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I. I N T R O D U C T I O N 

In feedback design many performance and robust stability objectives 

can be stated in the form of requirements placed on the maximum sin-

gular values of particular closed-loop transfer functions. T h e underly-

ing idea of "loop shaping" is that the magnitude (or maximum singular 

value) of the closed-loop transfer function can be directly inferred from 

the singular value of a corresponding open-loop transfer function. T h e 
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prominent design procedure under the t e rmino logy L Q G / L T R [15] is 

one such design m e t h o d o l o g y in mult ivar iable systems that is based on 

the concept of loop shaping. Th i s design procedure is d iv ided into t w o 

steps. T h e first step involves the design of a s tabi l izing state-feedback 

law that yields a loop transfer function satisfying the design specifi-

cations. T h e loop propert ies are usually described in relation to an 

open-loop sys tem (e .g . for a loop transfer function broken at either the 

control or measurement pa ths ) . Such an open- loop transfer function 

defines the target loop shape. T h e second step is to match this tar-

get loop shape using an output-feedback design fo l lowing a procedure 

called loop transfer recovery ( L T R ) . T h i s step involves the design of 

an output-feedback control law ( typ ica l ly an observer-based compen-

sa tor ) such that the resulting open- loop transfer function would have 

either exac t ly or approx imate ly the same target loop shape as the one 

achieved under state feedback. In other words , the idea o f L T R is to 

design a compensator to recover a specific open- loop transfer function. 

In this paper we examine the idea of loop recovery f rom a different 

perspect ive . Namely , we develop the concept of recovery based on 

the closed-loop transfer function directly, as opposed to the open- loop 

transfer function found in the case of a t radi t ional L T R design. T h e 

p rob lem can be stated as fol lows. Suppose that one is able to synthesize 

a state-feedback law that yields satisfactory closed-loop performance. 

A n d let 's define the closed-loop transfer function be tween the external 

input to the controlled output under state-feedback law to be the target 

closed-loop transfer function. Clear ly from this definit ion, the closed-

loop target transfer function is comple te ly defined by the selection o f a 

full-state feedback gain matr ix . N o w we would like t o design an output-

feedback control law wi th a closed-loop transfer function that matches 

either exact ly or approximate ly the target c losed-loop transfer function. 

In this respect, we are dealing with the p rob lem of closed-loop transfer 

recovery ( C L T R ) instead of open- loop transfer recovery ( L T R ) . 

It should be pointed out that the procedure of C L T R can further 

be used as an effective tool in the design of mul t ivar iable control sys-

tems. For example , one can employ the procedure of C L T R in the 
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synthesis o f H oo-norm-based control- laws. N a m e l y , we start wi th a tar-

get c losed- loop transfer function achieved in Hoo-opt imiza t ion under 

state feedback. T h e n we proceed to the design of a compensa tor ( w i t h 

ei ther a full-order, reduced-order, Luenberger or general ized observer-

based s t ructure) that recovers the desired target c losed- loop transfer 

function. 

Our study of the mechanism in C L T R is appl icable to a general 

class o f systems and aims at three impor tan t theoret ical issues: 

( a ) character izat ion o f the recovery error and the available f reedom 

in the design o f output-feedback control- laws for a g iven sys-

t em and for an arbi trar i ly specified target c losed-loop transfer 

function, 

( b ) deve lopment o f necessary a n d / o r sufficient condi t ions for a tar-

get c losed-loop transfer function to be either exac t ly or a symp-

tot ical ly recoverable in a given sys tem, and 

( c ) deve lopment o f necessary a n d / o r sufficient condi t ions on a g iven 

sys tem such that it has at least one recoverable (e i ther exac t ly 

or a s y m p t o t i c a l l y ) target c losed-loop transfer function. T h e s e 

are some o f the theoret ical issues per ta ining to the analysis of 

C L T R . O f course, one also needs to examine issues in C L T R 

that are related to systematic design a lgor i thms for the recovery 

process. 

T h i s paper concerns mainly wi th the analysis o f the C L T R mecha-

nism. A sequel to this paper wil l address in details the design issues. 

T h e ob jec t ive at hand is however to analyze method ica l ly the mech-

anism of C L T R using an observer-based controller in its most general 

set t ing ( i .e cover ing the cases of full-order, reduced-order and gener-

alized observers ) . Howeve r , in order to l imit the length o f this paper , 

results are p rov ided only for the full-order and reduced-order observer-

based controllers. T h e basic m e t h o d o l o g y and tools used here are akin 

to those in [8], [3] and [4]. W e would like to point out that the formula-

tion o f the controller structure can in many ways impac t the recovery 

process. Ident i fy ing the appropr ia te controller structure for the recov-

ery task remains a research topic for future invest igat ion. 
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T h e paper is organized as fol lows. In section I I , we define pre-

cisely the p rob lem of closed-loop transfer recovery. R e c o g n i z i n g the 

impor tance o f finite- and infinite-zero structure in the L T R prob lem, 

we recall in section I I I a special coordinate basis ( s . c .b ) o f [12] and [10] 

that clearly displays the zero structure of a given sys tem. Section I V 

deals wi th all the fundamental analyses of C L T R . In part icular, subsec-

tion I V . A deals wi th the analysis o f C L T R v ia full-order observer-based 

control- laws while in subsection I V . Β we per form the same analysis for 

the case o f reduced-order observer-based control- laws. In section V , 

we illustrate our results on a lateral autopi lot design for a commer -

cial t ransport airplane. Final ly, we draw the conclusion of our work in 

section V I . 

T h r o u g h o u t the paper, A' denotes the transpose of A, A
H
 denotes 

the conjugate transpose of A, I denotes an ident i ty ma t r ix while Ik de-

notes an identi ty ma t r ix of dimension kxk. X(A) and R e [ A ( A ) ] denote 

respect ively the set o f eigenvalues and the set o f real parts o f eigen-

values of A. Similarly, < 7 m a r[ y l ] and σ „ „ · η[ ^ 4 ] denote the m a x i m u m and 

min imum singular values of A respect ively. K e r [ V ] and I m [ V ] denote 

respect ively the kernel and the image o f V. T h e open left-half and the 

closed r ight-half o f the s-plane are denoted respect ive ly by C~ and C + . 

A l s o , 1ZP denotes the subring of all proper rat ional functions o f s whi le 

the set of matr ices of dimension £ χ q whose elements be long to 7ZP is 

where χ G $l
n
 is the state, u G 9 î

m
 is the control input, w G $i

k 

is the external signal or disturbance, ζ G is the control led output 

and y G $ï
p
 is the measurement output . For convenience, we also 

denoted by M
t x q

{ T l p ) . 

I I . P R O B L E M S T A T E M E N T 

Let us consider a linear t ime-invariant system Σ , 

(1) 

ν y — C2X - f D21W + 
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define Σνιυ to be the mat r ix quadruple (A, B\, C2, D21) and Σζη for 

the ma t r ix quadruple (.4, B2)C\, -D12). Le t us assume that the pair 

(A, Bo) is s tabi l izable and the pair (A, Co) de tec table . W i t h o u t loss 

o f general i ty , we also assume that [ C i , Du, D12], [C2, ^21, D22], 

[B[, £ > ' n, i X i ] '
 a nd

 [#2> #12 > ^22]'
 a re

 o f max ima l ranks. L e t F be 

a full-state feedback gain mat r ix such that under the state-feedback 

control 

u = -Fx ( 2 ) 

( a ) the closed-loop sys tem is asympto t ica l ly stable, i.e. the eigen-

values of A — BoF lie in the left-half s-plane, 

( b ) the closed-loop transfer function f rom the disturbance w to the 

control led output z, denoted by Tzw(s), meets the g iven fre-

quency dependent design specifications. 

W e also refer to Tzw(s) as the target closed-loop transfer function g iven 

by 

T.:u,(s) = (Ci - Ο , ^ Ι Ι Φ - 1 + BoF)"
1
 Βι + D u ( 3 ) 

where Φ = — A)~
l
. Design of the appropr ia te full-state feedback 

gain mat r ix F can be done, for example , v ia Ho-, H ^-theory or e igen-

structure assignment. For design implementa t ion , the next step in the 

design procedure is to recover the target closed-loop transfer function 

using only a measurement feedback control ler . T h i s is the p rob l em of 

c losed- loop transfer recovery ( C L T R ) and the focus of this paper . 

T h e p rob lem can be clearly stated using the configurat ion shown in 

figure 1 where P(s) represents the transfer function ma t r ix of the sys-

t e m Σ and C(s) the transfer function o f an output-feedback control ler . 

For a g iven P(s) and a target c losed-loop transfer function Tzw(s) in 

( 3 ) , the p rob lem is to find an internally s tabi l iz ing controller C(s) such 

that the recovery error defined as 

E(s) := T?w(s) - T,w(s) ( 4 ) 

is ei ther exac t ly or approx imate ly equal to zero in the frequency region 

of interest. Here , T£w(s) represents the transfer function from w to ζ 

for the closed-loop sys tem shown in figure 1. A s we shall see, achieving 
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Figure 1: P lan t wi th an Output -Feedback Cont ro l le r . 

exact c losed-loop transfer recovery ( E C L T R ) is in general not possible. 

Hence , it is more appropr ia te to examine si tuation where approx ima te 

recovery can be achieved. A n approx imate C L T R is t ied to the not ion 

that recovery can be achieved to any degree of accuracy. In this pro-

cess, one normal ly parameter izes the controller C(s) as a function of a 

pos i t ive scalar parameter σ thereby genera t ing a fami ly o f controllers 

C(s,a). W e say asympto t ic C L T R ( A C L T R ) is achieved if 

T?w(s,a)^Tzw(s) 

as σ —• oo pointwise in s, or equivalent ly 

E(s,a) — 0 

as σ —• oo pointwise in s. F rom the point o f v i e w o f design, once the 

condit ions of A C L T R have been verif ied, a controller C(s,a) wi th a 

part icular value o f σ can be found that wil l p roduce the desired level 

o f recovery. Before we proceed to the analysis o f C L T R , we need to 

p rov ide precise meanings to the te rminologies E C L T R and A C L T R . 

T h e fol lowing are definitions that characterize precisely the notions of 

E C L T R and A C L T R . 

Definition 1. The set of admissible target closed-loop transfer func-

tions Τ ( Σ ) for the plant Σ is denned by 

Τ ( Σ ) = {Tzw(s) e M
îxk
(np)\Tzw(s) is as defined m (3) and 

\(A- B2F)eC~}. 
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D e f i n i t i o n 2. Tzw(s) G Τ ( Σ ) is said to be exactly recoverable (ECLTR) 

if there exists a C(s) G M
mxp

(Kp) such that 

(i) the closed-loop system comprising of C ( s ) and Σ as in (1) is 

asymptotically stable, 

(ii) T?w(s) = Tzw(s). 

D e f i n i t i o n 3. Tzw(s) G Τ ( Σ ) is said to be asymptotically recoverable 

(ACLTR) if there exists a parameterized family of controllers C(s, σ ) G 

Ai
mxp

(7\.p) where σ is a scalar parameter with positive values such that 

(i) the closed-loop system comprising of C(s,a) and Σ as in (1) is 

asymptotically stable for all σ > σ* where 0 < σ* < oo, 

(ii) T°w(s,a) —» Tzw(s) pointwise in s as σ —• oo. Moreover, in the 

limits as σ —+ oo the finite eigenvalues of the closed-loop system 

should remain in C~ .
l 

D e f i n i t i o n 4. Tzw(s) belonging to Τ ( Σ ) is said to be recoverable if 

Tzw(s) is either exactly or asymptotically recoverable. 

D e f i n i t i o n 5. 

1. The set of exactly recoverable target closed-loop transfer func-

tions for the system Σ is denoted by X E R( Σ ) . 

2. The set of recoverable (either exactly or asymptotically) target 

closed-loop transfer functions for the system Σ is denoted by 

Τ „ ( Σ ) . 

3. The set of target closed-loop transfer functions which are only 

asymptotically recoverable but not exactly recoverable for the 

system Σ is denoted by T A R( E ) . 

Obviously, T R ( S ) = T E R( E ) U T A R( E ) . 

R e m a r k 1. The control-law C(s) in the above definitions is not re-

stricted to any particular structure. However, in this paper we study 

1
 Here we have strengthened the notion of closed-loop stability by excluding those 

cases where, in the limits as σ —•>• oo, some finite eigenvalues of the closed-loop 
system would be on the ju> axis. This avoids the problem of having an almost 
unstable behavior of the closed-loop system for large σ . 
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the closed-loop transfer recovery for two specific structures of C(s); 

namely, full-order and reduced-order observer-based controllers. Fur-

thermore, we label 

{ T R ( E ) , T E R(E) , Τ Α * ( Σ ) } 

with superscript f (for full-order) and r (for reduced-order) as 

{ τ £ ( Σ ) , Τ { Η ( Σ ) , Τ { Κ ( Σ ) } 

and 

{ Τ Κ ( Σ ) , Τ
Γ

Ε Κ( Σ ) , τ ; Η ( Σ ) } 

to signify results related to these particular controller structures. 

T h e analysis o f C L T R mechanism carried out here examines three 

fundamental issues. T h e first issue concerns wi th wha t can and wha t 

cannot be achieved for a given system and for an arbi t rar i ly specified 

target closed-loop transfer function. For a given sys tem, the second 

issue is to establish necessary and /o r sufficient condi t ions on the tar-

get c losed-loop transfer function so that it can be either exac t ly or 

asympto t ica l ly recovered. In another word , we characterize comple te ly 

the set T R ( E ) of recoverable target closed-loop transfer functions. T h e 

third issue is to establish necessary and /o r sufficient condi t ions on a 

given system such that it has at least one recoverable (ei ther exac t ly 

or a s y m p t o t i c a l l y ) target closed-loop transfer function. T h a t is, wha t 

are the condit ions on a given sys tem Σ so that the set of recoverable 

target c losed-loop transfer Τ Η ( Σ ) is nonempty? 

I I I . P R E L I M I N A R I E S 

W e recall in this section a special coordinate basis ( s . c . b ) o f a linear 

t ime-invariant system [12], [10]. Such a s.c.b has a dist inct feature of 

expl ic i t ly displaying the finite and infinite zero structure o f a g iven sys-

t e m and wil l play a very impor tant role in bo th the analysis and the 

design of closed-loop transfer recovery. Consider the sys tem character-
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ized by 

{ x — Ax - f Bü, 

(5 ) 

y = Cx + Dxi, 

where x G 9 ΐ
η
, ü G 3 î

m
 and y G 3 î

p
. Wi thout loss of generality, we 

assume that matrices [C , D] and [Β', D']' are of maximal rank. It is 

simple to verify that there exist non-singular transformations U and V 

such that 

UDV = 
/ m o 0 

( 6 ) 0 0 

where mo is the rank of matrix D. Hence, hereafter and without loss 

of generality, it is assumed that matrix D has the form given on the 

right-hand side of (6 ) . One can now rewrite the system of (5) as 

χ = Ax 

Vo 'Co' 

y \. χ + 
l

m 0 ν 

0 ο 

u0 

Üi 

ùo 

Öl 

(?) 

where the matrices Bo, B\, Co and C\ have appropriate dimensions. 

W e have the following theorem. 

T h e o r e m 1 ( s . c . b ) . Consider the system Σ characterized by (A, B, 

C, D). There exist nonsingular transformations Γ ι , Γ 2 and Γ 3 , an 

integer nif < rn — 777-0 and integer indexes qi, i — 1 to mj, such that 

χ = Γιχ , y = T2y , u = Γ 3ΐί 

* « = [ ( * ^ ' . ( * ί )
,

] ' 

y = [yo> 2//. y'bY * 2// = [2/1, 2/2, ·· · ^ 2 / m J ' 

U - K , M y , tt'J' , « / = [Ui, Uo, ' · · , « m /] ' , 

we have the following system of equations: 

Κ = Κ α
χ

α +
 B

äoVO + ^β/2 / / +
 L

äbVb 

* ί = +
 B

aoVo + L+fyf + L+ahyb 

(8 ) 

(9) 
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xb = Abbxb + Bboy0 + Lbjyj , Vb - Cbxb ( 1 0 ) 

xc = Accxc + Bc0y0 + Lcbyb + Lcfyf + Bc[E~ax- + E+ax+] + Bcuc ( 1 1 ) 

y0 = Cqüx~ + C£ax+ + Cobxb + CVjczc + C 0/ a ? / + u0 ( 1 2 ) 

and for each i — 1 έο ???/, 

m j 

x}x = AfiXfi + Lioyo + Lijyj+Bjt [ui+Eiaxa + Eibxb+Eicxc+Y^ EijXfj ] 

( 1 3 ) 

y* = C/.ar/, , yj =CfXf. ( 1 4 ) 

Here the states x~, xb, xc and xj are respectively of dimension 

n~, + , nb, nc and 
m j 

nj = Qi 

i = l 

while X{ is of dimension cp for each i — 1 to mj. The control vectors u q , 

Uf and u c are respectively of dimension mo, m j and m c = m — m Q — m j 

while the output vectors y0, yf and yb are respectively of dimension 

pQ = 777-0, Pf —
 m
f and pb = ρ — po — Pf • The matrices Ajt, Bjt and 

Cfi have the following form: 

Cj, = [1 , 0, . · · , 0] . ( 1 5 ) 

(Obviously for the case when (p — 1, Ajt— 0, Bjt— 1 and Cfx— I.) 

Furthermore, we have X{A~a) G C~, A ( . 4 + J G C+, the pair (Acc, Bc) is 

controllable and the pair (Abb, CB) is observable. Also, assuming that 

Xi are arranged such that (p < (fr+i, the matrix Lij has the particular 

form, 

Lif — [Ln, L%2, * · · ι Li ί-1, 0, 0, · · · , 0 ] . 

A l s o , the last row of each Ljj is identically zero. 

Proof : T h i s fol lows from theorem 2.1 o f [12] and [10]. • 

0 /. 

0 0 
B, -
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W e can rewr i te the s.c.b given by theorem 1 in a more compac t 

form, 

Γ Γ
1
μ - Β ο < ? 0 ) Γ 1 = 

" Κ α 
0 L

a b
C

b 
0 

0 Κ α Kbcb 
0 L

+
afCj 

0 0 0 Lb/Cf 

BcE+a Lci,Cb LcjCj 

.Bj ε ; Β s Et BjEb BjEc Κ J 

T^[B0 Bi]T3 

B
a 0 

Bto 

Bbo 

0 1 
0 

0 

B, 

Bjo Bf 0 J 

"Co" " c 0 - Co"a COJ Coc Co/ 
Γι = 0 0 0 0 Cf 

Ci 0 0 Cb 0 0 

To1
 DT 3 

m 0 

0 

0 

0 0 

0 0 

0 0 

In wha t fol lows, we state some impor tan t propert ies o f the s.c.b which 

are per t inent to our present work . 

P r o p e r t y 1. The given system Σ is right-invertible if and only if xb 

and hence are nonexistent (η^ = 0, Pb = 0), left-invertible if and 

only if xc and hence uc are nonexistent (nc = 0, mc — 0), iavertible if 

and only if both xb and xc are nonexistent. Moreover, Σ is degenerate 

if and only if it is neither left- nor right-invertible. 

P r o p e r t y 2. W e note that ( A b b , C b ) and ( V I / , , C / J form observable 

pairs. Unobservability could arise only in the variables xa and x c . In 

fact, the system Σ is observable (detectable) if and only if ( A o b s, C o b$ ) 

is an observable (detectable) pair, where 

A 0 

AQCI 

Br E c c 

Cobs 

C a 0 CCQ 

En E c 
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Cao = [ce-0, C+], £ a = [£-, £ c a = [£- , £+]. 

Similarly, (Acc, Bc) and (Ajt, Bjt) form controllable pairs. Uncon-

troliability could arise only in the variables xa and x^. In fact, Σ is 

controllable (stabilizable) if and only if (Acon, B c o n) is a controllable 

(stabilizable) pair, where 

A — 

B a 0 

A a a LabC'b 

0 Alb 

Β r on — 
B a 0 

BbO 

L 

B~ao 
B

+ 

a O J 

J
ab 

ab J 
> Laf — 

''bf J 

P r o p e r t y 3. Invariant zeros o f Σ are the eigenvalues of Α α α. More-

over, the stable and the unstable invariant zeros o f Σ are the eigenvalues 

of A~a and A+a, respectively. 

T h e r e are interconnections between the s.c.b and various invariant 

and almost invariant geomet r ic subspaces. T o show these interconnec-

tions, we define 

• V
9
(A, B, C, D) — the maximal subspace o f !ft

n
 which is (A + 

BF)~invariant and contained in K e r ( C -f DF) such that the 

eigenvalues o f (A - f BF)\V
9
 are contained in C9 Ç C for some F. 

• S
9
(A, B, C, D) — the minimal (A - f KC)—invariant subspace 

of 9 î
n
 containing in I m ( B + KD) such that the eigenvalues o f the 

map which is induced by (A - f KC) on the factor space $i
n
/S

9 

are contained in Cg C C for some Κ. 

For the cases that Cg — C, Cg — C~ and Cg — C
+
, we replace 

the index g in V
9
 and S

9
 by V , ' — ' and ' + respect ively. Various 

components of the state vector of s.c.b have the fo l lowing geomet r ica l 

interpretat ions. 

P r o p e r t y 4. 

1. x~ φ χ xc spans V*{A, B, C, D). 

2. x~ φχβ spans V~(A, B, C, D). 

3. x+ e x c spans V
+
(A, B, C, D). 
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4.xc®Xf spans S*(A, B, C, D). 

5.x-&xc&Xf spans S+(A, B, C, D). 

6. x+ 0 xc Θ xj spans S~(A, B, C, D). 

I V . G E N E R A L A N A L Y S I S 

In this section, we deal wi th the general analysis o f c losed-loop transfer 

recovery in the cases of full- and reduced-order observer-based con-

trollers. W e wil l s tudy three fundamental issues in c losed-loop transfer 

recovery. T h e first issue is concerned wi th wha t can and wha t cannot 

be achieved for a given system and for an arbi t rar i ly target closed-

loop transfer function. T h e second issue deals wi th the deve lopment 

of necessary and /o r sufficient condit ions a target c losed- loop transfer 

function must satisfy in order for it to be recovered either exac t ly or 

asymptot ica l ly . A n d the third issue is concerned wi th the deve lopmen t 

o f necessary and /o r sufficient condit ions on a given sys tem such that 

it has at least one (e i ther exac t ly or a s y m p t o t i c a l l y ) recoverable ta rget 

c losed- loop transfer function. 

T o begin , let us consider Luenberger observer-based controllers which 

include as special cases the full-order and reduced-order observer-based 

controllers. L e m m a 1 in this section gives an expl ic i t expression for the 

recovery error function, between the target c losed-loop transfer func-

tion and the one realized by a Luenberger observer-based control ler . 

L e m m a 2 expresses C L T R in terms of a transfer function mat r ix de-

noted here as the recovery mat r ix . T h i s formulat ion plays a central 

role in the deve lopment of our results. W i t h o u t loss of general i ty, we 

assume that D22 — 0 with just if icat ion given in A p p e n d i x A . Le t us 

now consider the fol lowing Luenberger observer-based controller , 

where ν G 3 i
r
 wi th r being the order of the controller and x G $ï

n
 · I t is 

well known that, in the disturbance-free case ( i . e . w — 0 ) the var iable 

( ν — Lv + G\y - f 

(16) 
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χ is an asympto t ic es t imate of the state χ p rov ided that the ma t r i x L 

is a stabil i ty mat r ix and there exists a ma t r ix Q G 9 ?
r xn

 satisfying the 

fo l lowing condit ions: 

QA - L Q = GiC 2, G2 = QB2, JC2 + P Q = In- ( 1 7 ) 

L e t T%w(s) denote the closed-loop transfer function from w t o ζ w i th 

a general Luenberger observer-based controller . T h e n we have the fol-

lowing lemmas . 

L e m m a 1. With the observer defined in (16) and (17), the recovery 

error function between the target closed-loop transfer Tzw(s) and the 

one realized by Luenberger observer-based controller T^w(s) is given by 

Et(s) = TUs) - Ttw(s) = T2U(s) • Mt(s) (18) 

where 

TZu(s) = ( d - D12F)(<b~
l
 + B2F)~

l
B2 + A s , (19) 

is the closed-loop transfer function from u to ζ under state feedback 

and 

Mt(s) = F[P(sI - L)-\QBl - GxD2l) - JD21}. ( 2 0 ) 

P r o o f : T h e result follows directly after some simple algebra. I 

L e m m a 2. Given that the system Σζιι is left-invertible. Then 

1. Exact recovery takes place (i.e. Et(juj) — 0 Μ ω G 3ÎJ if and only 

if Mt(ju>) = 0 G 3ï. 

2. Asymptotic recovery is achievable (i.e. \\Ei(ju)\\ can be made 

arbitrarily small for all ω G $t) if and only if \\Me(ju>)\\ can be 

made arbitrarily small for all ω G 3î. 

P r o o f : It is obvious . I 

N o t e that the conditions given in lemma 2 are not necessary for 

Et(s) to be zero or small if the system Σζιι is not lef t - invert ible . N o n e t h e -

less, they remain as sufficient condit ions for the recovery error to be 

zero or small . T o see this, let us examine the fol lowing example . 
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E x a m p l e 1 : Consider a system characterized by 

"-1 1 
χ + 

0 1 
u + 

0 
X — 

1 - 1 
χ + 

1 0 
u + 

1 

y = [0 ί]χ, 

ζ = [0 l] χ. 

w, 

Let the target c losed-loop transfer function be specified by 

F = 

and let 

' - 1 0 ' 
, G i = 

" Γ 

1 - 1 _ 
, G i = 

_0_ 
L 

T h e n it is s imple to verify that 

Go B2, Ρ = Q = h and J = 0. 

Tzu(s) — [ s+i 0 ] , M < ( * ) = 

L 6 + 1 J 

and Et(s) — Tzu(s)M^(s) — 0. Hence exact recovery can take place 

even though Mc{s) φ 0. 

A s seen from the above example when the sys tem Σζιι is not left-

inver t ib le , one may be able to find an observer-based controller such 

that Mf(s) is nonzero and the recovery error E^(s) is equal to zero . 

Howeve r , this situation is fairly l imited and may not general ly be valid 

for other non-left- invert ible systems. Thus , a general analysis in closed-

loop transfer recovery entails a detai led study o f the mat r ix Mi(s) 

which depends on both the state-feedback mat r ix F and the observer 

parameters . Since the state-feedback gain matr ix F is considered g iven , 

the only degree-of-freedom left for closed-loop transfer recovery is in the 

selection o f the observer parameters . First o f all, the observer param-

eters must be selected such that c losed-loop stabi l i ty o f the observer-

based control sys tem is guaranteed. T h e remaining degrees-of-freedom 

in choosing the observer parameters are then used to achieve C L T R . 

T h a t is, one uses the available f reedom in the observer design to make 

the norm of Mt(ju) ei ther zero or small over the range o f frequencies 
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of interest. Due to the significance o f the mat r ix Mi(s) in C L T R , we 

refer Mi(s) as the recovery matr ix . 

In the next subsections, we focus our at tention to full-order and 

reduced-order observer-based controllers and per form a comple te anal-

ysis o f C L T R for each o f these cases. 

A . Full-Order Observer-Based Controller 

In this subsection, we consider the p rob lem of closed-loop transfer re-

covery using a full-order observer-based controller design. State-space 

description of a full-order observer-based controller is given by 

{ x - [A - KCn)x + Bou + A y , 
< 2 i) 

u — — r χ, 

where the full-order observer gain mat r ix Κ is chosen such that A — 

KCo is asymptot ica l ly stable. T h e transfer function of this full-order 

observer-based controller is 

-u(s) = C(s)y(s), 

where 

C(s) = F{sln - A + B2F + A C ^ ) "
1
 A . 

N o t e that the full-order observer-based controller is a special case of 

the Luenberger observer-based controller in ( 1 6 ) and ( 1 7 ) wi th 

L — A - A ' C o , G ! = A , Go = B2, 

( 2 2 ) 

Ρ = / n , J = 0, Q=In-

F r o m l emma 1 it fol lows that the recovery error and the recovery ma-

tr ix, denoted here by Ej(s) and Mj(s) respectively, are g iven by 

Ej(s) = T£U(s)Mf(s), (23) 

where Tzu(s) is as defined in (19 ) and 

Mj(s) = ^ ( Φ -
1
 -f KC2)~\Bl - KD21). (24) 

( T h e subscript t in (18 ) and (20 ) is replaced by / to signify the specific 

case of a full-order observer-based control ler . ) 
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1. Analysis For Arbitrary Target Closed-Loop Transfer Functions 

Study o f equat ions ( 2 3 ) and ( 2 4 ) wil l p rovide a clear insight into the 

basic mechanism o f C L T R . In fact, these equations indicate that ex-

aminat ion of the recovery error Ej(s) can be done general ly in terms 

o f the s tudy of Mj(s). L e m m a 1 and the expression for Mj(s) g iven in 

( 2 4 ) will therefore form the basis of our invest igat ion. Since the state-

feedback gain mat r ix F is considered g iven , the only degree-of- f reedom 

for closed-loop transfer recovery is in the selection o f the observer gain 

Κ. First of all, in order to guarantee the overal l c losed- loop stabili ty, 

Κ must be selected such that the observer-dynamic ma t r ix 

A0 = A - KC2 (25) 

is a sympto t i ca l ly stable ( i . e . \{A0) G C~). T h e remaining degrees-of-

f reedom in choosing Λ ' can then be used for the purpose o f achieving 

C L T R . N o w in v iew of (24 ) and lemma 2, exact c losed-loop transfer 

recovery ( E C L T R ) is possible for an arbitrarily g iven F if M = 0 

where M/(s) = FMj(s) and 

Mf(s) = (sln - A0)-
l
(B1 - KD2l). ( 2 6 ) 

Since the mat r ix (juln — A0)~
l
 is nonsingular, Μ(]ω) = 0 clearly 

implies that B\ — ΚD2\ = 0. T h e class of systems in which B\ — 

K D 2 1 can be rendered exac t ly zero is rather restr ict ive. Hence , one 

would most likely resort to an approach based on asympto t ic closed-

loop transfer recovery ( A C L T R ) , i.e. to render M a p p r o x i m a t e l y 

zero in some sense. A s ment ioned in section 2, t o analyze whether 

A C L T R is possible we need to parameter ize the controller w i th a tuning 

parameter σ . In the case of a full-order observer-based controller , this 

parameter iza t ion can be s imply introduced in the observer gain mat r ix 

Κ{σ). T h e resulting family of controllers parameter ized by Λ ' ( σ ) is 

C ( s , σ ) = F[sln - A + B2F + K(a)C2]~
l
Κ{σ). (27) 

In this formulat ion Mj(s) and Mj(s) are now functions of σ, denoted 

respect ively by Mj(s, σ) and Mj(s, σ). In our analysis and for the sake 
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of clarity, we assume that A0 is nondefect ive . T h i s al lows us to expand 

Mf($,a) and hence Mj(s,a) in a dyadic form, 

Μ,(8,σ) = Σ - ^ - ( 2 8 ) 

ι = 1 

where the residue matr ix Ri is given by 

Ri = WiVi"[5i - Λ ' ( σ ) £ » 2 1] . ( 2 9 ) 

Here Wj and Vj, are respect ively the right- and lef t-eigenvectors associ-

ated wi th the eigenvalue A; of A0 and 

WV
H
 = V

H
W = In. 

T h e matr ices W and V can be par t i t ioned as fol lows, 

W = [ W i , W,, Wn] and V = [VltV7,---, Vn]. ( 3 0 ) 

In general , all A / , and Wi are functions o f σ . Howeve r for economy 

of nota t ion , we will omi t the dependence on σ expl ic i t ly unless it is 

needed for clarity. 

In what fol lows, we examine condit ions under which the /-th t e rm 

in the dyadic expansion of Mj(s, σ) in (28 ) can be made zero or small . 

T h e r e are basically two ways to achieve this: 

1. T h e first possibili ty is to assign the closed-loop eigenvalue A^ to 

any finite value in C~ while simultaneously rendering the residue 

Ri zero either exact ly or asymptot ica l ly , i.e. 

Ri = Wl(a)V/
I
(a)[B1 - K(a)D2l] = 0 

or 

Ri(a) = Wi(a)V/'(a)[B1 - K(a)D21] - 0 

as o~ —*• oo . T h i s procedure involves a finite eigenstructure assign-

ment of A0. 

2. T h e other possibil i ty is to make 
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pointwise in s as σ — o o by placing the eigenvalue λ , · ( σ ) a symp-

tot ica l ly at infinity and making sure that the residue Ri(<r) is 

uniformly bounded as σ —• oo . I t is impor tan t to recognize that 

placing λ ; asympto t ica l ly at infinity alone wil l not g ive the de-

sired result unless the residue Rj is also bounded . T h i s amounts 

to assigning W{(a) and Vi(a) such that 

Ri(<r) = \νί(σ)νι

ίί
(σ)[Βι - K(a)D21] 

remains bounded while | λ,· | —• oo as σ —* oo . Thus , this proce-

dure deals wi th an infinite eigenstructure assignment o f A0. 

T w o fundamental questions immedia te ly arise in the appl icat ion of 

an eigenstructure assignment technique to this p rob l em of c losed- loop 

transfer recovery: 

( 1 ) H o w many lef t-eigenvectors of A0 can be assigned to the null 

space o f [B\ — K(a)D2\]' ? and, 

( 2 ) H o w many eigenvalues o f A0 can be placed at a sympto t i ca l ly 

infinite locat ions in C~ and at the same t ime the residues asso-

ciated with these eigenvalues are also finite? 

T h e answers to these two questions are g iven in the fo l lowing t w o lem-

mas. 

In the analysis that fol lows, we shall apply the s.c.b t ransformat ion 

deve loped in section 3 to the sys tem Σνΐί>. Le t n~ and ??+ be respec-

t ive ly the number of stable and unstable invariant zeros o f E y t i, and nj 

the number of infinite zeros of Συχν. Moreove r , we let 

nc : = d i m { V* (.4, Bx, C2, Do\) Π S*(A, Bx, C2, D2\)} 

and 

nb := η - n~ - ? i + - nc - nj. 

T h e s e integers ( i . e . n~, ??.+ , ni, nc and nj) can be readi ly ob ta ined 

f rom the s.c.b of Σ ^ . 

L e m m a 3. For any given Κ(σ) such that A0 is stable, let λ 2 be an 

eigenvalue of A0 and Vi its corresponding left-eigenvector. Then the 
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maximum number of A t Ε C which satisfy the condition 

R i = WlVl

H
[Bl - Κ(σ)Ό21] = 0 

is (n~ +ni,). A total of n~ of these eigenvalues A; coincide with the 

stable invariant zeros of the system Σνιν and the remaining nb of these 

eigenvalues can be assigned arbitrarily to any location in C~. The 

eigenvectors Vi that correspond to these (n~ + n&) eigenvalues span the 

subspace 

%
n
/S-(A,BuC2,D2l). 

Moreover, n~ of these eigenvectors corresponding to the eigenvalues at 

the stable invariant zeros are simply the left-state zero directions and 

span the subspace 

V*(A, B u C2, D2l )/V+(A, Bx, C2,D2l). 

P r o o f : See [3] . 

L e m m a 4. For any given Κ{σ) such that A0 is stable, let A ? be an 

eigenvalue ofA0, Vi and W i its corresponding left- and right-eigenvectors 

respectively. The maximum number of eigenvalues of A0 that can be 

assigned arbitrarily to asymptotically infinite locations in C~ while at 

the same time the residue matrix 

R l ^ W l V l

H
[ B l - K { a ) D 2 l) 

remain bounded as \ λ2· | — » oo is (nb + rij). Furthermore, the left-

eigenvectors Vi of these asymptotically infinite eigenvalues span the 

subspace 

W
l
/V*{A,BuC2,D2l). 

P r o o f : See [3] . I 

R e m a r k 2 . Consider the case when E y u, is right-invertible and D2\ 

is of maximal rank. Clearly this covers the special case where Σνιυ is 

a non-strictly proper single-input and single-output system. For this 

case, we have nb -f nj — 0 and hence there is no eigenvalue A; of A0 

that can be assigned to an infinite location and at the same time the 

corresponding residue matrix R i is bounded. 
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A s implied by lemma 3, there are nb eigenvalues where one can 

assign arbitrarily to any locations in C~ and still maintain Ri = 0. 

These rib eigenvalues are therefore among the (rib -f nj) eigenvalues 

indicated in lemma 4. T h a t is, there is a set of nb eigenvalues which 

can be placed arbitrarily at either asymptotically finite locations in C~ 

according to lemma 3 or at asymptotically infinite locations in C~ ac-

cording to lemma 4. For practical design considerations, such as limited 

controller bandwidth and sensor noise reduction, one often keeps these 

rib eigenvalues at stable and reasonably finite locations. 

Combining the results of lemmas 3 and 4, one can deduce all the 

conditions under which various terms of Mj(s,a) can be made zero 

either exactly or asymptotically. There are altogether (n~ + n j + n j ) 

eigenvalues which can be assigned either at finite or at asymptotically 

infinite locations so that the corresponding terms of Mj(s,a) in its 

dyadic expansion (28) are either exactly or asymptotically zero. Thus , 

a question arises as to under what conditions (n~ -f rib +
 w

/ )
 ï s

 equal to 

η the system dimension. It is easy to see that n~ + rib + nj — η if and 

only if T,yw is left-invertible (nc — 0) and of minimum phase
2
 ( n + = 0 ) . 

If Σ ν ιυ is not left-invertible and/or of nonminimum phase, then there 

are exactly ne = ?i+ -\- nc terms of Mj(s, σ) which cannot in general be 

rendered zero. T o fully understand the behavior of Mj(s,a), we need 

to partition it into four parts, 

Mj{s,a) = Μ » ( β , σ ) + Λ / 6 ( 5 , σ ) + Μ ο ο ( β , σ ) + Μ β ( β , σ ) , ( 3 1 ) 

where 

* - ( · • » ) = Σ r r v 

n ~ + n b ~ 

* . < · . " > = Σ Tri"' 

i = n a +1 

n ~ + n b + 7ij ~ 

Moo(*,<r)= J2 — V ' 
i — n a + n b + l 

2
 A system is said to be of nonminimum phase if at least one of its invariant zeros 

is in the closed right-half plane, otherwise it is said to be of minimum phase. 
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and 
η 

Ri 

s - λ,· · 

i = na + n b + n j + 1 
Let Α _ ( σ ) , Ab(a), Λ ^ σ ) and Ae(a) be the sets o f eigenvalues of A0 

associated with the parts M _ ( s , < r ) , Mb(s,a), M00(s)a) and Me(s,a) 

respect ively . Cor responding to each of these part i t ions o f e igenval-

ues, we define the associated right- and lef t-eigenvectors of A0 in the 

sets W_(a), ΐ η ( σ ) , Ι ^ ( σ ) , We(a) and ! / _ » , Vb(a), ^ ( σ ) , Ve(a) 

respect ively. A l s o as a convenient notat ion, we wil l use an overbar on 

a variable to denote its l imit (whenever it exis ts) as σ —+ oo . For ex-

ample , Me(s) and We denote respect ively the l imits of Me(s,a) and 

We(a) as σ — oo. Various parts of Mj(s,a) have now the fol lowing 

interpretat ion: 

1. Λ / _ ( $ , σ ) contains n~ terms with eigenvalues in the set Λ _ ( σ ) . 

In accordance wi th l emma 3, there exists a gain K(o~) such that 

Μ _ ( « , σ ) is identically zero by placing elements of Λ _ ( σ ) at the 

stable invariant zeros of Σννυ and the set of lef t-eigenvectors K_ ( σ ) 

to be the left-state zero directions. In fact, Κ(σ) can be selected 

such that Λ _ ( σ ) and V-(<j) approach asympto t ica l ly the set of 

sys tem stable invariant zeros and their left-state zero direct ions 

as σ — 'Do. In this case, we have M _ ( s , σ) —+ 0 as σ —*· o o . 

2. Mb(s,a) contains nb terms wi th eigenvalues in the set Ab(a). In 

accordance with lemmas 3 and 4, there exists a gain Κ(σ) such 

that Mb(s, σ) is identically zero by assigning elements o f Ab(a) ar-

bi t rar i ly at either finite or infinite locations in C~ a sympto t i ca l ly 

as σ —r oo>. A s discussed earlier, in order to l imit the control ler 

bandwid th , we will assume hereafter that these eigenvalues are 

assigned to asympto t ica l ly finite locat ions. A l s o , Κ(σ) can be 

designed so that Mb(s,A) —•* 0 as Σ —+ oo. 

3. MO0(s,A) contains UF terms wi th eigenvalues in the set Λ 0 0( σ ) . 

In accordance with lemma 4, there exists a gain Κ(σ) such that 

Μοο(8,σ) —- Ü as σ — oo by assigning elements of Λ ο ο ( σ ) arbi-

trari ly to asymptot ica l ly infinite locat ions in C~. 
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4. Me(s,a) contains the remaining ne ΞΞ + nc terms wi th eigen-

values in the set Ae(a). T h i s t e rm does not exist ( i . e . ne — 0 ) 

when the sys tem Σνιν is left- invertible and o f min imum phase. 

In v i ew of lemmas 3 and 4, Me(s,a) cannot in general be ren-

dered zero either asympto t ica l ly or o therwise by any assignment 

o f Λ β ( σ ) and the associated sets o f right- and lef t -eigenvectors 

We(a) and Ve((r). However , as to be discussed later, selection of 

the full-order observer design gain K(cr) can be done so that the 

error t e rm Me(s,a) has a particular frequency-shaped proper t ies 

or some desired Ho- and / Z ^ - n o r m s . N o t e that the eigenvalues of 

A0 in Ae can be assigned to any locations in C ~ , except o f course 

for those corresponding to the stable but unobservable e igenval-

ues of A, since {A, Co) is assumed to be a de tec table pair . T h e s e 

arbi trary locations can either be asympto t ica l ly finite or infinite. 

A s the above discussion indicates, l emmas 3 and 4 form the heart 

of the under lying mechanism of C L T R . T h e y enable us to decompose 

Mj(s,a) and hence Aij(s,a) into four distinct parts exhib i t ing clearly 

condi t ions under which closed-loop recovery is or is not possible. A l -

though the results presented so far do not direct ly p rov ide me thods for 

ob ta in ing the gain Λ ' ( σ ) , they do however g ive the essential c losed- loop 

eigenstructure and hence guidelines in the assignment o f the eigenvalues 

and e igenvectors of A0. T h e s e guidelines can in turn be used to for-

mulate a systemat ic me thod for designing the full-order observer gain 

Κ(σ). In a sequel paper [2], we will discuss in details three possible 

me thods for designing Κ(σ). T h e y are: 

( 1 ) A me thod based on the min imiza t ion of the //2-norm of M j(s, σ ) , 

( 2 ) A me thod based on the min imiza t ion of the / / co -norm of M j (s,a) 

and, 

( 3 ) A s y m p t o t i c t ime-scale and eigenstructure assignment ( A T E A ) 

me thod . 

T h e lat ter me thod is an extension of the one given in [11] and [9] 

which allows designers a great f lexibi l i ty in the shaping of Mj(s,a). 

Pu t t i ng these aside, we come back to the p rob lem of character izing 

achievable closed-loop transfer recovery. T o do this, we s imply assume 
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that the observer gain Κ(σ) was g iven and has been chosen from the 

set K*(A,Bi,C2,D2l,a) defined be low. 

D e f i n i t i o n 6. K * ( A , Β λ , C2, D 2 \ , σ) is a sei of gains Α ( σ ) G 3 ί
η χρ 

such that 

( 1 ) Α0(σ) - A - K(a)C2 is stable for all σ > σ* where 0 < σ* < oo , 

( 2 ) The unite eigenvalues of Ασ(σ) remain in C~ as σ —• oo , 

( 3 ' ) If 7ij — 0 then M_(s,a) and Mb(s,a) are identically zero for 

all σ, 

( 3 " ) If nj φ 0 then, as σ —>• oo, M-(s,a) and Mb(s,a) are either 

identically zero or asymptotically zero. Moreover, the eigenval-

ues in the set Λ _ ( σ ) and Λ $ ( σ ) fend to finite locations in C~ 

and, 

( 4 ) A/co(s,
 σ

) 0 as er —r oo . 

I t is obvious that IC*(A, B \ , C 2 , Do\, σ ) is a nonempty set. 

R e m a r k 3. Jn the case where the system Σνιν does not have any in-

finite zeros (i.e. iif = 0), every element Κ(σ) of JC*(A, B \ , C 2 , Όογ,σ) 

is independent of σ and furthermore | | Α ' ( σ ) | | < α < oo for all σ. On 

the other hand, if the system E y u, has at least one infinite zero (i.e. 

nj φ 0), then Α ' ( σ ) of K * ( A , B \ , C2) D2\, σ) must be a function of σ 

and | | Α ' ( σ ) | | — oo as σ —•+ oo. 

T h e o r e m 2 given below characterizes the asympto t ic behavior of the 

achieved loop transfer function for Α ( σ ) G IC*(A, B \ , C 2 , D 2 \ , σ ) . W e 

have the fo l lowing theorem. 

T h e o r e m 2. Consider the closed-loop system Σ ° comprising of the 

system Σ and a full-order observer-based controller. Let ( A , B 2 ) be sta-

bilizable and { A , C o ) be detectable. Then, given any F such that A—BF 

is asymptotically stable and for a gain Κ(σ) G IC*(A, B \ , C o , D2\, σ), 

the closed-loop system E
c
 is asymptotically stable. Moreover, as σ —• 

oo , 

Ej(s,a) Tzu(s)F~Me(s). ( 3 2 ) 

P r o o f : Expression ( 3 2 ) follows from lemmas 3 and 4, as well as the 

proper t ies of Κ*(Α, Β χ , C2, D2X,a). I 
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In v i e w o f theorem 2, Me(s) can be te rmed as the l imi t o f the 

recovery mat r ix . W e have the fol lowing corollaries of theorem 2. 

C o r o l l a r y 1. Let the system T s y w be left-invertible and of minimum 

phase. Then Τ { ( Σ ) = Τ ( Σ ) . Moreover, for any gain 

K(a)eK*(A,Bl,C2,D2l,a), 

the corresponding full-order observer-based controller achieves closed-

loop transfer recovery for any given Tzw(s) G Τ ( Σ ) . 

P r o o f : For a left- invert ible and minimum-phase sys tem Σ ^ , we have 

77+ — 0 and rcc = 0. Thus 77+ - f nc = 0 and Me(s,a) is nonexistent . 

Hence , the results are obvious . I 

R e m a r k 4. Results of corollary 1 are exactly those of Fujita et al [6]. 

C o r o l l a r y 2. Let the system E y w be left-invertible and of minimum 

phase. And let D2\ be of maximal column rank. Then 

Τζη(Σ) = Τ { ( Σ ) = Τ ( Σ ) and Τ{Λ(Σ) = 0. 

Moreover, the observer gain 

K(a)eK*(A,BuC2,D2l,a) 

is independent of σ and the corresponding full-order observer-based 

controller achieves exact closed-loop transfer recovery (ECLTR) for any 

given T,w(s)eT(E). 

Proof : W h e n the sys tem Σν%υ is lef t- invert ible and of m i n i m u m phase 

and D2\ is of max imal column rank, then we have n + = 0, nc = 0 and 

nj — 0. N o t e that a lef t- invert ible sys tem Σνιν has no infinite zeros if 

and only if D2\ is o f max ima l rank. Thus , bo th Me(s,a) and M00(s,a) 

are nonexistent . Hence the results of corol lary 2 are obvious . I 

R e m a r k 5. If the system Συΐί) is a non-strictly proper and of minimum-

phase single-input single-output system, then ΤζΆ(Σ) — Τ { ( Σ ) and 

Τ { Β ( Σ ) = 0 . 

R e m a r k 6. Whenever ECLTR is feasible, the corresponding full-order 

observer-gain matrix Κ(σ) G IC*(Α, Βχ, C2, D2X, σ) is finite and con-

stant for all σ and hence C(s,a) — C(s). 
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2. Analysis For Recoverable Target Closed-Loop Transfer Functions 

In the previous subsection, the analysis of closed-loop transfer recovery 

does not take into account any knowledge of the state-feedback gain 

mat r ix F. I t is essentially a study of the mat r ix Mj(s) or M j(s,a) as 

to when it can or cannot be rendered zero using a full-order observer-

based controller . T h i s section complements the analysis o f the previous 

subsection by taking direct ly into account the knowledge o f F. O b v i -

ously then, the analysis of this section is a s tudy o f Mf(s) — FMj{s) 

or Mj(s,a) = FMj(s,a). T w o basic issues have been addressed: 

( 1 ) W h a t class of target closed-loops can be recovered exac t ly (or 

a sympto t i ca l l y ) for a given sys tem Σ ? Or equivalently, wha t 

are the necessary and sufficient condit ions a target c losed-loop 

transfer function Tzw{s) must satisfy so that it can exac t ly (or 

a sympto t i ca l l y ) be recoverable for the g iven sys tem? and, 

( 2 ) W h a t are the necessary and sufficient condit ions on the sys tem 

Σ so that it has at least one recoverable target loop? 

Answers to these questions would enable designers to identify the ap-

propr ia te number and type of control inputs and measurement outputs 

in the plant model needed in the C L T R task. T o answer the ques-

tions, we introduce an auxil iary system ΣΕ where now the condi t ion 

for the set o f exac t ly recoverable target loops Τ { η ( Σ ) to be nonempty 

is equivalent to the auxil iary system ΣΕ being s tabi l izable by a static 

output-feedback control . Similarly, another auxil iary sys tem ΣΑ can 

be introduced for the A C L T R case. Here, it will be shown that the 

set o f recoverable target loops Τ { Κ ( Σ ) is nonempty if and only if ΣΛ is 

s tabi l izable by a static output-feedback control . 

In what fol lows, we derive conditions for E C L T R and A C L T R in 

terms of geometr ic propert ies . W e also g ive the necessary and sufficient 

condit ions for the sets Τ { Η ( Σ ) and Τ { Κ ( Σ ) to be non-empty. W e have 

the fol lowing theorems. 

T h e o r e m 3. Let the system Σζη be left-invertible and stabilizable and 

Σνιυ be detectable. Then, an admissible target closed-loop transfer 

function Tzw(s) of Σ (i.e. Tzw(s) £ Τ (Σ)) is exactly recoverable by a 
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full-order observer-based controller if and only if 

S~(A,BuC2,D2l) C Ker(F). 

That is, 

T { R ( S ) = {T,w(s) G Τ ( Σ ) I S-(A,BltC2,D2l) Ç Ker(F)}. 

P r o o f : See A p p e n d i x Β . I 

T h e fo l lowing theorem characterizes the non-emptiness of T { R ( E ) . 

T h e o r e m 4. Let the system Σζιι be left-invertible and stabilizable and 

Σνίν be detectable. Let CE be any full-rank matrix of dimension (n~ + 

nb) x η such that 

Ker(CE)=S-(A,B1,C2,D21). 

Then, the system Σ has at least one exactly recoverable target closed-

loop transfer function (i.e. ΎζΗ(Σ)) is nonempty if and only if the 

auxiliary system ΣΕ characterized by the matrix triple (A, B2,CE) is 

stabilizable by a static output-feedback controller. 

P r o o f : See A p p e n d i x C . I 

T h e o r e m s 5 and 6 be low state the results for the case of A C L T R . 

T h e o r e m 5. Let the system Σζα be left-invertible and stabilizable and 

Σνιυ be detectable. Then, an admissible target closed-loop transfer 

function Tzw(s) of Σ (i.e. Tzw(s) G T ( E ) J is recoverable (either exactly 

or asymptotically) by a full-order observer-based controller if and only 

if 

V+(A,BuC2,D2l) C Ker(F). 

That is, 

Τ { ( Σ ) = ( Γ Λ ( 8 ) Ε Τ ( Σ ) I V + M . ß i . ^ . ö j i j C A ' c r ( F ) } . 

P r o o f : See A p p e n d i x D . I 

A s in theorem 4, t heorem 6 be low characterizes the non-emptiness 

o f Τ { ( Σ ) . 
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T h e o r e m 6. Let the system ΣΖΙί be left-invertible and stabilizable and 

Συχν be detectable. Let CA be any full-rank matrix of dimension (n~ -f 

n
b +

 n
f)

 x n
 such that 

Ker(CA) = V+(A,Bua2)D21). 

Then, the system Σ has at least one asymptotically recoverable target 

closed-loop transfer function (i.e. Τ £ ( Σ ) is nonempty) if and only if 

the auxiliary system ΣΑ characterized by the matrix triple (A, B2,CA) 

is stabilizable by a static output-feedback controller. 

P r o o f : It fol lows along the same lines as in theorem 4. I 

B . R e d u c e d - O r d e r O b s e r v e r - B a s e d C o n t r o l l e r 

In this section, let us consider the p rob lem of c losed-loop transfer re-

covery using reduced-order observer-based controllers. W i t h o u t loss 

of general i ty and for s implici ty of presentation, we assume that the 

matrices C2 and D2\ are already in the form 

Co = 
0 

[ I p - m 0 

Co ,02 
0 

and D2i — 
D 21,0 

0 
( 3 3 ) 

where m 0 is the rank of D2\. T h e system Σ can be rewri t ten as, 

Xo 

yo 

y \ 

An A l 2 

Ao\ A22 

0 C2,02 
0 

Xo 

Χχ 

Xo 

BXo 

2̂1,0 
0 

w + 
B2,i 

Bo ο 
u, 

( 3 4 ) 
±

p - m 0 

= C\ χ + D\\ w -f D\2 u, 

where [x[, χ'2]' — χ and [y'Q, y[]' — y. W e note that y\ = X \ . Thus , 

one needs to es t imate only the state x2 in the reduced-order observer 

design. T h e procedure follows closely the deve lopment g iven in [7] and 

[1] . W e first rewri te the state equat ion for Χ Ι in terms o f the measured 

output y χ and state x2 as fol lows, 

ill = Anyi + ΑιοΧο + ΒΪΛνυ + B 2 Xu , ( 3 5 ) 

where y\ and u are known. Observa t ion of x2 is made via yo and 

2/! = A 12x2 + B h lw - i j i - Anyi - Β 2 Λη . ( 3 6 ) 
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A reduced-order sys tem for the est imation of the remaining state x2 is 

g iven by 

Χ 2 = Ä22 

yo 

A \ 2 

A 2 2 X2+ 01,2 ^ + [^21,^2,2] 

X2 + 
2̂1,0 
1̂,1 

(37) 

Based on equation ( 3 7 ) , we can construct a reduced-order observer for 

the s tate χ2 as fol lows, 

X2 — 2̂2̂ 2 "h [^21, 2̂,2 

yo C2,02 

mm - A n y i - Β 2 Λη A \ 2 

Aor = AT> - Kr 

£2) , (38) 

where Kr is the observer gain mat r ix for the reduced-order system. I t 

is chosen such that 

2̂,02 
A\2 

is asympto t ica l ly stable. In order to r emove the dependency on y \ , let 

us par t i t ion Kr — [Λ'Γο> A' ri] to be compat ib le with the dimensions 

o f the outputs [y'Q, y 'J ' and at the same t ime define a new variable 

ν :— x2 — K r \ y l . W e obtain the fol lowing reduced-order observer-based 

controller , 

ν — A o rv + ( B o ,2 — Kr\B2)\)u 

+ [Λ' Γ θ, Mi - K r \ A n + A o rK r l] 

χ ~ 
0 0 I p - m o 

0 K r l 

( 3 9 ) 

_ In-p + mo . 

Κ u = —Fx, 

W e further note that the reduced-order observer-based controller g iven 

above is a special case of Luenberger observer-based controller o f ( 1 6 ) 

wi th the fo l lowing parameters , 

L = A o r, G l = [AVo , Α ο Λ - Κ Γ \ Α η + A o rK r i ] , 

( 4 0 ) 0 7 — 0 I p - m 0 

_ In—p + niQ _ 
j
 J

 — 
0 Krl 

[ Go = -02,2 - ^ r l^ . l i Q — [ — ̂ 'rlj /n-p + m0]-



276 BEN M. CHEN, ALI SABERI, A N D U Y - L O I L Y 

N o w , let us par t i t ion F as 

F= [F i , F 2] 

in conformity wi th [x[, x2}'. I t fol lows from l emma 1 that the recov-

ery error and the recovery matr ix , denoted here by Er{s) and Mr(s) 

respect ively, are given by 

Er(s) = T2U(s)-Mr{s), 

where Tzu(s) is as defined in (19 ) and 

Mr(s) = F2(sl - Ar + KrCr)-\Br - KrDr), 

with 

(41) 

(42) 

.4,. = A22, Br = ß i , 2 , C r = C*2,02 
4̂12 

AH ,ο 

R e m a r k 7. T h e expression for Mr(s) is identical to Mj(s) of the full-

order observer-based controller in (24), where Fo, (Ar,Br,Cr,Dr) and 

Kr now take the place of F , [A, B\,C2, D2\) and K. 

W e have the fol lowing impor tant lemma regarding the propert ies of 

Σ Γ characterized by (Ar,Br,Cr,Dr). 

L e m m a 5. 

1. Σ 7· is of (non-) minimum phase if and only if (A, B\,C2, D2\) is 

of (non-) minimum phase. 

2. Σ Γ is detectable if and only ifHyw is detectable. 

3. Invariant zeros of Σ Γ are the same as those οΐΈνιι>. 

4. Orders of infinite zeros of Σ Γ are reduced by one from those of 

ν 

5. Σν is left-invertible if and only if Σνίυ is left-invertible. 

6. ( J ) V + ( A r , Br, Cr , Dr ) = V + (A, S i , Co, D21 ) 

/ . I 5 ) S - ( i 4 r , J 3 r iC r , AO = c S ^ - ( . 4 , J 0 i , C 2 , D 2 1) n ö , w h e r e ö : = 

{χ I C 2 * G IrnDoi}. 

P r o o f See [51. 
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1. Analysis For Arbitrary Target Closed-Loop Transfer Functions 

W e note that with l e m m a 5 the analysis and design o f full-order and 

reduced-order observer-based controllers for C L T R have been placed 

into the same f ramework. N o w , let IC*(Ar, Br, Cr, Dr, σ) be defined in 

a similar way as in definition 6. W e have the fo l lowing results which 

are analogous to the case of a full-order observer-based control ler . 

T h e o r e m 7. Consider the closed-loop system Σ° comprising of the 

given system Σ and a reduced-order observer-based controller. Let 

(A, B 2 ) be stabilizable and (A, Co) be detectable. Then, for any F 

such that A — Bo F is asymptotically stable and for any gain 

Κ ( σ ) G r(>l r,fl r,C r,u r,a), 

the closed-loop system Σ° is asymptotically stable. Moreover, as σ —• 

oo , 

Er(s,a)-Tzu(S)F2Mre(S), (43) 

where Mre(s) is for the reduced-order system Σ Γ and can be derived 

following the procedure given in Section IV.A.l. 

P r o o f : T h e p roof follows along the same lines as in theorem 2 and 

the proper t ies of Σ Γ in l e m m a 5. I 

In v i ew of theorem 7, Mre(s) can also be t e rmed as the l imi t of 

the recovery mat r ix for the case of a reduced-order observer-based con-

troller. W e have the fol lowing corollaries of theorem 7. 

C o r o l l a r y 3. Let Σνιυ be left-invertible and of minimum phase. Then 

Τ ; ( Σ ) = Τ ( Σ ) . Furthermore, for any gain Κ(σ) G K* (Ar, Br ,Cr, Dr ,σ), 

the corresponding reduced-order ob server-based controller achieves closed 

loop transfer recovery for any given Tzw(s) G Τ ( Σ ) . 

P r o o f : T h e p roof fol lows along the same lines as in corol lary 1 and 

the proper t ies of Σ, . in lemma 5. • 

C o r o l l a r y 4. Let Σνιυ be left-invertible and of minimum phase with 

no infinite zero of order higher than one which implies that Dr is of 
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maximal column rank. Then 

Τ
Γ

Β ( Σ ) = Τ Ε Β( Σ ) = Τ ( Σ ) 

and T ' A R( E ) — 0. Moreover, any gain 

Κ{σ) G K*(Ar,Br,Cr,Dr,a) 

is independent of σ and the corresponding reduced-order observer-based 

controller achieves exact closed-loop transfer recovery (ECLTR) for any 

given T2W(s)eT(E). 

P r o o f : T h e proof follows along the same lines as in corol lary 2 and 

the propert ies of Σν in lemma 5. • 

2. Analysis For Recoverable Target Closed-Loop Transfer Functions 

In what fol lows, we state in terms of geomet r ic propert ies condit ions un-

der which E C L T R and A C L T R can be achieved using a reduced-order 

observer-based controller . A s in the case of full-order observer-based 

controller , necessary and sufficient condit ions are g iven that charac-

terize the non-empty sets T
7

E R( E ) and T
7

R ( E ) . W e have the fol lowing 

theorems. 

T h e o r e m 8. Let the system Σζιι be left-invertible and stabilizable and 

ΣyW be detectable. Then an admissible target closed-loop transfer 

function Tzu(s) of Σ (i.e. TZU){s) G Τ(Σ)) is exactly recoverable by 

a reduced-order observer-based controller if and only if 

S " ( 4 , ß i , C 2 , D 2 i ) Π ϋ Ç Ker{F). 

That is, 

Τ ' Ε Β( Σ ) = {T2W(s) e Τ ( Σ ) I 5 - ( A , B b C 2 , D 2 1 ) n ( 5 Ç Ker(F)}. 

P r o o f : In v iew of l emma 5, we note that 

S-(A,BuO>,D21)nl5 Ç Ker{F) 
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is equivalent to 

S'(Ar,Br,CriDr) C Ker(F2). 

Hence the p roof follows along the same lines as in theorem 3. I 

Remark 8. It is simple to observe from theorems 3 and 8 as well 

lemma 5 that Τ { Η ( Σ ) C Τ ^ Η ( Σ ) . T h a t is, if a target closed-loop trans-

fer function is exactly recoverable by a full-order observer-based con-

troller, then it is also exactly recoverable by a reduced-order observer-

based controller. But the reverse is not true in general. 

T h e fo l lowing theorem characterizes the non-emptiness o f Τ ^ , ^ Σ ) 

for reduced-order observer-based controllers. 

Theorem 9. Let the system Σζιι be left-invertible and stabilizable and 

Σνιυ be detectable. Let C r e be any maximal rank matrix such that 

Ker(Cre) = S"(AiBuC2lD21)nl3. 

Then the given system Σ has at least one exactly recoverable target 

closed-loop transfer function using a reduced-order observer-based con-

troller (i.e. Ύ
7

ΕΗ(Σ) is nonempty) if and only if the auxiliary system 

ΣΓβ characterized by the matrix triple (A,B2,Cre) is stabilizable by a 

static output-feedback controller. 

Proof : I t follows along the same lines as in theorem 4. I 

T h e o r e m 10 given be low deals wi th A C L T R for reduced-order ob -

server based controller . 

Theorem 10 . Let the system Σζη be left-invertible and stabilizable 

and E y w, he detectable. Then an admissible target closed-loop transfer 

function Tzw(s) of Σ (i.e. Tzw(s) G Τ (Σ)) is recoverable (either exactly 

or asymptotically) by a reduced-order observer-based controller if and 

only if 

V+(A,BuC2,D2l) C Ker(F). 

That is, 

Τ ' Β ( Σ ) = {Tlw(s) € Τ ( Σ ) I V
+
(A,BuC2,D2l) Ç Ker(F)}. 
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P r o o f : In v iew o f l emma 5, we note that 

V+(A,BUC2,D21) Ç Ker(F) 

is equivalent to 

V+{Ar,Br,Cr,Dr) C Ker(F2). 

Hence the p roof follows along the same lines as in theorem 5. I 

R e m a r k 9. It is trivial to see from theorems 5 and 10 that Τ { ( Σ ) = 

T R ( E ) . That is, if a target closed-loop transfer function is recoverable 

by a full-order observer-based controller, then it is also recoverable by 

a reduced-order observer-based controller. And the reverse is also true. 

Hence, it is obvious that the nonemptiness ofT
7

AR(E) is characterized 

by the same condition as in theorem 6. 

V . N U M E R I C A L E X A M P L E 

T h e above analysis of C L T R is applied t o the deve lopment o f a local izer 

capture and track-hold design of a commercia l t ransport . T h i s numeri-

cal example is not intended to provide a comple te i l lustration o f all the 

analysis results discussed in the previous sections. T h e main reason 

for using this design prob lem is that it provides a realistic design sit-

uation where asympto t ic and exact c losed-loop transfer recovery using 

full-order and reduced-order observer-based controllers are appl icable . 

For completeness , we provide a brief ove rv i ew of the design procedure 

used in the synthesis of the chosen state-feedback gain F which defines 

the target c losed-loop transfer function Tzw(s) for c losed-loop transfer 

recovery. Deta i led description and design requirements for such a sys-

t e m have been extens ively covered in l i terature (see for example the 

Special Issues in I E E E Control Sys tem M a g a z i n e [14] ) . I t should be 

emphasized here that the analysis p rov ided in previous sections are ap-

plicable to arbitrary state-feedback laws, regardless o f the procedures 

f rom which these state-feedback laws are der ived ( i . e . H2-, H^-novm 

based design methods , eigenstructure assignment or o the r s ) . 
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Design mode l used in this example consists o f the basic 4
th
-order 

lateral aircraft dynamics augmented wi th appropr ia te kinemat ic equa-

tions for the heading φ and lateral track distance ytrack a long wi th 

a state for the integral o f lateral track error f (ytrack — yc)dt. S ta te 

matr ices describing the synthesis mode l wi thout actuat ion dynamics 

in the notat ions o f ( 1 ) are given be low for a typical landing approach 

condi t ion, 

- -0.2093 0.00077518 0.1003 -0.991 0 0 o-
-7.492 -3.44 -0.0052035 0.9783 0 0 0 

0 1 0 -0.0012877 0 0 0 
2.031 -0.1696 -0.0050925 -0.2089 0 0 0 

0 0 0 1 0 0 0 
0 0 0 0 5.597 0 0 
0 0 0 0 0 1 0-

-0.026222 -0.0033036-
9.2044 0.069525 

0 0 
Βλ = 0.10099 0.086836 

0 0 
0 0 
0 - 1 

(44) 

r 0.0013217 0.063301η 
2.011 2.012 

0 0 
B2 = 0.1304 -1.393 

0 0 
0 0 
0 0 

-19.856 0.07354 9.5153 -94.015 0 0 0 -
0 0 14.142 0 0 0 0 
0 0 0 20 0 0 0 

Ci = 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 0 - -0.12539 6.0053 η 
-14.142 0 0 0 

0 0 0 0 
Du = 0 - 1 , Di2 = 0 0 

0 0 0 0 
0 0 10 0 
0 0 - 0 31.623J 

c2 = 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
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D2i = 

"0 0* "0 0" 

0 0 0 0 

0 0 
, D22 = 

0 0 

0 0 
, D22 = 

0 0 

0 0 0 0 

_0 0 . . 0 0 . 

T h e state variables are 

X = [β, ρ , φ , Γ , ψ , y t r a c k , f (ytrack ~ yC)dt]' 

where β is the sideslip angle in degrees, ρ is the roll rate in degrees 

per second, φ is the roll angle in degrees, r is the y a w rate in degrees 

per second, ψ is the heading angle in degrees, y t ra c k is the lateral track 

distance in feet and y c is the command lateral track distance in feet. 

T h e control inputs 

w- = [f>ac,Kc]' 

consist o f the aileron b ac and rudder 6rc deflections in degrees. T h e 

disturbance inputs 

u> = [<t>c,yc]' 

contain the bank angle command φ € in degrees and the lateral track 

command y c in feet. T h e measurement output variables are 

y = \ρ,Φι r, i \ ytrack ,f (ytrack - yc)dt}'. 

T h e control led output variables ζ shown above are made up o f weighted 

plant outputs zv and control variables u in the fo l lowing fo rm 

2 = [ « ?
1 /

% ) ' , ( Λ
1 / 2

« ) ' ] ' · 

T h e performance variables zp include sideslip accelerat ion /?, bank angle 

devia t ion (φ—φ€), yaw rate 7-, lateral track devia t ion (ytrack—yc) and in-

tegral track error f (ytrack ~ Vc)dt. T h e control variables u are included 

in the control led output vector ζ to ensure that the resulting state-

feedback design does not have excessive control gain and bandwid th . 

T h e s e control variables are scaled by a diagonal weight ing mat r ix R. 

N o t e that in the design trade-offs, loop shapings are tuned on the per-

formance variables zp using a diagonal weight ing mat r ix Q. Final selec-

tion of the diagonal weight ing matrices Q and R is m a d e after numerous 
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design i terat ions that involve at each t ime closed-loop s tabi l i ty analy-

sis, frequency responses of the transfer function y t r a c k (
s

) / y c (
s

) , t ime 

simulation to a lateral track c o m m a n d . I t is observed in the design 

i terat ions that increasing penal ty on the sideslip accelerat ion β wi l l 

improve the aircraft turn-coordinat ion, but at the expense o f slower 

responses to bank angle and lateral track c o m m a n d inputs. In order to 

achieve g o o d tracking performance and turn-coordinat ion, responses of 

the control led output vector ζ to the command inputs w must be kept 

as small as possible. State matrices for the desired control led output 

vec tor z(t) are g iven in equat ion (44). 

Cont ro l - l aw synthesis is performed at one part icular landing ap-

proach condi t ion. A state-feedback law that yields satisfactory stabil-

ity and closed-loop responses to a lateral track command y c is ob ta ined 

from the fol lowing / / ^ - n o r n i bound solution, i.e 1 1 ^ ^ ( 5 ) 1 1 ^ < 45. A n 

acceptable state-feedback gain mat r ix F is g iven be low, 

Γ 0.10939 0.92375 4.2514 2.3791 3.9476 0.088639 0.0048466' 
~ [ - 1 . 12 3 7 0.081467 0.32548 -2 .9659 -1.6125 -0.05404 -0.0035325 

(45) 

Ana lys i s o f c losed-loop transfer recovery for the above localizer cap-

ture and track-hold design proceeds as fol lows. First o f all, we examine 

whether condi t ions for exact and asympto t ic closed-loop recovery can 

be achieved wi th the given set o f measurements and using an output-

feedback observer-based control- law. It is s imple to verify that the sys-

t e m Σ ζ ιι is lef t- invert ible. Thus according to L e m m a 2, condi t ions for 

exac t and asympto t ic c losed-loop recovery are governed comple te ly by 

the exis tence of solutions that make the recovery error zero or arbitrar-

ily small . N e x t we observe that, wi th the given measurement output 

y{t) and disturbances w(t), the sys tem Σ ν ιν is lef t- invert ible and has 

no invariant zeros. Thus from Coro l l a ry 1, a full-order observer-based 

controller can be used to achieve closed-loop transfer recovery for any 

closed- loop Tzw(s) under state feedback and obvious ly the full-state 

feedback design defined in equat ion (45) . Fur thermore , f rom Coro l l a ry 

3, the transfer function Tzw(s) is also recoverable using a reduced-order 

observer-based controller . It can be de termined from the s.c.b transfor-

mat ion that the sys tem Σ ν ιυ has two infinite-zeros o f order 1. T h i s re-
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suit indicates that recovery using a full-order observer-based controller 

can only be achieved asymptot ica l ly . A n acceptable observer-gain de-

sign Κ is g iven be low and it is obta ined using the A T E A design m e t h o d 

[2]· 

-28.529 0.099657 -3.6288 0 -0.016212 34.789 -
9998.8 0.00010319 108.9 0 0 9.263 

1 0.5 -0.0012877 0 0 0 

108.72 -0.0094053 75.315 0 0 -854.23 

0 0 1 0.5 0 0 

0 0 0 5.597 0.5 0 
-9.8159 -0.00080954 -854.25 0 0 9926.5 -

(46) 

Deve lopmen t of different design methods for C L T R wil l be covered in 

a sequel paper [2] . It should be noted that in theory the observer gain 

mat r ix must be large in order to recover asympto t ica l ly the closed-

loop performance ( i . e . the case of A C L T R ) . In this particular design 

example , we notice that reducing the recovery error at low frequency 

does indeed involve a high observer gain design synthesized using either 

the A T E A or A R E - b a s e d methods . Singular value plots o f the closed-

loop transfer function Τ ζ η ){ ] ω ) are shown in figure 2. T h e observer 

gain of equation (46 ) seems to p rov ide reasonably small recovery error 

at low frequency and at the same t ime does not lead to excessive control 

responses to lateral track commands . Per formance evaluat ion based on 

transient responses is depicted in figure 3 corresponding to the t ime 

simulation of sys tem responses to a lateral track c o m m a n d 

y c = 1000(1 - e -
0 0 6 5

' ) ( f e e t ) . 

T h i s figure shows t ime responses of the full-state feedback design. R e -

sults corresponding to the above full-order observer design are the same 

within the resolution of the graph as those shown in figure 3. 

N o w we proceed to the p rob lem of closed-loop transfer recovery us-

ing a reduced-order observer-based controller . It turns out that, for 

the above localizer capture and track-hold p rob lem, one can actually 

achieved exact c losed-loop recovery using a reduced-order observer-

based controller . Th i s result comes direct ly from L e m m a 5 and the 

fact that the sys tem E y u, is left- invertible, has no invariant zeros and 

has only infinite zeros of order 1. T h e ensuing reduced sys tem Σ Γ as de-

fined in section I V . Β has no infinite zeros. Hence, in this case, E C L T R 
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Figure 2: Singular Value P lo t s OÏTZW(JUJ) and Ej(ju). 

is possible. A g a i n using the A T E A design me thod , we have ob ta ined 

a reduced-order observer-based controller that yields exac t ly the same 

closed- loop transfer function Tzw(s). Sta te matr ices of this controller 

are g iven be low. 

( ν - Acmpv + Bcmpy, 

< (47) 

^cmp Vi -u = C c m pv + Dc 

whe 
-0.12265 

[0.0095756 0.10031 -0.81378 0.1095 0 -0.0002034] 

Γ 0.10939 
' c m p - _ 1 < 1 2 37 

0.92406 4.2514 2.3791 3.9476 0.088639 0.0052271 
-0.0074414 [0.078262 0.32548 -2.9656 -1.6125 -0.05404 

Per formance of this reduced-order controller is identical to that of 

the full-state feedback case (see Figures 2 and 3 ) . T h e design is an 

output-feedback controller o f first-order and having a controller po le at 

s = —0.12 rad/sec. Hence , the design concept o f C L T R has enabled us 

to synthesize a low-order implementab le output-feedback design for a 
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Figure 3: Aircraf t Responses to a. Latera l Track C o m m a n d o f 1000ft. 
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typical localizer capture and lateral track hold sys tem star t ing f rom a 

satisfactory state-feedback control law. I t should be poin ted out that 

if actuator dynamics have been included into the design mode l , then 

exact c losed-loop transfer recovery is no longer possible, even wi th a 

reduced-order observer-based controller since the infinite zeros o f T,yw 

are no longer o f order 1. However , the sys tem is still a sympto t i ca l ly 

recoverable . 

V I . C O N C L U S I O N S 

In this paper, we deal wi th issues concerning the analysis of c losed- loop 

transfer recovery using full-order and reduced-order observer-based con-

trollers. T h e r e are several fundamental results g iven here. Based on the 

structural propert ies o f the given sys tem, we decompose the recovery 

mat r ix in the recovery error between the target c losed- loop transfer 

function and that achieved by observer-based controllers, into three 

distinct parts for any arbitrari ly specified admissible target c losed- loop 

transfer function. T h e first part o f recovery mat r ix can be rendered 

exac t ly zero by an appropr ia te finite eigenstructure assignment of ob -

server dynamic matr ix , whi le the second part can be rendered arbitrar-

ily close to zero by an appropr ia te infinite eigenstructure assignment. 

T h e third part in general cannot be rendered zero , either exac t ly or 

asymptot ica l ly , by any means al though there exists a mul t i tude o f ways 

to shape it . 

T h e above analysis is general and applies to any arbi trar i ly speci-

fied target closed-loop transfer function. Results o f the analysis enable 

designers to identify l imitat ions o f the given system in recover ing the 

target c losed-loop transfer function as a consequence o f its structural 

propert ies , namely finite and infinite zero structures and invert ibi l i ty . 

T h e next issue of our analysis concentrates on character izing the re-

quired necessary a n d / o r sufficient condit ions on the target c losed- loop 

transfer functions so that they are either exact ly or a sympto t i ca l ly re-

coverable by means of observer-based controllers for the g iven sys tem. 

Condi t ions deve loped here for a target closed-loop transfer function t o 

be recoverable turn out to be constraints in its finite and infinite zero 
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structures inherent o f the sys tem under considerat ion. T h e last issue 

covered in our analysis is to find the necessary and /o r sufficient con-

dit ions on the g iven system such that it has at least one recoverable 

target c losed- loop transfer function. 

In a sequel, we will present design issues concerning the c losed- loop 

transfer recovery. 
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A . A P P E N D I X A — J U S T I F I C A T I O N O F D22 = 0 

T h e just if ication of the assumption D22 — 0 is as fo l lows: Le t us define 

a new auxil iary measurement output y n ew as 

Vnew - V - D22U - C2X + D2iW. 

T h e n we will show that a compensator 

u(s) - K(s)ynew(s) 

is equivalent to the compensator 

u(s) = K(s)[I D22K(s)]'
1
y(s) 

under assumption that the closed-loop sys tem is wel l -posed, i.e. the 

inverse of / + D22K(s) exists for almost all s G C. L e t us consider the 

fo l lowing relat ion, 

u(s) = K(s)ynew(s) 

= K(s)[y(s)-D22u(s)] 

= K{s)y{s) - K(s)D22u(s) 
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T h i s implies that 

[I+K(s)D22]u(s) = K(s)y(s). 

Hence , 

u ( « ) = [/ + K(s)D22}-
1
K(s)y(s) = K(s)[I + Z ? 2 2A ' ( e ) ] "

1
y ( * ) . (48) 

Thus , whenever D22 is nonzero, one can define a new set o f measure-

ment output , namely y n e w, and design a controller K(s). T h e n the 

controller in ( 4 8 ) will y ie ld the same performance when it is appl ied to 

the or iginal system. I 

B . A P P E N D I X Β — P R O O F OF T H E O R E M 3 

Under the assumption that ΣΖ1Λ is lef t- invert ible, it fol lows f rom L e m m a 

2 that an admissible target loop Tzw(s) is exac t ly recoverable by a full-

order observer-based controller ( i . e . Ef(s) = 0 ) if and only if there 

exists an observer gain Κ such that A — KC2 is a sympto t i ca l ly stable 

and the corresponding Mf(s) — 0. Thus , it is sufficient to show that 

Mj(s) - 0 if and only if 

S ' ( A , B u C 2 , D 2 i ) Ç Ker(F). 

T o show this, let us consider an auxil iary sys tem character ized by 

χ = A'x + G,u + F'w, 

( 4 9 ) 

ζ - B[x + D2lu. 

A l s o , wi th a state-feedback law 

u = —K'x, 

the c losed-loop transfer function from w to z, denoted here by T™(s), 

is s imply 

TÎZ(s) = M'j{s). 

Hence , the p rob lem of finding an observer gain mat r ix such that A — 

KC2 is asympto t ica l ly stable and Mj(s) = 0 is equivalent to the well-

known disturbance decoupl ing prob lem. T h e n it fol lows f rom S t o o r v o -

gel [16] that the disturbance decoupl ing p rob lem wi th internal s tabi l i ty 
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is solvable to Σαιι in ( 4 9 ) if and only if 

S-{A,Bi,C2,D2\) C Ker(F). 

T h i s completes the p roof of theorem 3. 

C. A P P E N D I X C — P R O O F O F T H E O R E M 4 

W i t h o u t loss of generali ty, we assume that (Α, Βχ, C2) D2\) is in the 

fo rm o f s.c.b as in theorem 1. N o w in v i ew of theorem 3, an exac t ly 

recoverable target closed-loop transfer function Tzw(s) must satisfy the 

condi t ion S~ (Α, Βγ, Co , D2\) Ç Ker(F). T h i s implies that Tzw(s) is 

recoverable if and only if F is the form, 

Fa-{ 0 Fbi 0 0 
( 5 0 ) 

F~2 0 Fb2 0 0_ 

T h u s condit ion that the given system has at least one exac t ly recov-

erable target c losed-loop is s imply equivalent to the existence of some 

appropr ia te ma t r ix F~L, F~2, F^i and Fb2 such that A — B2F is asymp-

tot ica l ly stable. N e x t in v iew of the propert ies of s.c.b, we note that 

C - as defined in theorem 4 is o f the form, 

C . 
0 

0 0 

0 0 

where Γ is any non-singular matr ix of dimension ( n ~ -f ηι)χ(η~ - f r i t ) . 

I t is now tr ivial to verify that existence of a mat r ix F o f the form in ( 5 0 ) 

such that A — B2F is asymptot ica l ly stable, is equivalent to exis tence 

of a matr ix G such that A — B2GCE is asympto t ica l ly s table. T h i s is 

s imply due to the fact GCE has the same structure as F in ( 5 0 ) . T h i s 

completes the p roof of theorem 4. I 

D . A P P E N D I X D — P R O O F O F T H E O R E M 5 

Under the assumption that Σ:ιι is left- invert ible, it fol lows f rom L e m m a 

2 that an admissible target loop Tzw(s) is a sympto t i ca l ly recoverable 

by a full-order observer-based controller if and only if there exists an 

observer gain K{cr) such that A — K(a)C2 is a sympto t ica l ly stable and 
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the corresponding Mf(s,a) 0 pointwise in s as σ —+ oo . Fo l lowing 

the p roo f o f theorem 3 in A p p e n d i x B , it is s imple to see that such a 

p rob lem is equivalent to the wel l -known almost disturbance decoupl ing 

p r o b l e m wi th internal stabil i ty ( A D D P S ) and it is shown in Scherer 

[13] that A D D P S is solvable to Σαιι in ( 4 9 ) i f and only if 

V
+
(A,Bl,C2,D21)CKer(F), 

and we adhere to the notion o f c losed-loop stabil i ty by exc luding those 

cases where , in the l imits as σ —• oo , the finite eigenvalues o f the closed-

loop sys tem are on the ju> axis. T h i s comple tes the p roo f o f theorem 

5. I 
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