ under state feedback. Fur-

thermore, if (A, B2,C±, D12) is left invertible, then 

E*(ju>) = 0 if and only if M*(ju>) = 0 

for all ω Ε (—oo, 0 0 ) . The expression for the recovery matrix M(z) de-

pends on the controller used. In particular, for each one of the controllers 

considered earlier, we have the following expressions, 

M*(z) = F(zln - A + KpC2Y
1(B1 - KVD21), (26) 

Mc(z) = F (zln — A + KcCj-1 (Bi - KCDC), (27) 

Mr(z) = F2(zl - Ar + Κ&Υ1^ - KrDr). (28) 
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Proof : To simplify and to unify our proof, we first examine the following 

Luenberger estimator based controller, 

(
v(k + 1) = Lv(k) + G i y(Jb) + G2u(Jb), 

x(k) =P V( fc ) + Jy(*), (29) 

ti(Jb) = -Fx{k) 

where v G Rr with r being the order of the controller and x G R n. It is 

well known that, in the disturbance free case (i.e., w = 0) the variable χ 

is an asymptotic estimate of the state χ provided that the matrix £ is a 

stability matrix and there exists a matrix Q G R r x n satisfying the following 

conditions: 
QA-LQ = G1C2l G2 = QB2, JC2 + PQ = In. (30) 

Let T*w(z) denote the closed-loop transfer function from w to ζ with a 

general Luenberger observer-based controller. Then following the procedure 

of [1], it is simple to show that the loop recovery error realized by such a 

Luenberger estimator based controller is 

Ε*(ζ) = T U z ) - = T,u(*)M<(z), 

where 

Ml(z) = F[P(zI - LY1{QB1 - GiD 3 i ) - JD21]. (31) 

Next, it is straightforward to verify that the prediction estimator based 

controller is a special case of Luenberger estimator based controller in (29) 

with 
L = A- KPC2 Ϊ 

Gi = KP 

G3 
= B2 

Ρ = In 
J = 0 
Q = In. J 

(32) 

Hence, (26) follows simply from (31). 

Similarly, it is simple to verify that the current and reduced-order esti-

mator based controllers are also the special cases of Luenberger estimator 
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based controller with 

L = A- KCCC 

Gx = [Κ* (A-KeCc)Kel] 
G2 = B2 — KclC2tlB2 

Ρ =In 
J = [ 0 Kel] 
Q = In — KeiC2tl 

\ 

(33) 

and 
L 

G2 

•n-p+mo > (34) 

[ —Kri ^N-P+MO ] 

respectively. Then, once again (27) and (28) follow from (31). This com-

The significance of Lemma 1 can be seen in two ways. It converts the 

CLTR analysis problem into a study of conditions under which the recovery 

matrix M(z) can be rendered zero. Also, it unifies the study of M(z) for all 

three controllers into a single mathematical framework. In order to further 

cement such a unification, we need to investigate the structural properties 

of E c , characterized by the quadruple (A, J5, C c, Dc)y and E r , characterized 

by the quadruple ( A r , Bri C r , D r) , in terms of those of Σ* defined by the 

quadruple (A, Bi, C 2 , ^ 2 1 ) · We have the following propositions. 

Proposition 1 . 

1. E c is of (non-) minimum phase if and only i/Σ* is of (non-) minimum 

2. E c is stabilizable and detectable if and only if Σ* is stabilizable and 

detectable. 

3. invariant zeros of E c contain invariant zeros of E* and ζ = 0. 

4. Orders of infinite zeros of E c are reduced by one from those of E*. 

pletes the proof of Lemma 1. 

phase. 
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5. E c is left invertible if and only if Σ* is left invertible. 

6. ν+(Σ,) = ν + (Σ φ ) . 

7. S-(Ve) = S-(V.)n{x\C2xeJm(D21)}. 

8. «S~(EC) = 0 if and onJy if Σ φ is Jeft invertible and of minimum phase 

with no infinite zeros of order higher than one. 

Proof : See [3]. I 

Proposition 2. 

1. E r is of (non-) minimum phase if and only if E* is of (non-) minimum 
phase. 

2. E r is detectable if and only if E* is detectable. 

3. Invariant zeros of E r are tie same as those of E*. 

4. Orders of infinite zeros of E r are reduced by one from those of E*. 

5. Σ Γ is Jeft invertible if and onJy if E* is Jeft invertible. 

6. ( j ) v + ( E r ) = V+(E,). 

7. ( 5 - ( Σ Γ ) = 5 - ( Σ φ ) Π {χ I C 2x G lm{D21)}. 

8. S~(E r) = 0 if and only if E* is Jeft invertibJe and of minimum phase 
with no infinite zeros of order higher than one. 

Proof : See [3]. I 

Remark 2. For a left invertible minimum phase system E* with D2i = 0, 
it is ample to see that 

S- (E e ) = ( J ) S - ( E r ) = 5 - ( Ε . ) Π {χ I C 2x G Im(£> 2 1)} = 0 

if and onJy if CB is of maximal rank. Also, for a non-strictly proper SISO 
system Σ*, 

«S~(E*) = £ - ( E c ) = S - ( E r ) = «S~(E*) Π {χ I C 2x G Im(Z>2 1)} = 0 

if and only if it is of minimum phase. 
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V. G E N E R A L CLTR ANALYSIS 

This section deals with the general analysis of the CLTR mechanism using 

any one of the three controllers discussed in the last section. Notationally, 

in all of our general discussions here, we deal with the given system Σ* 

characterized by the quadruple (A, 2?i, Cj, D21) and the prediction estima-

tor based controller in which Kv is the observer gain. In view of Lemma 1, 

all the general discussions presented here can be particularized to current 

and reduced-order estimator based controllers with appropriate notational 

changes. In all our main theorems, we will however explicitly point out the 

capabilities of each controller as they could be different for each case. 

As is evident from Lemma 1, the nucleus of CLTR analysis is the study 

of Mp(z) to ascertain how and when it can or cannot be rendered zero. The 

required study of Mp(z) can be undertaken in two ways, with or without 

the prior knowledge of F that prescribes the target loop transfer func-

tion Tj*(z). Our goal in the first subsection to follow is to study Mp(z) 

without taking into account any specific characteristics of F. The second 

subsection, devoted to CLTR analysis while taking into account appropri-

ate characteristics of F, complements the analysis of the first subsection. 

Decomposing Mp(z) as FMp(z), the study of Mp(z) without knowing F 

is the same one as the study of Mp(z). A detailed study of Mp(z) leads 

to a fundamental Lemma 2 involving with an eigenstructure assignment to 

the observer dynamic matrix A — KPC2 by an appropriate design of Kp. 

This Lemma 2 reveals the limitations of the given system as a consequence 

of its structural properties in recovering an arbitrary target loop transfer 

function via the given controller structure. Thus it leads to Theorem 2 

which, for each controller, shows under what conditions on Σ the set of 

recoverable target loops ΤΗ(Σ) is equal to the set of admissible target loops 

Τ(Σ). Also, Lemma 2 enables one to decompose Mp(z) into two essential 

parts, Mo(z) and Mp(z). The first part Μζ(ζ) can be rendered zero by 

an appropriate eigenstructure assignment to A — KpCi, while the second 

part Mp{z) in general cannot be rendered zero, by any means, although our 

analysis of MP(z) reveals a multitude of ways by which it can be shaped. 

The decomposition of Mp(z) into two parts and the subsequent analysis of 

each part forms the core of the analysis given throughout this paper. In 

particular, it leads to several important results given in this section. 
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A. Recovery Analysis For An Arbitrary Target Loop 

In this subsection, we consider that the target loop transfer function T}*, (z) 

is arbitrary. That is, we do not take into account any specific characteristics 

of 2̂ 2, (z) in analysing the CLTR mechanism. As mentioned before, we will 

focus our attention on the prediction estimator based controller with gain 

Kp. Then, as implied by Lemma 1, M?(z) as given below forms the basis 

of our study, 

MP(z) = {zln - A + KPC2)'
1(B1 - KPD21). (35) 

It is evident that the gain Kp is the only free design parameter in Af*(z). 

First of all, in order to guarantee the closed-loop stability, Kp must be such 

that A — KPC2 is an asymptotically stable matrix. The remaining freedom 

in choosing Kp can then be used for the purpose of achieving CLTR. We 

note that for left invertible Σ*, exact loop transfer recovery (ECLTR) is 

possible for an arbitrary F if and only if 

[Mv(ju)Y = (e*"TIn - A + KpC2y
1(B1 - KPD21) = 0. 

However, due to the non-singularity of [e?wTIn — A + Κρ02)~
χ, the fact 

that [MP(ju))]* = 0 implies that Bi — KpB2\ = 0. Hence, rendering all 

the parts of [M^(ju)]* zero is possible only for a very restrictive class of 

systems. In general only certain parts of [Mv(ju))]* can be rendered zero. 

To proceed with our analysis, for clarity of presentation we will temporarily 

assume that A — KpC2 is non-defective. This allows us to expand M^(z) 

and hence Mp(z) in a dyadic form, 

tf'W = E r n r ( 3 6 ) 

i=i
 z

 ~
 A< 

where the residue Ri is given by 

Ri = WiV?[B - KPD]. (37) 

Here Wi and V{ are respectively the right and left eigenvectors associated 

with an eigenvalue Xi of A — KPC2 and they are scaled so that WVK = 

VHW = In where 

W=[WltW2,...,Wn] and V = [Vu V2, • · ·, Vn]. (38) 
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Remark 3. The assumption that A — KPC2 be non-defective is not essen-

tial. However, it does simplify our presentation. A removal of this condition 

necessitates the use of generalized right and left eigenvectors of A — KPC2 

instead of the right and left eigenvectors W{ and Vi, and consequently the 

expansion of M*(z) requires a double summation in place of the single 

summation used in (36). 

We are looking for conditions under which the i-th term of Mp(z) in 

(36) can be made zero for each i = 1 to n. There is only one possibility in 

the discrete-time CLTR to do so; namely, by assigning λ,· to any location 

in C® while simultaneously rendering the corresponding residue Ri zero. 

In other words, such a possibility corresponds to the appropriate finite 

eigenstructure assignment of A—KPC2 that renders Ri zero. In continuous-

time systems, there exists an alternative approach; namely, by assigning A« 

asymptotically large in the negative half 5-plane so that a term of the type 

Ri 
a — Xi 

tends to zero as λ< —• oo. This latter approach deals with an infinite 

eigenstructure assignment to A — KPC2. The possibility of assigning an in-

finite eigenstructure, however, does not exist in discrete-time systems since 

Λ{ is restricted to C® in order to guarantee the stability of the resulting 

closed-loop system. Given the fact that |A« | cannot go to oo, it is easy to 

observe that the notions of exact CLTR (ECLTR) and aaymptotic CLTR 

(ACLTR) in discrete-time systems are equivalent in the sense that any tar-

get loop that is asymptotically recoverable is also exactly recoverable and 

vice versa. Because of this fact, throughout this paper, whenever we talk 

about recovery, we mean both exact and asymptotic recovery. For exam-

ple, whenever we say that an admissible target loop is recoverable, we mean 

that the specified target loop is exactly as well as asymptotically recover-

able as stated in Definition 4. This is because, as we mentioned in the 

introduction, some optimization-based design methods such as Hqq norm 

minimization methods sometimes lead to suboptimal designs that corre-

spond to an asymptotic recovery. To be spécifie, in optimization-based 

methods, one normally generates a sequence of observer gains by solving 

parameterized algebraic Riccati equations. As the parameter tends to a 

certain value, the corresponding sequence of #«> norms of the resulting 
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recovery matrices tends to a limit which is the infimum of the #«> norm of 

the recovery matrix over the set of all possible observer gains. A subopti-

mal solution is obtained when one selects an observer gain corresponding to 

a particular value of the parameter. On the other hand, in eigenstructure 

assignment methods, the required observer gain is obtained without solv-

ing any parameterized equations. Thus, in some cases the observer gains 

Kp are designed as a function of a parameter, and in other cases they are 

independent of it. 

The following lemma answers the question of how many residues Ri 

can be rendered zero by an appropriate finite eigenstructure assignment of 

A-KpC2. 

Lemma 2. Let \ and Vi be an eigenvalue and the corresponding left eigen-

vector of A — KpC2 for any gain Kp such that A — KpC2 is asymptotically 

stable. Then the maximum possible number of A* £ C ® which satisfy the 

condition V^Bx - KPD21] = 0 is η"(Σ*) + η*(Σ.). A total of η~(Σ*) of 

these Xi coincide with the system invariant zeros which are in C ® (the so-

called stable or minimum phase invariant zeros) and the remaining η^Σ*) 

eigenvalues can be assigned arbitrarily to any locations in C ® . All the eigen-

vectors Vi that correspond to these η~(Σ«) + η»(Σ*) eigenvalues span the 

subspace Rn/S~(Ti+). Moreover, the η~(Σ*) eigenvectors Vi for the eigen-

values which coincide with the system invariant zeros in are the corre-

sponding left state zero directions and span the subspace ν*(Σ*)/ν+(Σ*). 

Proof : See [3]. I 

Remark 4 . instead of rendering the η~(Σ*) + η»(Σ*) residues Ri men-

tioned in Lemma 2 exactly zero, if one prefers, they can be rendered asymp-

totically zero as a certain parameter tends to a particular limit. In that 

case η~(Σ φ) eigenvalues coincide asymptotically with the n~(E+) minimum 

phase invariant zeros while the corresponding eigenvectors approach in the 

limit the corresponding left state zero directions and span the subspace 

ν*(Σφ)/ν+(Σ*). As stated earlier, in this paper, we will not distinguish 

between such exact and asymptotic assignments. 

Lemma 2 points out that there are altogether η~(Σ*) + η*(Σ*) eigen-

values which can be assigned inside C ® so that the corresponding terms 
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of M?(z) in its dyadic expansion (36) are zero. This fact leads to some 

structural conditions on Σ so that any arbitrary admissible target loop can 

be recovered. This is explored in the following theorem. 

Theorem 2. Consider a given system Σ. Assume that (A, B2) is stabiliz-

able, (A, C2) is detectable, and (A, B2, C\, D\2) is left invertible. Depending 

upon the controller used, we have the following characterization of Σ* so 

that any arbitrary admissible target loop can be recovered. 

1. Prediction estimator based controller : 

Any arbitrary admissible target closed-loop transfer function matrix 

is recoverable, i.e., Τ£(Σ) = Τ(Σ), if Σ* is left invertible and of 

minimum phase with no infinite zeros (i.e., D2\ is maximal rank). 

2. Current estimator based controller : 

Any arbitrary admissible target closed-loop transfer function matrix 

is recoverable, i.e., Τ*(Σ) = Τ(Σ), if Σ* is left invertible and of 

minimum phase with no infinite zeros of order higher than one. 

3. Reduced order estimator based controller : 

Any arbitrary admissible target closed-loop transfer function matrix 

is recoverable, i.e., Τ£(Σ) = Τ(Σ), if Σ* is left invertible and of 

minimum phase with no infinite zeros of order higher than one. 

Proof : Let us take the case of a prediction estimator based controller. The 

fact that Σ is left invertible and of minimum phase with no infinite zeros 

implies that η+(Σ.) = η β(Σ Φ) = η/(Σ Φ) = 0. Thus η"(Σ.) + η*(Σ.) = η. 

Hence the result follows from (25) and Lemma 2. Now, for the case of cur-

rent and reduced-order observer based controllers, in view of Propositions 

1 (i.e., item 8) and 2 (i.e., item 8), we note that n+ -f n c + n/ corresponding 

to both E c and E r is equal to zero if Σ is left invertible and of minimum 

phase with no infinite zeros of order higher than one. I 

Remark 5. As we will show later in Corollary 1, the conditions in Theo-

rem 2 are also necessary. 

As is evident by Theorem 2, the required structural conditions for re-

covery of any arbitrary admissible target loop are very stringent, and call 
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for η~(Σ„) + η*(Σ*) to be equal to the dimension η of Σ*. To see what 

is and what is not feasible when η~(Σ«) + η*(ΣΦ) φ η, and to emphasize 

explicitly the behavior of each term of Mr(z), let us partition the dyadic 

expansion (36) of M?(z) into three parts, each part having a particular 

type of characteristics, 

M*(z) = Ml{z) + M*{z) + M!{z), (39) 

where 
η " ( Σ . ) ~ - n f c( E . ) ~b 

and 
η + ( Ε · ) + η β ( = · ) + η / ( = · ) g « 

In the above partition, appropriate superscripts —, 6, and e are added to 

Ri and λ» in order to associate them respectively with Af*(z), Μζ(ζ), and 

Aff (z). Next, define the following sets where ηβ(Σ*) = n+(Σ*) + ηβ(Σ*) + 

η, (Σ.) : 

A- = { V ; i = l t o η " ( Σ . ) } , v - = l t o n - ( E . ) } , 

w- = { w i " ; < = 1 to n j ( E , ) } , A* = 1 to η » ( Σ , ) } , 

yt = { ^ ; i = 1 to η»(Σ.)}, W
l
 = { W ? ; i = : 1 to η 6 ( Σ . ) } 

A * = { λ ? ; » = 1 to η β ( Σ . ) } , V = {Vf;i = 1 to η ί ( Σ . ) } Ι 

W 4 

= { w ? ; » = l t o η , ( Σ , ) } . 

We now note that various parts of M*°(jz) have the following interpretation: 

1. (z) contains η~(Σ«) terms. The η~(Σ*) eigenvalues of A — KpC2 

represented in it form a set A". In accordance with Lemma 2, there 

exists a gain Kp such that Mv_ (z) can be rendered identically zero by 

assigning the elements of A" to coincide with the system minimum 

phase invariant zeros while the corresponding set of left eigenvectors 

V~ coincides with the corresponding set of left state zero directions. 

2. M*(z) contains η*(Σ*) terms. The η»(Σ*) eigenvalues of A — KpC2 

represented in it form a set A*. In accordance with Lemma 2, there 
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exists a gain Kp such that M* (z) can be rendered zero by assigning 

the elements of A* to arbitrary locations in C ® . 

3. Ml(z) contains η β(Σ. ) = η+(Σ*) + η ε(Σ Φ) + η/(Σ*) terms. The 

η«(Σ«) eigenvalues of A — KpC2 represented in Ml(z) form a set A e. 

In view of Lemma 2, Aff (z) cannot in general be rendered zero by any 

assignment of A e and the associated sets of right and left eigenvectors 

W* and V. 

Since both M*_(z) and M*(z) can be rendered zero, for future use, we can 

combine them into one term, 

Μξ(ζ) = Ml(z) + M*(z). 

We define likewise, A 0 = Λ~ U A 5, W° = W U W\ V° = V~ U Vh. Thus 

Af*(z) can be rewritten as 

MP{z) = Μξ (z) + Ml(z). (40) 

As the above discussion indicates, Lemma 2 forms the heart of the 

underlying mechanism of discrete-time CLTR. It shows clearly what is and 

what is not feasible under what conditions. Although it does not directly 

provide methods of obtaining the gain Kp, it provides structural guidelines 

as to how certain eigenvalues and eigenvectors are to be assigned while 

indicating a multitude of ways in which freedom exists in assigning the 

other eigenvalues and eigenvectors of A — KVC2. These guidelines, in turn, 

can appropriately be channeled to come up with a design method to obtain 

an appropriate gain Kp. Leaving aside now the methods of design, let us 

at this stage simply define the following sets of gains: 

Definition 7. Consider the system Σ. Let £*(Σ*) be a set of gains Kv Ε 

R n x p such that (i) A — KVC2 is asymptotically stable, and (ii) Ml(z) is 

zero. In a similar manner, define £*(Σ) and £*(Σ) for Σ β and Σ Γ, i.e., 

IC;(E) = IC; (E E) and K ; ( E ) = i c ; (E R) . 

As mentioned earlier, we do not parameterize here the gain Kp in terms of a 
tunable parameter σ. We deal only with a fixed gain Kp. If one deals with 
asymptotic recovery and thus with a sequence of controller gains Kp (cr) for 
different values of σ, the set of recoverable gains is also parameterized and 
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hence can be written as £*(Σ*,σ). In that case, one defines £*(Σ«,σ) as 

a set of gains Κρ(σ) G R n x p such that (i) A — Kp(a)C2 is asymptotically 

stable for all σ > σ* where 0 < σ* < oo, (ii) the limits, as σ —• oo, of all 

the eigenvalues of A — Kp(a)C2 remain in C®, and (iii) Μζ(ζ) is either 

identically zero or asymptotically zero. Similarly, £*(Σ,σ) and £*(Σ,σ) 

are defined for systems E c and Σ Γ . 

It is obvious that the sets of gains defined above are nonempty. We note 

also that whenever Kp is chosen as an element of £*(Σ„), the resulting error 

in the recovery matrix Mp(z) is Mp (z) = FMp(z). As such Mp(z) is called 

hereafter as the 'recovery error matrix9. Essentially, there are three meth-

ods that generate such estimator gain matrices: (i) ATEA method which 

is capable of exploiting all the available design freedom and shaping the 

recovery error matrix in various ways; (ii) J3oo-optimization based method 

which minimizes the Hqq norm of M(z); and (iii) 2Z"2-optimization based 

method which minimizes the H2 norm of AT (z). We refer the readers to [4] 

for all these design methods. 

Theorem 3 given below characterizes the achieved loop transfer function. 

Theorem 3. Consider the given system Σ. Assume that (A, £2) is stabi-

lizable, (A, C2) is detectable, and (A, B2, C\, D\2) is left invertible. Also, 

let Tll(z) be an admissible target loop, i.e., Tll(z) G Τ(Σ). Then 

1. For a prediction estimator based controller with estimator gain Kp G 
£*(Σ*), we have 

= Tzu(z)Mp(z). (41) 

2. For a current estimator based controller with estimator gain Kc G 
£*(Σ*), we have 

Ee{z) = TMU(z)MS(z). (42) 

3. For a reduced order estimator based controller with estimator gain 
Kr G £;(Σ*), we have 

Er(z) = Tzu(z)M;(z). (43) 

Proof : It follows from Lemma 2. I 
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Remark 6 . Theorem 2 is a special case of the above theorem. To see this, 

let us examine first the case when a prediction estimator based controller 

is used. If the given system Σ* is left invertible and of minimum phase 

with no infinite zeros, then the recovery error matrix Mp(z) is nonexistent 

and hence FP(z) can be rendered zero for all z G C . Similarly, if Σ* is 

left invertible and of minimum phase with no infinite zeros of order higher 

than one, then Mf(z) and Μζ(ζ) are nonexistent and hence exact recov-

ery is achievable by using either current or reduced-order estimator based 

controllers. Thus, for the special cases considered in Theorem 2, results of 

Theorem 3 are reduced to those of Theorem 2. 

Remark 7. Theorem 3 also holds if we use the estimator gain Κν{σ) G 

£*(Σ*,σ). However, in this case, the equality in (41) should be replaced 

by pointwiae convergence in ζ as σ —• oo. 

B. Analysis For Recoverable Target Loops 

In the previous subsection, closed-loop transfer recovery analysis is con-

ducted without taking into account any knowledge of F. It involves essen-

tially the study of the matrix Μ*(ζ) or Mp(z) to ascertain when it can 

or cannot be rendered zero. This subsection complements the analysis of 

Subsection A by taking into account the knowledge of F. Obviously then, 

the analysis of this subsection is a study of Mp(z) = FMp(z). One of the 

important questions that needs to be answered here is as follows. What 

class of target loops can be recovered for the given system? As it forms 

a coupling between the analysis and design, characterization of T}& (z) to 

determine whether it can be recovered or not for the given system, plays 

an extremely important role. That is, although the physical tasks of de-

signing F and Kp are separable, one can benefit enormously by knowing 

ahead what kind of target loops are recoverable. The necessary and suffi-

cient conditions developed here on T& (z) for its recoverability, turn out to 

be constraints on the finite and infinite zero structure of the corresponding 

system Σ*. An interpretation of these conditions reveals that recovery of 

T^2, (z) for general nonminimum phase systems is possible under a variety 

of conditions. 

Another important question that arises before one undertakes formu-

lating any target loop transfer function T^^(z) for a given system Σ is as 
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follows. What are the necessary and sufficient conditions on Σ so that it has 

at least one recoverable target loop? An answer to this question obviously 

helps a designer to change the given plant if necessary by appropriately 

modifying the number (or type) of plant inputs and/or outputs. 

We proceed now to give the following result regarding recoverability of 

a target closed-loop transfer function T * £ » for the given system Σ. 

Theorem 4 . Consider the given system Σ. Assume that (A, B2) is stabi-

lizable, (A, C2) is detectable, and (A, B2, C\, D\2) is left invertible. Then, 

an admissible target closed loop transfer function (z) of Σ, i.e., 7 ^ G 

Τ(Σ), is recoverable if and only if the following condition is satisfied, de-

pending on the controller used. 

1. For a prediction estimator based controller, the condition is that 

3. For a reduced-order estimator based controller, the condition is that 

Thus the set of recoverable target loops under each controller is character-

ized as follows: 

1. Prediction estimator based controller : 

5~(Σ*) C Ker (F). 

2. For a current estimator based controller, the condition is that 

S~(E*)n{x\C2x G I m ( D 2 1) } C Ker (F). 

S~(Z+)n{x\C2x G Im (Dai)} Ç Ker (F). 

Τ£(Σ) = { 3 * 1 » G Τ(Σ) | 5 - ( E . ) C Ker (F) } . 

2. Current estimator based controller : 

Τ£(Σ) = {2Ϊ1 (*)€Τ(Σ) 
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3. Reduced order estimator based controller : 

i ( S ) = {3Ä ( i )€T(E) 

I 5 - ( E . ) n { x | C 2 a ; G l m ( Z)2i ) } C K e r ( F ) } . 

Proof : It follows from the results of [ 3 ] . I 

Remark 8. We note that Τ£(Σ) Ç Ί£(Σ) = Τ£(Σ). 

We have the following corollary to Theorem 4 . 

Corollary 1 . Consider a given system Σ. Assume that (A, B2) is stabiliz-

able, (A, C2) is detectable, and (A, B2, C±, D12) is leu invertible. Depending 

upon the controller used, we have the following necessary and sufficient con-

ditions under which any arbitrary admissible target loop can be recovered. 

1. Prediction estimator based controller : 

Any arbitrary admissible target closed-loop transfer function matrix 

is recoverable, i.e., Τ£(Σ) = Τ(Σ), if and only if Σ* is left invertible 

and of minimum phase with no infinite zeros (i.e., D21 is maximal 

rank). 

2. Current estimator based controller : 

Any arbitrary admissible target closed-loop transfer function matrix 

is recoverable, i.e., Τ*(Σ) = Τ(Σ), if and only if Σ* is left invertible 

and of minimum phase with no 'infinite zeros of order higher than one. 

3. Reduced order estimator based controller : 

Any arbitrary admissible target closed-loop transfer function matrix 

is recoverable, i.e., Τ£(Σ) = Τ(Σ), if and only if Σ* is left invertible 

and of minimum phase with no infinite zeros of order higher than one. 

Proof : The proof follows from Theorem 4 , the properties of Σ 0 and Σ Γ , 
and the following fact: 

Let V φ 0 be any matrix whose columns span a subspace of R n . Then there 

exists an admissible state feedback gain F G R m X n, i.e., A — B F is stable, 

such that V £ Ker (F). 
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The proof of the above fact is simple and is based on the continuity of 
eigenvalues. Let Fi G R m X n be such that A - BFX is stable. If FiV φ 0, 
then the above statement holds by letting F = Fi. If FiV = 0, choose 
F2 G R m x n such that F2V φ 0. Then by the continuity of eigenvalues, 
there exists a constant, say 6 > 0, such that F := Fi + 6F2 and A — BF 

is stable. Then we have FV = 6F2V φ 0. This completes the proof of the 
above fact. I 

Our aim next is to develop the conditions on Σ so that the set of recov-

erable target loops is nonempty. We have the following theorem. 

Theorem 5. Consider the given system Σ. Assume that (A, B2) is stabi-

lizable, (A, C2) is detectable, and (A, B2, Ci, Di2) is left invertible. Let Cp 

and Cc be any full rank matrices such that 

1. Ker(C p) = ν+(Σ*), and 

2. Ker (Ce) = 5~(Σ.) Π { x \ C2x G Im (D2i) } . 

Also, let Cr = Ce. Define three auxiliary systems: 

1. T£u characterized by the matrix triple (A, B2, Cv), 

2. Σ£ η characterized by the matrix triple (A, B2, Ce), and 

3. Σ£ ν characterized by the matrix triple (A, B2,Cr). 

Then we have the following results depending upon the controller used : 

1. Prediction estimator based controller : 

Τ£(Σ) is nonempty if and only if Σζ η is stabilizable by a static output 

feedback controller. 

2. Current estimator based controller : 

Τ*(Σ) is nonempty if and only i / Σ ^ is stabilizable by a static output 

feedback controller. 

3. Reduced order estimator based controller : 

Τ£(Σ) is nonempty if and only if Σν

αη is stabilizable by a static output 

feedback controller. 

Proof : It follows from the results of [ 3 ] . 
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VI. N U M E R I C A L E X A M P L E 

In this section we apply the above discrete-time CLTR method to the de-

velopment of a tip position control system for a planar flexible one-link 

robot arm. Typical performance objectives for such a system would include 

(a) the minimum bandwidth for tracking of the tip position command sig-

nal; (b) the maximum tip position overshoot, the maximum excitation of 

any link vibration mode, and the maximum control torque in response to a 

tip position step-change command; (c) zero steady-state tip position error; 

and (d) the maximum time constant for the decay to zero steady-state tip 

position error in response to a constant disturbance torque at the motor 

shaft. A typical stability robustness requirement would be that the closed-

loop system remain stable for a specified range of frequencies in each of the 

link vibration modes. 

The essence of this problem is represented via a fourth-order plant dy-

namics of the two rigid links connected by a spring and a damper as shown 

in Figure 2. The variable r is the motor torque, d is the disturbance torque 

at the motor shaft, q is the tip position of the arm, and the flexibility 

in the link is modeled by the pin joint, rotational spring, and rotational 

damper at the midpoint of the link. With the summation of the tip posi-

tion, Σ 9i added to the plant state vector to achieve the required integral 

control action, a state-feedback control law was designed for this system. 

The resulting closed-loop system is represented in Figure 3. 

Figure 2: Flexible one-link robot arm 

Consider the specific case where the link length is 1 m, the link mass 

is 1 ib<7, the rotational spring and damper values are selected to achieve 
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Figure 3 : Full state feedback system 
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an open-loop vibration frequency of 20* rad/sec and 0.01 damping. With 

a sampling period of 0.02 sec, a plant state model corresponding to small 

perturbations in the variables q and c is given in the notation of (1) by, 

A = 

0.77984 0.22016 -18.447 18.447 0 
0.48435 0.51565 40.582 -40.582 0 
0.018420 0.0015797 0.78573 0.21427 0 

0.0034752 0.016525 0.47138 0.5.2862 0 
0 0 0.5 0.5 1 

• 0.22013 1.5097 • - 0.22013 " 
-0.29228 -2.0046 -0.29228 
0.0024599 0.016871 B2 = 0.0024599 

-0.003.4919 • -0.023949 -0.003.4919 
0 - 1 0 

•o o i o o - •o 0 -o-

= 
0 
0 

0 0.5 0.5 0 
0 - 1 1 0 

0 
0 

0 
0 

0 
0 

.0 0 0 0 0. .0 6.8584J . 1 . 

•o 0 0 0 o- •o ί- •0" 
0 0 1 0 0 

, D21 = 
0 ο 

, D22 = 
0 

0 0 0.5 0.5 0 
, D21 = 

0 0 , D22 = 0 
.0 0 0 0 1. .0 0. . 0 . 

c 2 = 

where the disturbance inputs w, the control input u, the controlled outputs 

z, the measurement outputs y, and the state vector χ are as defined in 

Figure 3. 

A standard LQR design with weights of 10 2 /m 2 on q2, 10 4/rad 2 on e 2, 

102/(m-sec) on Σ<1* a n (^ l/(N -m) OUT yields the following state-feedback 

gain matrix 

F = [2.275745 -0.251072 -7.050255 13.908664 0.058912]. (44) 

Here for the given data, (A, B2) stabilizable and (A, C2) is detectable. Fur-

thermore, it is simple to verify that (A, B2l Ci, ϋχ2) is left invertible, and 

(Α, Βχ, C2i D2i) is left invertible and of minimum phase with one infinite 

zero of order 1. Hence, by Theorem 4, any arbitrary admissible target loop 

for this system, and certainly the target loop specified by the state feedback 

gain matrix given in (44), is recoverable using a current estimator based 

controller and a reduced-order estimator based controller. However, it is 

not recoverable using a prediction estimator based controller. 
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Design methods for discrete-time CLTR axe similar to those developed 

in [4]. A current estimator determined by the ATE A design method that 

achieves exact CLTR for this system is given by 

( V(K + 1) = AmPtC V(K) + BmPiC y(i), 

\ -u(fc) =CEMPTEV(K) + DmPtey{k), 

where 

x
cmp,c — 

-0.602207 0.247502 -74.494142 6.758923 0.0 η 
2.319394 0.479345 115.000852 -25.063878 0.0 

0.159394 0.083655 0.0 
1.360471 0.714017 0.0 
0.250000 0.250000 0.5J 

0.002976 0.001885 
0.025399 0.016091 
0.000000 0.000000 

J
cm,p%c 

- 0.0 -160.329773 33.628711 o.oo-
0.0 288.483297 -60.508546 0.00 
0.0 0.079440 -0.016662 0.00 
0.0 0.678041 -0.142217 0.00 

. -0 .5 -0.100454 0.021070 0.25. 

CMPTC = [2.275745 -0.251072 -7.050255 13.908664 0.058912], 

DemPie = [0 197.971158 -41.523884 0.029456]. 

Similarly, a reduced-order controller design that achieves exact CLTR for 

this system, is given by 

V(h + 1) = AmPtT V(K) + B m P i r y (4) , 

= CMP%R V(K) + DcmPtr y(*)f 

where 

x
cmp,r — 

-0.602207 0.247502 
2.319394 0.479352 

0 -161.037926 30.252493 
0 284.314532 -80.383740 

[2.275745 -0.251072], 

DmPir = [0 202.676685 -19.090896 0.058912]. (45) 



CLOSED LOOP TRANSFER RECOVERY 4 7 7 

Finally, a gain matrix for a prediction estimator that achieves some certain 
degree of CLTR for this system is 

• 1.509713 -0 .963299 0.202049 o-
-2 .004555 76.880887 -16.125546 0 

0.016871 1.860387 -0 .390211 0 
-0 .023949 -1 .850003 0.388033 0 

. -1 .000000 -0 .200908 0.042140 1. 

(46) 

Simulated closed-loop responses to a unit torque disturbance (d-step) 

and to a unit tip position command (ç r e/-step) with the full-state feed-

back design are compared with those achieved under the current estimator, 

reduced-order estimator, and prediction estimator based controllers in Fig-

ure 4. As expected, only in the case of the prediction estimator based 

controller do the responses differ from those of the full-state feedback de-

sign. Even with the prediction estimator based controller, the differences 

are only in the responses to the torque disturbance. 

The maximum singular values of the closed-loop recovery errors for all 

the three designs are plotted in Figure 5. As expected, only the prediction 

estimator based controller yields a non-zero recovery error. 

Finally, to compare the stability robustness of the three controllers to 

variation in the robot arm's open-loop vibration frequency, Figure 6 shows 

the maximum percent of variations in the vibration frequency for stabil-

ity due to changes in the arm rotational spring constant k with the above 

three observer based controllers. Note that the full-state feedback system is 

stable for all (positive) k values. In particular, Figure 6 indicates substan-

tial stability robustness achieved under the reduced-order estimator based 

controller. 

VIL CONCLUSION 

Presented in this paper is the complete analysis of closed-loop transfer 

recovery in discrete-time systems using observer-based controllers. Fun-

damental results are based on the structural properties of the system as 

they influence the recoverability of the target closed-loop transfer function. 

Conditions for recoverability have been developed pinpointing exactly when 

a system is recoverable for an arbitrary target loop transfer function and 

also specific conditions under which a given target loop transfer function 
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1 2 3 0 1 2 

Time (sec) Time (sec) 

State feedback; Current & reduced order estimator based; 

Prediction estimator based controller 

a) Responses to a unit step in d. 

0.05 

-0.05 

-0.1 
1 2 3 0 1 2 

Time (sec) Time (sec) 

State feedback & all three estimator based controllers 

b) Responses to a unit step in ς Γ β/ · 

Figure 4: Robot arm responses to step inputs in d and ç r e/ . 
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Figure 5: Maximum singular values of the closed-loop recovery errors. 

Prediction Current Reduced 

Figure 6: Robustness to variations in robot arm vibration frequency. 
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is recoverable. Finally, results of the CLTR analysis has been applied and 

demonstrated in the design of a pointing control system for a two-link robot 

arm. 
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