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I. INTRODUCTION

In feedback design many performance and robust stability objectives
can be stated in the form of requirements placed on the maximum sin-
gular values of particular closed-loop transfer functions. The underly-
ing idea of “loop shaping” is that the magnitude (or maximum singular
value) of the closed-loop transfer function can be directly inferred from

the singular value of a corresponding open-loop transfer function. The
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prominent design procedure under the terminology LQG/LTR [15] is
one such design methodology in multivariable systems that is based on
the concept of loop shaping. This design procedure is divided into two
steps. The first step involves the design of a stabilizing state-feedback
law that yields a loop transfer function satisfying the design specifi-
cations. The loop properties are usually described in relation to an
open-loop system (e.g. for a loop transfer function broken at either the
control or measurement paths). Such an open-loop transfer function
defines the target loop shape. The second step is to match this tar-
get loop shape using an output-feedback design following a procedure
called loop transfer recovery (LTR). This step involves the design of
an output-feedback control law (typically an observer-based compen-
sator) such that the resulting open-loop transfer function would have
either exactly or approximately the same target loop shape as the one
achieved under state feedback. In other words, the idea of LTR is to
design a compensator to recover a specific open-loop transfer function.

In this paper we examine the idea of loop recovery from a different
perspective. Namely, we develop the concept of recovery based on
the closed-loop transfer function directly, as opposed to the open-loop
transfer function found in the case of a traditional LTR design. The
problem can be stated as follows. Suppose that one is able to synthesize
a state-feedback law that yields satisfactory closed-loop performance.
And let’s define the closed-loop transfer function between the external
input to the controlled output under state-feedback law to be the target
closed-loop transfer function. Clearly from this definition, the closed-
loop target transfer function is completely defined by the selection of a
full-state feedback gain matrix. Now we would like to design an output-
feedback control law with a closed-loop transfer function that matches
either exactly or approximately the target closed-loop transfer function.
In this respect, we are dealing with the problem of closed-loop transfer
recovery (CLTR) instead of open-loop transfer recovery (LTR).

It should be pointed out that the procedure of CLTR can further
be used as an effective tool in the design of multivariable control sys-

tems. Ior example, one can employ the procedure of CLTR in the
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synthesis of Ho,-norm-based control-laws. Namely, we start with a tar-
get closed-loop transfer function achieved in H.,-optimization under
state feedback. Then we proceed to the design of a compensator (with
either a full-order, reduced-order, Luenberger or generalized observer-
based structure) that recovers the desired target closed-loop transfer
function.

Our study of the mechanism in CLTR is applicable to a general
class of systems and aims at three important theoretical issues:

(a) characterization of the recovery error and the available freedom
in the design of output-feedback control-laws for a given sys-
tem and for an arbitrarily specified target closed-loop transfer
function,

(b) development of necessary and/or sufficient conditions for a tar-
get closed-loop transfer function to be either exactly or asymp-
totically recoverable in a given system, and

(c) development of necessary and/or sufficient conditions on a given
system such that it has at least one recoverable (either exactly
or asymptotically) target closed-loop transfer function. These
are some of the theoretical issues pertaining to the analysis of
CLTR. Of course, one also needs to examine issues in CLTR
that are related to systematic design algorithms for the recovery
process.

This paper concerns mainly with the analysis of the CLTR mecha-
nism. A sequel to this paper will address in details the design issues.
The objective at hand is however to analyze methodically the mech-
anism of CLTR using an observer-based controller in its most general
setting (i.e covering the cases of full-order, reduced-order and gener-
alized observers). However, in order to limit the length of this paper,
results are provided only for the full-order and reduced-order observer-
based controllers. The basic methodology and tools used here are akin
to those in [8], [3] and [4]. We would like to point out that the formula-
tion of the controller structure can in many ways impact the recovery
process. Identifying the appropriate controller structure for the recov-

ery task remains a research topic for future investigation.
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The paper is organized as follows. In section II, we define pre-
cisely the problem of closed-loop transfer recovery. Recognizing the
importance of finite- and infinite-zero structure in the LTR problem,
we recall in section I1I a special coordinate basis (s.c.b) of [12] and [10]
that clearly displays the zero structure of a given system. Section IV
deals with all the fundamental analyses of CLTR. In particular, subsec-
tion IV.A deals with the analysis of CLTR via full-order observer-based
control-laws while in subsection IV.B we perform the same analysis for
the case of reduced-order observer-based control-laws. In section V,
we illustrate our results on a lateral autopilot design for a commer-
cial transport airplane. Finally, we draw the conclusion of our work in
section VI.

Throughout the paper, 4’ denotes the transpose of A, A# denotes
the conjugate transpose of A, I denotes an identity matrix while I de-
notes an identity matrix of dimension kxk. A(A) and Re[A(A)] denote
respectively the set of eigenvalues and the set of real parts of eigen-
values of A. Similarly, 0,,,,.[A] and 0,,,;,,[A] denote the maximum and
minimum singular values of A respectively. Ker[V] and Im[V] denote
respectively the kernel and the image of V. The open left-half and the
closed right-half of the s-plane are denoted respectively by ™ and C*t.
Also, R, denotes the subring of all proper rational functions of s while
the set of matrices of dimension ¢ x ¢ whose elements belong to R, is

denoted by M9(R,,).

II. PROBLEM STATEMENT

Let us consider a linear time-invariant system X,

z= Az+ By w+ Bsu,

4

z=Ciz + Dyyw + Diou, (1)
y = Chz + Dajw + Doou,

where 2 € R is the state, u € R™ is the control input, w € R*
is the external signal or disturbance, z € R¢ is the controlled output

and y € R is the measurement output. For convenience, we also



CLOSED-LOOP TRANSFER RECOVERY: ANALYSIS 251

define ¥y, to be the matrix quadruple (A, By, C, Ds1) and T,y for
the matrix quadruple (A, By, Cy, Dy2). Let us assume that the pair
(A, Bo) is stabilizable and the pair (A, C;) detectable. Without loss
of generality, we also assume that [C1, Di1, Dis], [Co, Dai, Daa),
[BY, Di;, D) and [BS, Dy, Dh,) are of maximal ranks. Let F be
a full-state feedback gain matrix such that under the state-feedback

control

u=—-Fz (2)

(a) the closed-loop system is asymptotically stable, i.e. the eigen-
values of A — BoF lie in the left-half s-plane,

(b) the closed-loop transfer function from the disturbance w to the
controlled output z, denoted by T, (s), meets the given fre-
quency dependent design specifications.

We also refer to T, (s) as the target closed-loop transfer function given
by
Tow(s) = (C) = D12 F) (@' + B2 F) ™' By + D (3)

where ® = (sI, — A)~!. Design of the appropriate full-state feedback
gain matrix F' can be done, for example, via Hy-, Ho-theory or eigen-
structure assignment. For design implementation, the next step in the
design procedure is to recover the target closed-loop transfer function
using only a measurement feedback controller. This is the problem of
closed-loop transfer recovery (CLTR) and the focus of this paper.

The problem can be clearly stated using the configuration shown in
figure 1 where P(s) represents the transfer function matrix of the sys-
tem ¥ and C(s) the transfer function of an output-feedback controller.
For a given P(s) and a target closed-loop transfer function Tl (s) in
(3), the problem is to find an internally stabilizing controller C(s) such
that the recovery error defined as

E(S) = Tow(b) - Tzw(s) (4)

F

is either exactly or approximately equal to zero in the frequency region
of interest. Here, T2, (s) represents the transfer function from w to z

for the closed-loop system shown in figure 1. As we shall see, achieving
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wi(s) z(s)
—— -
Plant

u(s) P(s) y(s)

C(s) |-

Figure 1: Plant with an Output-Feedback Controller.

exact closed-loop transfer recovery (ECLTR) is in general not possible.
Hence, it is more appropriate to examine situation where approximate
recovery can be achieved. An approximate CLTR is tied to the notion
that recovery can be achieved to any degree of accuracy. In this pro-
cess, one normally parameterizes the controller C(s) as a function of a
positive scalar parameter o thereby generating a family of controllers
C(s,0). We say asymptotic CLTR (ACLTR) is achieved if

T7,(s,0) — Tou(s)

as o — oo pointwise in s, or equivalently
E(s,0) —0

as 0 — oo pointwise in s. From the point of view of design, once the
conditions of ACLTR have been verified, a controller C(s,o) with a
particular value of ¢ can be found that will produce the desired level
of recovery. Before we proceed to the analysis of CLTR, we need to
provide precise meanings to the terminologies ECLTR and ACLTR.
The following are definitions that characterize precisely the notions of

ECLTR and ACLTR.

Definition 1. The set of admissible target closed-loop transfer func-
tions T(X) for the plant ¥ is defined by

T(Z) = {T.u(s) € M>X¥(R,) | Tsw(s) is as defined in (3) and

AMA - By,F)ecC}.
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Definition 2. T}, (s) € T(X) is said to be exactly recoverable (ECLTR)
if there exists a C(s) € M™*P(R,,) such that
(i) the closed-loop system comprising of C(s) and ¥ as in (1) is
asymptotically stable,
(i) T2,(s) = Tou(s).

Definition 3. T, (s) € T(X) is said to be asymptotically recoverable

(ACLTR) if there exists a parameterized family of controllers C(s, o) €

M™XP(R,) where ¢ Is a scalar parameter with positive values such that

(i) the closed-loop system comprising of C(s,0) and ¥ as in (1) is
asvmptotically stable for all ¢ > ¢* where 0 < ¢ < 00,

(ii) T2,

limits as 0 — oo the finite eigenvalues of the closed-loop system

(s,0) — T, (s) pointwise in s as ¢ — co. Moreover, in the

should remain in C~ .1

Definition 4. T,,(s) belonging to T(X) is said to be recoverable if

T,w(s) is either exactly or asymptotically recoverable.

Definition 5.

1. The set of exactly recoverable target closed-loop transfer func-

tions for the system X is denoted by Tgg(X).

2. The set of recoverable (either exactly or asymptotically) target
closed-loop transfer functions for the system ¥ Is denoted by

TA(Z).

3. The set of target closed-loop transfer functions which are only
asymptotically recoverable but not exactly recoverable for the

system ¥ is denoted by T ,x(X).
Obviously, Ty (X) = Ten(Z)U T, n(X).

Remark 1. The control-law C(s) in the above definitions is not re-

stricted to any particular structure. However, in this paper we study

1Here we have strengthened the notion of closed-loop stability by excluding those
cases where, in the limits as ¢ — oo, some finite eigenvalues of the closed-loop
system would be on the jw axis. This avoids the problem of having an almost
unstable behavior of the closed-loop system for large o.
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the closed-loop transfer recovery for two specific structures of C(s);
namely, full-order and reduced-order observer-based controllers. Fur-

thermore, we label
{Ta(D), Ten(T), Tun(X)}

with superscript f (for full-order) and r (for reduced-order) as
{TL(D), TL(®), TI(E))

and
{TL(E), Tha(E), Tin(E)}

to signifly results related to these particular controller structures.

The analysis of CLTR mechanism carried out here examines three
fundamental issues. The first issue concerns with what can and what
cannot be achieved for a given system and for an arbitrarily specified
target closed-loop transfer function. For a given system, the second
issue is to establish necessary and/or sufficient conditions on the tar-
get closed-loop transfer function so that it can be either exactly or
asymptotically recovered. In another word, we characterize completely
the set T, (X) of recoverable target closed-loop transfer functions. The
third issue is to establish necessary and/or sufficient conditions on a
given system such that it has at least one recoverable (either exactly
or asymptotically) target closed-loop transfer function. That is, what
are the conditions on a given system % so that the set of recoverable

target closed-loop transfer T, (¥) is nonempty?

II1. PRELIMINARIES

We recall in this section a special coordinate basis (s.c.b) of a linear
time-invariant system [12], [10]. Such a s.c.b has a distinct feature of
explicitly displaying the finite and infinite zero structure of a given sys-
tem and will play a very important role in both the analysis and the

design of closed-loop transfer recovery. Consider the system character-
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1zed by

(Nl

(5)

where £ € R*, & € R™ and § € R*. Without loss of generality, we
assume that matrices [C, D] and [B’, D’} are of maximal rank. It is
simple to verify that there exist non-singular transformations U and V

such that

0 0

where mg is the rank of matrix D. Hence, hereafter and without loss

UDV = [1’"0 0] , (6)

of generality, it is assumed that matrix D has the form given on the

right-hand side of (6). One can now rewrite the system of (5) as

3 A: + [Bo Bl][gf],

g() CO s Imo 0 1‘}‘0
o=@l U o]

where the matrices By, By, Cy and C; have appropriate dimensions.

(7)

We have the following theorem.

Theorem 1 (s.c.b). Consider the system ¥ characterized by (A, B,
C, D). There exist nonsingular transformations I'y, T'2 and T3, an

integer my < m — mg and integer indexes qi, i = 1 to my, such that

.7:’:F1£L’ , 'fIF')y, ﬂ:rgu

@ = [ol, o, 2, @) 2o =[(27) (2F)7
rpo=[2h, 2, :L‘Ifmf]/
y=1[wo, vp. w) o v =l vz ym, L
w=[uy, Wy, w)l o oup = [un, ug, U, ]

we have the following system of equations:
tg = Ag.x, + Booyo+ Loyr + Loy (8)

aa™a

if = Afud + Blovo + Liys + Liys (9)
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zpy = Apxy + Broyo + Loryy . yp = Coxyp (10)

T, = 44cc$c+Bc0y0+chyb+Lc‘fyj +BC[E_ z, +EZ¢x:]+Bcuc (11)

Yo = Cy g +Cga$++CObIb+COC$c+COf$j + ug (12)

a

and for each i =1 to my,

771,

zy, = Apxzp+Lioyo+Ligys+By, [Ui+Eial’a+Eib$b+Eic$c+Z Eijzy) ]
Jj=1

(13)

vi=Cray .y =Cray. (14)

Here the states 7, v}, a3, x. and z; are respectively of dimension

a

n¥. np, n. and

n T,

a
my

Tlf = Z qi
i=1

while 2; is of dimension g; for each 1 = 1 to my. The control vectors ug,
us and u. are respectively of dimension mg, my and m, = m—mg—my
while the output vectors yo, y; and yy are respectively of dimension
po = my, py = my and py, = p — po — py. The matrices Ay, By, and
Cy, have the following form:

0 I, _ 0
‘4f-:[o v ] By, = [ 1]! Cp,=101,0,---, 0. (15
(Obviously for the case when ¢; = 1, A;,= 0, By, = 1 and Cy= 1.)
Furthermore, we have A(A7,) € C™, AM(AT,) € CT, the pair (A, B.) is

controllable and the pair (A, Cy) Is observable. Also, assuming that

aa)

x; are arranged such that ¢; < ¢;41, the matrix L;; has the particular
form,
Llf = [Lilv Li:’u Ty LL 711 01 07 Ty 0].

Also, the last row of each Ly is identically zero.

Proof : This follows from theorem 2.1 of [12] and [10]. [ |
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We can rewrite the s.c.b given by theorem 1 in a more compact

form,
A;a 0 L;be 0 L;fo
0 Af, LLCG, 0 LGy
Fl_l(A - BOCO)Fl = 0 0 Abb 0 Lbej s
BCE'C—G BCE;"G LCbe Ace LCij
BfEa_ BfE;' BfEb BfEc Af
B, 0 0
B 0 0
FI_I[BO By]Tg=|Bw 0 01,
BcO 0 Bc
By By 0
Co Cs. Cf. Co Coc Cof
r;! =0 0 0 0
Ch 0 0 ¢y O 0
and
Im, 0 0
;'DT3=| 0 0 0
0 0 ¢

In what follows, we state some important properties of the s.c.b which

are pertinent to our present work.

Property 1. The given system T s right-invertible if and only if z,
and hence y, are nonexistent (n, = 0, p, = 0), left-invertible if and
only if . and hence u, are nonexistent (n, = 0, m. = 0), invertible if
and only if both x, and z. are nonexistent. Moreover, Vs degenerate

if and only if it is neither left- nor right-invertible.

Property 2. We note that (Aw, Cs) and (Ay,, Cy,) form observable
pairs. Unobservability could arise only in the variables z, and z.. In
fact, the system Y is observable (detectable) if and only if (Aobs, Cobs)
is an observable (detectable) pair, where

_ Aaa 0 _ CaO CCO
Aobs — [ BcEca Acc ]» Cobs — |: Ea Ec ] s

Az, 0
Aaa - [ 0 A+ ] )

aq
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Cao = [Coo C:o]‘ E,=[E;, EY], Eea=[ES, EL]
Similarly, (A.., B.) and (Ay,, By,) form controllable pairs. Uncon-
trollability could arise only in the variables z, and xy. In fact, Y s
controllable (stabilizable) if and only if (A.on, Beon) Is a controllable
(stabilizable) pair, where

Aas  LatCy Bao  Lay ]
Acon = ! y ) Bco = * s
[ 0 A[,z, ] I [ BbO Lbf

B L7 "

¢ BaO ¢ Lab ¢ Laf
Property 3. Invariant zeros of Y are the eigenvalues of A,,. More-
over, the stable and the unstable invariant zeros of  are the eigenvalues

of A7, and A7,

+., respectively.

There are interconnections between the s.c.b and various invariant
and almost invariant geometric subspaces. To show these interconnec-

tions, we define

o VI(A, B, C, D) — the maximal subspace of £” which is (A +
BF)—invariant and contained in Ker(C + DF’) such that the
eigenvalues of (A + BF)|V¢ are contained in Cy C C for some F.

e SY(A, B, C, D) -— the minimal (A 4+ K(')—invariant subspace
of ™ containing in Im(B + A D) such that the eigenvalues of the
map which is induced by (A + K C) on the factor space R"/SY

are contained in C, C C for some K.

For the cases that C; = C, €, = €7 and C; = C*, we replace

<

the index ¢ in V¥ and &Y by ‘+’, ‘=" and ‘47, respectively. Various
components of the state vector of s.c.b have the following geometrical

interpretations.

Property 4.
1.z ®zf ®z, spans V*(A, B, C, D).
2. 27 ®u, spansV~ (A, B, C, D).
3.z} @z, spans V¥(4, B, C, D).
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4. z. Dy spans S*(A, B, C, D).
5.z, dz.day spans ST(A, B, C, D).
6. 2} da. by spans S™(A, B, C, D).

IV. GENERAL ANALYSIS

In this section, we deal with the general analysis of closed-loop transfer
recovery in the cases of full- and reduced-order observer-based con-
trollers. We will study three fundamental issues in closed-loop transfer
recovery. The first issue is concerned with what can and what cannot
be achieved for a given system and for an arbitrarily target closed-
loop transfer function. The second issue deals with the development
of necessary and/or sufficient conditions a target closed-loop transfer
function must satisfy in order for it to be recovered either exactly or
asymptotically. And the third issue is concerned with the development
of necessary and/or sufficient conditions on a given system such that
it has at least one (either exactly or asymptotically) recoverable target
closed-loop transfer function.

To begin, let us consider Luenberger observer-based controllers which
include as special cases the full-order and reduced-order observer-based
controllers. Lemma 1 in this section gives an explicit expression for the
recovery error function, between the target closed-loop transfer func-
tion and the one realized by a Luenberger observer-based controller.
Lemma 2 expresses CLTR in terms of a transfer function matrix de-
noted here as the recovery matrix. This formulation plays a central
role in the development of our results. Without loss of generality, we
assume that sy = 0 with justification given in Appendix A. Let us

now consider the following Luenberger observer-based controller,
v = Lv+ Gy + Gau,
z = Pv+Jy, (16)
u=—Fz

where v € R with r being the order of the controller and & € R™. It is

well known that, in the disturbance-free case (i.e. w = 0) the variable



260 BEN M. CHEN, ALI SABERI. AND UY-LOILY

# is an asymptotic estimate of the state z provided that the matrix L
is a stability matrix and there exists a matrix Q@ € R"*" satisfying the

following conditions:

QA—LQ =G1Ca, Gy=QBy, JCs+ PQ =1 (17)

Let T%,(s) denote the closed-loop transfer function from w to z with
a general Luenberger observer-based controller. Then we have the fol-

lowing lemmas.

Lemma 1. With the observer defined in (16) and (17), the recovery
error function between the target closed-loop transfer T,w(s) and the

one realized by Luenberger observer-based controller T, (s) is given by

Eo(s) =T (8) = Tow(s) = Touls) - Ma(s) (18)
where
To(s) = (Cy — DisF)( @' 4 BoF) ™' By + Dra, (19)
is the closed-loop transfer function from u to z under state feedback
and
Me(s) = F[P(sI = L)"NQBy — G1D21) — J D2y (20)
Proof : The result follows directly after some simple algebra. |

Lemma 2. Given that the system ¥, is left-invertible. Then

1. Exact recovery takes place (i.e. E;(jw) =0 Vw € R) if and only
if Me(jw) = 0 Vw € R.

2. Asvmptotic recovery is achievable (ie. ||E¢(jw)|| can be made
arbitrarily small for all w € ®) if and only if ||M(jw)|| can be

made arbitrarily small for all w € R.

Proof : It is obvious. |

Note that the conditions given in lemma 2 are not necessary for
E¢(s) to be zero or small if the system X, 1s not left-invertible. Nonethe-
less, they remain as sufficient conditions for the recovery error to be

zero or small. To see this, let us examine the following example.
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Example 1 : Consider a system characterized by

. -1 1 0 1 0
x_[ 1 _l]m+[1 0]114-[1]10,

Let the target closed-loop transfer function be specified by

10
F”[O 1]’

and let

L:[_} _(1)] Glz[é], Gy=By, P=Q=1I, and J=0.

Then it i1s simple to verify that

Te(s) = (541 0], Mz(s)z[_?_]-
S+1
and E¢(s) = T,,(s)M,(s) = 0. Hence exact recovery can take place
even though M(s) # 0.

As seen from the above example when the system I, is not left-
invertible, one may be able to find an observer-based controller such
that M,(s) is nonzero and the recovery error Fy(s) is equal to zero.
However, this situation is fairly limited and may not generally be valid
for other non-left-invertible systems. Thus, a general analysis in closed-
loop transfer recovery entails a detailed study of the matrix M,(s)
which depends on both the state-feedback matrix F' and the observer
parameters. Since the state-feedback gain matrix F' is considered given,
the only degree-of-freedom left for closed-loop transfer recovery is in the
selection of the observer parameters. First of all, the observer param-
eters must be selected such that closed-loop stability of the observer-
based control system is guaranteed. The remaining degrees-of-freedom
in choosing the observer parameters are then used to achieve CLTR.
That is, one uses the available freedom in the observer design to make

the norm of A¢(jw) either zero or small over the range of frequencies
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of interest. Due to the significance of the matrix My(s) in CLTR, we
refer M,(s) as the recovery matrix.

In the next subsections, we focus our attention to full-order and
reduced-order observer-based controllers and perform a complete anal-

ysis of CLTR for each of these cases.

A. Full-Order Observer-Based Controller

In this subsection, we consider the problem of closed-loop transfer re-
covery using a full-order observer-based controller design. State-space
description of a full-order observer-based controller is given by

2 =(A-KCy)z + Bau+ Ky,

(21)

w=—Fz,
where the {ull-order observer gain matrix K is chosen such that A —
K (s is asymptotically stable. The transfer function of this full-order

observer-based controller is
—u(s) = C(s)y(s),

where

C(b) = F('S]n —A + BQF + [X'C'Q)_II\'.

Note that the full-order observer-based controller is a special case of

the Luenberger observer-based controller in (16) and (17) with

L=A-KC(Cs, Gi= K, Gy = Bo,
(22)
P:[n, JZO, Q:]n-

From lenyma 1 it follows that the recovery error and the recovery ma-

trix, denoted here by E((s) and M;(s) respectively, are given by
Ef(5) = Tuls)M; (), (23)
where T, (s) Is as defined in (19) and
Mg(s) = F(®~' + KC2)"Y(B, — K Dq)). (24)

(The subscript ( in (18) and (20) is replaced by f to signify the specific

case of a full-order observer-based controller.)
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1. Andalysis For Arbitrary Target Closed-Loop Transfer Functions

Study of equations (23) and (24) will provide a clear insight into the
basic mechanism of CLTR. In fact, these equations indicate that ex-
amination of the recovery error Ef{s) can be done generally in terms
of the study of My(s). Lemma 1 and the expression for M;(s) given in
(24) will therefore form the basis of our investigation. Since the state-
feedback gain matrix F is considered given, the only degree-of-freedom
for closed-loop transfer recovery is in the selection of the observer gain
K. First of all, in order to guarantee the overall closed-loop stability,

K must be selected such that the observer-dynamic matrix
A, = A— KCy (25)

is asymptotically stable (i.e. A(A,) € C7). The remaining degrees-of-
freedom in choosing K can then be used for the purpose of achieving
CLTR. Now in view of (24) and lemma 2, exact closed-loop transfer
recovery (ECLTR) is possible for an arbitrarily given F if ]\~4/(jw) =0
where M;(s) = F}\f.[f(s) and

M(s) = (sIn — A,)"Y(B1 — K Day). (26)

Since the matrix (jwl, — A,)~! is nonsingular, Ajl(jw) = 0 clearly
implies that B; — K Da; = 0. The class of systems in which B; —
K D4, can be rendered exactly zero is rather restrictive. Hence, one
would most likely resort to an approach based on asymptotic closed-
loop transfer recovery (ACLTR), i.e. to render ]fff(jw) approximately
zero in some sense. As mentioned in section 2, to analyze whether
ACLTR is possible we need to parameterize the controller with a tuning
parameter o. In the case of a full-order observer-based controller, this
parameterization can be simply introduced in the observer gain matrix

K (o). The resulting family of controllers parameterized by K (o) is
C(s,0) = Fsl, — A+ BoF + K(0)Ca] ' K(0). (27)

In this formulation M/ (s) and M ;(s) are now functions of o, denoted

respectively by My (s, o) and ]\?;(s, o). In our analysis and for the sake
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of clarity, we assume that A, is nondefective. This allows us to expand
Mf(s,(f) and hence M,(s,a) in a dyadic form,

n =

Mi(s,0)=)_ - f’iAi (28)

i=1

where the residue matrix R; is given by
R; = W;VH[B, — K(0)Dyy]. (29)

Here W; and V; are respectively the right- and left-eigenvectors associ-

ated with the eigenvalue A; of A, and
wyt =viw =1,.
The matrices ¥ and V' can be partitioned as follows,
W =W, Wy, -, W,] and V =[V], Vo, -, V,]. (30)

In general, all A;, V; and W; are functions of . However for economy
of notation, we will omit the dependence on ¢ explicitly unless it is
needed for clarity.

In what follows, we examine conditions under which the i-th term
in the dyadic expansion of J\Y;(s, o) 1n (28) can be made zero or small.
There are basically two ways to achieve this:

1. The first possibility is to assign the closed-loop eigenvalue A; to

any finite value in C~ while simultaneously rendering the residue
R; zero either exactly or asymptotically, i.e.

Ri = Wi(e)Vi!(0)[By — K(0)Day] =0

or

Ri(0) = Wila)VH (o) [By = K(0)Dsy) — 0

as ¢ — oo. This procedure involves a finite eigenstructure assign-

ment of A,.

2. The other possibility is to make
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pointwise in s as ¢ — oo by placing the eigenvalue A;(o) asymp-
totically at infinity and making sure that the residue Ri(o) is
uniformly bounded as ¢ — oc. It is important to recognize that
placing ); asymptotically at infinity alone will not give the de-
sired result unless the residue R; is also bounded. This amounts

to assigning W;{o) and V;(o) such that
Ri(o) = Wi(0)Vi" (0)[B1 — K(0) D21]

remains bounded while | A; | — oo as ¢ — oo. Thus, this proce-

dure deals with an infinite eigenstructure assignment of A4,.

Two fundamental questions immediately arise in the application of
an eigenstructure assignment technique to this problem of closed-loop
transfer recovery:

(1) How many left-eigenvectors of A, can be assigned to the null
space of [B; — K(o}Da1])' 7 and,

(2) How many eigenvalues of A, can be placed at asymptotically
infinite locations in €~ and at the same time the residues asso-
ciated with these eigenvalues are also finite?

The answers to these two questions are given in the following two lem-
mas.

In the analysis that follows, we shall apply the s.c.b transformation

developed in section 3 to the system ¥,,,. Let ny and n} be respec-
tively the number of stable and unstable invariant zeros of ¥y, and ny

the number of infinite zeros of £,,,. Moreover, we let
N, .= dill’l{v*(ﬂ. Bl s (/‘2, Dg] ) n S*(A, Bl \ CQ, Dgl)}

and

+

npi=n-—ng, —n,; —n,—ny.

77+

F, ny, n, and ny) can be readily obtained

These integers {i.e. ny,

from the s.c.b of Xy,

Lemma 3. For any given K (o) such that A, is stable, let ) be an

eigenvalue of A, and V; its corresponding left-eigenvector. Then the
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maximum number of \; € C~ which satisfy the condition

Ri = WiV [B1 — K(0) D] = 0

is (n; + ny). A total of n; of these eigenvalues A; coincide with the
stable invariant zeros of the system %, and the remaining n; of these
eigenvalues can be assigned arbitrarily to any location in C~. The
eigenvectors V; that correspond to these (n; +ny) eigenvalues span the
subspace

R"/ST(A, By, Ca, Day).

Moreover, n; of these eigenvectors corresponding to the eigenvalues at
the stable invariant zeros are simply the left-state zero directions and

span the subspace
V*(A,B1,Ca, D01)/V¥(A, By, Ca, Day).
Proof : See [3].

Lemma 4. For any given K (o) such that A, is stable, let A; be an
eigenvalue of A,, V; and W its corresponding left- and right-eigenvectors
respectively. The maximum number of eigenvalues of A, that can be
assigned arbitrarily to asymptotically infinite locations in C~ while at

the same time the residue matrix
R; = W;VH[B, — K(0)Dy)]

remain bounded as | A; |— oc is (ny + ny). Furthermore, the left-
eigenvectors V; of these asymptotically infinite eigenvalues span the
subspace

R*/V*(A, By, Ca, Day).
Proof : See [3]. n

Remark 2. Consider the case when Iy, is right-invertible and Do
is of maximal rank. Clearly this covers the special case where X, is
a non-strictly proper single-input and single-output system. For this
case, we have n, + ny = 0 and hence there is no eigenvalue A; of A,
that can be assigned to an infinite location and at the same time the

corresponding residue matrix R; is bounded.
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As implied by lemma 3, there are n, eigenvalues where one can
assign arbitrarily to any locations in C~ and still maintain R, = 0.
These ny eigenvalues are therefore among the (ny + ny) eigenvalues
indicated in lemma 4. That is, there is a set of n, eigenvalues which
can be placed arbitrarily at either asymptotically finite locations in C~
according to lemma 3 or at asymptotically infinite locations in €~ ac-
cording to lemma 4. For practical design considerations, such as limited
controller bandwidth and sensor noise reduction, one often keeps these
n, eigenvalues at stable and reasonably finite locations.

Combining the results of lemmas 3 and 4, one can deduce all the
conditions under which various terms of Mj(s,a) can be made zero
either exactly or asymptotically. There are altogether (n; + ny + ny)
eigenvalues which can be assigned either at finite or at asymptotically
infinite locations so that the corresponding terms of ]\Tff(s,a) in its
dyadic expansion (28) are either exactly or asymptotically zero. Thus,
a question arises as to under what conditions (n +ny+ny) is equal to
n the system dimension. It is easy to see that n +n, +ny = n if and
only if ¥y, is left-invertible (n, = 0) and of minimum phase? (n} = 0).
If ¥y, is not left-invertible and/or of nonminimum phase, then there
are exactly n, = n} +n, terms of Mf(s, o) which cannot in general be
rendered zero. To fully understand the behavior of ]\le(s,a), we need

to partition it into four parts,

M(s,0) = M_(s,0)+ My(s,0) + Muo(s,0) + Mc(s,0),  (31)

where
. 71“ 1‘%1
M. =
(5.0) Z e
n. +ny, ~
- e R;
My(s,0) = ,
o(s,0) Z Y
i=ng +1
n,+nptng ~
. R;
My (s,0) = '/\ ,
5= Ag

i=ng +np+1

2 A system is said to be of nonminimum phase if at least one of its invariant zeros
is in the closed right-half plane, otherwise it is said to be of minimum phase.
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. R;
M(s,0) = > —

i=ng +np+ns+1

Let A_(0), Ay(0), Ao(o) and A (o) be the sets of eigenvalues of A,

associated with the parts Aa_(s,o), 1’\%(3,0’), A}w(s,a) and Me(s,cr)

respectively . Corresponding to each of these partitions of eigenval-

ues, we define the associated right- and left-eigenvectors of A, in the
sets W_(a), Wy(a), Wy (o), W.(o) and V_(0), Vi(0), Vo(a), V(o)

respectively. Also as a convenient notation, we will use an overbar on

a variable to denote its limit {whenever it exists) as ¢ — oco. For ex-

ample, A_Y.((s) and W. denote respectively the limits of A?e(s,a) and

We(c) as 0 — oc. Various parts of J\jlf(s,a) have now the following

interpretation:

1.

M _(s,0) contains n] terms with eigenvalues in the set A_(o).
In accordance with lemma 3, there exists a gain K (o) such that
]\7_(3, o) is identically zero by placing elements of A_(o) at the
stable invariant zeros of ©,,, and the set of left-eigenvectors V_ (o)
to be the left-statc zero directions. In fact, N'(¢) can be selected
such that A_(c¢) and V_{¢) approach asymptotically the set of
system stable invariant zeros and their left-state zero directions

as ¢ — oo. In tlis case, we have M _(s,0) — 0 as ¢ — oc.

. My(s,0) contains ny terms with eigenvalues in the set Ay(c). In

accordance with lemmas 3 and 4, there exists a gain K (o) such
that J\le(s, o) is identically zero by assigning elements of A, (o) ar-
bitrarily at either finite or infinite locations in ™ asymptotically
as ¢ — oo. As discussed earlier, in order to limit the controller
bandwidth, we will assume hereafter that these eigenvalues are
assigned to asymptotically finite locations. Also, K (o) can be

designed so that 1\7[(,(5,0) — () as ¢ — o0,

M. (s,0) contains ny terms with eigenvalues in the set Ay (o).
In accordance with lemma 4, there exists a gain K (o) such that
A:[m(s, g) — 0 as ¢ — o¢ by assigning elements of Ao, (o) arbi-

trarily to asymptotically infinite locations in C~.
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4. M,(s,0) contains the remaining n, = n} + n, terms with eigen-
values in the set A (c). This term does not exist (i.e. n, = 0)
when the system X, is left-invertible and of minimum phase.
In view of lemmas 3 and 4, Me(s,a) cannot in general be ren-
dered zero either asymptotically or otherwise by any assignment
of A (¢) and the associated sets of right- and left-eigenvectors
We.(c) and V. (o). However, as to be discussed later, selection of
the full-order observer design gain K (o) can be done so that the
error term ]\715(.9, o) has a particular frequency-shaped properties
or some desired Hy- and Hs,-norms. Note that the eigenvalues of
A, iIn A, can be assigned to any locations in €, except of course
for those corresponding to the stable but unobservable eigenval-
ues of A, since (A, ') is assumed to be a detectable pair. These

arbitrary locations can either be asymptotically finite or infinite.

As the above discussion indicates, lemmas 3 and 4 form the heart
of the underlying mechanism of CLTR. They enable us to decompose
J\jlf(s,or) and hence My (s, o) into four distinct parts exhibiting clearly
conditions under which closed-loop recovery is or is not possible. Al-
though the results presented so far do not directly provide methods for
obtaining the gain K (o), they do however give the essential closed-loop
eigenstructure and hence guidelines in the assignment of the eigenvalues
and eigenvectors of A,. These guidelines can in turn be used to for-
mulate a systematic method for designing the full-order observer gain
K (o). In a sequel paper [2], we will discuss in details three possible
methods for designing K (o). They are:

(1) A method based on the minimization of the Hs-normof M (s, o),

(2) A method based on the minimization of the Hg-norm of M ¢ (s,0)

and,

(3) Asymptotic time-scale and eigenstructure assignment (ATEA)

method.
The latter method is an extension of the one given in [11] and [9]
which allows designers a great flexibility in the shaping of "\?;(s,a).
Putting these aside, we come back to the problem of characterizing

achievable closed-loop transfer recovery. To do this, we simply assume
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that the observer gain K (¢) was given and has been chosen from the
set K*(A, By,C4q, Day, o) defined below.

Definition 6. K*(A, By,Ca, D2y, 0) Is a set of gains KN(og) € R"*P
such that
(1} Ay(o) = A— K(0)Cq is stable for all 0 > ¢* where 0 < 0" < 00,
(2) The finite eigenvalues of A,(c) remain in C~ as o — 00,

(3") If ny = 0 then M _(s,¢) and M(s,o) are identically zero for
all o,

(3") If ng # 0 then, as 0 — oo, M_(s,0) and My(s,o) are either
identically zero or asymptotically zero. Moreover, the eigenval-
ues in the set A_(o) and Ay(c) tend to finite locations in C~
and,

(4) Me(s,0)—0as o — o .
It 1s obvious that K*(A, By, (s, Day,0) is a nonempty set,

Remark 3. In the case where the system Y, does not have any in-
finite zeros {1.e. ny = (), every element K (o) of K*(A4, By,Cq, Day, o)
is independent of o and furthermore ||K(0)]| < o < oo for all . On
the other hand, if the system Y, has at least one infinite zero (i.e.
ny # 0), then K(o) of K*(A, By, Cq, Dyy, o) must be a function of &

and ||N(o)|] — oc as ¢ — ~¢.

Theorem 2 given below characterizes the asymptotic behavior of the
achieved loop transfer function for K (o) € K*(A4, By, Cy, Doy, 0). We

have the following theorem.

Theorem 2. Consider the closed-loop system %° comprising of the
system ¥ and a full-order ohserver-hased controller. Let (A, By) be sta-
bilizable and (A, C4) be detectable. Then, given any F such that A—BF
is asymptotically stable and for a gain K(o) € K*(A, By,C2, D21, 0),
the closed-loop system X° is asymptotically stable. Moreover, as ¢ —
o0,

Ef(s.0) — Teu(s)F M .(s). (32)

Proof : Expression (32) follows {rom lemmas 3 and 4, as well as the
properties of K*(A, By, Ca, Doy, 7). ]



CLOSED-LOOP TRANSFER RECOVERY: ANALYSIS 271

In view of theorem 2, X;I-e(s) can be termed as the limit of the

recovery matrix. We have the following corollaries of theorem 2.

Corollary 1. Let the system T, be left-invertible and of minimum

phase. Then T{{(E) = T(X). Moreover, for any gain
K(o) € K*(A, By,Cy, Doy, 0),

the corresponding full-order observer-based controller achieves closed-

loop transfer recovery for any given T,,(s) € T(X).

Proof : For a left-invertible and minimum-phase system X, , we have
nt = 0 and n, = 0. Thus n} + n, = 0 and M.(s,0) is nonexistent.

Hence, the results are obvious. |
Remark 4. Results of corollary 1 are exactly those of Fujita et al [6].

Corollary 2. Let the system ¥y, be left-invertible and of minimum

phase. And let D4y be of maximal column rank. Then
TL (£) = TL(Y) = T(T) and T () =0.
Moreover, the observer gain
K(o) e K"(A, By,Cq, Do, 0)

is independent of ¢ and the corresponding full-order observer-based
controller achieves exact closed-loop transfer recovery (ECLTR) for any
given T,,,(s) € T(X).

Proof : When the systemn X, is left-invertible and of mintimum phase
and Da; is of maximal column rank, then we have n}f = 0, n, = 0 and
ny = 0. Note that a left-invertible system X, has no infinite zeros if
and only if Da; is of maximal rank. Thus, both Me(s, o) and ]\;Im(s, o)

are nonexistent. Hence the results of corollary 2 are obvious. |

Remark 5. Ifthe system £, Is a non-strictly proper and of minimum-
phase single-input single-output system, then TL{ (L) = TL(L) and
T/.(2) = 0.

Remark 6. Whenever ECLTR is feasible, the corresponding full-order
observer-gain matrix K(a) € K*(A, By,Cy, Day,0) is finite and con-

stant for all o and hence C(s,o) = C(s).
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2. Analysis For Recoverable Targei Closed-Loop Transfer Functions

In the previous subsection, the analysis of closed-loop transfer recovery
does not take into account any knowledge of the state-feedback gain
matrix F. It is essentially a study of the matrix Mf(e) or Mf(s,a) as
to when it can or cannot be rendered zero using a full-order observer-
based controller. This section complements the analysis of the previous
subsection by taking directly into account the knowledge of F'. Obvi-
ously then, the analysis of this section is a study of M;(s) = FMf(s)
or My(s,0) = FA]I(S,O'). Two basic issues have been addressed:

(1) What class of target closed-loops can be recovered exactly (or
asymptotically) for a given system X7 Or equivalently, what
are the necessary and sufficient conditions a target closed-loop
transfer function 7%, (s) must satisfy so that it can exactly (or
asymptotically) be recoverable for the given system? and,

(2) What are the necessary and sufficient conditions on the system
¥ so that it has at least one recoverable target loop?

Answers to these questions would enable designers to identify the ap-
propriate number and type of control inputs and measurement outputs
in the plant model needed in the CLTR task. To answer the ques-
tions, we introduce an auxiliary system X, where now the condition
for the set of exactly recoverable target loops T{:R(S) to be nonempty
1s equivalent to the auxiliary system ¥_ being stabilizable by a static
output-feedback control. Similarly, another auxiliary system ¥, can
be introduced for the ACLTR case. Here, it will be shown that the
set of recoverable target loops TJ;K(S) 1s nonempty if and only if £, 1s
stabilizable by a static output-feedback control.

In what follows, we derive conditions for ECLTR and ACLTR in

terms of geometric properties. We also give the necessary and sufficient
conditions for the sets TéR(S) and T{\R(E) to be non-empty. We have

the following theorems.

Theorem 3. Let the system Y, be left-invertible and stabilizable and
Yyw be detectable. Then, an admissible target closed-loop transfer

function T, ,(s) of ¥ (i.e. Ty (s) € T(X)) Is exactly recoverable by a
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full-order observer-based controller if and only if
ST(A, B1,Ca,Day) C Ker(F).
That is,
(8) ={T:u(s) € T(X) | S7(A,B1,C2, D21) C Ker(F) }.

Proof : See Appendix B. [ |

The following theorem characterizes the non-emptiness of TZ_(X).

Theorem 4. Let the system ., be left-invertible and stabilizable and

Yyw be detectable. Let C be any full-rank matrix of dimension (n; +

ny) X n such that
]\”67‘(?‘3) = S—(A, By, Cg, Dgl).

Then, the system X has at least one exactly recoverable target closed-
loop transfer function (i.e. TéR(E)) is nonempty 1if and only if the

auxiliary system Y, characterized by the matrix triple (A, Bo,Cy) Is

stabilizable by a static output-feedback controller.

Proof : See Appendix C. |

Theorems 5 and 6 below state the results for the case of ACLTR.

Theorem 5. Let the system ¥,,, be left-invertible and stabilizable and
Eyw
function T,y (s) of ¥ (i.e. Ty (s) € T(X)) is recoverable (either exactly
or asymptotically) by a full-order observer-based controller if and only

if

be detectable. Then, an admissible target closed-loop transfer

V+(‘4, BI,CQ, Dgl) g IX’C'I’(F).
That is,
T]fK(E) ={T,u(5) € T(Y) | VY(A, By,Cq,Da1) C Ker(F)}.

Proof : See Appendix D. |
As in theorem 4, theorem 6 below characterizes the non-emptiness
of TS (T).
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Theorem 6. Let the system ©,, be left-invertible and stabilizable and
Y, be detectable. Let C, be any full-rank matrix of dimension (ng +

ny + ny) x n such that
]\"6’1'(?/‘) = V+(A, B],Cg,Dgl),

Then, the system ¥ has at least one asymptotically recoverable target
closed-loop transfer function (i.e. TL(Y) is nonempty) if and only if
the auxiliary system &, characterized by the matrix triple (A, B,,C,)

is stabilizable by a static output-feedback controller.

Proof : It follows along the same lines as in theorem 4. |

B. Reduced-Order Observer-Based Controller

In this section, let us consider the problem of closed-loop transfer re-
covery using reduced-order observer-based controllers. Without loss
of generality and for simplicity of presentation, we assume that the

matrices C's and Doy are already in the form

_ 0 Ca 2 | Daip

where my is the rank of Ds;. The system ¥ can be rewritten as,
I _ A A €Ty 31,1 B'_),l
[i"z] - [A21 -42'3] [h] + [31,2 v B .

Yo | _ 0 Caoa | | 23 Doyo | (34)
A e | AR b I

: =Cy 2+ Dy w+ Dip o,
where [z, z4) = x and [y, ¥;] = y. We note that y; = ;. Thus,
one needs to estimate only the state zo in the reduced-order observer
design. The procedure follows closely the development given in {7] and
[1]. We first rewrite the state equation for z1 in terms of the measured

output y; and state 22 as follows,
v1 = Any + Apea+ Brjw + Boy, (35)
where y; and u are known. Observation of xs is made via yo and

g1 = Apze+ Biw =g — Any — Baw (36)
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A reduced-order system for the estimation of the remaining state x5 is
given by
&y = Ay 23+ Birao w+[An, Bap] [‘Zl] :
Yo Ca 02 Do
= ' To + Tl w.
o) =[] ]

Based on equation (37), we can construct a reduced-order observer for

(37)

the state zo as follows,

{ Yo Caonl .
+ K, ([yl — Ay — Bg‘lu] - [ Al ] rz) , (38)

where I\, 1s the observer gain matrix for the reduced-order system. It
is chosen such that

Ay = Ay — K, |:CE‘02:|

A

1s asymptotically stable. In order to remove the dependency on yp, let
us partition K, = [K,o, K] to be compatible with the dimensions
of the outputs [y}, #)] and at the same time define a new variable
vi= &9 — K,19;. We obtain the following reduced-order observer-based
controller,

v=Aynv+ (Bgyg — [\',‘lBgyl)u

+[Rro, Aoy = K Ay 4+ Agr K] [11‘/0} ,

W
A 0 0 ]p—mo
e [In-—p-}-mo] vt |:0 [\'7’1 :| v

u=—Fuz,

(39)

We further note that the reduced-order observer-based controller given
above is a special case of Luenberger observer-based controller of (16)
with the following parameters,
L=As, Gy=[Kn, A — KA + Aer K,
_ 0 10 Lhom, 40
P= [Ill—l)+77lg] ' I = [0 1(7'1 :| ’ ( )
GQ = Bf!,‘.? - [\'7<1B'2,11 Q - [_I\’i'l) In—p+mo]‘
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Now, let us partition F as
= [Fl, 1"2]

in conformity with [2}, 24]’. Tt follows from lemma 1 that the recov-
ery error and the recovery matrix, denoted here by E,(s) and M,(s)

respectively, are given by
E.(8) = Teuls)  M,(s), (41)
where T.,(s) is as defined in (19) and
M.(s) = Fao(s] — Ay + K. C)" (B, — K. D,), (42)
with

. Ca02 Doy g
14,~ = 44’)‘), B,v =B 7, C/,- = . 5 D,- = s .
- b2 [ Ays ] [ Bia

Remark 7. The expression for M, (s} is identical to My (s) of the full-
order observer-based controller in (24), where Fa, (A, B,,C\, D,) and
K, now take the place of F, (A, B1,Ca, Day) and K.

We have the following important lemma regarding the properties of
¥, characterized by (A,, B, (), D;).

Lemma 5.

1. ¥, is of (non-) minimum phase il and only if (A, By,Ca, Do) Is
of (non-) minimum phase.

2. ¥, is detectable if and only if £y, Is detectable.

3. Invariant zeros of T, are the same as those of ¥y,

4. Orders of infinite zeros of ¥, are reduced by one from those of

Y
—yw

2!

V.. is left-invertible if and only if ¥y, Is left-invertible.

g ((D VH(A,. By, Gy, Dy) = VF(A, By, Co, Day).

=1

((;) S~ (Ar. By, Cr, D) = S~(A, By, Cy, Day) N, where U :=

{ | Chz € ImDoy }.

Proof See [5]. L]
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1. Analysis For Arbitrary Target Closed-Loop Transfer Funclions

We note that with lemma 5 the analysis and design of full-order and
reduced-order observer-based controllers for CLTR have been placed
into the same framework. Now, let K*(A,, By, C,, D,,o) be defined in
a similar way as in definition 6. We have the following results which

are analogous to the case of a full-order observer-based controller.

Theorem 7. Consider the closed-loop system ¥°¢ comprising of the
given system ¥ and a reduced-order observer-based controller. Let
(A, B2) be stabilizable and (A,C2) be detectable. Then, for any F

such that A — BoF is asymptotically stable and for any gain

1\’(0-) E K"*(‘qrv Bryc"!'v -DT)U)y

Ve

the closed-loop system £ Is asymptotically stable. Moreover, as ¢ —

o0,

Er(SaU) . Tzu(s)FEEre(S)\ (43)

where 1‘77-5(5) is for the reduced-order system X, and can be derived

following the procedure given in Section IV.A.1.

Proof : The proof follows along the same lines as in theorem 2 and
the properties of £, in lemma 5. [ |

In view of theorem 7, ﬁ,e(s) can also be termed as the limit of
the recovery matrix for the case of a reduced-order observer-based con-

troller. We have the following corollaries of theorem 7.

Corollary 3. Let £, be left-invertible and of minimum phase. Then
Tr.(X) = T(X). Furthermore, for any gain K(o) € K*(A-, B, Cy, Dy, 0),
the corresponding reduced-order observer-based controller achieves closed

loop transfer recovery for any given T,,(s) € T(X).

Proof : The proof follows along the same lines as in corollary 1 and

the properties of ¥, in lemma 5. [ |

Corollary 4. Let £, be left-invertible and of minimum phase with

no infinite zero of order higher than one which implies that D, is of
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maximal column rank. Then
TL(S) = T (5) = T(S)
and T (X) = 0. Moreover, any gain
K(o) € K*(A,, By, Cy, Dy, 0)

is independent of o and the corresponding reduced-order observer-based
controller achieves exact closed-loop transfer recovery (ECLTR) for any
given Ty (s) € T(X).

Proof : The proof follows along the same lines as in corollary 2 and

the properties of X, in lemma 5. n

2. Analysis For Recoverable Turget Closed-Loop Transfer Functions

In what follows, we state in teris of geometric properties conditions un-
der which ECLTR and ACLTR can be achieved using a reduced-order
observer-based controller. As in the case of full-order observer-based
controller, necessary and sufficient conditions are given that charac-
terize the non-empty sets T7 (¥) and T7,(X). We have the following

theorems.

Theorem 8. Let the system ¥, be left-invertible and stabilizable and
Yyw be detectable. Then an admissible target closed-loop transfer
function Ty, (s) of ¥ (i.e. T.,(s) € T(X)) is exactly recoverable by

a reduced-order observer-based controller if and only if
S7{A4,B1,C4, D1 )NV C Ker(F).
That is,
TL(E) = {T,u(s) € T(E) | ST(A, B1,Cy, Dy ) NT C Rer(F)}.
Proof : In view of lemma 5, we note that

S™(A, By, (5, D) NU C Ker(F)



CLOSED-LOOP TRANSFER RECOVERY: ANALYSIS 279

is equivalent to
S7 (4, B,,Cy, D) C Ker(Fy).
Hence the proof follows along the same lines as in theorem 3. u

Remark 8. It is simple to observe from theorems 3 and 8 as well
lemma 5 that TL_(£) C T7.(X). That is, if a target closed-loop trans-
fer function is exactly recoverable by a full-order observer-based con-
troller, then it is also exactly recoverable by a reduced-order observer-

based controller. But the reverse is not true in general.

The following theorem characterizes the non-emptiness of T¢,(X)

for reduced-order observer-based controllers.

Theorem 9. Let the system ¥, be left-invertible and stabilizable and

Xyw be detectable. Let C,. be any maximal rank matrix such that
1\’(’7‘(-(77«5) = S—(A, Bl,C'Q, Dgl) Nno.

Then the given system ¥ has at least one exactly recoverable target
closed-loop transfer function using a reduced-order observer-based con-
troller (i.e. Ty, (X) is nonempty) if and only if the auxiliary system
¥,. characterized by the matrix triple (A, B, C..) is stabilizable by a

static output-feedback controller.

Proof : It follows along the same lines as in theorem 4. B
Theorem 10 given below deals with ACLTR for reduced-order ob-

server based controller.

Theorem 10. Let the system L., be left-invertible and stabilizable
and ¥y, be detectable. Then an admissible target closed-loop transfer
function T.y(s) of & (i.e. Ty (s) € T(X)) is recoverable (either exactly
or asymptotically) by a reduced-order observer-based controller if and
only If

VT(A, By, Cy, Day) C Ker(F).
That is,

TH(S) = { Touls) € T(E) | VF (A, By, Cy, Day) € Ker(F) }.
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Proof : In view of lemma 5, we note that
V(4, By, Cy, Dayy) C Ker(F)
is equivalent to
Vt(A,, B,,C,, D) C Ker(Fs).
Hence the proof follows along the same lines as in theorem 5. |

Remark 9. It is trivial to see from theorems 5 and 10 that TL(L) =
TT (). That is, if a target closed-loop transfer function is recoverable
by a full-order observer-based controller, then it is also recoverable by
a reduced-order observer-based controller. And the reverse is also true.
Hence, it is obvious that the nonemptiness of T', . (X) is characterized

by the same condition as in theorem 6.

V. NUMERICAL EXAMPLE

The above analysis of CLTR is applied to the development of a localizer
capture and track-hold design of a commercial transport. This numeri-
cal example is not intended to provide a complete illustration of all the
analysis results discussed in the previous sections. The main reason
for using this design problem is that it provides a realistic design sit-
uation where asymptotic and exact closed-loop transfer recovery using
full-order and reduced-order observer-based controllers are applicable.
For completeness, we provide a brief overview of the design procedure
used in the synthesis of the chosen state-feedback gain F which defines
the target closed-loop transfer function 7.y (s) for closed-loop transfer
recovery. Detailed description and design requirements for such a sys-
tem have been extensively covered in literature (see for example the
Special Issues in IEEE Control System Magazine [14]). It should be
emphasized here that the analysis provided in previous sections are ap-
plicable to arbitrary state-feedback laws, regardless of the procedures
from which these state-feedback laws are derived {(i.e. Hs-, Ho-norm

based design methods, eigenstructure assignment or others).
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Design model used in this example consists of the basic 4th_order
lateral aircraft dynamics augmented with appropriate kinematic equa-
tions for the heading v and lateral track distance grqcx along with
a state for the integral of lateral track error [(yirack — yYc)dt. State
matrices describing the synthesis model without actuation dynamics

in the notations of (1) are given below for a typical landing approach

condition,
~0.2093  0.00077518 0.1003 —0.991 0 0 0
—7.492 —3.44 —0.0052035 0.9783 0 0 0
0 1 0 —0.0012877 0 0 0O
A=] 2031 —0.1696  —0.0050925  —0.2089 0 0 0 (44)
0 0 0 1 0 0 O
0 0 0 0 5.597 0 0
0 0 0 0 0 10
0.026222  —0.0033036
9.2044 0.069525
0 0
By = | 0.10099  0.086836 |,
0 0
0 0
0 -1
0.0013217 0.063301
2.011 2.012
0 0
B; = 0.1304 -1.393 ,
0 0
0 0
0 0
~10.856 0.0735¢ 9.5153 —94.015 0 0 O
0 0 14.142 4] 0 0 0
0 0 0 20 0 0 0
C1 = 0 0 0 0 01 04,
0 0 0 0 0 0 1
4] 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.12539 6.0053
—14.142 © 0 0
0 0 0 0
Dy = 0 -1, D2 = 0 0 ,
0 0 0 0
0 0 10 0
0 0 0 31.623
01 0000 0
0 01 000 0
o, - 0001000
2~ 1o 00010 0]
0000010
00 000 0 1
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The state variables are

L= [ﬂ) P, T, ytrackyf(yzrack - yc)dt],,
where 3 is the sideslip angle in degrees, p is the roll rate in degrees
per second, ¢ is the roll angle in degrees, r is the yaw rate in degrees
per second, ¥ is the heading angle in degrees, yirack i8 the lateral track
distance in fect and y. is the command lateral track distance in feet.

The control inputs
u = [6acv 61'/:]/

consist of the aileron 8,, and rudder 6, deflections in degrees. The

disturbance inputs
/
w = [¢c, Yol

contain the bank angle command ¢, in degrees and the lateral track

command y, in feet. The measurement output variables are

Y= [P: o, 7, ’ll’, Yirack, I(ytrack - Uc)dt]/

The controlled output variables z shown above are made up of weighted

plant outputs z, and control variables u in the following form
z = [(Ql/zsp)’,(Rl/?u)']'.

The performance variables z, include sideslip acceleration 3, bank angle
deviation (¢—@.), yaw rate r, lateral track deviation (y¢ack—¥y:) and in-
tegral track error [(yirack — Yo )dt. The control variables u are included
in the controlled output vector > to ensure that the resulting state-
feedback design does not have excessive control gain and bandwidth.
These control variables are scaled by a diagonal weighting matrix K.
Note that in the design trade-offs, loop shapings are tuned on the per-
formance variables z, using a diagonal weighting matrix Q. Final selec-

tion of the diagonal weighting matrices @ and R is made after numerous
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design iterations that involve at each time closed-loop stability analy-
sis, frequency responses of the transfer function yurq.x(s)/yc(s), time
simulation to a lateral track command. It is observed in the design
iterations that increasing penalty on the sideslip acceleration ﬂ will
improve the aircraft turn-coordination, but at the expense of slower
responses to bank angle and lateral track command inputs. In order to
achieve good tracking performance and turn-coordination, responses of
the controlled output vector z to the command inputs w must be kept
as small as possible. State matrices for the desired controlled output
vector z(1) are given in equation (44).

Control-law synthesis is performed at one particular landing ap-
proach condition. A state-feedback law that yields satisfactory stabil-
ity and closed-loop responses to a lateral track command y, is obtained
from the following H.,-norm bound solution, i.e ||Tzw(s)||Hm < 45. An
acceptable state-feedback gain matrix F is given below,

0.10939  0.92375 4.2514 2.3791 3.9476 0.088639 0.0048466

—~1.1237 0.081467 0.32548 —2.9659 —-1.6125 —-0.05404 —0.0035325
(45)

F =

Analysis of closed-loop transfer recovery for the above localizer cap-
ture and track-hold design proceeds as follows. First of all, we examine
whether conditions for exact and asymptotic closed-loop recovery can
be achieved with the given set of measurements and using an output-
feedback observer-based control-law. It i1s simple to verify that the sys-
tem X, 1s left-invertible. Thus according to Lemma 2, conditions for
exact and asymptotic closed-loop recovery are governed completely by
the existence of solutions that make the recovery error zero or arbitrar-
ily small. Next we observe that, with the given measurement output
y(t) and disturbances w(t), the system ¥, is left-invertible and has
no invariant zeros. Thus from Corollary 1, a full-order observer-based
controtler can be used to achieve closed-loop transfer recovery for any
closed-loop T (s) under state feedback and obviously the full-state
feedback design defined in equation (45). Furthermore, from Corollary
3, the transfer function 7., (s) is also recoverable using a reduced-order
observer-based controller. It can be determined from the s.c.b transfor-

mation that the system ¥, has two infinite-zeros of order 1. This re-
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sult indicates that recovery using a full-order observer-based controller
can only be achieved asymptotically. An acceptable observer-gain de-

sign K is given below and it is obtained using the ATEA design method

[2].

28.529  0.099657 —3.6288 0 —0.016212 34.789
9998.8  0.00010319 108.9 0 0 9.263
1 0.5 —0.0012877 0 0 0
K= [108.72 -0.0094053 75.315 0 0 ~854.23 | (46)
0 0 1 0.5 0 0
0 0 0 5.597 0.5 0
9.8159 —0.00080954  —854.25 0 0 9926.5

Development of different design methods for CLTR will be covered in
a sequel paper [2]. It should be noted that in theory the observer gain
matrix must be large in order to recover asymptotically the closed-
loop performance (i.e. the case of ACLTR). In this particular design
example, we notice that reducing the recovery error at low frequency
does indeed involve a high observer gain design synthesized using either
the ATEA or ARE-based methods. Singular value plots of the closed-
loop transfer function 7., (jw) are shown in figure 2. The observer
gain of equation (46) seems to provide reasonably small recovery error
at low frequency and at the same time does not lead to excessive control
responses to lateral track commands. Performance evaluation based on
transient responses is depicted in figure 3 corresponding to the time

simulation of system responses to a lateral track command
Yo = 1000(1 — e~ %955 (feet).

This figure shows time responses of the full-state feedback design. Re-
sults corresponding to the above full-order observer design are the same
within the resolution of the graph as those shown in figure 3.

Now we proceed to the problem of closed-loop transfer recovery us-
ing a reduced-order observer-based controller. It turns out that, for
the above localizer capture and track-hold problem, one can actually
achieved eract closed-loop recovery using a reduced-order observer-
based controller. This result comes directly from Lemma 5 and the
fact that the system ¥, is left-invertible, has no invariant zeros and
has only infinite zeros of order 1. The ensuing reduced system 3, as de-

fined in section IV.B has no infinite zeros. Hence, in this case, ECLTR
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Figure 2: Singular Value Plots of T}y (jw) and Ej(jw).

is possible. Again using the ATEA design method, we have obtained
a reduced-order observer-based controller that yields exactly the same
closed-loop transfer function T, (s). State matrices of this controller

are given below.
U = Acmpt + Bempy,
(47)
—Uu = Ccmpv + Dcmp Y,

where
Aemp = —0.12265

Bemp = [0.0095756  0.10031 -0.81378 0.1095 0 —0.0002034 ]

0.10939
Cemp = [—1.1237]

0.92406 4.2514 2.3791 3.9476 0.088639 0.0052271 ]
Dcmp = .

0.078262 0.32548 —2.9656 —1.6125 —0.05404 —0.0074414
Performance of this reduced-order controller is identical to that of
the full-state feedback case (see Figures 2 and 3). The design is an
output-feedback controller of first-order and having a controller pole at
s = —0.12 rad/sec. Hence, the design concept of CLTR has enabled us

to synthesize a low-order implementable output-feedback design for a
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typical localizer capture and lateral track hold system starting from a
satisfactory state-feedback control law. It should be pointed out that
if actuator dynamics have been included into the design model, then
exact closed-loop transfer recovery is no longer possible, even with a
reduced-order observer-based controller since the infinite zeros of X,
are no longer of order 1. However, the system is still asymptotically

recoverable .

VI. CONCLUSIONS

In this paper, we deal with issues concerning the analysis of closed-loop
transfer recovery using full-order and reduced-order observer-based con-
trollers. There are several fundamental results given here. Based on the
structural properties of the given system, we decompose the recovery
matrix in the recovery error between the target closed-loop transfer
function and that achieved by observer-based controllers, into three
distinct parts for any arbitrarily specified admissible target closed-loop
transfer function. The first part of recovery matrix can be rendered
exactly zero by an appropriate finite eigenstructure assignment of ob-
server dynamic matrix, while the second part can be rendered arbitrar-
ily close to zero by an appropriate infinite eigenstructure assignment.
The third part in general cannot be rendered zero, either exactly or
asymptotically, by any means although there exists a multitude of ways
to shape it.

The above analysis is general and applies to any arbitrarily speci-
fied target closed-loop transfer function. Results of the analysis enable
designers to identify limitations of the given system in recovering the
target closed-loop transfer function as a consequence of its structural
properties, namely finite and infinite zero structures and invertibility.
The next issue of our analysis concentrates on characterizing the re-
quired necessary and/or sufficient conditions on the target closed-loop
transfer functions so that they are either exactly or asymptotically re-
coverable by means of observer-based controllers for the given system.
Conditions developed here for a target closed-loop transfer function to

be recoverable turn out to be constraints in its finite and infinite zero
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structures inherent of the system under consideration. The last issue
covered in our analysis is to find the necessary and/or sufficient con-
ditions on the given system such that it has at least one recoverable
target closed-loop transfer function.

In a sequel, we will present design issues concerning the closed-loop

transfer recovery.
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A. APPENDIX A — JUSTIFICATION OF Dy =0

The justification of the assumption Das = 0 is as follows: Let us define

a new auxiliary measurement output ype, as
Ynew = Y — Dasu = Cox + Dyyw.
Then we will show that a compensator
u(s) = K(8)Ynew(s)
is equivalent to the compensator
u(s) = K(s)[I + Das K ()] y(s)

under assumption that the closed-loop system is well-posed, i.e. the
inverse of [ + Day K (s) exists for almost all s € C. Let us consider the

following relation,

u(s) = K(8)Ynew(s)
= K (s)[y(s) — Dazu(s)]
= K(s)y(s) — K(s)Dazu(s)
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This implies that
[+ K(s)Dazlu(s) = K (s)y(s).
Hence,
u(s) = [1 + K (s)Daa] " K(s)y(s) = K(s)[I + DaaK ()] y(s).  (48)

Thus, whenever D5 is nonzero, one can define a new set of measure-
ment output, namely yne,, and design a controller K'(s). Then the
controller in (48) will yield the same performance when it is applied to

the original system. |

B. APPENDIX B — PROOF OF THEOREM 3

Under the assumption that ¥, is left-invertible, it follows from Lemma
2 that an admissible target loop T, (s) is exactly recoverable by a full-
order observer-based controller (i.e. E;(s) = 0) if and only if there
exists an observer gain K such that 4 — K'Cs is asymptotically stable
and the corresponding M;(s) = 0. Thus, it is sufficient to show that
M;(s) = 0if and only if

S™(A,By,C4, Day) C Ker(F).

To show this, let us consider an auxiliary system characterized by
= Az + Chu+ Flw,
Yau: (49)
z = Bz + Dju.
Also, with a state-feedback law

w=—-K'z,

the closed-loop transfer function from w to z, denoted here by Ty (s),
1s simply

TSU(s) = Mi(s).
Hence, the problem of finding an observer gain matrix such that A —
KC, is asymptotically stable and M[(s) = 0 is equivalent to the well-
known disturbance decoupling problem. Then it follows from Stoorvo-

gel [16] that the disturbance decoupling problem with internal stability
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is solvable to L4y, in (49) if and only if
3_(/4, By, (/'Q, Dgl) C [(67’(17),

This completes the proof of theorem 3. |

C. APPENDIX C — PROOF OF THEOREM 4

Without loss of generality, we assume that (A, By, Cy, Dsy) is in the
form of s.c.b as in theorem 1. Now in view of theorem 3, an exactly
recoverable target closed-loop transfer function Ty, (s) must satisfy the
condition (A, By, Cy, Da1) € Ker(F). This implies that T;,(s) is
recoverable if and only if F'is the form,

[F; 0 Fy 00

F=1r, 0 Ry 0 0]

(50)

Thus condition that the given system has at least one exactly recov-
erable target closed-loop is simply equivalent to the existence of some
F7, Fy1 and Fya such that A — By F'1s asymp-

totically stable. Next in view of the properties of s.c.b, we note that

appropriate matrix F7,

C, as defined in theorem 4 is of the form,

= I - 0 0 00

=Y oo, 0 of
where T' is any non-singular matrix of dimension (n; + n,)x(n; + ny).
It is now trivial to verify that existence of a matrix F of the form in (50)
such that A — BaF is asymptotically stable, is equivalent to existence
of a matrix G such that A — B,GC, is asymptotically stable. This is
simply due to the fact GC, has the same structure as F in (50). This

completes the proof of theorem 4. [ |

D. APPENDIX D — PROOF OF THEOREM 5

Under the assumption that X,,, is left-invertible, it follows from Lemma
2 that an admissible target loop T, (s) is asymptotically recoverable
by a full-order observer-based controller if and only if there exists an

observer gain K (o) such that A — K(o)Cy is asymptotically stable and
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the corresponding M;(s,0) — 0 pointwise in s as ¢ — oo. Following
the proof of theorem 3 in Appendix B, it is simple to see that such a
problem is equivalent to the well-known almost disturbance decoupling
problem with internal stability (ADDPS) and it is shown in Scherer
[13] that ADDPS is solvable to g, in (49) if and only if

V+(A, Bl,CQ, DQ]) g I(GT’(F),

and we adhere to the notion of closed-loop stability by excluding those
cases where, in the limits as ¢ — oo, the finite eigenvalues of the closed-

loop system are on the jw axis. This completes the proof of theorem
5. |
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