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L I N T R O D U C T I O N & P R O B L E M S T A T E M E N T 

T h e p rob lem of closed-loop transfer recovery ( C L T R ) has been dis-

cussed in an early sequel paper [1], T h e basic p rob l em addressed 

there is the analysis of closed-loop transfer recovery using full-order 

and reduced-order observer-based controllers . T h e design ob jec t ive is 

to recover using output feedback ( i f poss ible) the closed-loop transfer 

function achieved under a full-state feedback design for a g iven set o f 
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disturbance input and controlled output variables. T o be specific, let 

us consider a plant Σ defined by 

r = A x + Bi w + B2 u, 

Σ : < ζ = Cix + Dnw + Dl2u, (1 ) 

y — C2x - f D2\W - f D22u, 

where x G 3î" is the state, u G 3?
m
 is the control input, w £ $ï

k
 is the 

disturbance, ζ G 3î
£
 is the control led output and y G 3î

p
 is the mea-

surement output . For convenience, we also define the subsystem Yjyw 

to represent the mat r ix quadruple (A, B\, Co , D2\) and the subsystem 

E , j U for the mat r ix quadruple (.4, B2) C\, D\2). W e assume that the pair 

(A, B2) is s tabil izable and the pair (A, C2) de tec tab le . W i t h o u t loss 

of generali ty, the fol lowing matrices [ C i , £ > η , ϋ ) 1 2] , [C2, D2\, D22], 

[B[, D'n, D21Y and [B2) D[2, D'22]' are assumed o f m a x i m a l ranks. 

A s shown in [1], one can also assume wi thout loss o f general i ty that 

D22 — 0 as well . Le t F be a full-state feedback gain mat r ix such that 

under the state-feedback control 

u = -Fx ( 2 ) 

( a ) the closed-loop system is asympto t ica l ly stable, i.e. the eigen-

values of A — B2F lie in the left-half s-plane, 

( b ) the closed-loop transfer function f rom the disturbance w to the 

controlled output z, denoted by Tzw(s), meets the desired fre-

quency dependent design specifications. 

W e also refer to T2W(s) as the target closed-loop transfer function g iven 

by 

T*w(s) = ( C i - D l 2F ^ - ' + B2F)~
l
Bl + D n ( 3 ) 

where Φ = (si — , 4 )
_ 1

. T h e prob lem of c losed-loop transfer recov-

ery ( C L T R ) is then to find an internally s tabi l iz ing output-feedback 

controller C(s) such that the recovery error defined as 

E ( S ) : = T : W ( S ) - T z w( S ) , ( 4 ) 

is either exac t ly or approx imate ly equal to zero in the frequency re-

gion o f interest. Here , Tz°w(s) represents the transfer function f rom w 
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to ζ of the closed-loop system. A s discussed in Part 1 [1], achieving 

exact closed-loop transfer recovery ( E C L T R ) is in general not possible. 

Hence, it is more appropriate to examine situation where approximate 

recovery can be achieved. A n approximate C L T R is tied to the notion 

that recovery can be achieved to any degree of accuracy. In this pro-

cess, one normally parameterizes the controller C ( s ) as a function of a 

positive scalar parameter σ thereby generating a family of controllers 

C(s,a). W e say asymptotic C L T R ( A C L T R ) is achieved if 

T°zw{s,a)-*Tzw{s) 

as σ —• oo pointwise in s, or equivalently 

as σ —• oo pointwise in s. From the point of view of design, once the 

conditions of A C L T R have been verified, one should be able to find a 

controller C ( s , σ) with a particular value of σ that produces the desired 

level of recovery. 

In Part 1 [1], we consider the C L T R problem using a full-order 

observer-based controller of the form, 

x - { A - KC2)x + B2u + Ky, 

u = —Fx, 

and a reduced-order observer-based controller of the form, 

Aorv + ( # 2 , 2 - KriB2ti)u 

(5) 

+ [ A ' r O , A2i - KrlAu + A o rK r i ] 

0 
ν + 

0 Ip — nio 

0 Kri 

(6 ) 

y, 
l *n-p + m0 J 

I u = -Fx, 

where Κ and Kr — [Kro, A ' r i] are respectively the full-order and 

reduced-order observer gain matrices. T h e submatrices in (6) are de-

fined in equations (33) to (38) of Part 1. W h i l e it is recognized that in 

most cases neither E C L T R nor A C L T R can be achieved using either a 
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full-order or a reduced-order observer-based controller, the analysis of 

C L T R conducted in Par t 1 provides however a detai led s tudy o f three 

fundamental issues related to the p rob lem of C L T R . T h e first issue is 

concerned wi th what can and cannot be achieved for a g iven sys tem 

and for an arbi t rary target closed-loop transfer function. T h e second 

issue is to deve lop necessary and /o r sufficient condi t ions for a ta rget 

c losed-loop transfer function to be recoverable either exac t ly or ap-

proximate ly . T h e third issue deals wi th the necessary and /o r sufficient 

condit ions on a g iven system such that it has at least one recoverable 

target c losed-loop transfer function. Results o f the analysis have identi-

fied some fundamental l imita t ions of the g iven sys tem as a consequence 

o f its structural propert ies; namely, its finite and infinite-zero structure 

and invert ibi l i ty. T h i s enables designers to appreciate at the outset dif-

ferent design l imitat ions incurred in the synthesis of output-feedback 

controllers; for example , how to select a meaningful set o f measurements 

for the closed-loop transfer recovery design. Once we have chosen an 

appropr ia te set o f measurement outputs , we can then proceed to the 

actual design of full-order or reduced-order observer-based controllers 

that wil l achieve as close as possible the desired target c losed-loop trans-

fer function. In this paper, we focus on three different design me thods 

for closed-loop transfer recovery. 

T h e paper is organized as fol lows. Section I I rev iews the necessary 

design constraints and the available design f reedom. Section I I I devel-

ops the general A T E A m e t h o d . A l s o , in section I I I , a simplif ied A T E A 

procedure is given for the design of exact closed-loop transfer recov-

ery whenever it is feasible. Section I V examines design me thods based 

on op t imiza t ion . Here , t w o design methods have been considered; one 

that minimizes the / / V n o r m of a recovery mat r ix whi le the other mini-

mizes the respect ive / / o o - n o r m . Section V discusses the rela t ive meri ts 

o f A T E A and opt imizat ion-based designs. A numerical example based 

on a benchmark p rob lem [16] is given in section V I , i l lustrat ing the 

practical usage of the analysis results in [1], and compar ing different 

observer designs synthesized using methods discussed in sections I I I 

and I V . Conclusions are drawn in section V I I . 
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A s in [1] , we adopt the fol lowing notat ions . A' denotes the transpose 

o f A, A
H
 denotes the complex conjugate transpose o f A, I denotes 

an ident i ty ma t r ix whi le Ik denotes the ident i ty ma t r ix o f dimension 

kxk. λ(Α) denotes the set o f eigenvalues o f A. Similar ly , c r m a ; r[ / l ] 

and < r mi n[ . A ] denote respect ively the m a x i m u m and m i n i m u m singular 

values of A. Ker[V] and I m [ V
r
] denote respect ively the kernel and the 

image o f V. T h e open-lef t , closed r ight-half s-planes and the JUJ axis 

are denoted by C ~ , C
+
 and C° respect ively. A l s o , Τ { Η( Σ ) denotes 

the set o f exac t ly recoverable target c losed-loop transfer functions for 

any given sys tem Σ using a full-order observer-based controller , Τ £ ( Σ ) 

denotes the set o f ei ther exac t ly or asympto t ica l ly recoverable ta rge t 

c losed- loop transfer functions, whi le Τ { Η( Σ ) denotes the set o f target 

c losed- loop transfer functions which are asympto t i ca l ly recoverable but 

not exac t ly recoverable for the g iven sys tem Σ using full-order observer-

based controllers. Precise definitions of τ £ Η( Σ ) , Τ { ( Σ ) and Τ { Η ( Σ ) are 

g iven in [1] . 

I I . D E S I G N C O N S T R A I N T S A N D F R E E D O M 

A s shown in Pa r t 1 [1] , p rob lem formulat ion o f C L T R for the case of 

reduced-order observer-based controllers can be placed into the same 

f ramework as the one for full-order observer-based control lers . T h u s , for 

s impl ic i ty o f presentation, we will focus our deve lopment of C L T R de-

sign techniques only to the case of full-order observer-based controllers . 

In Pa r t 1 [1] , we have analyzed sys temat ica l ly when and under wha t 

condi t ions closed-loop transfer recovery ( C L T R ) is possible. A c c o r d i n g 

to the way we par t i t ioned the recovery mat r ix [1] , it is clear that any 

sys temat ic design scheme for C L T R would involve , beside the require-

ment o f c losed-loop stabili ty, placing some addi t ional design constraints 

upon the observer gain mat r ix Κ. T h e goal is to make the recovery ma-

tr ix as small as possible through a particular set o f design constraints. 

Some constraints are related to the assignment o f the finite, as well 

as the asympto t i ca l ly infinite, eigenstructures o f the observer dynamic 

ma t r ix A0 — A — K(a)Co- Af t e r satisfying all the above constraints, 

some design f reedom may still be left in the observer gain mat r ix Κ t o 
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assign other parts of the eigenstructure in the mat r ix A0. 

T o see this, we recall that the recovery error be tween the target 

c losed-loop transfer function TZU}(s) and the one realized by a full-order 

observer-based controller of ( 5 ) is g iven by 

Ef(s,a) = Tzu(s)Mf(s,a) ( 7 ) 

where Tzu(s) is the closed-loop transfer function from Ü to ζ under 

state feedback as defined in (19 ) of [1] and 

M / ( s , σ ) = F ^ "
1
 + K(a)C2)-

l
(Bi - K(a)D2l). ( 8 ) 

T h e mat r ix AIj(s,a) is called the recovery matrix. I t plays a dominant 

role in the analysis of recovery. In fact, if the sys tem ΣΖΙί is left-

inver t ible , then according to l e m m a 2 of [1] the recovery error Ej(ju, σ) 

is zero if and only if the recovery ma t r ix Mj(juj,a) is ze ro . Thus , the 

s tudy of Mf{s,a) is tantamount to the s tudy of C L T R . Assuming for 

s impl ic i ty that A0 is nondefect ive, one can express Mj(s,a) in the 

fo l lowing mat r ix part ial fraction expansion, 

*<··'> = Σ ^ 5 (») 

where β ; ( σ ) is the residue mat r ix given by 

Ri(a) = FWr(a)V1

H
(a)[Bl - K(a)D21] ( 1 0 ) 

wi th Wi(a) and Vi(a) being respect ively the right- and lef t -e igenvectors 

associated with the eigenvalue λ ? ( σ ) of A0. T h e s e e igenvectors are 

scaled such that 

W(a)V
H
(a) = V

H
(a)W(a) = /„ 

where 

W(a) = [W1(a), \¥2(σ), · · · , \¥η(σ)} 

and 

V(a)= [ 1 / ι ( σ ) , ν2(σ), · · · , Vn(a)]. ( 1 1 ) 

A s ev ident f rom ( 9 ) and ( 1 0 ) , one can render the i-th term of Mj(s, σ) 

zero in one of two ways: 
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( 1 ) Render the residue Rj(a) ze ro while λ , is finite; or 

( 2 ) P lace Λζ· a sympto t ica l ly to infinity whi le keeping the residue 

Ri(a) uniformly bounded . 

T h e first approach is the p rob lem of finite eigenstructure assignment 

whi le the latter concerns eigenstructure assignment for the a sympto t -

ically infinite eigenvalues of A0. F r o m the structural proper t ies o f the 

sys tem Σζιι>, there may not exist enough design f reedom to assign the 

needed eigenstructure in A0 to achieve E C L T R or A C L T R . Ana lys i s of 

Pa r t 1 reveals several guidelines as to when, how and to wha t extent 

such an assignment can be done. T o rev iew these guidel ines, Μ / ( $ , σ ) 

is par t i t ioned into four parts [1], 

Mf ( s , σ) = Af_ ( s , σ) + Mb{s, σ) + M^s, σ) + A f e ( s , σ ) , (12) 

A c c o r d i n g to the above par t i t ions of Λ / / ( $ , σ ) , we define the corre-

sponding subsets o f eigenvalues, right- and lef t-eigenvectors of Α0(σ), 

Λ - ( σ ) •= {Κ I i= 1 , · · · - » « } . Λ 4 ( σ ) := {λ* Ii = ι,·· · , " ( . } , 

Λ < χ > ( σ ) 1 «'= ι,·· · . » / } . Λ β ( σ ) := P? I i = 1,·· 

ν_(σ) := {Vf I t = 1, • · • > '
^
Γ } > Η(<τ) := {Vt

b 1 · = 1,·· · . » * } . 

V U * ) := {vr 1 » = ι,·· · > ' V } > := {Vf\i = ι,·· • , « e } , 

W-(a) :={\V- | i = l,-- • · » « } . ••= {w> 1 i = 1,·· ·,"&}> 

~{wr 1 i= 1 , · · · - » / } , ••= { M ? 1 i = 1 , -

Hereafter , we wil l use an over bar on a certain variable to denote its 

l imi t as σ —• oo whenever it exists. For example , Me(s) and W€ denote 

respect ive ly the l imits of Me(s,a) and We(a) as σ —+ oo. 

where 

and 
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F r o m [1], we showed that i r respect ive of the target c losed-loop trans-

fer function Tzw(s), both M_(s,a) and Mb(s,a) can be rendered zero 

either exac t ly or asympto t ica l ly as σ —* oo by an appropr ia te finite 

eigenstructure assignment of A0. A l s o , MOQ(s,a) can be rendered 

asympto t ica l ly zero as σ —> oo by an appropr ia te a sympto t i ca l ly in-

finite eigenstructure assignment of AQ. O n the other hand, in general , 

Me(s,a) can never be rendered zero al though there exists abundant 

amount o f f reedom to shape Me(s,a) wi thin the g iven constraints. 

Howeve r , when special ized to a particular class of target c losed- loop 

transfer functions, namely Tzw(s) G T { R ( E ) , M€(s,a) can be rendered 

zero exact ly . Similarly, Me(s,a) can be rendered zero asympto t ica l ly 

as σ — oo \{Tzw(s) G Τ £ ( Σ ) . 

N e x t , we describe in details the design constraints and the avai lable 

design f reedom on the observer gain mat r ix Κ in the eigenstructure as-

s ignment of A0 for closed-loop transfer recovery. T h e discussion covers 

each of the part i t ions of Mj(s,a) given in equation ( 1 2 ) . 

( a ) M _ ( s , σ ) par t i t ion: For an arbi trary target c losed-loop trans-

fer function Tzw(s), the term Μ _ ( $ , σ ) can be made ident ical ly 

zero ( i r respect ive of the value of σ ) . T o accomplish this, the 

set of n~ eigenvalues in Λ _ ( σ ) and the corresponding set of 

left-eigenvectors V_(σ) of A0 must be selected to coincide re-

spect ively with the set o f stable invariant zeros and their cor-

responding left-state zero directions of E y w. I t is also possi-

ble to render Μ _ ( « , σ ) zero asympto t ica l ly as σ —* oo . T h i s 

is done by parameter iz ing Λ _ ( σ ) and the corresponding set of 

left-eigenvectors V-(a) o f A0 so that in the l imi t A _ and V'_ 

coincide respect ively with the set o f stable invariant zeros and 

their corresponding left-state zero directions o f Σ ν ι ι ι. 

(b ) Mb(s,a) par t i t ion : For an arbi trary target c losed- loop transfer 

function Tzw(s), the te rm Λ / ^ , σ ) can be rendered ident ical ly 

zero ( i r respec t ive of the value of σ ) . T o accomplish this, the 

set of nb eigenvalues in Ab(a) can be assigned arbi t rar i ly to any 

asympto t ica l ly finite or infinite locations in C~, whi le the cor-

responding set o f left e igenvectors 1 4 ( σ ) o f A0 is constrained to 
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be in the null space of the mat r ix [B\ — K(a)D2\]
f
> L ikewise , 

Mb(s,a) can be rendered asympto t i ca l ly zero as σ —• oo. T h i s 

can be done by selecting an arbi trary set o f Λ & ( σ ) f rom either 

asympto t i ca l ly finite or infinite locations in C~, whi le the corre-

sponding set o f left e igenvectors Vb(v) of A0 is chosen such that 

in the l imit Vb is in the null space of the ma t r ix [B\ — Κ(σ)Ό2\]' · 

N o t e that, in pract ice, one should keep e lements o f Λ& at finite 

locat ions in order to reduce the need for a h igh-bandwid th con-

troller. 

( c ) Μ ο ο ( 5 , σ ) par t i t ion : For an arbi t rary target c losed- loop transfer 

function Tzw{s), the t e rm MOQ(s,a) can be rendered a sympto t -

ically ze ro as σ —^ oo. T h e set o f nf eigenvalues in Λ Ο 0( σ ) can 

be assigned to any asympto t ica l ly infinite locat ions in C~. T h a t 

is, there exists a comple te f reedom in the way the e igenvalue 

λ ^ ° ( σ ) G Λοο (σ ) tends to infinity as σ —+ oo, i.e. the a sympto t i c 

direct ion and the rate at which each λ ? ° ( σ ) goes to infinity can 

be chosen freely by the designer. H o w e v e r , for every λ ? ° ( σ ) G 

Aco (er) , the corresponding right and left e igenvectors W?°(a) 

and Vf°(a) must be such that {σ)^
00
{σ)]

Η
[Βλ - Κ(σ)Ό21] 

is uniformly bounded as σ oo. T h i s constraint ensures that 

the residue Rf°(a) remains uniformly bounded as σ —• oo and 

thereby forces MOQ(s) to be zero . 

( d ) M e ( s , σ) par t i t ion: T h e term Me(s, σ) does not exist when ? i j + 

nc = 0, i.e. when the sys tem Σνιυ is of m i n i m u m phase and 

lef t- invert ible . For the case where + nc φ 0, we examine first 

the p rob lem of an arbi t rary target closed-loop transfer function 

Tzw(s). Here , the term Me(s,a) can never be rendered zero al-

though there exists abundant amount of f reedom to assign the 

associated eigenvalues and e igenvectors . T o be expl ic i t , the set 

of n + + nc eigenvalues in Ae(a) can be assigned to any (e i ther 

asympto t i ca l ly finite or infinite) locat ions in C~, wi th the provi -

sion that any unobservable (and stable since the pair (A,C2) is 

assumed to be de tec tab le ) eigenvalues of Σνιυ be included in the 

set Ae(a). A l s o , there exists a comple te f reedom consistent wi th 
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the results of [7] in assigning the right- and lef t-eigenvector sets 

We(a) and Ve(a) and hence We and Ve. But in general A e , We 

and V€ cannot be assigned such that Me(s) is zero . Howeve r , 

there exists a mult i tude of ways to assign A e and We ( and hence 

Ve). One possibil i ty is to shape Me(s) to have certain desired 

directional propert ies , or to try to make it as small as possible 

using some op t imiza t ion techniques. 

T h e above discussion on Me(s,a) assumes that the target closed-

loop transfer function Tzw(s) is arbitrary. Apparen t ly , one may be 

able to acquire addi t ional design freedom by taking into account some 

structural propert ies of the full-state feedback gain mat r ix F . For ex-

ample , as stated in theorem 5 of Pa r t 1 [1], under the assumption that 

the sys tem Σζη is lef t- invert ible, then any admissible target c losed-loop 

transfer function is recoverable ( i . e . an element o f τ £ ( Σ ) ) if and only if 

V
+
(A,Bi,C2lDoi) C Ker(F). Since V

+
(A, Bx, C 2 , D2i) is the span of 

4 θ x c , a given Tzw(s) is recoverable if and only if the state-feedback 

gain mat r ix F is o f the form, 

F ~ 0 Fbl 0 Ffl ] 

F~2 0 Fb2 0 Ff2 J { i ô ) 

where Γ3 and Γ ι are nonsingular t ransformation matr ices defined in 

theorem 1 of [1] for the system Σ ν ι ν. Thus , whenever Tzw(s) is an el-

ement of τ £ ( Σ ) , it can be easily shown from the special structure of 

F in (13 ) that the term Me(s) is identical ly zero , i r respect ive o f the 

way we pick the set o f 77+ + nc eigenvalues in Ae(a) and the associated 

right- and lef t-eigenvector sets We(a) and Ve(a). Similar ly, as s tated 

in theorem 3 of Par t 1 [1] and again under the assumption that Σζη 

is lef t- invert ible, then any admissible target c losed-loop transfer func-

tion is exac t ly recoverable ( i . e . an element of Τ £ Κ ( Σ ) ) if and only if 

S'(A, B u Co, D2l) C K e r ( F ) . Since S~(A, B u C 2 , D21) is the span 

of x+ φ xc 0 xj, the closed-loop transfer function TZU)(s) is exac t ly 

recoverable if and only if F is o f the form, 

F~! 0 F » 0 0 

F;2 0 FB2 0 0 
(14) 

N o w , whenever Tzw(s) is an element of Τ ^ Κ ( Σ ) , then f rom the special 
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structure o f F g iven in ( 1 4 ) , it can be shown that bo th Me(s) and 

Moo(
s
)

 a re
 zero , i r respect ive o f the way we select the set o f eigenvalues 

in Ae(a) and in Λ ο ο ( σ ) , and the associated set o f e igenvectors We(a) , 

Ve(o~), W00(a) and Voo(o~). In fact, in this case, all eigenvalues o f A0 can 

be assigned to finite locat ions in C~. Moreove r , since we do not have to 

address the e igen assignment p rob lem associated wi th asympto t i ca l ly 

infinite eigenvalues, we no longer need to parameter ize the observer 

gain Κ in terms o f a tuning parameter σ . 

I I I . D E S I G N V I A ' A T E A ' 

T h e previous section summarizes the available design f reedom as well as 

constraints associated wi th the p rob lem of assigning the eigenstructure 

o f observer dynamic mat r ix for c losed-loop transfer recovery. W e de-

ve lop here a design procedure which fol lows the concept o f a sympto t i c 

t ime-scale and eigenstructure assignment ( A T E A ) proposed or ig ina l ly 

in [12]. T h i s concept has been successfully used to design full-order ob-

servers in the p rob lem of loop transfer recovery for lef t- invert ible and 

minimum-phase plants in [13], and for general str ict ly proper systems 

in [9] . In what fol lows, we will present a s tep-by-step A T E A design al-

g o r i t h m for general non-str ict ly proper systems. A t first in subsection 

I I I . A , we g ive a design procedure for an arbi t rary target c losed- loop 

transfer function, i.e. wi thout taking into account any specific charac-

teristics o f F. T h i s is the most general design procedure . W h e n a g iven 

Tzw(s) is asympto t ica l ly recoverable , the state-feedback gain m a t r i x F 

has the structure given in ( 1 3 ) ; this translates into addi t ional f reedom 

for selecting eigenvalues and eigenvectors of A0. T h e procedure de-

scribed in subsection I I I . A will yield a design that recovers Tzw(s) only 

in the asympto t ic sense. Howeve r , when exact recovery is possible , F 

has the structure g iven in ( 14) and in this case one can solve the E C L T R 

design p rob lem with s imply a finite eigenstructure assignment to A0. 

For this case, the general A T E A design procedure o f subsection I I I . A 

is g rea t ly simplified and a design solution is presented in subsection 

I I I . B . 
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A . A C L T R D e s i g n V i a A T E A 

T h e A T E A design method is decentral ized in nature. T h e original 

system is decomposed into several subsystems that can be addressed 

separately in the design for closed-loop transfer recovery. Basic un-

der ly ing idea behind this me thod starts by expressing the sys tem into 

the special coordinate basis ( s . c .b ) o f Eyw (see theorem 1 o f Pa r t 1 [1] 

and also [10] and [11]) . T h e finite eigenstructure of A0 is assigned by 

working wi th subsystems which represent the finite-zero structure of 

E y u, (cf. equations ( 8 ) and ( 9 ) of Pa r t 1 ) . Similarly, the asympto t ica l ly 

infinite eigenstructure of A0 is assigned by working with subsystems 

which represent the infinite-zero structure of Σνιυ (see equat ion ( 1 3 ) of 

Par t 1 for each 7 = 1 to mj). 

T h e r e are two issues in formulat ing the observer -dynamic mat r ix 

A0 = A — K(a)C2 through the selection of Λ ' ( σ ) . T h e first one is related 

to eigenvalue assignment while the second one deals wi th e igenvector 

assignment. Le t us first consider the p rob lem of eigenvalue assignment. 

A s discussed in section I I , some eigenvalues o f A0 are constrained whi le 

others can be freely assigned to any asymptot ica l ly finite or infinite 

locat ions in C~. T o be specific, 

( 1 ) Λ _ ( σ ) must coincide either exac t ly or in the a sympto t i c sense 

to the set of stable invariant zeros of Έ ν ν υ, 

( 2 ) Ab(cr) and Ae(a) can be assigned freely to any asympto t i ca l ly 

finite or infinite locations in C~ and, 

( 3 ) Λ ο ο ( σ ) can only be assigned to asymptot ica l ly infinite locat ions 

in Cr. 

In order to conserve the controller bandwid th , both Λ & ( σ ) and Ae(a) 

should in practice be assigned to asympto t ica l ly finite locat ions. L e t 

us next examine carefully the f reedom available in assigning Λ ο ο ( σ ) . 

C lear ly from the discussion in section I I , a comple te f reedom is avai lable 

in choosing each A f ° ( c r ) £ Λ ^ , ( σ ) (?' = 1, · · · ,7?.^) . T h a t is, bo th the 

asympto t ic direct ion and the rate at which λ ? ° ( σ ) goes to infinity can 

be set arbitrari ly. In other words, the f reedom available in assigning 

every asympto t ica l ly infinite eigenvalue λ £ ° ( σ ) manifests itself in t w o 
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ways: 

( 1 ) First , we choose the asymptot ic directions along which these 

eigenvalues tend to infinity and, 

( 2 ) Secondly, we select the rates at which they tend to infinity. 

T o quantify both these choices, let Λ ο ο ( σ ) for large values of σ be 

subdiv ided into r sets where r < nj, 

Here , At(£ = 1, · · · , r ) is a set o f ii£ numbers in C and A^ is closed un-
r 

der complex conjugat ion. A l s o — nj. Apparen t ly , the e lements 

o f A^ define the asymptot ic directions of the infinitely fast eigenvalues 

while the small parameters μι (t — 1, · · · , r) which are a function o f σ 

define the rates at which these eigenvalues tend to infinity. 

In summary, regarding the eigenvalue assignment, we have the free-

d o m to specify 

( i ) the asympto t ic l imits At, and A e of Α & ( σ ) and Ae(a) and, 

( i i ) A^ and μι (£ = 1, · · · , ?·). 

N o t e that Λ& and Ae together with A- define all the asympto t i ca l ly 

finite eigenvalues of A0, while At and μι (ί = 1, · · · , r) define the re-

main ing asympto t ica l ly infinite eigenvalues. 

L e t us look now at the constraints and design f reedom available 

in assigning the e igenvectors of A0. T h e set o f lef t-eigenvectors VL is 

constrained to coincide wi th the corresponding set o f left s ta te-zero 

directions o f the plant. Moreove r , imVI coincides the subspace 

O n the other hand, the set of e igenvectors Vb is constrained to be in 

the null space of [B\ — Κ(σ)Ό2\}'• In v iew o f the part icular structure 

of s.c.b, it can be seen that every element v\ o f Vb is constrained to 

be of the form 

A i A 2 A r 
( 1 5 ) 

V * ( A 1 Jß i 1C 2 , D 2 l ) / V
+
( ^ , JB i 1C 2 , D 2 l ) . 

[0, 0, (Vf)
H
, 0, 0] 
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In other words , the set Vb can be represented in a mat r ix nota t ion as 

[0, 0, (Vh

hf, 0, 0 ] " 

where Vb

b
 is a nb x rit, mat r ix . Thus the selection o f Vb to be in the 

null space o f [B\ — Κ(σ)Ό2\]' is equivalent to an arbi t rary selection 

of Vb

b
 consistent wi th the f reedom available for e igenvector assignment 

[7] . A g a i n in v i e w o f the propert ies o f s.c.b, we note that the columns 

of Vι span the subspace 

$t
n
/{S+{A, Bi, C o , D21 ) U S~ (A, Bi, C o , D 2 1) } . 

T h e r e is also f reedom available in specifying We. I t is shown in [4] that 

ImWe coincides wi th the subspace V
+
 ( / l , B[, C o , Do\). A g a i n due to 

the special structure of s.c.b, We has the special mat r ix form 

[{W?f, 0, 0, {Wc

ef, of 

where Wee = [(W+)
H
, (W£)

H
]

H
 is a n€ χ ne mat r ix . Thus , an ap-

propr ia te selection of We is equivalent to an arbi t rary selection o f Wee 

consistent wi th the f reedom available for e igenvector assignment [7] . 

N o w , an assignment of both asympto t ica l ly finite and infinite e igen-

values and the corresponding eigenvectors to A0 can be v i ewed as a 

p rob lem in asympto t ic t ime-scale and eigenstructure assignment ( A T E A ) 

Further discussion on t ime-scale structure o f a sys tem can be found in 

[9] . In order to have a well-defined separation o f t ime scales, we wil l 

assume throughout the paper that 

μι/μι+ι — 0 a s / ^ + 1 0. ( 1 6 ) 

W e emphasize that the f reedom available in the asympto t i ca l ly infinite 

eigenstructure of A0 is captured in the selection of an appropr ia te fast 

t ime-scale structure. T h e asymptot ic directions o f a sympto t i ca l ly infi-

nite eigenvalues are specified in the sets Ac (ί — 1, · · · ,7*) and r < nj. 

Different values of t ime scales are defined by the small pos i t ive param-

eters μι (ί — 1, · · · , r ) , which are function of a tuning parameter σ so 

that ( 1 6 ) holds as σ —* oo . N o t e that there is another constraint on the 
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infinite eigenstructure; namely for every asympto t ica l ly infinite e igen-

value λ ? ° ( σ ) , the corresponding right- and left-eigenvectors W?°(a) and 

Κ·°°(σ) o f A0 must be such that 

W^)[Vr^)]"[Bl-K(a)D2l] 

remains uniformly bounded as σ —• oo . T h i s constraint is au tomat ica l ly 

satisfied using the A T E A design procedure described in this section. 

In wha t fol lows, we g ive a step-by-step design a lgo r i thm for A T E A . 

In v i e w o f the above discussion, input parameters to the a lgo r i thm are 

A t , Vb

b
, A e , W e t, At and μι (t — 1, · · · , ? ' ) , as well as the integer r. 

A m o n g these, the pr imary ones are: 

( 1 ) A e and Wee which shape the error t e rm Me(s) and, 

( 2 ) A^ and μι (t — 1 , · · · , ? · ) , which define the t ime-scale s tructure 

of the observer and thus have a strong impact on the size o f the 

resulting controller gain . 

T h e remaining input parameters , namely A& and V ^ , are considered as 

secondary inputs. 

T h e A T E A design a lgor i thm can be d iv ided into three steps. Steps 

1 and 2 work wi th design at individual subsystem levels for the assign-

ment of the asympto t ica l ly finite and infinite eigenstructures respec-

t ively . In step 3, designs at each subsystem level in steps 1 and 2 are 

then put together to form a comple te design for c losed-loop transfer 

recovery. 

Step 1 : T h i s step deals with the assignment o f a sympto t i ca l ly finite 

eigenstructure ( i . e . , slow time-scale s t ructure) and makes use of subsys-

tems ( 8 ) to ( 1 1 ) of Pa r t 1. A ( . 4 ~ a ) are the stable invariant zeros of Σνιν 

and they fo rm eigenvalues of A0 in the set A _ , whi le the correspond-

ing lef t -eigenvectors of A0 coincide wi th the left s ta te-zero direct ions 

oîΈyU). T o place the set of eigenvalues Λ& and lef t -eigenvectors K&, we 

choose a gain Ki such that \{A
c

hh) coincides wi th Λ& whi le Vb coincides 

wi th the set o f lef t-eigenvectors of A
r

bb where 

AU = Abb - KtCb. (17) 

Note that existence of such a Kb is guaranteed by the property 2 of 
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section III in Par t 1 [1] and as long as the e igenvector set Vi is consistent 

wi th the f reedom available in the e igenvector assignment [7]. N e x t , in 

order to place the set of eigenvalues Ae and r ight-eigenvectors Wee, let 

us first form the matrices A e e and Ce as follows, 

Aee — 

where 

AL 0 

Br Et Ac( 

CeO 

Et 

Coc 

Er 

(18) 

^ = [ ( ^ ) ^ ( ^ α ) ^ · · · 1 ( ^ / α )
,

] ^ 

E
ia - [Efa) F~], Ec - [E[ci E'2c,..., Emjc]'. 

N o w , a gain Ke — [Keo, Kei] can be chosen such that the set of eigen-

values and r ight-eigenvectors of A
c

e e coincide wi th A e and Wee respec-

t ive ly where 

AP KpCe — A e KeoCeQ KelC e l · ( 1 9 ) 

A g a i n , note that existence of such a Ke is guaranteed by the p roper ty 2 

of section III of [1] and as long as the e igenvector set Wee is consistent 

wi th the f reedom available in the e igenvector assignment [7]. For future 

use, let us define 

and part i t ion A ' e l as 

Κ e 0 
/ C o 
A c 0 

A e l — [ A e l l , A el2j · ' · , K e \ m j 

where A " e i i is a vector of dimension ne x 1. 

(20) 

S t e p 2 : Here, we deal with the assignment of asympto t ica l ly infinite 

eigenstructure ( i . e . the fast t ime-scale s t ructure) and apply it to mj 

subsystems represented by (13) of Par t 1. T h i s step is only needed 

when nj > Û. A s discussed earlier, a comple te f reedom is available to 

specify any number 7* (7· < nj) of fast t ime scales. T h e simplest case 

is to choose r — 1. However , for generali ty, we consider the case where 

?' > 1. Ass ignment o f the fast t ime scales is done through selection of 

the set Ac and the corresponding posi t ive parameters μι (£ — 1, · · · , r ) . 
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T h e procedure for assigning the fast t ime-scale eigenstructure is again 

accomplished in a decentral ized fashion. W e consider the eigenas-

s ignment p rob l em for each i-th single-input s ingle-output subsystem 

(i = 1, · · · , m y ) separately. Thus , we need to distr ibute e lements o f the 

specified sets A^ and the parameters μι (£ — 1, · · · , r) to each of the mj 

subsystems. T h e distr ibution can be done in a number o f ways . L e t 

the subsystem i be assigned Ί\ different t ime scales for some < ςτ; 

and Aij /μΐ] ( 1 < j < ?*,·) be the asympto t ica l ly infinite eigenvalues as-

signed to the subsystem i. Define riij to be the number o f eigenvalues 

corresponding to the t ime scale tjμι^. T h a t is, the set Λ ι ;· contains n tj 

e lements . A s usual, the set A ^ is assumed to be closed under complex 

conjugat ion. A l s o , in order to have a set o f well separated t ime scales 

in the subsystem i, we assume that 

/it'iMi + i 0 as + 1 — 0 for all j (1 < j < r,- - 1 ) . ( 2 1 ) 

Obvious ly when r — 1, we have appl ied a single t ime scale to all sub-

systems , i.e all μ2 ;· are equal to a single parameter μ and all i\ are 

equal to unity. In this case, the tuning parameter σ can be taken as 

l / μ . W i t h these preliminaries, we are now ready to design for the i-th 

subsystem. A t first, we wil l find a gain ma t r ix Λ',·;· for each t ime-scale 

ί/μΐ] (1 < j < ri). For this subsystem, we define a ma t r ix Gij of 

dimension x iiij and a ma t r ix C\j o f dimension 1 χ η^· wi th the 

fo l lowing structure, 

and Cjj — [ 1 0 ] . 

A n eigenvalue assignment on this subsystem is done using a gain vec tor 

K{j o f dimension n^j x 1 such that the eigenvalues o f coincide w i th 

Aij where — Gij — KijCij. I t is clear that one can always find such 

a mat r ix Kij since the pair (Gij,C{j) defined above is observable . Le t ' s 

further par t i t ion the ma t r ix as 

where the last e lement Kijd is a scalar. Moreove r , since the subsystem 

mat r ix G\^ is stable, the gain Kijd must also be nonzero . N e x t , the 

Gij — 
0 I n t J- l 

0 0 
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gains Kjj (1 < j < rj) obta ined above are put together to form a gain 

vec tor that gives the desired fast t ime scales in the i-th subsystem. 

In the process, we parameter ize the design solution as a function of 

a tuning parameter σ. For the descript ion of this part o f the A T E A 

design procedure, let us define the fo l lowing scalars, 

i-i 

hi = 1 > Jij = Π K i t d ' (2 - J - Γ«")· 
and 

1=1 

J 

c*io = 0 , Qij - 2_^nik , (1 < j < n). 
k = l 

N o t e that a,;,., = qi. A l s o , for each j (1 < j < 7*2), 

j-i+riij — ßij 

and 

k = l 

(22) 

N o w , we are ready to g ive the design gain Α ' 2 · ( σ ) for the subsystem i 

parameter ized by a variable σ as fol lows, 

κ
α (

σ
) ,

 Λ
' ί 2 (

σ
) . · · · •

 Κ
»-Χ

σ
) (23) 

where 

Kij(v) = —JijSijKij. 
Vi 

and 

Sij = D iag Π<«. Π , ·· · , Π Ut 
i = aij-l+2 C=atJ.1+3 l = aiJ-i+n,j 

( 2 4 ) 

T h e product JJ cit in ( 2 4 ) is taken to be unity when j — r{. 

T h e above design formulation becomes much simpler when r,- = 1. For 

this case, let μ{ denote the t ime-scale parameter , then 
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where the individual gains A \ j ( l < j < qi) have been previously se-

lected such that the eigenvalues of G\ are placed at the desired locat ions 

and 

Here we did not discuss any eigenvector assignment. H o w e v e r , it turns 

out that our eventual design is such that the e igenvectors correspond-

ing to the asympto t i ca l ly infinite eigenvalues are natural ly assigned to 

appropr ia te locat ions so that Μ ο ο Ο ' ω , σ ) —• 0 as σ —> oo . 

S t e p 3 : T h i s consti tutes the last step in the A T E A design procedure . 

Here , various gains obta ined in steps 1 and 2 are combined to form 

an overal l observer gain for the sys tem Eyw parameter ized by a tuning 

parameter σ. Le t ' s define the gain mat r ix Κe\ as 

N o t e that when Ί\ — 1, the gain Kud is the same as Kiqx and 77,· is 

the same as For the case where nj > 0, the observer gain Κ(σ) 

adjustable by a single tuning parameter σ is g iven by 

0 

Keii(a) = — JinKindKeii. (26) 

Κ(σ) = Γ ι Κ(σ)Γο - 1 
(27) 

where 

Kj + «al 
Ltj + H

+

af + A ' a l ( ^ ) 

L
ab +

 H
ab 

Ltb + H
+

ab 

(28) 
#06 

B0j 

LCf 4- Hcf -f- Kci(o-) 

and 

Λ ' / ( σ ) = Diag Λ ' ι ( σ ) , Κη(σ), · · · J<mf(<r) 
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Κ(σ) = I \ 

B
0 a L'a 

• + ' C o *>t> 
Kb 

Lcb -

(29) 

Furthermore, the eigenvalues of A0 are precisely those of Λ _ U Λ& U A e 

and Mj(s, σ) - ~Me(s). 

R e m a r k 2. When Tzw(s) is an element of τ £ ( Σ ) and due to the spe-

cial structure of F in (13), Me(s) is identically zero irrespective of the 

way we select the set of + nc eigenvalues in Ae(a) and the set of 

right- and left-eigenvectors We(a) and Ve{cr). 

N o t e that the matr ices H*j, H*b, Haf, Hab, Hbf, Hcj and Hcb are 

arbi t rary but finite and used to introduce addi t ional design f reedom. 

W e can now state the fol lowing theorem. 

T h e o r e m 1. Consider a full-order observer-based controller with gain 

matrix given by (27) and assume that nj > 0. Then, we have the 

following properties: 

1. There exists a scalar σ* such that, for all σ > σ*, the observer 

design is asymptotically stable. Furthermore, the observer dy-

namic matrix has the following time-scale structures: t, t/pij 

(where j — 1, · · · , i\ and i — 1, · · · , mj ) . That is, its eigenvalues 

as pr —+ 0 are given by 

Λ _ + Ü ( / / r ) , Äfr + 0 ( / / r ) , Λ β + 0 ( μ Γ ) , 

^ - + 0 ( 1 ) for (j = l r - - i r i ) and ( i = 1, · · · , mf ) . 

Moreover, if H aj = 0 and H bf — 0, some unite eigenvalues of Λ0 

are exactly equal to Λ _ and Ab for all σ rather than asymptoti-

cally tending to A _ and Ab. 

2. CLTR is achieved in the sense that, as σ —+ oo, Mj(s,a) —• 

Me(s) pointwise in s. 

P r o o f : See [5] . I 

R e m a r k 1. For the case when nj — 0, observer gains obtained from 

the above ATEA procedure are independent of σ and are given by 
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Clear ly , the A T E A design m e t h o d presented above has the attrac-

t ive feature that it is decentral ized. Different t ime scales and eigen-

structures can be assigned to the subsystems o f E y w, separately. T h e 

design in each subsystem does not require an expl ic i t value o f the tuning 

parameter σ. T h e variable σ enters only in ( 2 3 ) or ( 2 5 ) when designs 

for different subsystems are put together to fo rm the final observer 

gain wi th the desired time-scale structure. T h e variable σ wi l l act as a 

tuning parameter based on the chosen t ime scales for the fast observer 

dynamics . 

B . E C L T R D e s i g n V i a A T E A 

In the previous subsection, we have presented A T E A design me thod-

o l o g y and uti l ized it for A C L T R design. T h e power o f this me thod is 

that it explores all the degrees o f f reedom available and provides at the 

end a family of parameter ized controllers C ( s , σ) t o achieve c losed- loop 

transfer recovery. Depend ing upon the particular design requirements , 

one would adjust the tuning parameter σ until a desired recovery is 

achieved. T h i s asympto t ic procedure is no longer needed when a g iven 

target c losed-loop transfer function Tzw(s) is exac t ly recoverable ( i . e . 

Tzw(s) G T { R ( E ) ) . A s discussed in section I I , when Tzw(s) G Τ { Κ ( Σ ) , 

F has the form given in ( 1 4 ) . W i t h this particular structure o f F, 

all eigenvalues of A0 can be assigned to finite locat ions and the above 

A T E A design procedure can be simplified drastically. In fact, the de-

sign requires only finite eigenstructure assignment and does not invo lve 

fast t ime-scale structure assignment. T h e intent o f this section is to 

describe in detail the available design f reedom and p rov ide a s tep-by-

step design procedure in the eigenstructure assignment o f A0 for exact 

c losed- loop transfer function recovery ( E C L T R ) . 

N o t e that for an exac t ly recoverable case, the observer gain Κ is no 

longer parameter ized as a function of σ and thus, dependency of σ is 

d ropped in the fo l lowing discussion. Based on the different par t i t ions 

o f Mj(s) in section I I , the design f reedom available for each subsystem 

is as fol lows, 

1. A set o f n~ eigenvalues of A0 in A _ must be chosen to coincide 



316 BEN M. CHEN, ALI SABERI, AND UY-LOI LY 

exac t ly wi th the set o f stable invariant zeros of the sys tem Σ>νιν. 

T h e corresponding left-eigenvectors of A0 must coincide exac t ly 

with the left s tate-zero directions of Σννυ so that M _ ( s ) is iden-

t ical ly zero . 

2. A set of nb eigenvalues of A0 in Ab can be freely assigned to 

any finite locations in C~ . Moreove r , the set of e igenvectors Vb 

corresponding to these eigenvalues must be in the null space of 

(B\ — K D 2 1 ) ' and satisfying the constraints defined in [7]. T h e 

resulting Mh(s) wil l be identical ly zero . 

3. A set of 7 1 + - f 77.c eigenvalues of A0 in A e can j 3 e freely assigned to 

any finite locations in C~ subject to the condi t ion that any unob-

servable eigenvalues of Σννυ must be included in the set A e . M o r e -

over, the set of eigenvectors Wee corresponding to these eigenval-

ues can be selected freely within the constraints defined in [7]. 

W e note that due to the specific structure of F in ( 1 4 ) , Me(s) is 

zero regardless of how we select A e and W e e. N o t e that this step 

is not needed when 77+ -f nc — 0, i.e when the sys tem E y w is of 

m in imum phase and left- invert ible. 

4. A set of nj eigenvalues of A0 in can be freely assigned to any 

finite locat ions in C~. ( T h e sets and are renamed as Ad 

and Vd to highlight the fact that these eigenvalues do not need 

to be at infinity for exact r e c o v e r y ) . T h e set o f e igenvectors Vd 

corresponding to these eigenvalues can be selected freely wi th in 

the constraints defined in [7]. W i t h F in the form o f ( 1 4 ) , the 

part i t ion MOQ(s) is identically zero i rrespect ive of how we select 

Ad and Vd. 

W e now proceed to the design of an observer gain Κ that produces 

the desired finite eigenstructure to A0 for the case o f exac t c losed- loop 

recovery. 

Step la : T h i s step deals with the assignment o f finite e igenstructure 

to the subsystem ( 1 0 ) of Par t 1. W e choose a gain Kb such that X(Alb) 
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coincides with Λ&, a selected set of rib eigenvalues in C where 

A
c

bb = Abb - KbCb. (30) 

Note that existence of such a Kb is guaranteed by the property 2 of 

section III of Part 1 [1]. T h e eigenvectors of A
c

hh can be freely assigned 

within the available freedom for eigenvector assignment [7]. Under the 

properties of s.c.b, the above A T E A design procedure always results in 

a set of eigenvectors 14 for the eigenvalues of A0 that lie in the null 

space of (B\ — A ' Z ^ i ) ' ; hence rendering Mb(s) — 0. 

S t e p l b : This step deals with the assignment of finite eigenstructure 

to the subsystems (9 ) , (11) and (13) of Part 1. Let the matrices Ax 

and Cx be defined as 

Ax 

Ata « 

^
r

' ^ c a ACc 

BjEt BjEc 

LtjCf 

-4/ 

CX 

C + Coc 

0 

Co/ 

Cj 

(31) 

and Λ χ = Ae U Ad be a set of n + + nc + nj eigenvalues in C~ which 

must include any unobservable eigenvalues of the system T,yw. N o w , 

we select a gain Kx such that \{A
C

X) coincides with Ax where 

Ai AX-KXCX. (32) 

Note that existence of such a Kx is guaranteed by the property 2 of 

section III of Part 1. The eigenvectors of A
c

x can be assigned within 

the freedom available for eigenvector assignment [7]. Let us partition 

the gain matrix Kx as follows, 

" Kto Kt, ι 
K c 0 Kcl 

Κ jo 

S t e p 2 : Here, the gain matrices A4 and Kx obtained in step 1 are 

combined to give the desired observer gain for exact closed-loop transfer 

recovery. It is given by 

A = Γι Α Γ . ;
1
 (33) 
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where 

Κ = BOO (34) 

Bç)c + ÄcO 

^ 0 / Η- Α/ο 
W e have the fol lowing theorem. 

T h e o r e m 2. Consider a full-order observer-based controller with a 

gain given by (33). Then, this full-order observer-based controller 

achieves CLTR and the eigenvalues of the resulting observer design 

are in the set A _ U Λ& U Ax. 

P r o o f : See [5]. I 

R e m a r k 3. In general, the observer gain for ECLTR is not unique. 

I V . O P T I M I Z A T I O N - B A S E D D E S I G N M E T H O D S 

Clear ly from section I I , the whole notion of A C L T R is to make the 

recovery mat r ix 

as small as possible. T h e previously discussed design m e t h o d A T E A 

accomplishes this task from the perspect ive of asympto t ic t ime-scale 

and eigenstructure assignment to the observer dynamic mat r ix . A n 

al ternat ive me thod is to formulate the design p rob l em in terms o f find-

ing a gain A ' that minimizes some norm (e .g . Ho or H^ ) o f Mj(s). 

T h a t is, one can cast the A C L T R design into an op t imiza t ion p rob lem. 

A n op t ima l or subopt imal solution to such prob lem will p rov ide the 

necessary observer design gain. 

F rom this perspect ive , in this section, we wil l cast the c losed-loop 

transfer recovery prob lem into a standard Ihr or H^- op t imiza t ion 

p rob lem. T o begin, we consider the fol lowing auxil iary sys tem, 

Mf(s) = F(sln - A + KC2)-
l
(Bl - KD2l) 

(35) 
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Here , w is mode led as an exogenous disturbance input to Σ α and u 

is the control input . T h e variables y and ζ represent respect ive ly the 

measured sys tem states and the control led outputs . I f we consider a 

state-feedback law for the control u, 

u = - K ' x . ( 3 6 ) 

T h e n it is s imple to verify that the closed-loop transfer function from w 

to z, denoted by T™(s), is indeed equal to M'j(s). N o w the A C L T R de-

sign p r o b l e m can be casted into a p rob lem of designing a state-feedback 

gain K' such that 

( 1 ) the auxil iary system Σ α under the control law ( 3 6 ) is a sympto t -

ically stable and, 

( 2 ) the norm (Ho or H^) o f Mj(s) is min imized . 

T h e r e exists a vast l i terature on H2 or H^ min imiza t ion methods . 

B o r r o w i n g f rom such a l i terature, subsection I V . A discusses a lgor i thms 

for Ho min imiza t ion of Mj(s) whi le subsection I V . Β does the same 

for HOQ min imiza t ion . W e want to emphasize that the op t imiza t ion 

p r o b l e m is cast here in terms of min imiz ing an appropr ia te no rm of 

recovery mat r ix Mj(s) rather than the actual recovery error E(s). 

I t is well known that an op t ima l solution for ei ther Ho or HQO 

minimiza t ion of M/(s) does not necessarily exist , and the inf imum of 

| |Âfy or | | M y ( s ) ! ! / / ^ is in general nonzero . Howeve r , for the class 

of exac t ly recoverable target c losed-loop transfer functions T £ R ( E ) , the 

inf imum o f | | A / / ( s ) | | / / 2 or \\Mj(S^H^ is in fact zero and it can b e at-

tained using a finite gain Κ. A l s o , for another class o f ta rget c losed- loop 

transfer functions, namely the class of asymptot ica l ly recoverable ta rge t 

closed-loops T { R ( E ) , the inf imum of | | A f / ( s ) | | / / 2 or | | A i / ( s ) ! ! / / ^ is also 

zero , and it can only be at ta ined in an asympto t ic sense by using larger 

and larger gain Λ \ W h e t h e r the infimum of | | M / ( s ) | | / / 0 or || A f / ( s ) l l / / o o 

is zero or not , the recovery procedure involves genera t ing a sequence of 

gains wi th the proper ty that in the l imit Ho- or i / ^ - n o r m s o f the re-

covery matr ices approaches the infimum of | | M / ( s ) | | / / 3 or 1 1 ^ / ( 5 ) 1 1 / / ^ 

over the set o f all possible gains. O n e normal ly settles wi th a subopt i -

mal solution corresponding to a particular member of the sequence. In 
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/ ^ - o p t i m i z a t i o n , an observer gain is generated via the solution of an 

algebraic Riccat i equation (called hereafter / / 2 - A R E ) parameter ized in 

terms of a tuning parameter σ. A sequence of subopt imal gains is gen-

erated by let t ing σ tend to oo. Similarly, if we let 7* to be the inf imum 

of 11^ / (5 )11 / /^ over the set of all possible gains, then for g iven a pa-

rameter 7 greater than 7*, one generates in / / ^ - o p t i m i z a t i o n a gain by 

solving an algebraic Riccat i equat ion (cal led hereafter / / o o - A R E ) pa-

rameter ized in terms of 7 so that the resulting | | A f / ( s , τ)||//οο ls
 s tr ict ly 

less than 7 . By gradual ly reducing 7 , one thereby generates a sequence 

of subopt imal gains. 

For s implici ty and wi thout loss of generali ty, we assume throughout 

this section that the matr ix D2\ is o f the form, 

D
'

N
 - [ 0 0 . · 

A l s o , we part i t ion the matrices B\ and Co as 

£ i = [ ß i , o , S i . i ] and C2 = 

and let A\ — A — B\$C2$. In the next two sections, we examine 

specific a lgor i thms for the design of observer gain in the p rob lem of 

C L T R using Ho - and / / ^ - o p t i m i z a t i o n methods . 

C2,o 

C 2 \ 

A . C L T R D e s i g n V i a H2-Optimization 

In this subsection, we consider Z / V n o r m min imiza t ion of Mj(s) or 

equivalent ly T*£(s). A t first, let us look at an elegant way of com-

put ing the infimum value of || A/f ( 5 ) | | / / 2

 m a r e c e n
t work by S too rvoge l 

[15]. W e first recall the fo l lowing lemma. 

L e m m a 1. Assume that (A,C2) is detectable. Then the inßmum of 

\\MJ(S)\\H2 over all the stabilizing observer gains is given by 

Trace {FΡF'}, 

where P G 3 î "
x n

 is the unique positive semi-definite matrix satisfying: 
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1. F(P) 
AP + PÄ - f B\B\ PC2 + BxD2i 

C2P + D2\Bi D21D2l' 
> 0, 

2. rank F(P) = normrank { C 2 ( s l n - A ) '
1
 Bi+D2i} Vs G C+/C

0
, 

3. rank 
si - A!,_ -CO') 

F[P) 

D2i) VseC+/C°. 

η - f normrank{C2(sIn — A)
 l

Bi + 

Here normrank{-} denotes the rank of matrix { · } over the field of ra-

tional functions. 

P r o o f : See S too rvoge l [15]. I 

In general , as discussed earlier, the infimum of \\Mj(S)\\H2

 c an o n
l y 

be obta ined asymptot ica l ly . In what fol lows, we g ive an a lgor i thm 

that produces a sequence o f parameter ized observer gains K(c) for the 

general sys tem Σ α such that the #2-norm of the recovery mat r ix , which 

is also parameter ized by σ and is denoted by Μ ^ ( β , σ ) = Τ ^ ( $ , σ ) , 

tends to the infimum of | | M / ( s ) | | / / 2 as σ —* oo . T h e a lgor i thm consists 

o f the fo l lowing t w o steps: 

S t e p 1 : Solve the fol lowing parameter ized algebraic Ricca t i equat ion 

( / / 2 - A R E ) for a given value of σ , 

ΑιΡ + ΡΑ[ - PCO j A . o P - σΡΟ, ι 0 2 ΛΡ + ΒΙΛΒ[ x + - / „ = 0, ( 3 7 ) 
σ 

for a pos i t ive definite solution P. W e note that a unique pos i t ive def-

inite solution Ρ o f ( 37 ) a lways exists for all σ > 0. Obvious ly , Ρ is a 

function of σ and is denoted by Ρ(σ). 

S t e p 2 : Le t 

Κ(σ) = [Bh0 + Ρ ( σ ) 6 ^ ) 0, σ ^ σ ΐ ί ^ ] . ( 3 8 ) 

W e have the fo l lowing theorem. 

T h e o r e m 3. Consider a full-order observer-based controller with a 

gain given in (38) and let Mf(s,a) be the resulting recovery matrix. 
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Then, we have 

l im Ρ(σ) = Ρ 

σ—rco 

Moreover, \\Mj (s, c r ) | | / / 2 tends to the infimum of\\Mj (s)||#2 as σ —* oo, 

i.e. 

l im \\Mf{s,a)\\H2 = Trace {FT
5
F'}. 

ο —• oo 

P r o o f : See [5] . • 

In v iew o f theorem 3, it is apparent that as σ takes on larger and 

larger values, the design a lgor i thm given above generates a sequence 

o f observer gains having the proper ty that in the l imit | | M / ( s , c r ) | | / / 2 

approaches the infimum of \\Mj ( s ) | | / / 2 over the set of all possible gains. 

A subopt imal solution would result with any chosen value o f the pa-

rameter σ. However , for some particular class o f systems, e.g. the 

wel l -known regular problems ( i . e . D2\ is surjective imp ly ing that Σνιυ 

is r ight- invert ible and has no infinite zeros, and E y u, has no invariant 

zeros on the juj ax i s ) , the infimum value of \\Mf (S)\\H2

 c an
 be achieved 

wi th the fol lowing observer gain [6], 

A ' = ßi ,o + P q „ , (39) 

where Ρ is the posi t ive semi-definite solution of 

AXP + PA\ - PC'2fiC2fiP + Β 1 ΛΒ [ Λ = 0. 

T h e resulting infimum value of \\Mf (s)||//,, is g iven by, 

\\Mf(s)\\H3 = T race {FPF'}. 

N o t e that in this case, the observer gain Κ and thus the resulting 

recovery mat r ix is not parameter ized as a function o f σ. W e note 

that for a regular p rob lem when | | M / ( s ) | | / / 2 = 0, the observer gain 

Κ as g iven in ( 3 9 ) will achieve exact loop transfer recovery ( E C L T R ) . 

However , to our knowledge , no opt imiza t ion-based me thod exists in the 

l i terature to solve for the required gain that achieves | | M / ( s ) | | / / 2 = 0, 

whenever it is possible, for a general class o f systems other than the 

class of regular systems. On the other hand, a direct design procedure 
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based on A T E A wil l y ie ld an E C L T R design gain whenever it can be 

done; the a lgor i thm is presented in subsection I I I . B . 

A n o t h e r special case of interest is as fol lows. Consider a lef t- invert ible 

minimum-phase sys tem Σν%υ which is non-strict ly proper . L e t the ob-

server gain Κ(σ) be g iven by 

Κ(σ) = [Β1ι0, σΡ(σ)σ2Λ1 

where Ρ(σ) Ρ is the pos i t ive definite solution of 

AXP + PA\ - σΡΟ'2Λ02ΛΡ + Β1ΛΒ[Λ = 0. 

I t is s imple to show that the observer gain Κ(σ) g iven above achieves 

asympto t i c closed-loop transfer recovery ( A C L T R ) , i.e. the resulting 

\\Mj(s, σ ) | | / / 2 tends to zero asympto t ica l ly as σ oo . T h e above result 

has been given earlier by Chen et al [3] . 

It is o f interest to invest igate what t y p e o f t ime-scale structure and 

eigenstructure is assigned to the observer dynamic mat r ix A0 by the 

gain Α ' ( σ ) obta ined via the a lgor i thm given in equations ( 3 7 ) and ( 3 8 ) . 

Clear ly , the a lgor i thm will make Μ _ ( $ , σ ) , Mb(s,a) and Moo{s,a) zero 

as σ —+ oo, while shaping Me(s,a) in a particular way so that the 

inf imum o f | | M / ( s ) | | / / 2 is a t ta ined as σ — oo. In so doing, among all 

the possible choices for the t ime-scale structure and eigenstructure of 

A0, it selects a particular choice which can easily be deduced from the 

results o f cheap and singular control problems in [14] (see also, [17] and 

[ 9 ] ) . W e have the fol lowing results. 

1. A s σ —^ oo, the asympto t ic l imits of the set o f n~ e igenvalues 

Λ _ ( σ ) and the associated set of left e igenvectors V-(a) of A0 

coincide respect ively with the set of stable invariant zeros and 

the corresponding left state zero directions of Σ ^ . T h i s renders 

Α / _ ( 5 , σ ) zero as σ —> oo. 

2. A s σ —* oo, some of the n-b eigenvalues in A^(c r ) coincide wi th 

the stable but uncontrol lable eigenvalues of T,yw while the rest 

of them coincide with what are called ' compromise ' zeros o f Σνιν 
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[14]. A l s o , the asympto t ic l imits of the associated left e igenvec-

tors, namely ν & ( σ ) , fall in the null space of ma t r ix [Βγ — K(^)D2i]
/ 

so that M i ( s , σ) 0 as σ —• oo. 

3. A s σ —• oo, the set of nj eigenvalues Α ο ο ( σ ) of A0 tend to asymp-

tot ical ly infinite locat ions in such a way that Mco(s,a) —• 0. T h e 

t ime-scale structure assigned to these eigenvalues depends on the 

infinite zero structure of Σνΐί) (see for details in [14]). A l s o , the 

eigenvalues assigned to each fast t ime-scale fol low asympto t ica l ly 

a But te r wor th pat tern. 

4. A s σ —+ oo, the asympto t ic l imits of n + eigenvalues in Λ β ( σ ) co-

incide wi th the mirror images of unstable invariant zeros of E y t ü, 

whi le the associated set of lef t-eigenvectors of A0 coincide wi th 

the corresponding right input-zero direct ions o f Σ ν ι υ. T h e rest o f 

nc eigenvalues of Λ 6 ( σ ) , as σ —^ oo, tend to some other finite loca-

tions, while the associated lef t-eigenvectors fol low some part icular 

directions. In the l imi t ing process, it shapes the recovery mat r ix 

Me(s) in a part icular way so that the inf imum o f | | M / ( s ) | | / / 2

 1S 

at tained as σ —> oo. 

T o conclude, we note that, as in the A T E A design procedure , the 

a lgor i thm of equations ( 3 7 ) and (38) will render Μ _ ( 5 , σ ) , Μ & ( $ , σ ) and 

Mco(s,a) zero asympto t ica l ly as σ —+ oo. Moreove r , it shapes Me(s) 

in a particular way so that the infimum of | | M / ( ^ ) | | / / 2 is a t ta ined as 

σ —> oo. In contrast to this, A T E A design procedure o f section I I I 

allows comple te available f reedom to shape the l imi t o f recovery ma t r ix 

Me(s) in a variety o f ways within the design constraints imposed by 

structural propert ies of the given system. 

B. C L T R D e s i g n V i a / / © o - O p t i m i z a t i o n 

In this subsection, we consider / / ^ - η ο π τ ι min imiza t ion o f Mj(s) or 

equivalent ly Tz

a
™(s). Unlike the case of H2 -norm min imiza t ion in pre-

vious subsection, there are in general no direct me thods available of 

exac t ly comput ing the infimum of | | M / ( ^ ) l l « O o > denoted here by 7*. 

However , there are i tera t ive a lgor i thms that can approx ima te 7*, at 
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least in principle, to an arbi trary degree of accuracy (See for e x a m p l e 

[ 8 ] ) . Recent ly , for a particular class o f problems, i .e. when E Y U, is left-

inver t ible and has no invariant zeros on the ju axis, such an inf imum 

7* can be expl ic i t ly calculated [2] . 

W e now proceed to present an a lgor i thm for comput ing the observer-

gain mat r ix A ' such that the resulting # o o - n o r m of the recovery ma t r ix 

M / ( s , 7 ) is less than an a-priori given scalar 7 > 7*. T h e a lgor i thm is 

as fol lows: 

Step 0 : Choose a value 6 = 1 . 

Step 1 : Solve the fol lowing algebraic Ricca t i equat ion ( i / o o - A R E ) , 

AlP+PA'1-Pa0Co0P--Pa, XC2 ι Ρ + £ ι iB[ 1 + \ p F ' FP+cIn = 0, 

( 4 0 ) 

for P. Evident ly , since ( 4 0 ) is parameter ized in terms o f 7 , the solution 

Ρ wil l be a function of 7 and is denoted by P(y). 

Step 2 : I f P(j) > 0, then we proceed to Step 3. O the rwise , we 

decrease e and g o back to Step 1. N o t e that for 7 > 7*, it is shown in 

[18] that there always exists a sufficiently small scalar e* > 0 such that 

the Z / c o - A R E ( 4 0 ) has a unique posi t ive definite solution P(j) for each 

€ G ( 0 , € * ) . 

Step 3 : Let 

A ( 7 ) - [Βι,ο + Ρ(Ί)α0, Y€P(y)C'2tl]. ( 4 1 ) 

W e have the fo l lowing theorem. 

Theorem 4. Consider a full-order observer-based controller with a 

gain determined from (41). Let MJ(S,J) he the resulting recovery 

matrix. Then, | | M / ( s , 7)11//^ is strictly less than 7 and tends to 7* as 

7 — 7*. 

Proof : I t follows s imply from the results o f [18]. I 

Remark 4. We note that 7 acts here as a tuning parameter. Since 

at the beginning we do not know 7*, it could very well happen that 
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a chosen value of 7 may turn out to be less than 7*. In that case, 

the H ARE (40) does not have any positive definite solution even for 

sufficiently small e. Then, one has to increase the value of 7 and try 

to solve the H^-ARE once again for P{j) > 0. One has to repeat this 

procedure as many times as necessary. 

For the special case of regular problems defined in subsection I V . A , 

there exists a method of finding the gain that does not require the 

addi t ional parameter e. It is given by [6], 

K(j) = B u o + P ( 7 ) C * 2 i 0, ( 4 2 ) 

where P (y) := Ρ is the posi t ive semi-definite solution o f 

AXP + PA[ - ΡΟ'οί00\οΡ + Β Ι ΛΒ [ λ + ^PF'FP = 0, 

such that X(A\ - C20C2,qP + 7~
2
F' FP) C Cr. A full-order observer-

based controller wi th gain obta ined from ( 4 2 ) will produce a C L T R 

design such that | | M / ( . s , 7)11//^ is s tr ict ly less than 7. 

Apparen t ly , the gain A ' ( 7 ) obta ined via the 7/oo-optimization a lgo-

r i thm of equations (40 ) and ( 4 1 ) assigns a particular t ime-scale struc-

ture and eigenstructure to the observer dynamic ma t r ix A0. A n in-

vest igat ion into the exact nature of t ime-scale structure and the eigen-

structure of A0 as 7 —+ 7* is still an open research p rob lem. But we 

like to point out that , as in the A T E A design procedure , the //co-

opt imiza t ion a lgor i thm makes the corresponding M_(s,j), Mit(s,j) 

and M c o ( s , 7 ) zero asymptot ica l ly as 7 —» 7*. A l s o , the corresponding 

Me(s) is shaped in a particular way so that the infimum of | | M j ( s ) ! ! / / ^ 

is at tained as 7 —* 7*. In so doing, in addi t ion to Aco(7), some elements 

o f A e ( 7 ) may be pushed to infinite locations in C~ as 7 —• 7*. Investi-

gat ion o f these and other propert ies of H ^ - o p t i m i z a t i o n a lgor i thm of 

equat ions ( 4 0 ) and ( 4 1 ) is outside the scope of this paper. 

V . C O M P A R I S O N O F 4 A T E A ' A N D C A R E ' - B A S E D 
D E S I G N A L G O R I T H M S 

A comparison is needed between op t ima l or subopt imal design schemes 

based on solving algebraic Riccat i equations ( A R E ' s ) as described in 
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section I V and the asympto t ic t ime-scale and eigenstructure assign-

ment ( A T E A ) design schemes of section I I I . In this regard , our earlier 

paper [9] discusses several relat ive advantages and disadvantages of 

A T E A and A R E - b a s e d designs. Here , we examine A T E A design and 

opt imiza t ion-based designs from two different perspect ives : ( i ) numeri-

cal s impl ic i ty and, ( i i ) flexibility to use all the available design f reedom. 

L e t us first consider the numerical aspects of bo th design methods . 

I t is clear that the major part o f op t imiza t ion-based design a lgor i thms 

of section I V lies in solving posi t ive definite solution o f a parameter-

dependent A R E repeatedly for different values o f the parameter σ or 

c. I t is wel l -known that these A R E ' s become numerical ly 'stiff' when 

the parameter takes on values that are close to a critical value. T o be 

specific, the H2-AKE becomes stiff as the parameter σ takes on larger 

and larger values, whi le the / / ^ - A R E becomes stiff when 7 approaches 

7*. T h i s is due to the interaction of fast and slow dynamics inherent 

in such equat ions. Thus , the numerical difficulties occur not only due 

to the repe t i t ive solution o f A R E ' s but also due t o the 'stiffness' o f 

such equat ions. On the other hand, as ev ident from section I I I , A T E A 

adopts a decentral ized design approach and in so doing al leviates bo th 

the p rob lem of stiffness and the need for repe t i t ive solution of a lgebraic 

equat ions. T h a t is, in A T E A , interaction between the slow and various 

fast t ime-scales is isolated by working wi th the asympto t i ca l ly finite 

and infinite eigenstructures in the observer dynamic mat r ix separately. 

T h e tuning parameter σ merely adjusts the relat ive size of different fast 

t ime scales and is int roduced only parametr ical ly in the construct ion of 

the final gain. Hence , this procedure presents no numerical difficulties 

wha tsoever as the parameter takes on larger and larger values. 

A n o t h e r factor of impor tance in selecting a design procedure is its 

f lexibi l i ty in addressing all the available design f reedom. A s summa-

rized in section I I , there exists considerable amount o f f reedom to shape 

the recovery mat r ix through eigenstructure assignment to the observer 

dynamic mat r ix A0. Such a f reedom can be uti l ized to shape Me(s), the 

l imit of the recovery mat r ix . A n y opt imiza t ion-based m e t h o d adopts 

a part icular way of shaping Me(s) as d ic ta ted by the mathemat ica l 
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min imiza t ion procedure . For example , as discussed earlier, in Ho op-

t imiza t ion Me(s) is shaped by assigning some of the eigenvalues o f A0 

to the mirror images of the unstable invariant zeros o f Σ υ ι υ, whi le the 

associated set o f left-eigenvectors of A0 coincide with the correspond-

ing right input-zero directions of Hyw. Such a shaping obvious ly l imits 

the available design freedom, and may or may not be desirable f rom 

an engineering point of v i e w . N e x t , available design f reedom can also 

be uti l ized to characterize appropr ia te ly the behavior o f a sympto t i ca l ly 

infinite or o therwise called fast eigenvalues of A0. W h a t we mean by 

the behavior o f fast eigenvalues is: ( a ) their asympto t ic directions and, 

( b ) the rate at which they go to infinity, i.e. the fast t ime-scale struc-

ture of A0. A s demonstra ted in [9], the behavior of fast eigenvalues 

has a dramatic effect on the resulting controller bandwid th . A g a i n , 

op t imiza t ion-based design methods fix the behavior o f fast eigenvalues 

in a part icular way that may or may not be favorable to the designer 's 

goals . W e bel ieve that the abili ty to utilize all the available design 

f reedom is a valuable asset; in particular, explor ing such a f reedom in 

the case where comple te recovery is not feasible is of dire impor t ance . 

A T E A design methods of section I I I put all the available design f reedom 

in the hands of designer and hence are preferable to op t imiza t ion-based 

designs of section I V . Howeve r , a clear advantage o f the op t imiza t ion -

based schemes is that at the onset of design, they do not require much 

systematic planning and hence are s t ra ightforward to apply. In fact, 

one s imply solves the concerned A R E ' s repeatedly for several values of 

the tuning parameter until an appropr ia te subopt imal design is found. 

A d m i t t e d l y , A T E A design does not have such a s implici ty. O n e needs 

in A T E A design to come up wi th a careful ut i l izat ion o f the avai lable 

design freedom and thus the selection of available design parameters 

that meet the practical design specifications. T h i s can be done by a 

s imple i tera t ive adjustment. A t each i terat ion, the required calculat ion 

in A T E A design procedure is s t raightforward and computa t iona l ly in-

expens ive with added advantage that the a lgor i thm does not invo lve 

solving any ' s t i f f equations. 
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V L N U M E R I C A L E X A M P L E S 

Cont ro l of f lexible mechanical systems has been o f interests in recent 

years . Presented in this section is a design example for c losed- loop 

transfer recovery taken f rom the benchmark p rob lem for robust control 

o f a f lexible mechanical sys tem [16]. A l t h o u g h s imple in nature, this 

p rob lem wil l however p rov ide us a design case where the concept of 

c losed- loop transfer recovery can be fully i l lustrated. T h e p r o b l e m is to 

control the displacement o f the second mass by app ly ing a force t o the 

first mass as shown in figure 1 be low. A t the start, it is s imple to verify 

that the basic open- loop system has a pair o f degenera te eigenvalues at 

the origin and one pair o f flexible modes . Equat ions for the dynamic 

F igure 1: A T w o - M a s s - S p r i n g Mass Sys tem 

mode l are g iven be low, 

miX\ — k(x-2 — x\) + u - f w\ 

m.oXo — k(x\ — xo) 
(43) 

0 0 1 0 " " x\ 

# 2 0 0 0 1 # 2 

*1 — k/mi k/m\ 0 0 V\ 
v

2 k/m<) — k/mo 0 0 t'2 

+ (ll - f Wi) 

where ιιΐχ — ?7?o = k\ ko 1, Xi, i 

0 

0 

1 /mi 

0 

( 4 4 ) 

1,2, is the posi t ion o f the 

i-th mass and V{ the veloci ty . T h e plant model used for robust control 
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synthesis and closed-loop transfer recovery is g iven by, 

- 0 0 1 ο- -ο ο - -o-
Ü 0 0 ι 

X + 

Ü Ü Wi + 0 
X — 

- 1 1 0 0 
X + 

1 1 W 2 

+ 
1 

. 1 - 1 0 0 . . 0 - 1 . _0_ 

" l - 1 0 0" 

Z 2 0 1 0 0_ 

T h e disturbance input ιυ2 and the control led output z\ are in t roduced 

as fictitious input and output variables to represent effects o f the un-

certain spring parameter k in a feedback set t ing [19]. T h e second 

control led output z2 is a performance variable whose response to a 

unit- impulse disturbance applied at w\ must have a set t l ing t ime of 

15 seconds. T o begin , we synthesize a state-feedback design for robust 

/ / co -cont ro l to variat ion in the spring constant k according to the re-

sults o f [19] and define it as our target c losed-loop transfer function . 

T h e full-state feedback gain matr ix is g iven as fo l lows, 

F — [1.5059 - 0 . 4 9 4 2 1.7379 0.93181] ( 4 6 ) 

Singular value plot o f this closed-loop transfer function Tzw(ju>) is 

shown in figure 2. Transient responses to a unit impulse input w\ — 6(t) 

are given in figure 3 showing that posit ion response o f the second mass 

has a. set t l ing t ime less than 15 sec, as specified in the design challenge 

p rob lem of [16]. T h i s state-feedback design is ex t remely robust to vari-

ation in the spring constant k; namely the closed-loop sys tem remains 

stable for 0 < k < oo. Our design goal is to recover the per formance 

achieved under this state-feedback design using output-feedback and 

full-order observer-based controllers in ( 5 ) . 

Before we enter into the synthesis of C L T R , it is impor tan t to note 

that the recovery is highly dependent on the structural proper t ies be-

tween the selected set o f measurement variables y and the disturbance 

inputs w. First o f all, the analysis given in Par t 1 [1] can be used to ex-

amine different possibilit ies in the measurement output selection for the 

closed-loop recovery. T a b l e I summarizes the results o f C L T R analysis 

for 7 sets of measurement variables. N o t e that the analysis points out 
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immed ia t e ly that, wi th the target c losed-loop transfer function be ing 

arbitrary, exact recovery ( i .e E C L T R ) is not possible. F r o m the g iven 

set o f sensors, only three of them (namely case c, case f a n d case g ) can 

be used to achieve asympto t ic recovery. T h a t is, in these cases, one can 

design a full-order observer-based controller wi th high gain to recover 

the target c losed- loop transfer function asymptot ica l ly . In subsection 

V I . A we present a C L T R design using the sensor set in case b . T h i s set 

is the same as the one stated in [16] and the target c losed- loop transfer 

function is unfortunately not recoverable in this case. Subsect ion 6.2 

wil l present the results o f an asympto t ica l ly recoverable design using 

the measurement set in case g. No t i ce that in the lat ter case, a symp-

tot ic recovery of the target transfer function Tzw(s) can only be done 

wi th high observer gain. 

A . Non-Recoverable Design Case 

L e t ' s consider the case where only measurement of posi t ion o f second 

mass is available, i.e in case b of T a b l e I where 

C 2 = [ 0 1 Ü 0],£>2i = [ 0 0 ] , I > 2 2 = 0 ( 4 7 ) 

F r o m Tab l e I , we recognize immedia t e ly that there are severe l imita-

tions in the recovery design imposed by the presence o f the M e ( s ) - t e r m 

wi th nc — 2. Under this circumstance, there are clearly a var ie ty of 

ways one can shape the te rm M e ( s ) in our full-order observer-based 

control ler designs. Thus , it is critical that one examines our design 

goals carefully in terms of defining the l imit of recovery mat r ix Me(s). 

It should be noted that of all the three methods presented, only the 

A T E A procedure can be used to arbitrari ly shape the t e r m Me(s). 

Opt imiza t ion-based methods will produce a l imit of recovery mat r ix 

Me(s) as discussed in section V . T a b l e I I shows a sequence o f design 

possibili t ies using the three me thods discussed in sections I I I and I V . 

O f course, within each design me thod , the genera ted sequence is pa-

rameter ized by its own scalar tuning parameter ; for example , in the 

A T E A design we invoke the tuning parameter σ wi th a p roper ly se-

lected t ime-scale structure, while in H n - and 7/oo-opt imizat ion meth-
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ods the parameters are σ and 7 respect ively. Tendency o f all these 

sequences of designs is to make the corresponding part i t ions M _ ( s , c ) , 

Mb{s, c) and M ^ s , c ) zero as the tuning parameter c ( i . e . c — σ for the 

A T E A design and for / / o -op t imiza t ion design, and c — 7 for the H O Q -

opt imiza t ion des ign) tends to the appropr ia te l imi t ing value. A s seen in 

figure 4, the norm of the observer-gain mat r ix K(c) in these sequences 

o f recovery designs grows unbounded even in the case where c losed-loop 

transfer recovery is not possible. Shown below are the corresponding 

l imi t ing recovery mat r ix Me(s) for each of the design me thods . In this 

example , the l imit o f recovery matr ix for Ho-optimization is 

— x [0.1499s + 0.0376, 0.0434s + 0.0684] 
M A S)

 = , 2 + 0.7071« + 0.25
 ( 4 8) 

while the one for the A T E A design is as fol lows, 

— /v [0.1082s + 0.0122, 0.0434s + 0.0648 ] 

s- + 0.625s -f 0.08125 

For the / / c o - o p t i m i z a t i o n , the corresponding l imi t of recovery mat r ix 

cannot be de termined since one of the eigenvalues tends to infinity. 

P lo t s of the singular values of the recovery mat r ix Mj(s) are shown in 

figure 5 for the l imi t ing case ( i .e corresponding to design case number 

11 of T a b l e I I ) in all three design methods . No t i ce that the curves 

corresponding to the A T E A and H o design cases approach the l imit of 

recovery matr ix Me(s) g iven in equations ( 4 8 ) and ( 4 9 ) respect ively. 

Due to these differences in M€(s)) we have therefore different closed-

loop transfer recovery error E(s). T h e L e o - n o r m of E(s) is shown in 

figure 6 corresponding to every design case listed in T a b l e I I . N o t e 

that none of the design methods will yield E C L T R or A C L T R as ev-

ident f rom the analysis summar ized in T a b l e I . I t clearly shows that 

the error cannot be made zero regardless of what me thod we use for 

the recovery design. However , depending on the way we select M e ( s ) , 

different design considerations can be traded-off in this non-recoverable 

case. For example , one design consideration is the robustness to varia-

tion in the spring constant k\ the results are shown in figures 7 to 9 for 

the A T E A , H o and / / c o - o p t i m i z a t i o n methods respect ively. Clearly, 

due to its comple te flexibili ty in selecting Me(s), the A T E A design 
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procedure can be used to y ie ld significantly be t te r s tabi l i ty robustness. 

Transient responses to a unit impulse input in w2 are shown in figures 

10 to 12. Clear ly , response peaks from all the output-feedback full-order 

observer-based controller designs are much higher than those achieved 

under state feedback. Results using op t imiza t ion-based me thods have 

the desired set t l ing t ime o f 15 sec. H o w e v e r , robustness o f these designs 

are not as g o o d as those from the A T E A design m e t h o d which however 

exhibi ts a longer set t l ing t ime . T h e example illustrates that there are 

many degrees of f reedom in selecting Me(s); the one shown here f rom 

the A T E A design is not meant to be the best among all possible choice 

o f AIe(s). For example , one would need to modi fy Me(s) if the set-

t l ing t ime of 15 seconds is j u d g e d more impor tan t than the robustness 

considerat ion. A n advantage of the A T E A me thod is that the observer 

design gain can be wri t ten expl ic i t ly in terms of the tuning parameter 

σ as fol lows, 

Λ ' ( σ ) 

Γ 2 .6562σ
2
 - 4σ 

4σ 

-3 .9047σ
2
 + 1.6 

4 . 2 5 σ
2
 - 1.6 

( 5 0 ) 

Β . A s y m p t o t i c a l l y R e c o v e r a b l e D e s i g n C a s e 

In this subsection, we consider the case where both posi t ion and accel-

erat ion o f the second mass are available for feedback. T h e measurement 

output equat ion is given by 

C 2 

0 1 0 0 

1 - 1 0 0 
, £>21 

0 0 

0 0 
22 ( 5 1 ) 

T h i s corresponds to case g in T a b l e 1. Since n + = nc — 0, the ta rget 

c losed- loop transfer function will be recoverable , but having nj — 4 

such a sys tem can only recovered asymptot ica l ly . Fur thermore , this 

implies that in all design methods the l imit of recovery mat r ix Me 

will be identical ly zero , and hence the / / c o - n o r m of the actual recov-

ery error E(s) approaches zero asympto t i ca l ly as shown in figure 13. 

T a b l e I I I shows a sequence of design possibili t ies from the three meth-

ods discussed in sections I I I and I V . A g a i n the observer-gain in these 

sequences of designs for a sympto t i c recovery wil l b e c o m e unbounded; 
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these results are shown in figure 14. Robustness results are shown in 

figures 15 to 17. Possibly, the significance of the A T E A design me thod 

lies in its f lexibil i ty to shape the design outcomes; for example , figure 

15 shows that the A T E A design has significantly be t te r robustness at 

the low-gain region where they can tolerate infinitely large change in 

the spring constant k. Transient responses to a unit- impulse input in 

w\ are shown in figures 18 to 20. By increasing the observer gain, all 

the responses wil l approach those achieved under state feedback; this is 

to be expec ted for an asympto t ica l ly recoverable case ( A C L T R ) . A g a i n , 

in the A T E A me thod the observer design gain can be wri t ten expl ic i t ly 

in terms of the tuning parameter σ as follows, 

Κ(σ) 

2σ 2σ 

2σ 0 

σ
1
 σ

1
 — 1 

(52) 

V I L C O N C L U S I O N S 

Presented in this paper are three design methods for c losed-loop trans-

fer recovery. A l s o discussed is the significance of each design m e t h o d 

in terms o f design simplici ty, numerical difficulty and f lexibi l i ty in uti-

lizing the available design freedom to shape the l imit o f recovery ma-

tr ix. A l l three methods of design prov ide expl ic i t means o f de te rmin ing 

the appropr ia te observer gain mat r ix for c losed-loop transfer recovery 

whenever it is possible. T h e design solution is usually character ized 

by a tuning parameter . In opt imiza t ion-based methods , the gain is 

impl ic i t ly parameter ized in terms of the solution of parameter ized non-

linear algebraic Riccat i equations ( A R E ' s ) . On the other hand, A T E A 

design does not require solution of nonlinear algebraic equat ions. Here 

the tuning parameter enters the design solution only in the final step 

where we construct the compos i te observer gains from several subsys-

t em designs. A s the tuning parameter tends to its l imi t ing value, a 

sequence of observer-based controllers is generated that yields in the 

l imit a certain recovery mat r ix . For opt imiza t ion-based methods , the 

l imi t ing norm of the recovery matr ix is s imply the respect ive infimum 
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under H 2 (o r / / ^ - o p t i m i z a t i o n over all possible s tabi l iz ing observer 

gains. Opt imiza t ion-based methods usually shape the recovery ma t r ix 

in a part icular way which may or may not be meaningful in an engi-

neering point o f v i e w . Our experiences indicate that these designs have 

unnecessarily high gain than those achieved under the A T E A me thods 

for a comparab le size of the recovery error. Fundamental ly , the A T E A 

m e t h o d offers comple te flexibility in shaping the recovery error uti-

l izing all the available design freedom within the constraints imposed 

by the structural propert ies of the g iven sys tem. In the case o f ex-

act c losed-loop transfer recovery ( E C L T R ) , the A T E A m e t h o d can in 

all circumstances be used to obta in the appropr ia te observer design. 

B y contrast opt imiza t ion-based design approaches are s impler to use; 

however they are prone to numerical problems associated wi th so lv ing 
u
st iff" algebraic equations when the tuning parameters approach a cer-

tain crit ical l imi t . Different aspects of the C L T R design are i l lustrated 

in a numerical example for both a non-recoverable and a recoverable 

si tuations. A l l the design methods discussed in the paper have been 

implemented in a " M a t l a b " software package. 
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T a b l e I : Analys is of C l o s e d - L o o p Transfer R e c o v e r y 

Case Measurement n b nc 
nf C L T R 

a 0 0 0 2 2 Non- recoverab le 

b X'2 0 0 0 2 2 Non- recoverab le 

c 0 0 0 0 4 A s y m p t o t i c 

Recoverab le 

d Xl ,Vi 0 0 1 2 1 Non- recoverab le 

e 0 0 1 2 1 Non- recoverab le 

f xi ,ai 2 0 0 0 2 A s y m p t o t i c 

Recoverab le 

g *2 , 02 
0 0 0 0 4 A s y m p t o t i c 

Recoverab le 

T a b l e I I : Values of the Tuning Design Parameters (case b ) 

Design N o . A T E A f / 2 - O p t i m i z a t i o n # o o - O p t i m i z a t i o n 

σ σ 7 
1 0.75 1 1 

2 1 10 0.9 

3 2 Ι Ο
2 

0.8 

4 3 Ι Ο
3 

0.7 

5 4 Ι Ο
4 

0.6 

6 5 Ι Ο
5 

0.5 

7 6 10* 0.4 

8 7 10 ' 0.3 

9 8 1 0
s 

0.275 

10 9 10
y 

0.25 

11 10 1 0
1U 

0.225 
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T a b l e III: Values of the Tun ing Design Paramete r s (case g ) 

Design N o . A T E A /^-Opt imizat ion / /co-Optimization 

σ σ 7 

1 0.25 1 1 

2 0.5 10 0.9 

3 1 10
2 

0.8 

4 2 10
3 

0.7 

5 5 10
4 

0.6 

6 10 10
5 

0.5 

7 15 10
6 

0.4 

8 20 10' 0.3 

9 30 10
8 

0.275 

10 40 10
a 

0.25 

11 50 10
1U 

0.225 

-100 L— 
10-2 10-1 10ο 

Frequency (rad/sec) 

101 102 

F igure 2: Singular Value P l o t o f T a r g e t C l o s e d - L o o p Tzw(s) 
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F igure 3: Impulse Responses in the Full-State Feedback Design 
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F igure 4: N o r m of Observer Gain Λ ' for Designs in case b 
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Figure 5: Singular Values of M;(s) for Design N o . 11 (case b ) 
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Figure 6: Loo-Norm of E(s) for Designs in case b 
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Design Case No. 

Figure 8: Robustness of Ho Designs (case b ) to Var ia t ion in k 
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Figure 10: Impulse Responses for A T E A Design N o . 1 (case b ) 
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Figure 11: Impulse Responses for Ho Design N o . 3 (case b ) 
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F igure 13: L o o - N o r m of E(s) for Designs in case g 
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F igure 14: N o r m of Observer Ga in A ' for Designs in case g 
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Figure 15: Robustness of A T E A Designs (case g ) to Var ia t ion in k 
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Figure 16: Robustness of Ho Designs (case g ) to Var ia t ion in k 
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