Closed-Loop Transfer Recovery with
Observer-Based Controllers

Part 2: Design

Ben M. Chen
Ali Saberi

School of Electrical Engineering and Computer Science
Washington State University
Pullman, Washington 99164-2752

Uy-Loi Ly

Department of Aeronautics and Astronautics, FS-10
University of Washington
Seattle, Washington 98195

I. INTRODUCTION & PROBLEM STATEMENT

The problem of closed-loop transfer recovery (CLTR) has been dis-
cussed in an early sequel paper [1]. The basic problem addressed
there is the analysis of closed-loop transfer recovery using full-order
and reduced-order observer-based controllers. The design objective is
to recover using output feedback (if possible) the closed-loop transfer

function achieved under a full-state feedback design for a given set of
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disturbance input and controlled output variables. To be specific, let

us consider a plant ¥ defined by
2= Az + B, w+ Byu,

Cll’ + Dllw + Dlgu, (l)

!
™
i

y = Chz + Dayw + Dasu,
where z € R" is the state, u € R™ is the control input, w € R* is the
disturbance, z € R¢ is the controlled output and y € RP is the mea-
surement output. For convenience, we also define the subsystem X,
to represent the matrix quadruple (A4, By, Ca2, D21) and the subsystem
3, for the matrix quadruple (A, Ba, C1, D12). We assume that the pair
(A, B2) is stabilizable and the pair (A, Cs) detectable. Without loss
of generality, the following matrices [Cy, Diy, Di3], [Ca, Do, Daal,
[Bi, D1y, D4y) and [B}, Di,, D4)" are assumed of maximal ranks.
As shown in [1], one can also assume without loss of generality that
Dy = 0 as well. Let F' be a full-state feedback gain matrix such that

under the state-feedback control
u=—Fuz (2)

(a) the closed-loop system is asymptotically stable, i.e. the eigen-
values of A — BoF lie in the left-half s-plane,

(b) the closed-loop transfer function from the disturbance w to the
controlled output z, denoted by 7%, (s), meets the desired fre-
quency dependent design specifications.

We also refer to T}, (s) as the target closed-loop transfer function given
by
Tow(s) = (C1 = Do F) (@' + BoF)™'By + Dy (3)

where & = (s — A)~!. The problem of closed-loop transfer recov-
ery (CLTR) is then to find an internally stabilizing output-feedback

controller C(s) such that the recovery error defined as
E(S) = wa(s)—Tzw(s), (4)

1s either exactly or approximately equal to zero in the frequency re-

gion of interest. Here, T7, (s) represents the transfer function from w
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to z of the closed-loop system. As discussed in Part 1 [1], achieving
exact closed-loop transfer recovery (ECLTR) is in general not possible.
Hence, it is more appropriate to examine situation where approximate
recovery can be achieved. An approximate CLTR is tied to the notion
that recovery can be achieved to any degree of accuracy. In this pro-
cess, one normally parameterizes the controller C(s) as a function of a
positive scalar parameter o thereby generating a family of controllers
C(s,0). We say asymptotic CLTR (ACLTR) is achieved if

Tzow(s’ U) - Tzw(s)
as ¢ — o0 pointwise in s, or equivalently
E(s,0) —0

as ¢ — 00 pointwise in s. From the point of view of design, once the
conditions of ACLTR have been verified, one should be able to find a
controller C(s, o) with a particular value of ¢ that produces the desired

level of recovery.
In Part 1 [1], we consider the CLTR problem using a full-order

observer-based controller of the form,

i =(A-KCy)z + Bau+ Ky,
(5)

u=-—Fz,
and a reduced-order observer-based controller of the form,

v = Ayv+ (BQ,Q - ["TIBQ,I)U

+[Kro, A2 — K1 A1 + Aor Kri) [z?] )

. 0 0 I,_ ©)
Sl U g el
u= —Fuz,

where K and K, = [K.o, K,i] are respectively the full-order and

reduced-order observer gain matrices. The submatrices in (6) are de-
fined in equations (33) to (38) of Part 1. While it is recognized that in
most cases neither ECLTR nor ACLTR can be achieved using either a
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full-order or a reduced-order observer-based controller, the analysis of
CLTR conducted in Part 1 provides however a detailed study of three
fundamental issues related to the problem of CLTR. The first issue is
concerned with what can and cannot be achieved for a given system
and for an arbitrary target closed-loop transfer function. The second
issue is to develop necessary and/or sufficient conditions for a target
closed-loop transfer function to be recoverable either exactly or ap-
proximately. The third issue deals with the necessary and/or sufficient
conditions on a given system such that it has at least one recoverable
target closed-loop transfer function. Results of the analysis have identi-
fied some fundamental limitations of the given system as a consequence
of its structural properties; namely, its finite and infinite-zero structure
and invertibility. This enables designers to appreciate at the outset dif-
ferent design limitations incurred in the synthesis of output-feedback
controllers; for example, how to select a meaningful set of measurements
for the closed-loop transfer recovery design. Once we have chosen an
appropriate set of measurement outputs, we can then proceed to the
actual design of full-order or reduced-order observer-based controllers
that will achieve as close as possible the desired target closed-loop trans-
fer function. In this paper, we focus on three different design methods
for closed-loop transfer recovery.

The paper is organized as follows. Section II reviews the necessary
design constraints and the available design freedom. Section III devel-
ops the general ATEA method. Also, in section III, a simplified ATEA
procedure is given for the design of exact closed-loop transfer recov-
ery whenever it is feasible. Section 1V examines design methods based
on optimization. Here, two design methods have been considered; one
that minimizes the Hs-norm of a recovery matrix while the other mini-
mizes the respective Ho,-norm. Section V discusses the relative merits
of ATEA and optimization-based designs. A numerical example based
on a benchmark problem [16] is given in section VI, illustrating the
practical usage of the analysis results in 1], and comparing different
observer designs synthesized using methods discussed in sections III

and IV. Conclusions are drawn in section VII.
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As in [1], we adopt the following notations. A’ denotes the transpose
of A, A" denotes the complex conjugate transpose of A, I denotes
an identity matrix while I denotes the identity matrix of dimension
kxk. A(A) denotes the set of eigenvalues of A. Similarly, oymaz[A]
and 0., [A4] denote respectively the maximum and minimum singular
values of A. Ker[V] and Im[V] denote respectively the kernel and the
image of V. The open-left, closed right-half s-planes and the jw axis
are denoted by C~, C* and C° respectively. Also, TL () denotes
the set of exactly recoverable target closed-loop transfer functions for
any given system ¥ using a full-order observer-based controller, T/ ()
denotes the set of either exactly or asymptotically recoverable target
closed-loop transfer functions, while TZ_(Z) denotes the set of target
closed-loop transfer functions which are asymptotically recoverable but
not exactly recoverable for the given system ¥ using full-order observer-
based controllers. Precise definitions of T, (X), TZ(%) and T/, (%) are

given in [1].
II. DESIGN CONSTRAINTS AND FREEDOM

As shown in Part 1 [1], problem formulation of CLTR for the case of
reduced-order observer-based controllers can be placed into the same
framework as the one for full-order observer-based controllers. Thus, for
simplicity of presentation, we will focus our development of CLTR de-
sign techniques only to the case of full-order observer-based controllers.
In Part 1 [1], we have analyzed systematically when and under what
conditions closed-loop transfer recovery (CLTR) is possible. According
to the way we partitioned the recovery matrix [1], it is clear that any
systematic design scheme for CLTR would involve, beside the require-
ment of closed-loop stability, placing some additional design constraints
upon the observer gain matrix K. The goal is to make the recovery ma-
trix as small as possible through a particular set of design constraints.
Some constraints are related to the assignment of the finite, as well
as the asymptotically infinite, eigenstructures of the observer dynamic
matrix A, = A — K(0)Cs. After satisfying all the above constraints,

some design freedom may still be left in the observer gain matrix K to
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assign other parts of the eigenstructure in the matrix A,.
To see this, we recall that the recovery error between the target
closed-loop transfer function T, (s) and the one realized by a full-order

observer-based controller of (5) is given by
Ef(s,0) =T.u(s)Ms(s,0) (7)

where T,,(s) is the closed-loop transfer function from u to z under

state feedback as defined in (19) of [1] and
Mj(s,0) = F(®~' + K(0)C2)"' (B, — K(0)Da1). (8)

The matrix M;(s, o) is called the recovery matriz. Tt plays a dominant
role in the analysis of recovery. In fact, if the system X, is left-
invertible, then according to lemina 2 of [1] the recovery error E(jw, o)
is zero if and only if the recovery matrix M;(jw,o) is zero. Thus, the
study of M,(s,o) is tantamount to the study of CLTR. Assuming for
simplicity that A, is nondefective, one can express My(s,o) in the
following matrix partial fraction expansion,

"~ Ri(0)
Ms(s,0) = el
1(s.9) ;S_w) (9)
where R;(c) is the residue matrix given by

Ri(0) = FW;(o)Vi# (0)[B, — K(0)Day] (10)

with Wi (o) and V(o) being respectively the right- and left-eigenvectors
associated with the eigenvalue A;(c) of A,. These eigenvectors are

scaled such that
W WH(o)= V(o )W(0o) = I,
where
W{o) = [Wi(o), Wa(a), -, W, (o)]

and
V(o) = [Vilo), Va(o), -+, Va(o)]. (11)

As evident from (9) and (10), one can render the i-th term of My (s, o)

zero in one of two ways:
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(1) Render the residue R;(o) zero while A; is finite; or
(2) Place \; asymptotically to infinity while keeping the residue
R;(o) uniformly bounded.

The first approach is the problem of finite eigenstructure assignment
while the latter concerns eigenstructure assignment for the asymptot-
ically infinite eigenvalues of A,. From the structural properties of the
system X, there may not exist enough design freedom to assign the
needed eigenstructure in A, to achieve ECLTR or ACLTR. Analysis of
Part 1 reveals several guidelines as to when, how and to what extent
such an assignment can be done. To review these guidelines, My (s, o)

1s partitioned into four parts [1],

My(s,0) = M_(s,0)+ My(s,0) + Mos(s,0) + M.(s,0), (12)

where
~_EZ(0) N _RYo)
M_(s,0) =Y —4 2 AMy(s,o) =y ——i L
()= 2 ey M= L T

and

ny 00 e Ne R€
Mu(sio) =Y ;%%(% Moo= Y0 L

i=1
According to the above partitions of M;(s,o), we define the corre-

sponding subsets of eigenvalues, right- and left-eigenvectors of A,(o),

A_(o) = {A|i=1,,n7}, Ap(o):={N]i=1,-- - n},

Aolo) = {A® [i=1,---,ns},

-
o
—_
Q
—

Il

{Afli=1,--,nc},
Vo(o) =V li= 17}, V(o) = {V}i=1-,m},
Voolo) :=A{V= [i=1,---,ns}, V(o) :={Vf |i=1,--,n},
W_(o):={W  |i=1,--\n7}, Wyo)={W!|i=1,---np},

Weolo):={W li=1,---,ns}, Welo)={W|i=1, - ,n.}.
Hereafter, we will use an over bar on a certain variable to denote its
limit as ¢ — oo whenever it exists. For example, Ve(s) and W, denote

respectively the limits of M.(s, o) and W,.(o) as ¢ — o0.
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From [1], we showed that irrespective of the target closed-loop trans-
fer function T}, (s), both M_(s,0) and M,(s,o) can be rendered zero
either exactly or asymptotically as ¢ — oo by an appropriate finite
eigenstructure assignment of A,. Also, Ms/(s,0) can be rendered
asymptotically zero as ¢ — oo by an appropriate asymptotically in-
finite eigenstructure assignment of A,. On the other hand, in general,
M. (s,0) can never be rendered zero although there exists abundant
amount of freedom to shape M.(s,o) within the given constraints.
However, when specialized to a particular class of target closed-loop
transfer functions, namely T}, (s) € TéR(E), M.(s,0) can be rendered
zero exactly. Similarly, M.(s,o) can be rendered zero asymptotically
as 0 — o0 if Thy,(s) € T{((E)‘

Next, we describe in details the design constraints and the available
design freedom on the observer gain matrix i in the eigenstructure as-
signment of A, for closed-loop transfer recovery. The discussion covers
each of the partitions of M/ (s, ) given in equation (12).

(a) M_{(s, o) partition: For an arbitrary target closed-loop trans-

fer function T} (s), the term M_(s,0) can be made identically
zero (irrespective of the value of ¢). To accomplish this, the
set of ny eigenvalues in A_(¢) and the corresponding set of
left-eigenvectors V_(o) of A, must be selected to coincide re-
spectively with the set of stable invariant zeros and their cor-
responding left-state zero directions of Xy,,. It is also possi-
ble to render M_(s,0) zero asymptotically as ¢ — oco. This
1s done by parameterizing A_(o) and the corresponding set of
left-eigenvectors V_(o) of A, so that in the limit A_ and V_
coliicide respectively with the set of stable invariant zeros and
their corresponding left-state zero directions of Tyw-

(b) M,(s, o) partition : For an arbitrary target closed-loop transfer

function 7, (s), the term My(s, o) can be rendered identically
zero (irrespective of the value of o). To accomplish this, the
set. of ny, elgenvalues in Ay{o) can be assigned arbitrarily to any
asymptotically finite or infinite locations in C~, while the cor-

responding set of left eigenvectors Vy(o) of A, Is constrained to



(c)

(d)
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be in the null space of the matrix [By — K(0)Ds;]. Likewise,
M,(s,0) can be rendered asymptotically zero as ¢ — oo. This
can be done by selecting an arbitrary set of Ay(o) from either
asymptotically finite or infinite locations in C~, while the corre-
sponding set of left eigenvectors V(o) of A, is chosen such that
in the limit V} is in the null space of the matrix [B;, — K (o) D]’
Note that, in practice, one should keep elements of A, at finite
locations in order to reduce the need for a high-bandwidth con-
troller.

Moo(s, o) partition : For an arbitrary target closed-loop transfer

function T,y (s), the term My, (s,0) can be rendered asymptot-
ically zero as o — co. The set of ny eigenvalues in A (o) can
be assigned to any asymptotically infinite locations in C~. That
is, there exists a complete freedom in the way the eigenvalue
AP(0) € Axo(o) tends to mfinity as ¢ — oo, 1.e. the asymptotic
direction and the rate at which each A{°(o) goes to infinity can
be chosen freely by the designer. However, for every A{°(o) €
Aos(0), the corresponding right and left eigenvectors W (o)
and V; (o) must be such that W (a)[V.>°(a))H# By — K (o) Da1)
is uniformly bounded as ¢ — oo. This constraint ensures that
the residue R{(o) remains uniformly bounded as ¢ — oo and
thereby forces Moo (s) to be zero.

M.(s,0) partition: The term M, (s, o) does not exist when n} +

n. = 0, L.e. when the system X, is of minimum phase and
left-invertible. For the case where nf +n, # 0, we examine first
the problem of an arbitrary target closed-loop transfer function
T.w(s). Here, the term M,(s,o) can never be rendered zero al-
though there exists abundant amount of freedom to assign the
associated eigenvalues and eigenvectors. To be explicit, the set
of n} + n, eigenvalues in A.(0) can be assigned to any (either
asymptotically finite or infinite) locations in C~, with the provi-
sion that any unobservable (and stable since the pair (A, Cy) is
assumed to be detectable) eigenvalues of Xy, be included in the

set A.(0). Also, there exists a complete freedom consistent with
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the results of [7] in assigning the right- and left-eigenvector sets
We(o) and V,(o) and hence W. and V.. But in general A,, W,
and V', cannot be assigned such that M ,(s) is zero. However,
there exists a multitude of ways to assign A, and W, (and hence
V.). One possibility is to shape M.(s) to have certain desired
directional properties, or to try to make it as small as possible
using some optimization techniques.

The above discussion on M,(s,0) assumes that the target closed-
loop transfer function 7,,(s) is arbitrary. Apparently, one may be
able to acquire additional design freedom by taking into account some
structural properties of the full-state feedback gain matrix F. For ex-
ample, as stated in theorem 5 of Part 1 {1], under the assumption that
the system X, is left-invertible, then any admissible target closed-loop
transfer function is recoverable (i.e. an element of T{{(E)) if and only if
V¥ (A, B1,Cs, Do) C Ker(F). Since VY(A, By, Ca, D2y) is the span of
z} @ Z., a given Ty (s) is recoverable if and only if the state-feedback
gain matrix F' is of the form,

Fo 0 Fyy 0 Fpy

-1 _
Fs I = Fo, 0 Fp 0 Fp

(13)

where I's and I'; are nonsingular transformation matrices defined in
theorem 1 of 1] for the system L,,,. Thus, whenever T}, (s) is an el-
ement of T{((S), it can be easily shown from the special structure of
F in (13) that the term M(s) is identically zero, irrespective of the
way we pick the set of n} + n, eigenvalues in A.(c) and the associated
right- and left-eigenvector sets W,.(o) and V. (o). Similarly, as stated
in theorem 3 of Part 1 [1] and again under the assumption that ¥,,
is left-invertible, then any admissible target closed-loop transfer func-
tion is exactly recoverable (i.e. an element of T (%)) if and only if
ST (A, By, Ca, Dyy) C Ker(F). Since 8™ (A, By, C, Dsy) is the span
of 2t & i, @ Zy, the closed-loop transfer function T}, (s) is exactly
recoverable if and only if F is of the form,
Fi1 0 Fn

IyirT = Fo 0 Fp

0
o |- (14)

o o

Now, whenever 1., (s) is an element of TéH(E), then from the special
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structure of F given in (14), it can be shown that both M.(s) and
M ,,(s) are zero, irrespective of the way we select the set of eigenvalues
in A.(o) and in Ax (o), and the associated set of eigenvectors W, (o) ,
Ve(0), Weo(0) and Vo (o). In fact, in this case, all eigenvalues of A, can
be assigned to finite locations in C~. Moreover, since we do not have to
address the eigen assignment problem associated with asymptotically
infinite eigenvalues, we no longer need to parameterize the observer

gain K in terms of a tuning parameter o.

II1. DESIGN VIA ‘ATEA’

The previous section summarizes the available design freedom as well as
constraints associated with the problem of assigning the eigenstructure
of observer dynamic matrix for closed-loop transfer recovery. We de-
velop here a design procedure which follows the concept of asymptotic
time-scale and eigenstructure assignment (ATEA) proposed originally
in [12]. This concept has been successfully used to design full-order ob-
servers in the problem of loop transfer recovery for left-invertible and
minimum-phase plants in [13], and for general strictly proper systems
in [9]. In what follows, we will present a step-by-step ATEA design al-
gorithm for general non-strictly proper systems. At first in subsection
III.A, we give a design procedure for an arbitrary target closed-loop
transfer function, i.e. without taking into account any specific charac-
teristics of . This is the most general design procedure. When a given
T, (s) is asymptotically recoverable, the state-feedback gain matrix F
has the structure given in (13); this translates into additional freedom
for selecting eigenvalues and eigenvectors of A,. The procedure de-
scribed in subsection 1I1.A will yield a design that recovers T}, (s) only
in the asymptotic sense. However, when exact recovery is possible, F
has the structure given in (14) and in this case one can solve the ECLTR
design problem with simply a finite eigenstructure assignment to A,.
For this case, the general ATEA design procedure of subsection I1I.A
is greatly simplified and a design solution is presented in subsection
II1.B.
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A. ACLTR Design Via ATEA

The ATEA design method is decentralized in nature. The original
system is decomposed into several subsystems that can be addressed
separately in the design for closed-loop transfer recovery. Basic un-
derlying idea behind this method starts by expressing the system into
the special coordinate basis (s.c.b) of £y, (see theorem 1 of Part 1 [1]
and also [10] and [11]). The finite cigenstructure of A, is assigned by
working with subsystems which represent the finite-zero structure of
Byw (cf. equations (8) and (9) of Part 1). Similarly, the asymptotically
infinite eigenstructure of A, is assigned by working with subsystems
which represent the infinite-zero structure of ¥,,, (see equation (13) of
Part 1 for each ¢ = 1 to my).

There are two issues in formulating the observer-dynamic matrix
A, = A— K (0)C, through the selection of K'(0). The first one is related
to eigenvalue assignment while the second one deals with eigenvector
assigniment. Let us first consider the problem of eigenvalue assignment.
As discussed in section I, some eigenvalues of A, are constrained while
others can be freely assigned to any asymptotically finite or infinite
locations in ™. To be specific,

(1) A_(o) must coincide either exactly or in the asymptotic sense

to the set of stable invariant zeros of Xy,

(2) Ay(o) and A.(0) can be assigned freely to any asymptotically

finite or infinite locations in €~ and,

(3) Axo(o) can only be assigned to asymptotically infinite locations
m ™.

In order to conserve the controller bandwidth, both Ay(e) and A.(0)
should in practice be assigned to asymptotically finite locations. Let
us next examine carefully the freedom available in assigning Ao (o).
Clearly from the discussion in section 11, a complete freedom is available
in choosing each A{*(c) € A(o) (¢ = 1,---,ny). That is, both the
asymptotic direction and the rate at which A{®(o) goes to infinity can
be set arbitrarily. In other words, the freedom available in assigning

every asymptotically infinite eigenvalue Af°(o) manifests itself in two
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ways:

(1) First, we choose the asymptotic directions along which these

eigenvalues tend to infinity and,
(2) Secondly, we select the rates at which they tend to infinity.

To quantify both these choices, let Ay, (o) for large values of ¢ be

subdivided into r sets where » < ny,

A Ao A
oLz 0 (15)
p1 g fir
Here, Ag(¢ =1,--,7)is a set of n, numbers in C~ and A, is closed un-
.

der complex conjugation. Also Z ne = ny. Apparently, the elements
=1
of Ay define the asymptotic directions of the infinitely fast eigenvalues

while the small parameters g, (€ = 1,---,7) which are a function of &
define the rates at which these eigenvalues tend to infinity.
In summary, regarding the eigenvalue assignment, we have the free-

dom to specify
(i) the asymptotic limits A, and A, of Ay(a) and A.(0) and,
(1) A¢and pe (€=1,---,1).

Note that A, and A, together with A_ define all the asymptotically
finite eigenvalues of A4,, while A¢ and p¢ (€ = 1,---,7) define the re-
maining asymptotically infinite eigenvalues.

Let us look now at the constraints and design freedom available
in assigning the eigenvectors of A,. The set of left-eigenvectors V_ is
constrained to coincide with the corresponding set of left state-zero

directions of the plant. Moreover, ImV_ coincides the subspace
V*(A, B1,Ca, Day)/VF(A, By, Ca, Day).

On the other hand, the set of eigenvectors V', is constrained to be in

the null space of [By — K(c)D+]). In view of the particular structure
. —b - . .

of s.c.b, it can be seen that every element V; of V} is constrained to

be of the form

[0, 0, (V)" 0, 0)".
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In other words, the set V; can be represented in a matrix notation as
b\H H
[0, 0, (V,))", 0, 0]

where Vbb is a npy x ny matrix. Thus the selection of V to be in the
null space of [B; — K(o)Da]' is equivalent to an arbitrary selection
of V) consistent with the freedom available for eigenvector assignment
[7]. Again in view of the properties of s.c.b, we note that the columns

of V' span the subspace
R*/{ST(A, B1,C, Da1) US™ (A, By, Ca, Day)}.

There is also freedormn available in specifying W,. It is shown in [4] that
ImW, coincides with the subspace VT (A, B;,Cy, Da1). Again due to

the special structure of s.c.b, W, has the special matrix form
(W™ 0,0, (W), 0)F

where W,, = [(WHT, (WP is a n, x n, matrix. Thus, an ap-
propriate selection of W, is equivalent to an arbitrary selection of W,
consistent with the freedom available for eigenvector assignment [7}.
Now, an assignment of both asymptotically finite and infinite eigen-
values and the corresponding eigenvectors to A, can be viewed as a
problem in asymptotic time-scale and eigenstructure assignment (ATEA).
Further discussion on time-scale structure of a system can be found in
[9]. In order to have a well-defined separation of time scales, we will

assutne throughout the paper that

He/perr — 0as peyr — 0. (16)

We emphasize that the freedom available in the asymptotically infinite
eigenstructure of A, 1s captured in the selection of an appropriate fast
time-scale structure. The asymptotic directions of asymptotically infi-
nite eigenvalues are specified in the sets Ay (£ =1,---,7r) and r < ny.
Different values of time scales are defined by the small positive param-
eters pg (€ = 1,---,r), which are function of a tuning parameter o so

that (16) holds as o — oo. Note that there is another constraint on the
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infinite eigenstructure; namely for every asymptotically infinite eigen-
value A (), the corresponding right- and left-eigenvectors W;° (o) and

Vi (o) of A, must be such that
W (o) [V ()] [B1 = K(0) D)

remains uniformly bounded as ¢ — oo. This constraint is automatically
satisfied using the ATEA design procedure described in this section.

In what follows, we give a step-by-step design algorithm for ATEA.

In view of the above discussion, input parameters to the algorithm are
Ay, Vbb, A, W.., Ay and e (£ = 1,---,7), as well as the integer r.
Among these, the primary ones are:

(1) A, and W,, which shape the error term M.(s) and,

(2) Ay and g, (€ = 1,---,7), which define the time-scale structure
of the observer and thus have a strong impact on the size of the
resulting controller gain.

The remaining input parameters, namely A, and V%, are considered as
secondary inputs.

The ATEA design algorithm can be divided into three steps. Steps

1 and 2 work with design at individual subsystem levels for the assign-
ment of the asymptotically finite and infinite eigenstructures respec-
tively. In step 3, designs at each subsystem level in steps 1 and 2 are
then put together to form a complete design for closed-loop transfer

recovery.

Step 1 : This step deals with the assignment of asymptotically finite
eigenstructure (i.e., slow time-scale structure) and makes use of subsys-
tems (8) to (11) of Part 1. A(A7,) are the stable invariant zeros of L.,
and they form eigenvalues of A, in the set A_, while the correspond-
ing left-eigenvectors of A, coincide with the left state-zero directions
of ¥y. To place the set of eigenvalues Ay and left-eigenvectors Vi, we
choose a gain Iy such that A(AS,) coincides with A, while V)? coincides

with the set of left-eigenvectors of A}, where
Ay, = A — K. (17)

Note that existence of such a K, is guaranteed by the property 2 of
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section IT1 in Part 1 [1] and as long as the eigenvector set V' is consistent
with the freedom available in the eigenvector assignment [7]. Next, in
order to place the set of eigenvalues A, and right-eigenvectors We,, let
us first form the matrices A.. and C, as follows,

— Aja 0 - CeO _ C(-)t; COc
Aee - |: BCE;Z Acc :| ) Ce - |:C'e1:| - [E;- Ec ) (18)

where

EF =[(EL) (ELY, . (B%,DT,

2a

Eia = [E+

\— /
ia) Eia]’ EC:[ iu .Z!C)"'?El;n_,c] .
Now, a gain K. = [ Ko, I¢1] can be chosen such that the set of eigen-
values and right-eigenvectors of AZ, coincide with A. and W.,, respec-

tively where
A, = Aee — KO = Aee — KeoCloo — K1 Cor. (19)

Again, note that existence of such a K, is guaranteed by the property 2
of section III of {1] and as long as the eigenvector set W,, is consistent
with the freedom available in the eigenvector assignment [7]. For future
use, let us define

- [5G
Aeel — Aee - [\e()CeO y 1\60 - [[\’00] )

and partition A, as
K = [ [\’8117 ]\’612, Tt Arelm, ] (20)

where I.1; Is a vector of dimension n. x 1.

Step 2 : Here, we deal with the assignment of asymptotically infinite
eigenstructure (i.e. the fast time-scale structure) and apply it to my
subsystems represented by (13) of Part 1. This step is only needed
when ny; > 0. As discussed earlier, a complete freedom is available to
specify any number r (r < ny) of fast time scales. The simplest case
is to choose = 1. However, for generality, we consider the case where
r > 1. Assignment of the fast time scales is done through selection of

the set A; and the corresponding positive parameters u; (£ =1,---,7).



CLOSED-LOOP TRANSFER RECOVERY: DESIGN 311

The procedure for assigning the fast time-scale eigenstructure is again
accomplished in a decentralized fashion. We consider the eigenas-
signment problem for each i-th single-input single-output subsystem
(1=1,---,my) separately. Thus, we need to distribute elements of the
specified sets A, and the parameters gy (¢ = 1,---,7) to each of the my
subsystems. The distribution can be done in a number of ways. Let
the subsystem ¢ be assigned r; different time scales for some r; < ¢;
and Aj/pi; (1 < j < ;) be the asymptotically infinite eigenvalues as-
signed to the subsystem i. Define n;; to be the number of eigenvalues
corresponding to the time scale t/u;;. That is, the set A;; contains n;
elements. As usual, the set A;; is assumed to be closed under complex
conjugation. Also, in order to have a set of well separated time scales

in the subsystem ¢, we assume that
Hij fptije1 — 0 as pijp — Oforall j(1<j<ry— 1). (21)

Obviously when r = 1, we have applied a single time scale to all sub-
systems , i.e all y;; are equal to a single parameter x4 and all r; are
equal to unity. In this case, the tuning parameter o can be taken as
1/4t. With these preliminaries, we are now ready to design for the i-th
subsystem. At first, we will find a gain matrix Kj; for each time-scale
t/uij (1 < j < r;). For this subsystem, we define a matrix G;; of
dimension n;; x n;; and a matrix Cy; of dimension 1 x n;; with the

following structure,

0 I, .
Gi]':[o n,(]) and(]z-]-:[l 0]
An eigenvalue assigniment on this subsystem is done using a gain vector
Ky; of dimension ny; x 1 such that the eigenvalues of ij coincide with
A;j where Gf; = Gy — K;;Cy5. 1t is clear that one can always find such
a matrix Rj; since the pair (Gy;,Cy;) defined above is observable. Let’s
further partition the matrix Ky as
Ky

1,"‘ — 'Z]C

Y [ ]X,jjd
where the last element Kj;4 is a scalar. Moreover, since the subsystem

matrix ij is stable, the gain ;4 must also be nonzero. Next, the
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gains Ky; (1 <j < r;) obtained above are put together to form a gain
vector that gives the desired fast time scales in the i-th subsystem.
In the process, we parameterize the design solution as a function of
a tuning parameter o. For the description of this part of the ATEA

design procedure, let us define the following scalars,

-1
Ja=1, Jij =[] Kiea, 2<5<T0).
=1
and _
j
dig=0 , o= nma , (1<j<rm)
k=1

Note that ., = ¢;. Also, for each j (1 < j <),
Gia,41 = Gayoa+2 = 0 = Gag_4ng = Hij
and

9
ni = H €5k - (22)
k=1

Now, we are ready to give the design gain f\'i(a) for the subsystem ¢

parameterized by a variable o as follows,

- - - - /
Ki(o) = [A‘Ql(a), Risla), -+, Ky (o) (23)
where |
[\'i]'((f) = fJijSij[\'ij.
and
q. 4 gi
Sij = Diag H €ie H €, H € | - (24)
f=aj.1+2 €=a,; 143 b=y 14n,;

'
The product H €;¢ In (24) is taken to be unity when j = r;.
(=0 140,
The above design formulation becomes much simpler when r; = 1. For
this case, let 71; denote the time-scale parameter, then

~ 1
Rilo) = (71, )9

(7))~ Kiy, (7)" 2 Kia, -, K] (25)
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where the individual gains K;;(1 < j < ¢;) have been previously se-
lected such that the eigenvalues of G are placed at the desired locations

and ,

Gr = _ Ki, Ko, -+, Kig, 1 Kiq,

: —1y-1 0
Here we did not discuss any eigenvector assignment. However, it turns
out that our eventual design is such that the eigenvectors correspond-
ing to the asymptotically infinite eigenvalues are naturally assigned to

appropriate locations so that M (jw,0) — 0 as ¢ — oc.

Step 3 : This constitutes the last step in the ATEA design procedure.
Here, various gains obtained in steps 1 and 2 are combined to form
an overall observer gain for the system X, parameterized by a tuning

parameter o. Let’s define the gain matrix K, as

- Kl(o) - - :
Kelo) = I{’al(a) = {Keu(ff), Kea(o), -y Keim, (o),
cl
- 1 . .
K.i(o) = n—lJi,.'[\'i,.ld[&eli. (26)

Note that when r; = 1, the gain K14 is the same as K;;, and 5; is
the same as (7;)?". For the case where ny > 0, the observer gain K (o)

adjustable by a single tuning parameter o is given by

K(o)=T1 K(o)T3! (27)
where
oa L;!++ Ha!+ L, + I{ib
N Bf,+ Kl L, +Hy+Ralo) Li+Hg
K (U) = B Lbj + Hb_f K, (28)
BOc + Afc() Lc.f + Hcf j’ 1\’c1(0) ch + ch
By Li+ Kf(b') 0
and
R 4(o) = Diag [K1(0), Kalo), -+ Koy (0)]

/
Lf = l: /1‘ Lé” ,L:n!]
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B S S e ~
Note that the matrices H,,, Hyy, Hyp, Hapy Hog, H.; and H.y are
arbitrary but finite and used to introduce additional design freedom.

We can now state the following theorem.

Theorem 1. Consider a full-order observer-based controller with gain
matrix given by (27) and assume that ny > 0. Then, we have the

following properties:

1. There exists a scalar ¢* such that, for all ¢ > o™, the observer
design is asymptotically stable. Furthermore, the observer dy-
namic matrix has the following time-scale structures: t, t/p;;
(where j=1,---,r; and i =1,---,my). That Is, its eigenvalues

as y, — 0 are given by

Ao+ O(pr) Ay + 0(pr) A+ 0(pr)
\ij : . .
2y +0(1) for (j=1,---,r;) and (z=1,--- ,my).

Hij
Moreover, if ﬁ;f =0 and f{bf = 0, some finite eigenvalues of A,
are exactly equal to A_ and Ay for all o rather than asymptoti-

cally tending to A_ and A,.

2. CLTR is achieved in the sense that, as 0 — oo, M(s,0) —
M (s) pointwise in s.

Proof : See [5]. n

Remark 1. For the case when ny = 0, observer gains obtained from

the above ATEA procedure are independent of ¢ and are given by

B(J_a L;b
, U BE RS L
K(o) =T, OBOb 0 Aebb r;t (29)

Bo.+ KNeoo Loy

Furthermore, the eigenvalues of A, are precisely those of A UA, UA,
and M;(s,0) = M.(s).

Remark 2. When T, ,(s) is an element of T{((E) and due to the spe-
cial structure of F in (13), M .(s) is identically zero irrespective of the
way we select the set of n}f + n. cigenvalues in A.(o) and the set of

right- and left-eigenvectors W.(o) and V, (o).
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Clearly, the ATEA design method presented above has the attrac-
tive feature that it is decentralized. Different time scales and eigen-
structures can be assigned to the subsystems of X, separately. The
design in each subsystem does not require an explicit value of the tuning
parameter o. The variable ¢ enters only in (23) or (25) when designs
for different subsystems are put together to form the final observer
gain with the desired time-scale structure. The variable o will act as a
tuning parameter based on the chosen time scales for the fast observer

dynamics.

B. ECLTR Design Via ATEA

In the previous subsection, we have presented ATEA design method-
ology and utilized it for ACLTR design. The power of this method is
that it explores all the degrees of freedom available and provides at the
end a family of parameterized controllers C(s, o) to achieve closed-loop
transfer recovery. Depending upon the particular design requirements,
one would adjust the tuning parammeter ¢ until a desired recovery is
achieved. This asymptotic procedure is no longer needed when a given
target closed-loop transfer function T} (s) is exactly recoverable (i.e.
Tow(s) € TéR(E) ). As discussed in section II, when T3, (s) € T{:R(E),
F has the form given in (14). With this particular structure of F,
all eigenvalues of A, can be assigned to finite locations and the above
ATEA design procedure can be simplified drastically. In fact, the de-
sign requires only finite eigenstructure assignment and does not involve
fast time-scale structure assignment. The intent of this section is to
describe in detail the available design freedom and provide a step-by-
step design procedure in the eigenstructure assignment of A, for exact
closed-loop transfer function recovery (ECLTR).

Note that for an exactly recoverable case, the observer gain K is no
longer parameterized as a function of ¢ and thus, dependency of ¢ 1s
dropped in the following discussion. Based on the different partitions
of M;(s) in section II, the design freedom available for each subsystem

1s as follows,

1. A set of n] eigenvalues of 4, in A_ must be chosen to coincide
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exactly with the set of stable invariant zeros of the system ¥,,,.
The corresponding left-eigenvectors of A, must coincide exactly
with the left state-zero directions of £, so that M_{(s) is iden-

tically zero.

A set of n, eigenvalues of 4, in A, can be freely assigned to
any finite locations in C~. Moreover, the set of eigenvectors V;
corresponding to these eigenvalues must be in the null space of
(B1 — K Day)" and satisfying the constraints defined in [7]. The

resulting M,(s) will be identically zero.

A set of n}f +n, eigenvalues of 4, in A, can be freely assigned to
any finite locations in C~ subject to the condition that any unob-
servable eigenvalues of ¥,,, must be included in the set A,. More-
over, the set of eigenvectors W,, corresponding to these eigenval-
ues can be selected freely within the constraints defined in [7].
We note that due to the specific structure of F' in (14), M.(s) is
zero regardless of how we select A, and W,,. Note that this step
is not needed when n¥ + n. = 0, i.e when the system £, is of

minimum phase and left-invertible.

A set of ny eigenvalues of A, in Ay can be freely assigned to any
finite locations in C~. (The sets Ay, and V., are renamed as Ay
and Vy to highlight the fact that these eigenvalues do not need
to be at infinity for exact recovery). The set of eigenvectors Vy
corresponding to these eigenvalues can be selected freely within
the constraints defined in [7]. With F in the form of (14), the
partition A (s) is identically zero irrespective of how we select

Ag and Vy.

We now proceed to the design of an observer gain R that produces

the desired finite eigenstructure to A, for the case of exact closed-loop

recovery.

Step la : This step deals with the assignment of finite eigenstructure

to the subsystem (10) of Part 1. We choose a gain K such that A(Aj,)
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coincides with Ay, a selected set of np eigenvalues in C~ where
Alc,b = Ay — K1) Cy. (30)

Note that existence of such a K} is guaranteed by the property 2 of
section IIT of Part 1 [1]. The eigenvectors of Af, can be freely assigned
within the available freedom for eigenvector assignment {7}. Under the
properties of s.c.b, the above ATEA design procedure always results in
a set of eigenvectors Vj, for the eigenvalues Ay of A, that lie in the null

space of (B; — K Dy1); hence rendering M,(s) = 0.

Step 1b : This step deals with the assignment of finite eigenstructure
to the subsystems (9), (11) and (13) of Part 1. Let the matrices A,
and C; be defined as
At Lt
aa 0 aij 3 C(-)tz Coe  Coy

Ay = BCE:I A, L.Cy , Cp =
B;EY B;E. A; 0 0 G
(31)

and A, = A, U Ay be aset of nt +n, + ny eigenvalues in C~ which
must include any unobservable eigenvalues of the system X,,. Now,

we select a gain K, such that A(A%) coincides with A, where
AL = A, — K, C,. (32)

Note that existence of such a K, is guaranteed by the property 2 of
section III of Part 1. The eigenvectors of AS can be assigned within
the freedom available for eigenvector assignment [7]. Let us partition
the gain matrix K, as follows,
Kl K&
I\"r = [\yco I(cl
[‘x'fo [\’fl
Step 2 : Here, the gain matrices K and K, obtained in step 1 are
combined to give the desired observer gain for exact closed-loop transfer

recovery. It is given by
K =T, KTI;! (33)
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where
B(;a L;f L;b
| BhoRL KL L,
K= Ba Lbf Ky . (34)

B[)c + ["c() [\’cl ch
Bof—i—[\’fo [\,f] 0

We have the following theorem.

Theorem 2. Consider a full-order observer-based controller with a
gain given by (33). Then, this full-order observer-based controller
achieves CLTR and the eigenvalues of the resulting observer design

are in the set A_ UA, UA,.
Proof : See [5]. ]

Remark 3. In general, the ohserver gain for ECLTR is not unique.

IV. OPTIMIZATION-BASED DESIGN METHODS

Clearly from section II, the whole notion of ACLTR is to make the

recovery matrix
My(s) = F(sI, ~ A+ KC2)"Y(B1 — KDa)

as small as possible. The previously discussed design method ATEA
accomplishes this task from the perspective of asymptotic time-scale
and eigenstructure assignment to the observer dymamic matrix. An
alternative method is to formulate the design problem in terms of find-
ing a gain K that minimizes some norm (e.g. Ha or He ) of My(s).
That is, one can cast the ACLTR design into an optimization problem.
An optimal or suboptimal solution to such problem will provide the
necessary observer design gain.

From this perspective, in this section, we will cast the closed-loop
transfer recovery problem into a standard Hs- or H.,- optimization
problem. To begin, we consider the following auxiliary system,

b= Av+ Cu+ Flw,

td

Sa : Y=, (35)

= Be+ Do'u
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Here, w is modeled as an exogenous disturbance input to ¥; and u
is the control input. The variables y and z represent respectively the
measured system states and the controlled outputs. If we consider a

state-feedback law for the control wu,
u=—-K'zr. (36)

Then it is simple to verify that the closed-loop transfer function from w
to z, denoted by T3 (s), is indeed equal to M} (s). Now the ACLTR de-
sign problem can be casted into a problem of designing a state-feedback
gain A’ such that

{1) the auxiliary system ¥, under the control law (36} is asymptot-

ically stable and,

(2) the norm (Hs or Hy,) of My(s) is minimized.

There exists a vast literature on H, or H., minimization methods.
Borrowing from such a literature, subsection IV.A discusses algorithms
for H» minimization of AM;(s) while subsection IV.B does the same
for H, minimization. We want to emphasize that the optimization
problem is cast here in terms of minimizing an appropriate norm of
recovery matrix Ay (s) rather than the actual recovery error E(s).

It 1s well known that an optimal solution for either Ho or Heo
minimization of My(s) does not necessarily exist, and the infimum of
|[My(s)|l1, or ||Mf(s)||n.. is in general nonzero. However, for the class
of exactly recoverable target closed-loop transfer functions T (X)) the
infimum of ||Af;(s)||p, or ||M;(s)

tained using a finite gain ', Also, for another class of target closed-loop

|, is in fact zero and it can be at-

transfer functions, namely the class of asymptotically recoverable target
closed-loops T4 (%), the infimum of |[A;(s)||m, or ||M;(s)||n.. is also
zero, and it can only be attained in an asymptotic sense by using larger
and larger gain K. Whether the infimum of ||M;(s)||n, or || My (s)||x.
is zero or not, the recovery procedure involves generating a sequence of
gains with the property that in the imit Ha- or Ho,-norms of the re-
o, or [[My(s)]ln..

over the set of all possible gains. One normally settles with a subopti-

covery matrices approaches the infimum of || M/ (s)

mal solution corresponding to a particular member of the sequence. In
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Ha-optimization, an observer gain is generated via the solution of an
algebraic Riccati equation (called hereafter H,-ARE) parameterized in
terms of a tuning parameter 0. A sequence of suboptimal gains is gen-
erated by letting o tend to co. Similarly, if we let v* to be the infimum
of ||M;(s)||m,, over the set of all possible gains, then for given a pa-
rameter v greater than 4, one generates in H,-optimization a gain by
solving an algebraic Riccati equation (called hereafter H-ARE) pa-
rameterized in terms of v so that the resulting [|M(s,¥)||#.. is strictly
less than y. By gradually reducing v, one thereby generates a sequence
of suboptimal gains.

For simplicity and without loss of generality, we assume throughout
this section that the matrix Do 1s of the form,

Ine O
=l Y.

Also, we partition the matrices By and (5 as

. C
B, = [Bl o, By 1] and Cy = 2.0 y
, , ngl
and let A1 = A — By oCyp. In the next two sections, we examine

specific algorithms for the design of observer gain in the problem of

CLTR using Hs - and H,-optimization methods.

A. CLTR Design Via /5-Optimization

In this subsection, we consider Hs-norm minimization of My (s) or
equivalently T7%(s). At first, let us look at an elegant way of com-

puting the infimum value of ||M;(s)||p, in a recent work by Stoorvogel

[15]. We first recall the following lemma.

Lemma 1. Assume that (A4,(5) is detectable. Then the infimum of

M¢(s)||g, over all the stabilizing observer gains is given b
I 2 8 4 g A4
Trace {FPF'},

where P € R is the unique positive semi-definite matrix satisfying:
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>0,

1. F(P)= AP +—ﬁ‘4l + B1By' PCy + B\ D2y
' - CoP + Dy By’ D1 Dy’ =

2. rank F(P) = normrank {Cs(sI, — A" B, 4+ D41} Vs € Ct/C°,

T A ot
3. rank [[5] ?(Lﬁ) C ]] = n + normrank {Ca(sI, — A)"'B; +

Dgl} Vs S (1+/(10

Here normrank{-} denotes the rank of matrix {-} over the field of ra-

tional functions.

Proof : See Stoorvogel [15]. |

In general, as discussed earlier, the infimum of [|M[(s)|ly, can only
be obtained asymptotically. In what follows, we give an algorithm
that produces a sequence of parameterized observer gains K (o) for the
general system ¥ such that the Hs-norm of the recovery matrix, which
i1s also parameterized by ¢ and is denoted by A:I}(s,a’) = T3t (s,0),
tends to the infimum of ||M;(s)||n, as ¢ — oo. The algorithm consists

of the following two steps:

Step 1 : Solve the following parameterized algebraic Riccati equation
(Ho-ARE) for a given value of o,

S - S . 1
AP+ PAY = PCyyCooP =0 POy Co i P4 Bia By + — L = 0, (37)

for a positive definite solution P. We note that a unique positive def-
inite solution P of (37) always exists for all ¢ > 0. Obviously, P is a

function of ¢ and is denoted by ]3(0).
Step 2 : Let
K(e) = [B1y + P(0)Ch 4, aP(a)Ch ,]. (38)
We have the following theorem.

Theorem 3. Consider a full-order observer-based controller with a

gain given in (38) and let My (s, o) be the resulting recovery matrix.
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Then, we have

lim P(e) =P

J—=00
Moreover, [|M/(s,0)||x, tends to the infimum of || My (s)||n, as 0 — oo,
ie.

lim ||M;(s,0)|g, = Trace {FPF'}.
=00

Proof : See [5]. |

In view of theorem 3, it is apparent that as ¢ takes on larger and
larger values, the design algorithm given above generates a sequence
of observer gains having the property that in the limit ||M;(s, )| n,

My (s){, over the set of all possible gains.

approaches the infimum of
A suboptimal solution would result with any chosen value of the pa-
rameter ¢. However, for some particular class of systems, e.g. the
well-known regular problems (1.c. Dy 1s surjective implying that X,
is right-invertible and has no infinite zeros, and ., has no invariant
zeros on the jw axis), the infimum value of ||M;(s)||n, can be achieved

with the following observer gain [6],
K = Byo+ PChy, (39)
where P is the positive semi-definite solution of
AP+ PAY = PCYCaoP + By 1 By = 0.
The resulting infimum value of ||M¢(s)||f, s given by,

Note that in this case, the observer gain K and thus the resulting

M (s)||u, = Trace {FPF'}.

recovery matrix is not parameterized as a function of 0. We note
that for a regular problem when ||A;(s)|ly, = 0, the observer gain
K as given in (39) will achieve exact loop transfer recovery (ECLTR).
However, to our knowledge, no optimization-based method exists in the
literature to solve for the required gain that achieves || My (s)l|a, = 0,
whenever it is possible, for a general class of systems other than the

class of regular systems. On the other hand, a direct design procedure
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based on ATEA will yield an ECLTR design gain whenever it can be
done; the algorithm is presented in subsection IT1.B.

Another special case of interest is as follows. Consider a left-invertible
minimum-phase system Xy, which is non-strictly proper. Let the ob-

server gain K (o) be given by
K(0) = [B1o, aP(0)C3 ],
where P(c) := P is the positive definite solution of
AP+ PA, —gPCy Ca P+ By, 1B}, = 0.

It is simple to show that the observer gain K (o) given above achieves
asymptotic closed-loop transfer recovery (ACLTR), i.e. the resulting
||M} (s, )||u, tends to zero asymptotically as ¢ — oo. The above result
has been given earlier by Chen et al [3].

It is of interest to investigate what type of time-scale structure and
eigenstructure is assigned to the observer dynamic matrix A, by the
gain K (o) obtained via the algorithm given in equations (37) and (38).
Clearly, the algorithm will make M_(s, o), My(s,0) and My (s, o) zero
as 0 — oo, while shaping M,.(s,0) in a particular way so that the
infimum of ||M;(s)||, is attained as 0 — co. In so doing, among all
the possible choices for the time-scale structure and eigenstructure of
A,, it selects a particular choice which can easily be deduced from the
results of cheap and singular control problems in [14] (see also, {17] and

[9]). We have the following results.

1. As ¢ — o0, the asymptotic limits of the set of ny eigenvalues
A_(o) and the associated set of left eigenvectors V_(o) of A,
coincide respectively with the set of stable invariant zeros and
the corresponding left state zero directions of Xy, . This renders

M_(s,0) zero as 0 — o<.

2. As 0 — oo, some of the ny eigenvalues in Ay(o) coincide with
the stable but uncontrollable eigenvalues of £y, while the rest

of them coincide with what are called ‘compromise’ zeros of X,
y
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[14]. Also, the asymptotic limits of the associated left eigenvec-
tors, namely V;(), fall in the null space of matrix [B;— K (o)D)

so that M;(s,0) — 0 as 0 — 0.

3. As o — oo, the set of ny eigenvalues A () of A, tend to asymp-
totically infinite locations in such a way that Mo (s,6) — 0. The
time-scale structure assigned to these eigenvalues depends on the
infinite zero structure of Xy, (see for details in [14]). Also, the
eigenvalues assigned to each fast time-scale follow asymptotically

a Butterworth pattern.

4. As 0 — oo, the asymptotic limits of n} eigenvalues in A.(¢) co-
incide with the mirror images of unstable invariant zeros of £y,
while the associated set of left-eigenvectors of A, coincide with
the corresponding right input-zero directions of Xy,,. The rest of
n, eigenvalues of A.(0), as ¢ — o0, tend to some other finite loca-
tions, while the associated left-eigenvectors follow some particular
directions. In the limiting process, it shapes the recovery matrix
M (s) in a particular way so that the infimum of ||M,(s)||g, is

attained as o0 — 0.

To conclude, we note that, as in the ATEA design procedure, the
algorithm of equations (37) and (38) will render M_(s,0), M(s,o) and
Moo (s,0) zero asymptotically as 0 — oo. Moreover, it shapes M,(s)

in a particular way so that the infimum of ||M/(s)

|H, 1s attained as
o — oc. In contrast to this, ATEA design procedure of section II1
allows complete available freedom to shape the limit of recovery matrix
M ,(s) in a variety of ways within the design constraints imposed by

structural properties of the given system.

B. CLTR Design Via H.,-Optimization

In this subsection, we consider Hos-norm minimization of My (s) or
equivalently 72%(s). Unlike the case of H5 -norm minimization in pre-
vious subsection, there are in general no direct methods available of
exactly computing the infimum of |[[My(s)||g.,, denoted here by +*.

However, there are iterative algorithms that can approximate ¥*, at
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least in principle, to an arbitrary degree of accuracy (See for example
[8]). Recently, for a particular class of problems, i.e. when X, is left-
invertible and has no invariant zeros on the jw axis, such an infimum
¥* can be explicitly calculated [2].

We now proceed to present an algorithm for computing the observer-
gain matrix K such that the resulting H,,-norm of the recovery matrix
M (s,7) is less than an a-priori given scalar v > 4*. The algorithm is

as follows:
Step 0 : Choose a value ¢ = 1.

Step 1 : Solve the following algebraic Riccati equation (H-ARE),

L. . 1. . 1 - N
A1P+PA11—PC:/! OCQ’()P——P(/'!, 1C271P+Bl’131 1+‘—,)PF/FP+€I,1 = 0,
: Phlit? SRE

(40)
for P. Evidently, since (40) is parameterized in terms of v, the solution

P will be a function of v and is denoted by ]5(7)

Step 2 : If P(y) > 0, then we proceed to Step 3. Otherwise, we
decrease € and go back to Step 1. Note that for v > v*, it is shown in
[18] that there always exists a sufficiently small scalar ¢* > 0 such that
the Heo-ARE (40) has a unique positive definite solution 15(7) for each
e€(0,¢).

Step 3 : Let

. - . 1 -
KN(y) = [Bio+ P(y)Csy, ZP(‘Y) o1l (41)

We have the following theorem.

Theorem 4. Consider a full-order observer-based controller with a
gain determined from (41). Let M;(s,v) be the resulting recovery
matrix. Then, ||M;(s,y)||a., is strictly less than v and tends to v* as
Y=

Proof : It follows simply from the results of [18]. n

Remark 4. We note that % acts here as a tuning parameter. Since

at the beginning we do not know ~*, it could very well happen that
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a chosen value of ¥ may turn out to be less than v*. In that case,
the H.,-ARE (40) does not have any positive definite solution even for
sufficiently small . Then, one has Lo increase the value of 4 and try
to solve the Ho,-ARE once again for 1:’(')/) > 0. One has to repeat this

procedure as many times as necessary.

For the special case of regular problemns defined in subsection IV.A,
there exists a method of finding the gain that does not require the

additional parameter €. It is given by [6],
KN(7) = Bio+ P(7)Cay, (42)
where P(y) := P is the positive semi-definite solution of
AP+ PA} — PCYy oCaoP + By By, + %PF’FP =0,

such that A(A4] — C'é’UC-_)'(]f) +472FFP) CC™. A full-order observer-
based controller with gain obtained from (42) will produce a CLTR
design such that ||M (s, y)lju,, is strictly less than 7.

Apparently, the gain K'(y) obtained via the H,-optimization algo-
rithm of equations (40) and (41) assigns a particular time-scale struc-
ture and eigenstructure to the observer dynamic matrix A,. An in-
vestigation into the exact nature of time-scale structure and the eigen-
structure of 4, as ¥ — ~* is still an open research problem. But we
like to point out that, as in the ATEA design procedure, the H,-
optimization algorithm makes the corresponding M_(s,7v), M,(s,v)
and M (s,v) zero asymptotically as v — 7*. Also, the corresponding
M. (s) is shaped in a particular way so that the infimum of My (s) oo,
is attained as v — v*. In so doing, in addition to Ay (), some elements
of A.(y) may be pushed to infinite locations in C~ as v — v*. Investi-
gation of these and other properties of Ho-optimization algorithm of

equations (40) and (41) is outside the scope of this paper.

V. COMPARISON OF ‘ATEA’ AND ‘ARE’-BASED
DESIGN ALGORITHMS

A comparison is needed between optimal or suboptimal design schemes

based on solving algebraic Riccati equations (ARE’s) as described in
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section IV and the asymptotic time-scale and eigenstructure assign-
ment (ATEA) design schemes of section III. In this regard, our earlier
paper [9] discusses several relative advantages and disadvantages of
ATEA and ARE-based designs. Here, we examine ATEA design and
optimization-based designs fromn two different perspectives: (i) numeri-
cal simplicity and, (i) flexibility to use all the available design freedom.
Let us first consider the numerical aspects of both design methods.
It is clear that the major part of optimization-based design algorithms
of section IV lies in solving positive definite solution of a parameter-
dependent ARE repeatedly for different values of the parameter o or
¢. It is well-known that these ARE’s become numerically ‘stiff” when
the parameter takes on values that are close to a critical value. To be
specific, the Ho-ARE becomes stiff as the parameter o takes on larger
and larger values, while the H.,-ARE becomes stiff when v approaches
~v*. This is due to the interaction of fast and slow dynamics inherent
in such equations. Thus, the numerical difficulties occur not only due
to the repetitive solution of ARE’s but also due to the ‘stiffness’ of
such equations. On the other hand, as evident from section 111, ATEA
adopts a decentralized design approach and in so doing alleviates both
the problem of stiffness and the need for repetitive solution of algebraic
equations. That is, in ATEA, interaction between the slow and various
fast time-scales Is isolated by working with the asymptotically finite
and infinite eigenstructures in the observer dynamic matrix separately.
The tuning parameter o merely adjusts the relative size of different fast
time scales and is Introduced only parametrically in the construction of
the final gain. Hence, this procedure presents no numerical difficulties
whatsoever as the parameter takes on larger and larger values.
Another factor of iimportance in selecting a design procedure 1s its
flexibility in addressing all the available design freedom. As summa-
rized in section 11, there exists considerable amount of freedom to shape
the recovery matrix through eigenstructure assignment to the observer
dynamic matrix A,. Such a freedom can be utilized to shape M (s), the
limit of the recovery matrix. Any optimization-based method adopts

a particular way of shaping M.(s) as dictated by the mathematical
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minimization procedure. For example, as discussed earlier, in H2 op-
timization M ,(s) is shaped by assigning some of the eigenvalues of A,
to the mirror images of the unstable invariant zeros of Xy, , while the
associated set of left-eigenvectors of A, coincide with the correspond-
ing right input-zero directions of ¥,,,. Such a shaping obviously limits
the available design freedom, and may or may not be desirable from
an engineering point of view. Next, available design freedom can also
be utilized to characterize appropriately the hehavior of asymptotically
infinite or otherwise called fast eigenvalues of A,. What we mean by
the behavior of fast eigenvalues is: (a) their asymptotic directions and,
(b) the rate at which they go to infinity, i.c. the fast time-scale struc-
ture of A,. As demonstrated in [9], the behavior of fast eigenvalues
has a dramatic effect on the resulting controller bandwidth. Again,
optimization-based design methods fix the behavior of fast eigenvalues
in a particular way that may or may not be favorable to the designer’s
goals. We believe that the ability to utilize all the available design
freedom 1s a valuable asset; in particular, exploring such a freedom in
the case where complete recovery is not feasible is of dire importance.
ATEA design methods of section 111 put all the available design freedom
in the hands of designer and hence are preferable to optimization-based
designs of section IV. However, a clear advantage of the optimization-
based schemes is that at the onset of design, they do not require much
systematic planning and hence are straightforward to apply. In fact,
one simply solves the concerned ARE’s repeatedly for several values of
the tuning parameter until an appropriate suboptimal design is found.
Admittedly, ATEA design does not have such a simplicity. One needs
in ATEA design to come up with a careful utilization of the available
design freedom and thus the selection of available design parameters
that meet the practical design specifications. This can be done by a
simple iterative adjustment. At each iteration, the required calculation
in ATEA design procedure is straightforward and computationally in-
expensive with added advantage that the algorithm does not involve

solving any ‘stifl” equations.
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VI. NUMERICAL EXAMPLES

Control of flexible mechanical systems has been of interests in recent
years. Presented in this section is a design example for closed-loop
transfer recovery taken from the benchmark problem for robust control
of a flexible mechanical system [16]. Although simple in nature, this
problem will however provide us a design case where the concept of
closed-loop transfer recovery can be fully illustrated. The problem is to
control the displacement of the second mass by applying a force to the
first mass as shown in figure 1 below. At the start, it is simple to verify
that the basic open-loop system has a pair of degenerate eigenvalues at

the origin and one pair of flexible modes. Equations for the dynamic

U, Wy | g o

Mass 1 W Mass 2

Figure 1: A Two-Mass-Spring Mass System

model are given below,

43
maZs = k(z1 — z2) (43)
or
11.,‘1 0 0 1 0 2 0
za | 0 0 0 1 Za 0
|| =k/my k/my 0 0 o 1/my (u+wr)
U9 k/mys —k/ma 0 0 Vg 0
(44)
where m; = ma = k; = ks = 1, 2;, 7 = 1,2, is the position of the

i-th mass and v; the velocity. The plant model used for robust control
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synthesis and closed-loop transfer recovery is given by,

0 0 1 0 0 0 0
o o0 o 1] o oo |[w], |0
S O N e B [wg]* .

1 -1.0 0 0 -1 0 (45)

21 1 -1 0 0
[22]: [0 10 0]“”
The disturbance input ws and the controlled output z; are introduced
as fictitious input and output variables to represent effects of the un-
certain spring parameter k in a feedback setting {19]. The second
controlled output zs is a performance variable whose response to a
unit-impulse disturbance applied at w; must have a settling time of
15 seconds. To begin, we synthesize a state-feedback design for robust
Hoo-control to variation in the spring constant k according to the re-
sults of [19] and define it as our target closed-loop transfer function .

The full-state feedback gain matrix is given as follows,
F=[15059 —0.4942 1.7379 0.93181] (46)

Singular value plot of this closed-loop transfer function T, (jw) is
shown in figure 2. Transient respounses to a unit impulse input w; = 6(t)
are given in figure 3 showing that position response of the second mass
has a settling time less than 15 sec, as specified in the design challenge
problem of [16]. This state-feedback design is extremely robust to vari-
ation in the spring constant k; namely the closed-loop system remains
stable for 0 < k < oo. Our design goal is to recover the performance
achieved under this state-feedback design using output-feedback and
full-order observer-based controllers in (5).

Before we enter into the synthesis of CLTR, it is important to note
that the recovery is highly dependent on the structural properties be-
tween the selected set of measurement variables y and the disturbance
mputs w. First of all, the analysis given in Part 1 [1] can be used to ex-
amine different possibilities in the measurement output selection for the
closed-loop recovery. Table I summarizes the results of CLTR analysis

for 7 sets of measurement variables. Note that the analysis points out
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immediately that, with the target closed-loop transfer function being
arbitrary, exact recovery (i.e ECLTR) is not possible. From the given
set of sensors, only three of them (namely case ¢, case f and case g) can
be used to achieve asymptotic recovery. That is, in these cases, one can
design a full-order observer-based controller with high gain to recover
the target closed-loop transfer function asymptotically. In subsection
VI.A we present a CLTR design using the sensor set in case b. This set
is the same as the one stated in [16] and the target closed-loop transfer
function is unfortunately not recoverable in this case. Subsection 6.2
will present the results of an asymptotically recoverable design using
the measurement set in case g. Notice that in the latter case, asymp-
totic recovery of the target transfer function T, (s) can only be done

with high observer gain.

A. Non-Recoverable Design Case

Let’s consider the case where only measurement of position of second

mass is available, 1.e in case b of Table I where
Cg:[O 1 U 0] y Dr_q:[() 0] ,DQ'_):O (47)

From Table I, we recognize immediately that there are severe imita-
tions in the recovery design imposed by the presence of the M, (s)-term
with n, = 2. Under this circumstance, there are clearly a variety of
ways one can shape the term M(s) in our full-order observer-based
controller designs. Thus, it is critical that one examines our design
goals carefully in terms of defining the limit of recovery matrix M (s).
It should be noted that of all the three methods presented, only the
ATEA procedure can be used to arbitrarily shape the term M.(s).
Optimization-based methods will produce a limit of recovery matrix
M .(s) as discussed in section V. Table II shows a sequence of design
possibilities using the three methods discussed in sections 11T and 1V.
Of course, within each design method, the generated sequence is pa-
rameterized by its own scalar tuning parameter; for example, in the
ATEA design we invoke the tuning parameter o with a properly se-

lected time-scale structure, while in Ho- and H-optimization meth-
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ods the parameters are ¢ and 7y respectively. Tendency of all these
sequences of designs is to make the corresponding partitions M_(s,¢),
M,(s,c) and M, (s, c) zero as the tuning parameter ¢ (i.e. ¢ = o for the
ATEA design and for Hs-optimizatiou design, and ¢ = y for the Heo-
optimization design) tends to the appropriate limiting value. As seen in
figure 4, the norm of the obscrver-gain matrix /X (c¢) in these sequences
of recovery designs grows unbounded even in the case where closed-loop
transfer recovery is not possible. Shown below are the corresponding
limiting recovery matrix M. (s) for each of the design methods. In this

example, the limit of recovery matrix for Ho-optiumization is

— [0.1499s + 0.0376, 0.0434s + 0.0684]

M (s) = 48

Mls) s7+0.7071s + 0.25 (48)
while the one for the ATEA design is as follows,

— 10825 4 0.0122 04345 + 0.0648

/\fc(s):[o 82s + 0.0122, 0 s + 0.0648 ] (49)

5% 4+ 0.625s + 0.08125
For the H -optimization, the corresponding limit of recovery matrix
cannot be determined since one of the eigenvalues tends to infinity.
Plots of the singular values of the recovery matrix M;(s) are shown in
figure 5 for the limiting case (i.e corresponding to design case number
11 of Table 1I) in all three design methods. Notice that the curves
corresponding to the ATEA and Ho design cases approach the lumit of
recovery matrix M.(s) given in equations (48) and (49) respectively.
Due to these differences in A1,(s), we have therefore different closed-
loop transfer recovery error E(s). The Lo,-norm of E(s) is shown in
figure 6 corresponding to every design case listed in Table II. Note
that none of the design methods will yield ECLTR or ACLTR as ev-
ident from the analysis summarized in Table [. It clearly shows that
the error cannot be made zero regardless of what method we use for
the recovery design. However, depending on the way we select M (s),
different design considerations can be traded-off in this non-recoverable
case. For example, one design consideration is the robustness to varia-
tion in the spring constant k; the results are shown in figures 7 to 9 for
the ATEA, H. and I, -optimization methods respectively. Clearly,

due to its complete flexibility in selecting M.(s), the ATEA design
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procedure can be used to yield significantly better stability robustness.
Transient responses to a unit impulse input in w, are shown in figures
10 to 12. Clearly, response peaks from all the output-feedback full-order
observer-based controller designs are much higher than those achieved
under state feedback. Results using optimization-based methods have
the desired settling time of 15 sec. However, robustness of these designs
are not as good as those from the ATEA design method which however
exhibits a longer settling time. The example illustrates that there are
many degrees of freedom in selecting M,(s); the one shown here from
the ATEA design is not meant to be the best among all possible choice
of M,(s). For example, one would need to modify M,(s) if the set-
tling time of 15 seconds is judged more important than the robustness
consideration. An advantage of the ATEA method is that the observer
design gain can be written explicitly in terms of the tuning parameter

o as follows, )
2.6562¢% — 40

. _ 4o .
Mo =1 3904707 + 1.6 (50)
4.250% — 1.6

B. Asymptotically Recoverable Design Case

In this subsection, we consider the case where both position and accel-
eration of the second mass are available for feedback. The measurement

output equation is given by

.o 1 00 _lo o _ |0
Cg—[l 10 Oj' ,Dzl—[o 0] ,Dzz—[o] (51)

This corresponds to case g in Table 1. Since n} = n, = 0, the target
closed-loop transfer function will be recoverable, but having ny = 4
such a system can only recovered asymptotically. Furthermore, this
implies that in all design methods the limit of recovery matrix M,
will be identically zero, and hence the H.,-norm of the actual recov-
ery error E(s) approaches zero asymptotically as shown in figure 13.
Table III shows a sequence of design possibilities from the three meth-
ods discussed in sections III and IV. Again the observer-gain in these

sequences ol designs for asymptotic recovery will become unbounded;
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these results are shown in figure 14. Robustness results are shown in
figures 15 to 17. Possibly, the significance of the ATEA design method
lies in its flexibility to shape the design outcoines; for example, figure
15 shows that the ATEA design has significantly better robustness at
the low-gain region where they can tolerate infinitely large change in
the spring constant k. Transient responses to a unit-impulse input in
w) are shown in figures 18 to 20. By increasing the observer gain, all
the responses will approach those achieved under state feedback; this is
to be expected for an asymptotically recoverable case (ACLTR). Again,
in the ATEA method the observer design gain can be written explicitly

in terms of the tuning parameter ¢ as follows,

20 20

. 20 0
Koy= |20 L0 (52)

o* l

VII. CONCLUSIONS

Presented in this paper are three design methods for closed-loop trans-
fer recovery. Also discussed is the significance of each design method
in terms of design simplicity, numerical difficulty and flexibility in uti-
lizing the available design freedom to shape the limit of recovery ma-
trix. All three methods of design provide explicit means of determining
the appropriate observer gain matrix for closed-loop transfer recovery
whenever it is possible. The design solution is usually characterized
by a tuning parameter. In optimization-based methods, the gain is
implicitly parameterized in terms of the solution of parameterized non-
linear algebraic Riccati equations (ARE’s). On the other hand, ATEA
design does not require solution of nonlinear algebraic equations. Here
the tuning parameter enters the design solution only in the final step
where we construct the composite observer gains from several subsys-
tem designs. As the tuning parameter tends to its limiting value, a
sequence of observer-based controllers is generated that yields in the
limit a certain recovery matrix. For optimization-based methods, the

limiting norm of the recovery matrix is sinply the respective infimum
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under Hjy (or Hyo)-optimization over all possible stabilizing observer
gains. Optimization-based methods usually shape the recovery matrix
in a particular way which may or may not be meaningful in an engi-
neering point of view. Our experiences indicate that these designs have
unnecessarily high gain than those achieved under the ATEA methods
for a comparable size of the recovery error. Fundamentally, the ATEA
method offers complete flexibility in shaping the recovery error uti-
lizing all the available design freedom within the constraints imposed
by the structural properties of the given system. In the case of ex-
act closed-loop transfer recovery (ECLTR), the ATEA method can in
all circumstances be used to obtain the appropriate observer design.
By contrast optimization-based design approaches are simpler to use;
however they are prone to numerical problems associated with solving
“stiff” algebraic equations when the tuning parameters approach a cer-
tain critical limit. Different aspects of the CLTR design are illustrated
in a numerical example for both a non-recoverable and a recoverable
situations. All the design methods discussed in the paper have been

implemented in a “Matlab” software package.
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Table I: Analysis of Closed-Loop Transfer Recovery
Case | Measurement | n; [ n} [ ny | n. ng CLTR

zq 0 0 0 2 2 | Non-recoverable
9 0 0 0 2 2 | Non-recoverable

Xy, Tq 0 0 001} 4 Asymptotic

Recoverable
1,01 0 1 2 1 | Non-recoverable
Ty, Uo 0 0 1 2 1 | Non-recoverable

Ty ,01 2 0 0 0 Asymptotic

Recoverable

Zo ,as 0 0 0Ol01} 4 Asymptotic

Recoverable

Table II: Values of the Tuning Design Parameters (case b)

Design No. | ATEA | Hs-Optimization | Ho,-Optimization
o o ¥

1 0.75 1 1

2 1 10 0.9
3 2 10° 0.8
4 3 103 0.7
5 4 104 0.6
6 5 10° 0.5
7 6 10° 0.4
8 7 107 0.3
9 8 10® 0.275
10 9 10° 0.25
11 10 101° 0.225
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Table III: Values of the Tuning Design Parameters (case g)

Design No. | ATEA | H,-Optimization | H-Optimization
g o ¥
1 0.25 1 1
2 0.5 10 0.9
3 1 10° 0.8
4 2 103 0.7
5 5 107 0.6
6 10 10° 0.5
7 15 10° 0.4
8 20 107 0.3
9 30 10° 0.275
10 40 10° 0.25
11 50 1010 0.225

o(Tzw) dB)

102 10-1 100 101 102

Frequency (rad/sec)

Figure 2: Singular Value Plot of Target Closed-Loop T} (5)
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Figure 4: Norm of Observer Gain A for Designs in case b



Singular Value of Mf

L-inf Norm of E

CLOSED-LOOP TRANSFER RECOVERY: DESIGN 341

0.8

0.6

0.4

0.2

0 N B il . R
102 10-1 100 101 102

Frequency (rad/sec)

Figure 5: Singular Values of M/(s) for Design No. 11 (case b)
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Figure 6: Lo.-Norm of E(s) for Designs in case b
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Figure 7: Robustness of ATEA Designs (case b) to Variation in k
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Figure 9: Robustness of Ho, Designs (case b) to Variation in k
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Figure 10: Impulse Responses for ATEA Design No. 1 (case b)
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Figure 11: Impulse Responses for Hs Design No. 3 (case b)
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Figure 12: Impulse Responses for H., Design No. 5 (case b)
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Figure 13: L.,-Norm of E(s) for Designs in case g
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Figure 14: Norm of Observer Gain K for Designs in case g
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Figure 16: Robustness of H9 Designs (case g) to Variation in k
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Figure 17: Robustness of H., Designs (case g) to Variation in k
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Figure 18: Impulse Responses for ATEA Design No. 3 (case g)
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Figure 19: Impulse Responses for H2 Design No. 3 (case g)
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Figure 20: Impulse Responses for Ho, Design No. 4 (case g)



